US3808572A - Inductive heating means for thermal trip device - Google Patents

Inductive heating means for thermal trip device Download PDF

Info

Publication number
US3808572A
US3808572A US00378416A US37841673A US3808572A US 3808572 A US3808572 A US 3808572A US 00378416 A US00378416 A US 00378416A US 37841673 A US37841673 A US 37841673A US 3808572 A US3808572 A US 3808572A
Authority
US
United States
Prior art keywords
circuit
heating energy
bimetal
set forth
circuit interrupter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00378416A
Inventor
G Gaskill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy and Automation Inc
ITE Imperial Corp
Original Assignee
ITE Imperial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITE Imperial Corp filed Critical ITE Imperial Corp
Priority to US00378416A priority Critical patent/US3808572A/en
Application granted granted Critical
Publication of US3808572A publication Critical patent/US3808572A/en
Assigned to SIEMENS-ALLIS, INC., A DE CORP. reassignment SIEMENS-ALLIS, INC., A DE CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GOULD, INC., A DE CORP., ITE INDUSTRIES, LIMITED, A FEDERAL CORP. OF CANADA
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/74Means for adjusting the conditions under which the device will function to provide protection
    • H01H71/7427Adjusting only the electrothermal mechanism

Definitions

  • ABSTRACT A transformer type heater for the bimetal trip element of a circuit breaker is provided with an auxiliary magnetic structure including means for diverting heating energy from the transformer secondary to a power dissipating means to thereby control the heating energy acting to heat the bimetal.
  • the power dissipating means consists of a lumped resistor, the value of which may be controlled or set very readily within required tolerances, thereby facilitating the production of an accurately calibrated circuit breaker thermal trip means.
  • conductive heating means for the thermal elements of circuit breakers must be constructed to very close tolerances to obtain properly controlled heating of the bimetal. Close tolerances are particularly important insofar as lengths of air gaps in the magnetic frame of the heating means are concerned. Accurate control of bimetal heating must be maintained so that the bimetal element is heated within its most sensitive range, and the rate of heating must be high enough to produce thermal tripping action within the time required to maintain a specified tripping characteristic.
  • the heat transfer characteristics of the heater-thermally responsive element combination and the magnitude of circuit breaker current determine total deflection and time rate of deflection for the thermally'responsive element.
  • trip unit calibration is achieved very simply and accurately merely by substitution of a lump resistor or by utilizing a variable resistor.
  • a primary object of the instant invention is to provide a novel, improved means for inductively heating a circuit breaker thermal trip means.
  • Another object is to provide an inductive heating means of this type constructed so as to facilitate the maintenance of calibration accuracy.
  • Still another object is to provide an inductive heating means of this type in which calibration is facilitated.
  • a further object is to provide an inductive heating means of this type in which calibration is achieved by merely changing a resistance value.
  • FIG. 1 is a perspective illustrating a prior art construction of a time delay tripping bimetal and its inductive heating means.
  • FIG. 2 is a perspective, partly in schematic form, illustrating a circuit breaker having a bimetal inductive heating means constructed in accordance with teachings of the instant invention.
  • bimetal strip 11 constitutes the thermally responsive element of a circuit breaker-time delay trip means.
  • One end of bimetal ll is secured to one leg of shading coil 12 in heat conducting relationship therewith so that heat generated by current flowing in coil 12 will heat bimetal 11 causing the free end 16 thereof remote from coil 12 to deflect.
  • Coil 12 is wound about the horizontal web portion of inverted, generally U-shaped laminated core element 13, whose arms are aligned with the upwardly extending arms of the other U-shaped, laminated core element 14 of the magnetic frame.
  • Main circuit breaker conductor 15 extends through magnetic frame l3, l4 and constitutes a single turn primary for the transformer including magnetic frame l3, l4 and secondary winding 12. 7
  • alternating current flowing through main conductor 15 generates magnetic flux in magnetic frame 13, 14, with this flux inducing current flow in secondary or shading winding 12.
  • the current flowing in coil 12 causes heating thereof, with this heat being transferred by conduction to bimetal 11, causing free end 16 thereof to deflect, with the extent of the deflection being a function of bimetal temperature.
  • a predetermined deflection of bimetal 11 will cause the latter to release a latch, such as element 24 in FIG. 2, causing a circuit breaker operating mechanism, such as 26 in FIG. 2, to trip.
  • FIG. 2 wherein conductive heating means constructed in accordance with teachings of the instant invention is illustrated. Those elements common to both FIGS. 1 and 2 are given the same reference numerals in both figures.
  • shading coil 12 is also wound about one leg of rectangular loop-shaped auxiliary core 17 having energy diverting circuit 18 coupled thereto.
  • Circuit 18 includes variable lumped resistor 19.
  • Current flowing in shading coil 12 induces flux in auxiliary magnetic core 17, which in turn induces current to flow in secondary circuit 18 through resistor 19 thereof.
  • power is being withdrawn from shading coil 12 and is being dissipated in resistor 19, so that less power is dissipated in shading coil 12, and as a result less heat is available for heating of bimetal 11.
  • the value of resistor 19 may be made many orders of magnitude largerthan the resistance of shading coil 12, the latter being of very low resistance, so that resistor 19 may be of reasonable physical size.
  • the number of turns in circuit 18 may be counted accurately, and it is a simple matter to produce a resistor of relatively high precision to use in secondary circuit 18.
  • the resistance of shading coil 12 may also be controlled accurately. Accuracy and reliability of calibration depends upon the value of resistor 19, which, although shown as an adjustable resistor, may be an individually adjusted fixed precision resistor. Accordingly, variation in functional characteristics from unit to unit may be controlled relatively closely, so that the changing of a tripping range may be accomplished simply by changing a resistor in the secondary of the auxiliary magnetic structure.
  • auxiliary magnetic circuit 17, 18 mounted to the same shading coil 12 to which bimetal 11 is secured, it is noted that auxiliary circuit 17, 19 may be coupled to magnetic frame 13, 14 through a second shading coil (not shown).
  • a circuit interrupter having automatic trip means comprising transformer means including a core structure, primary means and secondary means both magnetically coupled to said core, thermal trip means mounted in heat conducting relationship with respect to said secondary means, an auxiliary magnetic structure magnetically coupled to said core structure and including power dissipating means diverting heating energy from said secondary means to control the heating energy acting on the thermal trip means.
  • auxiliary magnetic structure includes an auxiliary secondary means through which the circuit is coupled to the secondary means.

Abstract

A transformer type heater for the bimetal trip element of a circuit breaker is provided with an auxiliary magnetic structure including means for diverting heating energy from the transformer secondary to a power dissipating means to thereby control the heating energy acting to heat the bimetal. The power dissipating means consists of a lumped resistor, the value of which may be controlled or set very readily within required tolerances, thereby facilitating the production of an accurately calibrated circuit breaker thermal trip means.

Description

United States Patent Gaskill [451 Apr. 30, 1974 INDUCTIVE HEATING MEANS FOR THERMAL TRIP DEVICE [75] Inventor: George Gaskill, Hatboro, Pa.
[73] Assignee: I-T-E Imperial Corporation, Spring House, Pa.
[22] Filed: July 12, 1973 [21] Appl. No.: 378,416
52 us. on. 337/106 [51] Int. Cl. H0lh 61/02 [58] Field of Search 337/106, 40
[56] References Cited UNITED STATES PATENTS 2,939,929 6/1960 Hobson, Jr 337/106 Primary ExaminerHarold Broome Attorney, Agent, or FirmOstrolenk, Faber, Gerb &
Soffen [57] ABSTRACT A transformer type heater for the bimetal trip element of a circuit breaker is provided with an auxiliary magnetic structure including means for diverting heating energy from the transformer secondary to a power dissipating means to thereby control the heating energy acting to heat the bimetal. The power dissipating means consists of a lumped resistor, the value of which may be controlled or set very readily within required tolerances, thereby facilitating the production of an accurately calibrated circuit breaker thermal trip means.
6 Claims, 2 Drawing Figures PATENTEDAPR 30 974 PRIOR ART INDUCTIVE HEATING MEANS FOR THERMAL TRIP DEVICE This invention relates to circuit breakers in general and relates more particularly to transformer type means for heating the thermal element of an automatic trip device.
Automatic circuit breakers constructed to operate at relatively high values of continuous current and having the capability of interrupting extremely high values of fault currents are often provided with thermal or time delay tripping means, including a bimetal that is heated by being conductlvely mounted to the secondary of a transformer whose primary consists of a circuit breaker main conductor. This type of construction is illustrated in U. S. Pat. No. 2,939,929, issued June 7, 1960, to C. F. Hobson Jr., for an Electric Circuit Breaker.
It has been found that with prior art constructions conductive heating means for the thermal elements of circuit breakers must be constructed to very close tolerances to obtain properly controlled heating of the bimetal. Close tolerances are particularly important insofar as lengths of air gaps in the magnetic frame of the heating means are concerned. Accurate control of bimetal heating must be maintained so that the bimetal element is heated within its most sensitive range, and the rate of heating must be high enough to produce thermal tripping action within the time required to maintain a specified tripping characteristic. The heat transfer characteristics of the heater-thermally responsive element combination and the magnitude of circuit breaker current determine total deflection and time rate of deflection for the thermally'responsive element.
If interchangeability of inductively heated theremal trip units is desired, it is necessary to closely control assembly tolerances from unit to unit in order to maintain calibration accuracy. In accordance with the instant invention, means are provided to facilitate calibration of an inductively heated thermally responsive trip means thereby, to a large extent, negating effects of component manufactuiing and assembly tolerances from unit to unit. As will hereinafter be seen, trip unit calibration is achieved very simply and accurately merely by substitution of a lump resistor or by utilizing a variable resistor.
Accordingly, a primary object of the instant invention is to provide a novel, improved means for inductively heating a circuit breaker thermal trip means.
Another object is to provide an inductive heating means of this type constructed so as to facilitate the maintenance of calibration accuracy.
Still another object is to provide an inductive heating means of this type in which calibration is facilitated.
A further object is to provide an inductive heating means of this type in which calibration is achieved by merely changing a resistance value.
These objects as well as other objects of this invention will become readily apparent after reading the following description of the accompanying drawings in which:
FIG. 1 is a perspective illustrating a prior art construction of a time delay tripping bimetal and its inductive heating means.
FIG. 2 is a perspective, partly in schematic form, illustrating a circuit breaker having a bimetal inductive heating means constructed in accordance with teachings of the instant invention.
Now referring to the figures. In FIG. 1 bimetal strip 11 constitutes the thermally responsive element of a circuit breaker-time delay trip means. One end of bimetal ll is secured to one leg of shading coil 12 in heat conducting relationship therewith so that heat generated by current flowing in coil 12 will heat bimetal 11 causing the free end 16 thereof remote from coil 12 to deflect. Coil 12 is wound about the horizontal web portion of inverted, generally U-shaped laminated core element 13, whose arms are aligned with the upwardly extending arms of the other U-shaped, laminated core element 14 of the magnetic frame. Main circuit breaker conductor 15 extends through magnetic frame l3, l4 and constitutes a single turn primary for the transformer including magnetic frame l3, l4 and secondary winding 12. 7
Thus, alternating current flowing through main conductor 15 generates magnetic flux in magnetic frame 13, 14, with this flux inducing current flow in secondary or shading winding 12. In turn, the current flowing in coil 12 causes heating thereof, with this heat being transferred by conduction to bimetal 11, causing free end 16 thereof to deflect, with the extent of the deflection being a function of bimetal temperature. In a manner well known to the art, a predetermined deflection of bimetal 11 will cause the latter to release a latch, such as element 24 in FIG. 2, causing a circuit breaker operating mechanism, such as 26 in FIG. 2, to trip.
Now referring to FIG. 2, wherein conductive heating means constructed in accordance with teachings of the instant invention is illustrated. Those elements common to both FIGS. 1 and 2 are given the same reference numerals in both figures.
In FIG. 2 shading coil 12 is also wound about one leg of rectangular loop-shaped auxiliary core 17 having energy diverting circuit 18 coupled thereto. Circuit 18 includes variable lumped resistor 19. Current flowing in shading coil 12 induces flux in auxiliary magnetic core 17, which in turn induces current to flow in secondary circuit 18 through resistor 19 thereof. In effect, power is being withdrawn from shading coil 12 and is being dissipated in resistor 19, so that less power is dissipated in shading coil 12, and as a result less heat is available for heating of bimetal 11.
As bimetal 11 heats, free end 16 thereof reflects to the right, with adjusting screw 21 carried thereby engaging ear 22 extending radially from trip bar 23. This causes clockwise pivoting of the latter, with radial latching extension 24 thereof moving clear of latchable arm 25 extending from contact operating mechanism 26. In a manner well known to the art, release of latchable member 25 causes contact operating mechanism 26 to operate movable contact arm 27 so that movable contact 28 carried thereby separates from stationary contact 29 mounted on main conductor 15.
Since the turns ratio between shading coil 12 and secondary circuit 18 is arbitrary, the value of resistor 19 may be made many orders of magnitude largerthan the resistance of shading coil 12, the latter being of very low resistance, so that resistor 19 may be of reasonable physical size. The number of turns in circuit 18 may be counted accurately, and it is a simple matter to produce a resistor of relatively high precision to use in secondary circuit 18. The resistance of shading coil 12 may also be controlled accurately. Accuracy and reliability of calibration depends upon the value of resistor 19, which, although shown as an adjustable resistor, may be an individually adjusted fixed precision resistor. Accordingly, variation in functional characteristics from unit to unit may be controlled relatively closely, so that the changing of a tripping range may be accomplished simply by changing a resistor in the secondary of the auxiliary magnetic structure.
Even through the instant invention has been described with auxiliary magnetic circuit 17, 18 mounted to the same shading coil 12 to which bimetal 11 is secured, it is noted that auxiliary circuit 17, 19 may be coupled to magnetic frame 13, 14 through a second shading coil (not shown).
Although there have been described preferred embodiments of this novel invention, many variations and modifications will now be apparent to those skilled in the art. Therefore, this invention is to be limited not by the specific disclosure herein but only by the appending claims.
The embodiments of the invention in which an exclusive privilege or property is claimed are defined as follows:
1. A circuit interrupter having automatic trip means comprising transformer means including a core structure, primary means and secondary means both magnetically coupled to said core, thermal trip means mounted in heat conducting relationship with respect to said secondary means, an auxiliary magnetic structure magnetically coupled to said core structure and including power dissipating means diverting heating energy from said secondary means to control the heating energy acting on the thermal trip means.
2. A circuit interrupter as set forth in claim 1 in which the power dissipating means includes a circuit having a power resistance therein.
3. A circuit interrupter as set forth in claim 2 in which the value of the resistance is adjustable to control the magnitude of heating energy diverted from said secondary means.
4. A circuit interrupter as set forth in claim 2 in which the auxiliary magnetic structure includes an auxiliary secondary means through which the circuit is coupled to the secondary means.
5. A circuit interrupter as set forth in claim 4 in which the resistance is lumped.
6. A circuit interrupter as set forth in claim 5 in which the value of the resistance is adjustable to control the magnitude of heating energy diverted from said secondary means.

Claims (6)

1. A circuit interrupter having automatic trip means comprising transformer means including a core structure, primary means and secondary means both magnetically coupled to said core, thermal trip means mounted in heat conducting relationship with respect to said secondary means, an auxiliary magnetic structure magnetically coupled to said core structure and including power dissipating means diverting heating energy from said secondary means to control the heating energy acting on the thermal trip means.
2. A circuit interrupter as set forth in claim 1 in which the power dissipating means includes a circuit having a power resistance therein.
3. A circuit interrupter as set forth in claim 2 in which the value of the resistance is adjustable to control the magnitude of heating energy diverted from said secondary means.
4. A circuit interrupter as set forth in claim 2 in which the auxiliary magnetic structure includes an auxiliary secondary means through which the circuit is coupled to the secondary means.
5. A circuit interrupter as set forth in claim 4 in which the resistance is lumped.
6. A circuit interrupter as set forth in claim 5 in which the value of the resistance is adjustable to control the magnitude of heating energy diverted from said secondary means.
US00378416A 1973-07-12 1973-07-12 Inductive heating means for thermal trip device Expired - Lifetime US3808572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00378416A US3808572A (en) 1973-07-12 1973-07-12 Inductive heating means for thermal trip device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00378416A US3808572A (en) 1973-07-12 1973-07-12 Inductive heating means for thermal trip device

Publications (1)

Publication Number Publication Date
US3808572A true US3808572A (en) 1974-04-30

Family

ID=23493055

Family Applications (1)

Application Number Title Priority Date Filing Date
US00378416A Expired - Lifetime US3808572A (en) 1973-07-12 1973-07-12 Inductive heating means for thermal trip device

Country Status (1)

Country Link
US (1) US3808572A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636141B2 (en) 2001-07-10 2003-10-21 Yingco Electronic Inc. Controllable electronic switch
US20050128043A1 (en) * 2001-07-10 2005-06-16 Jeffrey Ying Controllable electronic switch
US20050207081A1 (en) * 2001-07-10 2005-09-22 Jeffrey Ying System for remotely controlling energy distribution at local sites
US20090295532A1 (en) * 2008-05-30 2009-12-03 Puhalla Craig J Electrical switching apparatus and heater assembly therefor
US20150028991A1 (en) * 2013-07-26 2015-01-29 Siemens Aktiengesellschaft Bimetal unit, trip unit, circuit breaker, series of circuit breakers, and method for calibrating circuit breaker
WO2017173813A1 (en) * 2016-04-05 2017-10-12 浙江正泰电器股份有限公司 Thermal tripping apparatus for moulded case circuit breaker

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2939929A (en) * 1957-08-22 1960-06-07 Gen Electric Electric circuit breaker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2939929A (en) * 1957-08-22 1960-06-07 Gen Electric Electric circuit breaker

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7688175B2 (en) 2001-07-10 2010-03-30 I/O Controls Corporation Controllable electronic switch
US7961073B2 (en) 2001-07-10 2011-06-14 Yingco Electronic Inc. Controllable electronic switch
US20050207081A1 (en) * 2001-07-10 2005-09-22 Jeffrey Ying System for remotely controlling energy distribution at local sites
US7265652B2 (en) 2001-07-10 2007-09-04 Yingco Electronic Inc. Controllable electronic switch
US6636141B2 (en) 2001-07-10 2003-10-21 Yingco Electronic Inc. Controllable electronic switch
US20080186126A1 (en) * 2001-07-10 2008-08-07 Yingco Electronic Inc. Controllable Electronic Switch
US20050128043A1 (en) * 2001-07-10 2005-06-16 Jeffrey Ying Controllable electronic switch
US20100013592A1 (en) * 2001-07-10 2010-01-21 Yingco Electronic Inc. Controllable electronic switch
US7324876B2 (en) 2001-07-10 2008-01-29 Yingco Electronic Inc. System for remotely controlling energy distribution at local sites
US7693610B2 (en) 2001-07-10 2010-04-06 Yingco Electronic Inc. Remotely controllable wireless energy control unit
US10074498B2 (en) 2001-07-10 2018-09-11 I/O Controls Corporation Controllable electronic switch
US7925388B2 (en) 2001-07-10 2011-04-12 Yingco Electronics, Inc. Remotely controllable wireless energy control unit
US20090295532A1 (en) * 2008-05-30 2009-12-03 Puhalla Craig J Electrical switching apparatus and heater assembly therefor
US7800478B2 (en) * 2008-05-30 2010-09-21 Eaton Corporation Electrical switching apparatus and heater assembly therefor
US20150028991A1 (en) * 2013-07-26 2015-01-29 Siemens Aktiengesellschaft Bimetal unit, trip unit, circuit breaker, series of circuit breakers, and method for calibrating circuit breaker
WO2017173813A1 (en) * 2016-04-05 2017-10-12 浙江正泰电器股份有限公司 Thermal tripping apparatus for moulded case circuit breaker

Similar Documents

Publication Publication Date Title
US4276527A (en) Multipole electrical circuit breaker with improved interchangeable trip units
US4019097A (en) Circuit breaker with solid state passive overcurrent sensing device
US4090156A (en) Circuit breaker having solid state and thermal-magnetic trip means
US3421123A (en) Electric circuit breaker with magnetic tripping means
US3808572A (en) Inductive heating means for thermal trip device
US2939929A (en) Electric circuit breaker
GB1472380A (en) Circuit breaker with adjustable thermal trip unit
US2089716A (en) Circuit breaker
US3777293A (en) No-fuse circuit breaker
GB2055264A (en) A circuit protection switch
GB1530576A (en) Circuit-breaker including an interchangeable tripping device
US4038618A (en) Circuit breaker having thermal and solid state trip means
GB1570138A (en) Tripping device with thermal deleay
US4229775A (en) Circuit breaker magnetic trip device with time delay
US3555468A (en) Combined thermal-magnetic trip means for circuit breakers
US2180421A (en) Control device
US3506941A (en) Thermal tripping device for circuit breaker
US4554524A (en) Secondary circuit breaker for distribution transformer with indicator light switch mechanism
US3467920A (en) Molded case circuit breaker with sensitive thermal and magnetic trip mechanism
US6020802A (en) Circuit breaker including two magnetic coils and a positive temperature coefficient resistivity element
US2919325A (en) Magnetic overload relay
US3353128A (en) Thermally and magnetically responsive electrical control device
US3156849A (en) Circuit-breaking apparatus
US2588497A (en) Circuit breaker
US3703691A (en) Shunt trip with load terminal

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS-ALLIS, INC., A DE CORP.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:GOULD, INC., A DE CORP.;ITE INDUSTRIES, LIMITED, A FEDERAL CORP. OF CANADA;REEL/FRAME:004226/0657

Effective date: 19830131

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)