US3808403A - Waterproof electrical heating unit sheet - Google Patents

Waterproof electrical heating unit sheet Download PDF

Info

Publication number
US3808403A
US3808403A US00271518A US27151872A US3808403A US 3808403 A US3808403 A US 3808403A US 00271518 A US00271518 A US 00271518A US 27151872 A US27151872 A US 27151872A US 3808403 A US3808403 A US 3808403A
Authority
US
United States
Prior art keywords
heating sheet
electrodes
sheet
heating
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00271518A
Inventor
Y Gunma
I Yasuda
T Iizuka
K Azuma
K Tonooka
T Saitoh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Kohkoku Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP6348371U external-priority patent/JPS518504Y2/ja
Priority claimed from JP8808271A external-priority patent/JPS517326B2/ja
Priority claimed from JP12068171U external-priority patent/JPS4875236U/ja
Application filed by Kohkoku Chemical Industry Co Ltd filed Critical Kohkoku Chemical Industry Co Ltd
Application granted granted Critical
Publication of US3808403A publication Critical patent/US3808403A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/28Heating, e.g. of divers' suits, of breathing air
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/342Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/011Heaters using laterally extending conductive material as connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/016Heaters using particular connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/026Heaters specially adapted for floor heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/029Heaters specially adapted for seat warmers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/036Heaters specially adapted for garment heating

Definitions

  • ABSTRACT A heating unit sheet composed of an electroconduc- 1 9/ 2l9/543, tive high molecular material and having a high degree 2 1 9/ 5 9, 52/ 333/21 1 of safety and excellent flexibility and which is useful in [51] Int. Cl. H0511) 3/36 many various applications, equipped with electrodes [58] Field Of Search 219/21 1, 212, 464, 528, and coated with insulating materials,
  • the present invention relates to a heating sheet on which a flexible highmolecular paint having electroconductive property is applied.
  • Heating sheets conventionally used include metal foils having a high electrical resistance and glass textures or asbestos paper on which an electroconductive paint, containing powders of carbon or metal, is applied and equipped with electrodes. Since these materials lack pliability and flexibility, they are likely to form cracks and be broken while in use.
  • Heating sheets may be incorporated in various materials used in applications, such as, walls, floors and ceilings; furniture, such as, stools and chairs; cars and trucks; live-stock breeding, such as, hog-raising and poultry farming; the marine industry such as, fishraising in marshes, ponds and inland sea; agriculture, such as, for heating hot-beds and nursery beds; civil engineering works, such as, snowand ice-melting of roads, runways, bridges, etc.; heat insulation for water supply pipes and other pipe lines and oven panelsetc.; for warming clothing, such as, water-cloths, overcoats, jumpers, trousers and other personal effects, such as, gloves, shoes, slippers, and hosiery and many others.
  • live-stock breeding such as, hog-raising and poultry farming
  • the marine industry such as, fishraising in marshes, ponds and inland sea
  • agriculture such as, for heating hot-beds and nursery beds
  • civil engineering works such as, snowand ice-melting of roads, runways, bridges, etc.
  • the conventional heating sheets cannot be incorporated in many materials because of the poor flexibility of the heating sheets and furthermore, if cracks or defects are formed on the heating sheet, an abnormally large current may flow at the sites and evolve sufficient heat to cause a fire. Therefore, these heating sheets could not be used for incorporation in those materials which require flexibility, such as, clothes and small articles.
  • the heating sheet when the heating sheet is incorporated in an aqualung, the working time in the water in connection with oceanand lake-raisings can be remarkably lengthened and thus the heating sheet is very advantageous for future ocean developments and cold district developments where snowfalls and icing cause difficulties.
  • One of the objects of the present invention is to provide a heating sheet which is accident-free and superior in pliability and flexibility by equipping it with electrodes and wrapping the whole with an insulating materials which are superior in pliability and flexibility.
  • a further object is to provide a heating sheet which is accident-free and superior in pliability and flexibility.
  • High structure carbon is said to have good electroconductivity but it is so coagulative that the structure of carbon is likely to be nonuniform after application. This may cause the heating sheet to deteriorate due to the heat evolution locally induced on the surface.
  • high-dispersion grafted carbon which is produced by grafting a vinyl resin to oil furnace black is used.
  • the base material for applying paint thereon.
  • the base material is required to be thin enough and to have strength and resistance against bending to maintain flexibility.
  • the surface must be uniformly uneven to assure uniform application of paint and hold an appropriate porositing of volume to connect both side surfaces of the material.
  • the fibers themselves must be heat-resistant with high softening and decomposition temperatures and the product must be free from shrinkage and elongation. For these reason, high-melting synthetic fibers and the texture as referred to later are employed in the present invention.
  • a conventional flexible and highly resistant heating sheet can is difficult to combine with wires which lead electricity without introducing various mechanical and electrical problems. They have been solved in this invention particularly by the application of the thin electrodes.
  • the electrode is of a soft and flexible structure and much less susceptible to damage by bending, and even when it is damaged, the extraordinarily high temperature melts the fibers and cuts off the circuit so that a high degree of safety is assured.
  • the heating sheet of this invention can be prepared by the following method.
  • An electroconductive high molecular paint which is prepared by dissolving in a solvent an electroconductive high molecular material superior in flexibility is applied in a thin layer onto the surface of a sheet that is superior in pliability and flexibility such as, for example, textures prepared ofvarious kinds of high temperature-resistant synthetic fibers, such as nylon and Tetron fibers, and the resulting product is dried to form a thin film of the electroconductive high molecular material on one or both sides of the sheet.
  • the application of the coating material referred to above may be carried out in any selected way of coating such as roll coater, doctor coater, dip coater and spraying coater.
  • the thin film of the electroconductive high molecular paint formed on the sheet is then heated to accomplish the crosslinkage of the electroconductive high molecular paint and to obtain the electroconductive heating sheet.
  • This heating sheet may be further heated at high temperatures to stabilize the electrical properties. Electrodes are fixed to the heating sheet being cut into appriciate The method of synthesizing the electroconductive" flexible high molecular material of the heating sheet will be explained as follows.
  • Vinyl monomers are heated in the presence of carbon black to carry out graft polymerization by the free radical initiation and polymerization of the vinyl mono- 'mers to each other, and vinyl polymers of relatively short chain lengths are chemically combined on active spots on the surface of the carbon black in a radial shape.
  • surface chemical properties of the carbon black particles are changed because of the plurality of vinyl polymer chains combined with the surface, and the particles acquire better dispersivility in organic solvents.
  • Variation in the of vinyl monomer used makes possible different miscibility'in the solvent.
  • the high molecular substance can be made reactive by introducing certain functional groups into the vinyl monomers.
  • R CHI--R where R and R mean a hydrogen atom and various substituents such as alkyl group, and the monomers include those which contain functional group such as acrylic and methacrylic acids, maleic acid anhydride, acrylamide, and those havingno functional group such as esters of acrylic and methacrylic acids and maleic acid anhydride, acrylamide, methacrylamide, acrylonitrile, methacrylnitrile, vinyl acetate, styrene and derivatives thereof, vinyl ethers and vinyl pyridines.
  • functional group such as acrylic and methacrylic acids, maleic acid anhydride, acrylamide, and those havingno functional group such as esters of acrylic and methacrylic acids and maleic acid anhydride, acrylamide, methacrylamide, acrylonitrile, methacrylnitrile, vinyl acetate, styrene and derivatives thereof, vinyl ethers and vinyl pyridines.
  • the cross-linking agents which react with the'abovementioned functional groups include high molecular compounds having epoxy groups, metal organic compounds expressed by a general formula, Me(OR),,, where R is an alkyl group having 1 16 carbon atoms, n is an integer of 2 4, and Me is a metal atom selected from the group consisting of Ti, Zn, Mg, Pb, Cu, Al and Cd, amine compounds and polyvalent alcohols.
  • R is an aliphatic, aromatic or alicyclic compound and n is an integer from 2 to 4.
  • N CH2 n and having 2 to 4 terminal aziridine rings, which are employed as cross-linking agents in the present invention include N,N'-tetramethylene-bis-ethyleneurea, N,N'-pentamethylene-bis-ethyleneurea, N,N'-hexamethylene-bis-ethyleneurea, N,N'-heptamethylene- I bis-ethyleneurea, N,N-octamethyleneurea, p-phenylene-bis-ethyleneurea, m-phenylene-bis-ethyleneurea, m-toluilene-bis-ethyleneurea, l-chloro-m-phenylenebis-ethyleneurea, diphenyl-4,4 "-bis-ethylene urea, 3 ,3 dimethyldiphenyl-4,4 '-bis-ethyleneurea, 3 ,3 dimethoxydiphenyl-4,4-bis-ethyleneurea, diphenylmethane-p, p
  • R(N I 11 used as cross-linking agent and the polymers having functional groups such as -OH, -COOH, -Nl-I NH, -CONH,
  • compositions for example, graft carbon polymer composition having the functional groups mentioned above prepared by graft polymerization of carbon with vinyl monomers, mixture compositions prepared by mixing polymers having the functional groups above with carbon powder and compositions prepared by combined use of the graft carbon polymer composition.
  • the texture should be plain woven, 0.10 to 0.15 mm thick, and carry 20 to 65 percent, preferably 40 to 60 percent, by volume of porosity, and a tensile strength of texture greater than kg/cm.
  • the permissive range is 20 to 65 percent, preferably 40 to 60 percent.
  • volume of porosity permits better adhesion of the coated film of grafted carbon paint since a portion of the pain penetrates through the pore to the other side.
  • 75 denier multifilament threads of polyester fibers having a strength of 5 g per unit denier are woven in l 10 and 98 threads per inch in the longitudinal and lateral direction, respectively.
  • the volume of porosity of this texture is about percent. Less number of threads in the lateral direction by 10 percent is used because 10 percent shrinkage occurs during the processing.
  • polyester fibers are the most suitable, any other heat resistant fibers may be used if the above requirements, are met.
  • any weaving method can be used if the obtained volume of porosity, thickness and smoothness satisfy the required conditions.
  • the above texture is required before use to be subjected to heat setting for 30 to sec. at a temperature by 5 to 10 C below the softening temperature of the fibers to assure the dimensional stability of the fibers. For example, they are set for 45 see. by introducing them into an oven at 225 C.
  • a suitable organic solvent preferably the same solvent as used for the paint
  • the present invention also provides a new idea for placing electrodes on the heating sheet.
  • 34 copper wires of 0.01 mm cross-sectional area knitted in a flat ribbon of 6 mm broadness are used. Plating the copper wires with tin is more useful.
  • electroconductive silver paint is applied in the shape of 1 cm broad band at the ends of the heating sheet, dried by heating and the ribbon electrodes mentioned above are placed on the portions and attached by sewing in zigzag with electroconductive thin threads and then pressed with rollers.
  • the ribbon electrodes from the heating sheet are combined and connected with external leads.
  • the electrodes thus formed are extremely thin (about 0.l mm) and so flexible as not to affect bending. Cracks and breaking do not cause any trouble owing to the flexible structure.
  • Electroconductive thin wires refer to very thin wires of copper, silver and others and tape-shaped thin copper foils wrapping a cotton thread, which serve to pass the electric current to the other side.
  • the heating sheet with electrode may be covered not only with a flexible insulating material to make a flexible heater but also with a rigid insulating material to use as a flat plate heater.
  • rubber sheets, rubber coated sheets and synthetic resin sheets such as vinyl chloride sheets, polyethylene sheets, polypropylene sheets, polyurethane sheets, polyamide sheets, polyethylene telephtalate and ethylene-vinylacetate copolymer sheets may be used, and also liquid rubber and soft casting resins such as methane, and silicone-rubber may be used.
  • FIG. 1 is a fragmented plan view of the heating sheet with electrodes of the present invention
  • FIG. 2 is a sectional view of the heating sheet with electrodes taken along lines 2-2 of FIG. 1.
  • FIG. 3 is a fragmented plan view showing the heating element
  • FIG. 4 is a sectional view showing the electrodes and the structure of the heating sheet taken along lines 4-4 of FIG. 3;
  • FIG. 5 is a sectional view similar to FIG. 4;
  • FIGS. 6 and 7 are fragmented plan views showing a further heating sheet with electrodes
  • FIGS. 8 and 9 are sectional'views showing the electrodes and the structure of the heating sheet with FIG. 8 taken along lines 8-8 of FIG. 7 and FIG. 9 depicting an assembled sheet;
  • FIGS. 10 and 11 are fragmented plan views showing EZAMZLEJ Oil furnace black 328 g Acrylic acid 72 g Butyl acrylate 256 g a,B-azo-bis-isobutylnitrile (initiator) 30 g Methylisobutylketone 1,000 g I
  • the above ingredients were placed in a three neck flask and polymerized by agitating for 8 hours at 80 C in a nitrogen atmosphere. A polymerized liquid of 80 cps viscosity was obtained with a yield of 97 percent. Then a solution of cross-linking agent prepared as shown below was added to the polymerized liquid under stirring.
  • the mixed solution (2) thus'formed was applied onto a texture or fabric (1) made of polyester fibers (No. 331 l Tetron from Teizin Co.) wet pick up of 115 g/m with a dip coatingmachine at the speed of 3.4 m/min. and dried with hot air at 150 C (see FIG. 2). This was further heated for 16 hours at 220 C to complete cross-linking and the aging treatment.
  • the resulting heating sheet element (3) had an area resistance of 10000 (square).
  • the electrodes were so flexible that the whole body of the heating sheet (6) was also very flexible and held good performance for a longterm.
  • the heating sheet obtained above was covered on both sides with polyvinyl chloride sheets (5) (0.4 mm thick) (see FIGS. 1 and 2).
  • the interval and length of the electrodes,( 10) were made to be 420 mm and 900 mm, respectively, and electric current was passed at 100 V and 570 W/m a temperature higher by 30 C above room temperature (20 C) was obtained on the surface of polyvinyl chloride sheet.
  • EXAMPLE 2 hours while they were heated at 90 C in the same maning sheet element was prepared by applying a mixed flexing tester and by using Olsens bending tester.
  • the mixed solution (2) thus formed was applied onto a texture (l) of polyamide fibers wet pickup of g/m with a dip coating machine at the rate of l m/min. and dried by a C hot air. This was further heated for 30 hours at 200 C to complete cross-linking and 'aging treatment.
  • the heating sheet element (3) obtained had an area resistance of SOQ El (square).
  • the pliability and flexibility of the heating sheet (3) obtained in this example proved excellent as seen in the following table.
  • the heating sheet (6) of this invention was also very flexible as a whole.
  • the above heating sheet (6) was covered on both sides with polyvinyl chloride sheets ()and (5') (0.4 mm thick). With the interval and the length of electrodes (4) of 420 mm and 900 mm, respectively, and the electricity of 100 V and 270 W/m a temperature higher by 14 C than room temperature (20 C) was obtained on the surface of the polyvinyl chloride sheet.
  • the pliability and flexibility of the heating sheet element (3) in this example proved to be excellent as shown in the following table.
  • the electrodes of (A) the heating sheet coated with silver paint equipped with electrodes formed by pasting a 0.15 mm thick copper foil thereon; (B) the heating sheet coated with silver paint equipped with electrodes formed by sewing thereon, two parallel fine copper wires in a straight line; and (C) the heating sheet coated with silver paint equipped with electrodes formed by sewing thereon fine copper wire in a zigzag form were subjected to stamping tests to determine theirresistance value variations. The results are shown in Table 4 TABLE 4 Results of Electrode Stamping Tests After 200 Stampings Resistance Variation Rate After 10.000
  • the electrode portions are repeatedly stamped times per minute with a stamping total load of 50 kg whole current of 100 V is passed.
  • the mixed solution (2) thus formed was applied onto a texture (1) made of polyamid fibers with a dip coating machine to wet pickup of 140 g/m at the rate of l m/min., and then dried with a hot air of 150 C. Further heating was continued for 30 hours at 200 C to complete cross-linking and aging treatment.
  • the area resistance of the heating sheet element (3) obtained was 500 El (square).
  • the pliability and flexibility of the heating sheet produced in this example proved excellent as shown in the table below.
  • the solution of cross-linking agent. shown as the mixture composition B was added and the whole mixture was made uniform with a stirrer.
  • the paint had a viscosity of 12.5 cps at 20 C and contained 24.4 percent of solid matter.
  • Mixture composition B Tetrapropyl titanate 0.897 kg Cyclohexanone 6.36 kg A portion of the above paint was applied onto a glass plate, dried at 150 C for an hour andheated at 225 C for 5 hours and then the volume resistibity was 0.26 ohm/cm.
  • the original base material used was a texture having 50 percent by volume of porosity which was prepared by weaving 75 denier multifilament polyester fibers in l 10 and 98 threads per inch in the longitudinal and lateral directions, respectively. This texture was introduced to pass into a vat of cyclohexanone solvent to remove bubbles between the fibers. Subsequently the texture was introduced five times into a paint bath at the rate of l m per minute and then dried, taking 4 minutes at the drying temperature 150 to 160 C. The amount of solid substance attached to the texture amounted approximately to 9 g/m for a single dipping, and to 41 g/m for five times of dipping.
  • the base material texture to which application of paint has been done was heated at 180 C in an oven for 2 hours to complete the cross-linkage. Then, this was heated for additional 8 hours in an oven at 225 C for aging.
  • the electrical resistance of the product was 49 ohm per cm and was uniform everywhere on the texture. Physical properties of the flexible heating sheet obtained were as follows:
  • the heating sheet of the present invention showed 1 excellent flexibility in the direction perpendicular to the sheet so-that conductivity did not change even for bending up to 180 and no carbon was scraped off at the Gakushin-type friction strength test.
  • a flat ribbon of 6 mm width made of 34 copper wires each of0.0l mm cross section was placed and sewed with fine copper thread of No. 40 in a zigzag line by a-sewing machine.
  • the resistance of this heating sheet was 76.30.
  • the heating sheet with the electrodes was covered on both side with two sheets (0.8 mm thickness) of soft vinyl chloride prepared by mixing 50 parts of plasticizer DOP (di-Z-ethylhexylphtalate) to polyvinyl chloride having average polymerization degree of 1,200, and the sheet was insulated by a hydraulic press at 150 C for 5 minutes.
  • the resistance after the insulation treatment was 76.59 and showed no substantial change.
  • the heating unit sheet was subjected to a durability test by giving the sheet an alternative current of lOOV for 1 hour and stopping the current for 30 minutes and repeating this cycle in a chamber maintained at 20 C.
  • the surface temperature of the heating unit sheet during the current passage was 70 C in average.
  • the resistance of the heating unit sheet showed 75.20.. Thus it was confirmed that no substantial change of resistance takes place and the sheet is an electrically stable resistor.
  • the following examples show the modes of electrode setting on the heating sheet.
  • EXAMPLE 7 As shown in FIG. 10 the parts of the heating sheet (3) obtained in Example 1 which will compose electrodes were coated with a silver paint (8), then covered with small pieces (13) of copper foil (6 mm at 3 cm intervals, ribbon wires (12) made of thin copper wires were placed upon them, as shown in FIG. 11, and the whole was fixed by sewing with thin copper (7) wires to form electrodes for heating sheet.
  • the electrodes (4) of the heating sheet (6) of this example do not lack flexibility since the copper pieces (13) are fixed at intervals. Further, in this example terminals were fixed to the copper pieces (.13) and lead wires (9) were connected to the terminals (11).
  • EXAMPLE 8 As shown in FIG. 10 the parts of the heating sheet element (3) obtained in Example 2 which will compose electrodes were coated with a silver paint (8) then covered with small pieces (13) of copper foil (4 mm at 2 cm intervals, ribbon wires (12) were placed upon them, as shown in FIG. 11 and the whole was fixed by sewing with thin copper wires (7). Further, the same silver paint (8) was applied on the other side to cover the fixing wires on the heating sheet eleement (3) and the copper foils (l3) and to reduce the contact resistance to be used as electrode (4) of the heating sheet
  • the electrode part (4) of the heating sheet (6) of this example is flexible enough because small pieces of copper foil (13) are fixed at intervals.
  • EXAMPLE 9 EXAMPLE l
  • the parts of the heating sheet element (3) obtained in Example 4 which will compose electrodes (4) were coated with a silver paint (8), then covered with small pieces (13) of copper foil (4 mm at cm intervals and three streaks of thin copper wires (7) were fixed by sewing together with the copper pieces and again the silver paint was applied from outside onto the fixing wires on the heating sheet and the copper pieces to reduce the contact resistance of electrodes.
  • a heating sheet was composed.
  • the electrode parts (4) of the heating sheet (6) of this example were made of small pieces of copper foil fixed at intervals, they were very flexible.
  • the electrode parts of the heating sheet of this example were made of small pieces of copper foil fixed at intervals, they were sufficiently flexible.
  • EXAMPLE l2 The parts of the heating sheetelement (3) obtained in Example 2 which will compose electrodes (4) were covered with ribbon wires which were fixed by sewing with thin copper wires (7) and as shown in FIG. 5, the silver paint (8) was applied from inside onto the fixing wires on the heating sheet element to reduce the contact resistance of electrodes. Thus, a heating sheet was formed.
  • the heating sheet of this exampleas a whole was very flexible.
  • EXAMPLE 13 The parts of the heating sheet (3) obtained in Exam- P ..?1 W i wi l pose 19F9Ql4l Wip s yer d with small pieces (13) of copper foil (3 mm at 3 cm intervals, ribbon wires (12) were placed upon the areas and they were fixed by sewing all together to form electrodes of a heating sheet.
  • the electrode parts (4) of the heating sheet (6) of this example were covered with small pieces of copper foil (13) fixed at intervals, they were sufficiently flexible.
  • the heating sheet of this example as a whole was sufficiently flexible.
  • Example l which will compose electrodes
  • small pieces (13) of copper foil wereplaced at 3 cm intervals, four streaks of thin copper wires (7) were fixed by sewing in parallel at the areas, and the silver paint (8) and (8') was applied from both sides, as shown in FIG. 9, to cover the fixing wires on the heating sheet element (3) to reduce the contact resistance of electrodes.
  • the silver paint (8) and (8') was applied from both sides, as shown in FIG. 9, to cover the fixing wires on the heating sheet element (3) to reduce the contact resistance of electrodes.
  • a heating sheet (6) was formed.
  • the electrode parts of the heating sheet of this example were composed of small pieces of copper foil fixed at intervals, they were sufficiently flexible.
  • EXAMPLE 16 In FIG. 12 and FIG. 13, (21) is a heating sheet, (23) is a ribbon made by knitting fine metal wires which is sewed in a zigzag form onto the heating sheet (21).
  • the seams (25) formed on the heating sheet (21) may be filled with a paint (26) having good electric conductivity so as to reduce the contact resistance betweenthe conductive wire (24) and the heating sheet (21).
  • the paint (26) having good electric conductivity and that used for the portion (22) it may be prepared by dispersing powder such as silver powder dispersed in synthetic resins.
  • the electrode in this example is prepared by sewing the ribbon (23) of metal wires onto the portion (22) coated with paint having good conductivity in a zigzag form using the fine wire (24).
  • EXAMPLE 17 In FIG. 14 and FIG. 15, the heating sheet (31) schematically shown is covered on both sides by an insulating material (32) (32) and on one side of thus obtained sheet (33) flexible insulating material (34) is laminated to form a laminated layer (35) and the sheet (33) and the laminated layer (35) are covered by a surface protecting material (36). Thin electrode plates (37), (37) are provided on the heating sheet (31) and lead wires (38), (38') are connected to the electrode plates.
  • the insulating material (32), (32) may be a flexible thin insulating sheet made of various synthetic sheets and rubber sheet.
  • the flexible insulating material (34) may be made of flexible urethane, foamed rubber, foamed polyethylene etc., and laminated on one side of the heating sheet (33) using a bondingagent.
  • the surface protecting material (36) may be rubber sheet, synthetic resin sheet, synthetic resin leather, etc.
  • FIG. 1' shows a water-proof heating unit sheet according to the present invention.
  • the heating sheet with electrodes (4) is connected with a lead .wire (15) and covered from both sides. with water- (16) closely adhering the water-proof insulating sheets and (5').
  • the sealer (16) is positioned at the inner portion of the water-proof insulating sheets (5) and (5' 1n this example, the opening for the lead wire 5 is equipped with a conventional water-proof device.
  • the water-proof sealer (16) is positioned at the inner portion of the water-proof insulating sheets (5) (5'), and not at the outer edge portion which is subjected impact, this sealer (16) is free from damage. And as the sealer (16) is closely fixed to the inner portion of and completely heated by (5) and (5') there is no danger of water leakage even when the sealer 16) is damaged, due to the close adhesion of the sheets (5) and (5).
  • SONHMIId is ssil d w th,a rossr inkirsaqm selected from the group consisting of compounds having the formula:
  • said inner layer having spaced-apart, flexible electrodes conductively attached thereto;
  • the heating sheet of claim 1 wherein the woven fabric has a porosity of 20 to 65 percent by volume and consists of synthetic fiber filaments having a melting point and thermal decomposition temperature above 250 C.

Abstract

A heating unit sheet composed of an electroconductive high molecular material and having a high degree of safety and excellent flexibility and which is useful in many various applications, equipped with electrodes and coated with insulating materials.

Description

United States Patent 1191 1111 3,808,403
Kanaya et 211. 1 Apr. 30, 1974 [54] WATERPROOF ELECTRICAL EATING [56] I References Cited UNIT 5mm UNITED STATES PATENTS Inventors: Yoshimsuke y Q 2,458,184 1/1949 Marick 219/543 x Kanae Azuma, Tochlgi; Katsuo 3,130,289 4/1964 Katzman et al 219/528 X Tonooka, Tochigi; Isao Yasuda, 3,558,858 1/1971 Tochigi; Toru Iizuka, Tochigi; 3,591,753 971 Torahiko Saitoh, Tokyo, all of Japan 3,621,192 11/1971 3,056,750 10/1962 [73] Assignee: Kohkoku Chemical Industry (30-, 3,385,959 5/1968 Ames et aL... Ltd., Tokyo, Japan 3,553,834 1/1971 Oestowsky.. 1,872,581 8/1932 'Haroldson 338/219 X [221 Filed! July 1972 2,803,566 8/1957 smith-16118111115611 219/543 x 21 AppL NO: 271 51 3,221,145 11/1965 Hager, Jr. 219/549 Primary Examiner-*volodymyr Y. Mayewsky [30] Foreign Application Priority Dam Attorney, Agent, or FirmToren, McGeady & Stanger July 20, 1971 Japan 46-63483 Nov. 5, 1971 Japan 46-88082 Dec. 22, 1971 Japan 46120681 [57] ABSTRACT A heating unit sheet composed of an electroconduc- 1 9/ 2l9/543, tive high molecular material and having a high degree 2 1 9/ 5 9, 52/ 333/21 1 of safety and excellent flexibility and which is useful in [51] Int. Cl. H0511) 3/36 many various applications, equipped with electrodes [58] Field Of Search 219/21 1, 212, 464, 528, and coated with insulating materials,
2 Claims, 15 Drawing Figures WATERPROOF ELECTRICAL HEATING UNIT SHEET The present invention relates to a heating sheet on which a flexible highmolecular paint having electroconductive property is applied.
Heating sheets conventionally used include metal foils having a high electrical resistance and glass textures or asbestos paper on which an electroconductive paint, containing powders of carbon or metal, is applied and equipped with electrodes. Since these materials lack pliability and flexibility, they are likely to form cracks and be broken while in use.
Heating sheets may be incorporated in various materials used in applications, such as, walls, floors and ceilings; furniture, such as, stools and chairs; cars and trucks; live-stock breeding, such as, hog-raising and poultry farming; the marine industry such as, fishraising in marshes, ponds and inland sea; agriculture, such as, for heating hot-beds and nursery beds; civil engineering works, such as, snowand ice-melting of roads, runways, bridges, etc.; heat insulation for water supply pipes and other pipe lines and oven panelsetc.; for warming clothing, such as, water-cloths, overcoats, jumpers, trousers and other personal effects, such as, gloves, shoes, slippers, and hosiery and many others.
However, the conventional heating sheets cannot be incorporated in many materials because of the poor flexibility of the heating sheets and furthermore, if cracks or defects are formed on the heating sheet, an abnormally large current may flow at the sites and evolve sufficient heat to cause a fire. Therefore, these heating sheets could not be used for incorporation in those materials which require flexibility, such as, clothes and small articles.
Particularly, when the heating sheet is incorporated in an aqualung, the working time in the water in connection with oceanand lake-raisings can be remarkably lengthened and thus the heating sheet is very advantageous for future ocean developments and cold district developments where snowfalls and icing cause difficulties.
One of the objects of the present invention is to provide a heating sheet which is accident-free and superior in pliability and flexibility by equipping it with electrodes and wrapping the whole with an insulating materials which are superior in pliability and flexibility.
A further object is to provide a heating sheet which is accident-free and superior in pliability and flexibility.
trically insulated.
The important points on which the present invention differs from the conventional heating sheets are:
1. High structure carbon is said to have good electroconductivity but it is so coagulative that the structure of carbon is likely to be nonuniform after application. This may cause the heating sheet to deteriorate due to the heat evolution locally induced on the surface. In this invention, high-dispersion grafted carbon which is produced by grafting a vinyl resin to oil furnace black is used.
2. The most important component of a flexible heating sheet is the base material for applying paint thereon. The base material is required to be thin enough and to have strength and resistance against bending to maintain flexibility. The surface must be uniformly uneven to assure uniform application of paint and hold an appropriate porositing of volume to connect both side surfaces of the material. Further, the fibers themselves must be heat-resistant with high softening and decomposition temperatures and the product must be free from shrinkage and elongation. For these reason, high-melting synthetic fibers and the texture as referred to later are employed in the present invention.
3. In conventional heating sheet, most vehicles for paint have only poor ability to bind the carbon particles to each other and the carbon particles to the base material and poor thermal resistance. ln this invention, however, use of cross-linking agent has led to success in forming a strong combination between grafted carbon particles.
4. The aging process of the coated film was necessary to make the electrical properties stable, but a long endured heating may often induce deterioration of the synthetic fibers which form the base material. An appropriated condition has been found in this invention, under which the treatment is completed in a shorter periodat a high temperature and thus constant properties can be maintained for a long time.
5. A conventional flexible and highly resistant heating sheet can is difficult to combine with wires which lead electricity without introducing various mechanical and electrical problems. They have been solved in this invention particularly by the application of the thin electrodes.
As for the electrode of a conventional heating sheet,
a thin metal strip or foil has been used and closely attached to the heating sheet by bonding, etc. Therefore, when the heating sheet with electrode is bent, the electrode cannot follow the bending and peeling-off or cracking of the electrode results which damages the electrical contact and excessive current flows through the portion, which portion is subjected to extraordinarily high temperatures as compared with other normal portions'and is" very often damaged.
According to the present invention, the electrodeis of a soft and flexible structure and much less susceptible to damage by bending, and even when it is damaged, the extraordinarily high temperature melts the fibers and cuts off the circuit so that a high degree of safety is assured.
The heating sheet of this invention can be prepared by the following method.
An electroconductive high molecular paint which is prepared by dissolving in a solvent an electroconductive high molecular material superior in flexibility is applied in a thin layer onto the surface of a sheet that is superior in pliability and flexibility such as, for example, textures prepared ofvarious kinds of high temperature-resistant synthetic fibers, such as nylon and Tetron fibers, and the resulting product is dried to form a thin film of the electroconductive high molecular material on one or both sides of the sheet. The application of the coating material referred to above may be carried out in any selected way of coating such as roll coater, doctor coater, dip coater and spraying coater. The thin film of the electroconductive high molecular paint formed on the sheet is then heated to accomplish the crosslinkage of the electroconductive high molecular paint and to obtain the electroconductive heating sheet. This heating sheet may be further heated at high temperatures to stabilize the electrical properties. Electrodes are fixed to the heating sheet being cut into appriciate The method of synthesizing the electroconductive" flexible high molecular material of the heating sheet will be explained as follows.
Vinyl monomers are heated in the presence of carbon black to carry out graft polymerization by the free radical initiation and polymerization of the vinyl mono- 'mers to each other, and vinyl polymers of relatively short chain lengths are chemically combined on active spots on the surface of the carbon black in a radial shape. As a result of the polymerization reaction, surface chemical properties of the carbon black particles are changed because of the plurality of vinyl polymer chains combined with the surface, and the particles acquire better dispersivility in organic solvents. Variation in the of vinyl monomer used makes possible different miscibility'in the solvent. In addition,- the high molecular substance can be made reactive by introducing certain functional groups into the vinyl monomers.
The vinyl monomers described above are expressed by the following formula of the general type:
R CHI--R where R and R mean a hydrogen atom and various substituents such as alkyl group, and the monomers include those which contain functional group such as acrylic and methacrylic acids, maleic acid anhydride, acrylamide, and those havingno functional group such as esters of acrylic and methacrylic acids and maleic acid anhydride, acrylamide, methacrylamide, acrylonitrile, methacrylnitrile, vinyl acetate, styrene and derivatives thereof, vinyl ethers and vinyl pyridines.
The cross-linking agents which react with the'abovementioned functional groups include high molecular compounds having epoxy groups, metal organic compounds expressed by a general formula, Me(OR),,, where R is an alkyl group having 1 16 carbon atoms, n is an integer of 2 4, and Me is a metal atom selected from the group consisting of Ti, Zn, Mg, Pb, Cu, Al and Cd, amine compounds and polyvalent alcohols. By combining the functional groups introduced into the vinyl polymers mentioned above with the cross-linking agents such as the high molecular compounds and the organometallic compounds referred to above, vinyl polymers polymerized on the surface of the grafted carbon particles can be cross-linked, and therefore the carbon black particles can be firmly combined both physically and chemically. Consequently, if electricity is passed through for long time the carbon black combined with vinyl polymers (electroconductive high molecular paint), shift of carbon black toward the electrode can be prevented. it is desirable to age the material at a temperature above the service temperature in order to obtain a film having better electrical stability.
' it is possible that the heat treatment can be completed in a shorter time and the cross-linking reaction can also be completed to a necessary extent, even when a base texture sheet of synthetic fiber is used, under a heating condition in which the base texture is not thermally deteriorated, when the following electroconductive polymer compositions are used. These compositions comprise polymers having functional groups such as -OH, -COOH, -NH =NH, -CONH,
and and the compounds usedas ingv agents are expressed by the following general formula,
on, /i R N \CHI 11 where R is an aliphatic, aromatic or alicyclic compound and n is an integer from 2 to 4.
Reactive compounds expressed by the general formula /CIia a. N CH2 n and having 2 to 4 terminal aziridine rings, which are employed as cross-linking agents in the present invention, include N,N'-tetramethylene-bis-ethyleneurea, N,N'-pentamethylene-bis-ethyleneurea, N,N'-hexamethylene-bis-ethyleneurea, N,N'-heptamethylene- I bis-ethyleneurea, N,N-octamethyleneurea, p-phenylene-bis-ethyleneurea, m-phenylene-bis-ethyleneurea, m-toluilene-bis-ethyleneurea, l-chloro-m-phenylenebis-ethyleneurea, diphenyl-4,4 "-bis-ethylene urea, 3 ,3 dimethyldiphenyl-4,4 '-bis-ethyleneurea, 3 ,3 dimethoxydiphenyl-4,4-bis-ethyleneurea, diphenylmethane-p, p'-bis-ethyleneurea, tetramethylene-bisethyleneu'rethane, hexamethylene-bisethyleneurethane, nonamethylene-bisethyleneirrethane, decamethylene-bisethyleneurethane, ethyleneurethane,p-phenyl-4,4-bis-ethyleneurethane, p-'phenyl-4,4-bis-ethyleneurethane,p-cyclohexylethyleneurethane, lysine-bis-ethyleneurea, tetraaziridinylm-xylenediamine, tetraaziridinylmethyl-pxylenediamine, diaziridinylmethyl-m-xylenediamine, diphenylmeth ane-4A tetr aaziridinylmethylenaia mine, bis-phenyl-4,4 -tetraaziridinylmethylenediamine.
The above mentioned compounds expressed by the general formula,
are readily subject to cleavage of the aziridine rings on heating and to react with functional groups such as -OH, -COOH, -NH =Nl-I, -CONl-I,
-oH -oHi and SGNH-i. Since the compounds expressed by The general formula,
' eii.
R(N I 11 used as cross-linking agent and the polymers having functional groups such as -OH, -COOH, -Nl-I =NH, -CONH,
\CHI I:
include following compositions, for example, graft carbon polymer composition having the functional groups mentioned above prepared by graft polymerization of carbon with vinyl monomers, mixture compositions prepared by mixing polymers having the functional groups above with carbon powder and compositions prepared by combined use of the graft carbon polymer composition.
It is also an object of the present invention to provide flexible heating sheets which can be used for more than 2,000 hours at l20 C, and it is desirable to use a texture fabric of, synthetic multifilament fibers with a thermal decomposition or softening temperature higher than 250 C Spun threads are not uniform in thickness and do not possess a smooth surface or elongation resistance). The texture should be plain woven, 0.10 to 0.15 mm thick, and carry 20 to 65 percent, preferably 40 to 60 percent, by volume of porosity, and a tensile strength of texture greater than kg/cm.
If the volume of porosity exceeds 65 percent, the applied carbon is apt to fall out and in addition, a serious change of resistance occurs. On the contrary, for the volume of porosity less than percent the applied carbon is likely come off and, irrespective of the of smoothness, plain weaving is difficult to perform. In conclusion, therefore, the permissive range is 20 to 65 percent, preferably 40 to 60 percent.
Appropriate choice of the volume of porosity permits better adhesion of the coated film of grafted carbon paint since a portion of the pain penetrates through the pore to the other side. he 7 7 We 7 Forexample, 75 denier multifilament threads of polyester fibers having a strength of 5 g per unit denier are woven in l 10 and 98 threads per inch in the longitudinal and lateral direction, respectively. The volume of porosity of this texture is about percent. Less number of threads in the lateral direction by 10 percent is used because 10 percent shrinkage occurs during the processing. Though polyester fibers are the most suitable, any other heat resistant fibers may be used if the above requirements, are met. Regarding the structure of the textures, any weaving method can be used if the obtained volume of porosity, thickness and smoothness satisfy the required conditions. The above texture is required before use to be subjected to heat setting for 30 to sec. at a temperature by 5 to 10 C below the softening temperature of the fibers to assure the dimensional stability of the fibers. For example, they are set for 45 see. by introducing them into an oven at 225 C. Furthermore, it is necessary before the grafted carbon paint is applied that the said texture should be dipped in a suitable organic solvent (preferably the same solvent as used for the paint) to remove bubbles inside the texture.
The present invention also provides a new idea for placing electrodes on the heating sheet. As a preferred embodiment, 34 copper wires of 0.01 mm cross-sectional area knitted in a flat ribbon of 6 mm broadness are used. Plating the copper wires with tin is more useful. At first, electroconductive silver paint is applied in the shape of 1 cm broad band at the ends of the heating sheet, dried by heating and the ribbon electrodes mentioned above are placed on the portions and attached by sewing in zigzag with electroconductive thin threads and then pressed with rollers. The ribbon electrodes from the heating sheet are combined and connected with external leads. The electrodes thus formed are extremely thin (about 0.l mm) and so flexible as not to affect bending. Cracks and breaking do not cause any trouble owing to the flexible structure.
The capacity for current of the ribbon-shaped knitted electrodes above is 3.4A. When a larger capacity is required, the thickness and number of the wire and width of the ribbon should be increased to meet the requirement. Electroconductive thin wires refer to very thin wires of copper, silver and others and tape-shaped thin copper foils wrapping a cotton thread, which serve to pass the electric current to the other side.
The heating sheet with electrode may be covered not only with a flexible insulating material to make a flexible heater but also with a rigid insulating material to use as a flat plate heater.
As the insulation materials, rubber sheets, rubber coated sheets and synthetic resin sheets such as vinyl chloride sheets, polyethylene sheets, polypropylene sheets, polyurethane sheets, polyamide sheets, polyethylene telephtalate and ethylene-vinylacetate copolymer sheets may be used, and also liquid rubber and soft casting resins such as methane, and silicone-rubber may be used.
A preferred embodiment of thepresent invention is described with reference to the examples illustrated in the attached drawings in which:
FIG. 1 is a fragmented plan view of the heating sheet with electrodes of the present invention;
FIG. 2 is a sectional view of the heating sheet with electrodes taken along lines 2-2 of FIG. 1.
FIG. 3 is a fragmented plan view showing the heating element;
FIG. 4 is a sectional view showing the electrodes and the structure of the heating sheet taken along lines 4-4 of FIG. 3;
FIG. 5 is a sectional view similar to FIG. 4;
FIGS. 6 and 7 are fragmented plan views showing a further heating sheet with electrodes;
FIGS. 8 and 9 are sectional'views showing the electrodes and the structure of the heating sheet with FIG. 8 taken along lines 8-8 of FIG. 7 and FIG. 9 depicting an assembled sheet;
example FIGS. 10 and 11 are fragmented plan views showing EZAMZLEJ Oil furnace black 328 g Acrylic acid 72 g Butyl acrylate 256 g a,B-azo-bis-isobutylnitrile (initiator) 30 g Methylisobutylketone 1,000 g I The above ingredients were placed in a three neck flask and polymerized by agitating for 8 hours at 80 C in a nitrogen atmosphere. A polymerized liquid of 80 cps viscosity was obtained with a yield of 97 percent. Then a solution of cross-linking agent prepared as shown below was added to the polymerized liquid under stirring.
Epoxy resin (cross-linking agent) 76 g Methylisobutylketone (solvent) 200 g Polymerized liquid mentioned above 1,656 g As epoxy resin, ARALDITE (supplied from Shell Chemical Co.) of. the epoxy equivalent 76 was used. The same resin was used for the cross-linking agent in all examples that follow.
Referring to FIGS. 1 and 2, the mixed solution (2) thus'formed was applied onto a texture or fabric (1) made of polyester fibers (No. 331 l Tetron from Teizin Co.) wet pick up of 115 g/m with a dip coatingmachine at the speed of 3.4 m/min. and dried with hot air at 150 C (see FIG. 2). This was further heated for 16 hours at 220 C to complete cross-linking and the aging treatment. The resulting heating sheet element (3) had an area resistance of 10000 (square).
On the other hand, a comparison specimen of a heat- Nothing wrong at I000Nothing wrong at repetitions 2000 repetitions Product of this s. .h9.wn..ir Tabl ithe hea ss sst f a ple proved to be superior in pliability and flexibility. Then the heating sheet was cut to appropriate dimensions, and an electroconductive paint (8) of silver was applied to the areas (4) at which electrodes were to be fixed, where ribbon wires (12) (4 mm wide, 0.2 mm l l fili lii ofc sc ri atssr ity Alms of 16 axial cables were fixed by sewing with copper threads (7) to compose electrodes for the heating sheet (6).
The electrodes were so flexible that the whole body of the heating sheet (6) was also very flexible and held good performance for a longterm. v
The heating sheet obtained above was covered on both sides with polyvinyl chloride sheets (5) (0.4 mm thick) (see FIGS. 1 and 2). When the interval and length of the electrodes,( 10) were made to be 420 mm and 900 mm, respectively, and electric current was passed at 100 V and 570 W/m a temperature higher by 30 C above room temperature (20 C) was obtained on the surface of polyvinyl chloride sheet.
EXAMPLE 2 hours while they were heated at 90 C in the same maning sheet element was prepared by applying a mixed flexing tester and by using Olsens bending tester.
TABLE I Scott's flexing tester Olsen's bending (I kg/LS cm load) tester (l kg/l,5 cm
. load) Specimen for Cut at 28 Cut at 8 comparison repetitions repetitions The mixed solution (2) thus formed was applied onto a texture (l) of polyamide fibers wet pickup of g/m with a dip coating machine at the rate of l m/min. and dried by a C hot air. This was further heated for 30 hours at 200 C to complete cross-linking and 'aging treatment. The heating sheet element (3) obtained had an area resistance of SOQ El (square).
The pliability and flexibility of the heating sheet (3) obtained in this example proved excellent as seen in the following table.
TABLE 2 Scott's flexible tester Olsen's bending (l kg/l.5 cm load) tester (l lag/1.5 cm load) Product of this example Nothing wrong at I000Nothing wrong at repetitions 2000 repetitions site side to cover the fixing wires (7) of the heating element as shown in FIG. 5.
Since the electrodes (4) shown in F165. 6 and 7 were very flexible, the heating sheet (6) of this invention was also very flexible as a whole.
The above heating sheet (6) was covered on both sides with polyvinyl chloride sheets ()and (5') (0.4 mm thick). With the interval and the length of electrodes (4) of 420 mm and 900 mm, respectively, and the electricity of 100 V and 270 W/m a temperature higher by 14 C than room temperature (20 C) was obtained on the surface of the polyvinyl chloride sheet.
EXAMPLE 3 Above solution of polymerized substance 1,394 g" The mixed solution (2) thus formed was applied onto a texture (1) made of polyester fibers with a dip coater under the same condition as in Example 1, dried and thermally treated to obtain heating sheet elements (3). The area resistance of the heating sheet elements (3) was 2000 (square).
The pliability and flexibility of the heating sheet element (3) in this example proved to be excellent as shown in the following table.
TABLE 3 Scott's flexing tester Olsens bending tester (1 kg/l.5 cm load) (1 kg/1.5 cm load) Product of this example Nothing wrong at 1000 repetitions Nothing wrong at 2000 repetitions At the opposite ends on one side of the heating sheet element was applied a silver paint (8) and two streaks of thin copper wires (7) were fixed as electrode by sewing each at an end and parallel to each other in a zigzag line. These electrodes were so flexible that the heating sheet (6) of this example was as a whole very flexible.
Meanwhile, the electrodes of (A) the heating sheet coated with silver paint equipped with electrodes formed by pasting a 0.15 mm thick copper foil thereon; (B) the heating sheet coated with silver paint equipped with electrodes formed by sewing thereon, two parallel fine copper wires in a straight line; and (C) the heating sheet coated with silver paint equipped with electrodes formed by sewing thereon fine copper wire in a zigzag form were subjected to stamping tests to determine theirresistance value variations. The results are shown in Table 4 TABLE 4 Results of Electrode Stamping Tests After 200 Stampings Resistance Variation Rate After 10.000
The above stamping tests were conducted as under.
The electrode portions are repeatedly stamped times per minute with a stamping total load of 50 kg whole current of 100 V is passed.
Resistance Variation Rate= Resistanc After Stampings- Resistance Before Stampings 20 Resistance Before Stampings As seen from the above results, in case of the heating sheet (A) in which the copper foil is pasted, the durability of the electrode is very poor, while in case of the heating sheet (C) in which the fine copper wire is sewn in a zigzag form, the electrode is very flexible and electrically stable.
In this example, as the fine copper wire No. 40 copperthread was used and the sewing span was 5 mm.
EXAMPLE 4 Oil furnace black 330 g Acrylamide 137 g Vinyl acetate 163 g Azo-bis-isobutylnitrile initiator 35 g Cyclohexanone 1,500 g Above ingredients were stirred while being heated under the same condition as in Example 2. A solution of polymerized substance of viscosity 93 cps was obtained with a yield of 98.8 percent. Subsequently, a cross-linking agent dissolved in a solvent was added to the solution of polymerized substance in the proportion described below while being stirred.
Tetrapropyl titanate (cross-linking agent) 84 g Cyclohexane (solvent) 380 g Above solution of polymerized substance 2,139 g The mixed solution (2) thus formed was applied onto a texture (1) made of polyamid fibers with a dip coating machine to wet pickup of 140 g/m at the rate of l m/min., and then dried with a hot air of 150 C. Further heating was continued for 30 hours at 200 C to complete cross-linking and aging treatment. The area resistance of the heating sheet element (3) obtained was 500 El (square).
The pliability and flexibility of the heating sheet produced in this example proved excellent as shown in the table below.
TABLE 5 Scott's flexing tester (I kg/LS cm load) Product of this example Nothing wrong at 1000 repetitions Nothing wrong at 2000 repetmons As shown in FIG. 7 a silver paint (8) was applied onto the heating sheet element (3) at the two areas (4) and two streaks of thin copper wires (7) were fixed by sewing at each area almost in parallel to each other, and the silver paint (8) placed on areas (4) on the heating sheet. These electrodes were very flexible. The whole body of the said heating sheet (6) was covered with films and (5') (0.5 mm thick) of polyvinyl chloride for insulation. The films of polyvinyl chloride was so flexible that they did not interfere with the flexibility of the heating sheet.
EXA PLE 5 Mixture composition A Oil furnace'black 24.0 kg
Acrylic acid 4.4 kg
Butyl acrylate 15.6 kg
Azo-bis-isobutylnitrile 0.64 kg Cyclohexanone 110.0 kg
Cyclohexanone and then other constituents, were placed in a 200l reaction vessel provided with a reflux condenser and the reaction was continued for 5 hours at 90 C while nitrogen was being introduced at the rate of 10! per minute. When the reaction, was completed, a dispersion of non-precipitative grafted carbon, of which the viscosity was 18.5 cps at C and containing 28.9 percent of solid matter, was obtained.
To the kg of mixed solution obtained, the solution of cross-linking agent. shown as the mixture composition B was added and the whole mixture was made uniform with a stirrer. The paint had a viscosity of 12.5 cps at 20 C and contained 24.4 percent of solid matter.
Mixture composition B Tetrapropyl titanate 0.897 kg Cyclohexanone 6.36 kg A portion of the above paint was applied onto a glass plate, dried at 150 C for an hour andheated at 225 C for 5 hours and then the volume resistibity was 0.26 ohm/cm.
The original base material used was a texture having 50 percent by volume of porosity which was prepared by weaving 75 denier multifilament polyester fibers in l 10 and 98 threads per inch in the longitudinal and lateral directions, respectively. This texture was introduced to pass into a vat of cyclohexanone solvent to remove bubbles between the fibers. Subsequently the texture was introduced five times into a paint bath at the rate of l m per minute and then dried, taking 4 minutes at the drying temperature 150 to 160 C. The amount of solid substance attached to the texture amounted approximately to 9 g/m for a single dipping, and to 41 g/m for five times of dipping.
The base material texture to which application of paint has been done was heated at 180 C in an oven for 2 hours to complete the cross-linkage. Then, this was heated for additional 8 hours in an oven at 225 C for aging. The electrical resistance of the product was 49 ohm per cm and was uniform everywhere on the texture. Physical properties of the flexible heating sheet obtained were as follows:
at l-kg load applied No change occurred at 4000 bendings at 1 kg load applied No change occurred at 2000 flexing Bending test (Orsen) Flexing test (Scott) Electrodes were settled on the heating sheet of this invention at a distance 50 cm X 50 cm, and an ac voltage 100V was applied between them. A current of 2.0 A flew which remained constant for 500 hours and a uniform temperature between 62 to 64 C was maintained when the room temperature was 22C. The numerical values mentioned above show satisfactory performance of the flexible heating sheet.
The heating sheet of the present invention showed 1 excellent flexibility in the direction perpendicular to the sheet so-that conductivity did not change even for bending up to 180 and no carbon was scraped off at the Gakushin-type friction strength test.
.EXAM LEL A mixture consisting of 60 g of oil furnace black, 1 l g of acrylic acid, 39 g of butyl acrylate, 16 g of azo-bisisobutylnitrile, and 1,100 g of cyclohexanone was treated to react for 5 hours in at about C just as in Example 5 to obtain a liquid (A) of graft carbon polymer in which acrylic acid and butyl'acrylate were grafted on the surface of carbon black. The product contained 28.8 percent of 18.5 cps solid. Then a mixed liquid as under was prepared and mixed by a highspeed mixer. I
Graft carbon polymer liquid (A liquid) parts Diaziridiny1-m-xylene diamine 6 parts Cyclohexanone 4.5 parts Thus obtained liquid (B) was applied to the texture uniformly in an amount of 30 g/m in solid resin in a similar way as in Example 5. Then the obtained heating sheet was heat treated-at 220 C for 3 hours and the integrated resistance was 1280 The physical properties of this heating sheet are as under which indicates excellent strength with good flexibility.
Tensile strength (JlS L-1068) 35.2 kg/3 cm Tear strength (JlS K-6772) 430 g Y Bending test (Orsen) at 1 kg load No change occurred at 10,000 bending Flexing test (JIS L-1079)(Scott) at 1 kg load No change occurred at 10,000 flexing 1 This heating sheet cut into a 50 cm length and 32 cm width sheet, and a high conductivity paint with silver powder therein was applied on the heating sheet at two sides in a width of 1 cm and a length of 50 cm in the lateral direction of the heat to form the electrode portions. Then the sheet was heat treated in a heating oven at C for 10 minutes to make up fully the conductivity the silver electrode. The resistances of the electrodes of 50 cm length were LZQ-and 1.50 respectively.
On the silver electrode, a flat ribbon of 6 mm width made of 34 copper wires each of0.0l mm cross section was placed and sewed with fine copper thread of No. 40 in a zigzag line by a-sewing machine. The resistance of this heating sheet was 76.30. Then the heating sheet with the electrodes was covered on both side with two sheets (0.8 mm thickness) of soft vinyl chloride prepared by mixing 50 parts of plasticizer DOP (di-Z-ethylhexylphtalate) to polyvinyl chloride having average polymerization degree of 1,200, and the sheet was insulated by a hydraulic press at 150 C for 5 minutes. The resistance after the insulation treatment was 76.59 and showed no substantial change. This indicates a stable insulation resistance was obtained, and thus a heating unit sheet having excellent flexibility was obtained. Then the heating unit sheet was subjected to a durability test by giving the sheet an alternative current of lOOV for 1 hour and stopping the current for 30 minutes and repeating this cycle in a chamber maintained at 20 C. The surface temperature of the heating unit sheet during the current passage was 70 C in average. After 2,000 times of the above current passages, the resistance of the heating unit sheet showed 75.20.. Thus it was confirmed that no substantial change of resistance takes place and the sheet is an electrically stable resistor.
The following examples show the modes of electrode setting on the heating sheet.
EXAMPLE 7 As shown in FIG. 10 the parts of the heating sheet (3) obtained in Example 1 which will compose electrodes were coated with a silver paint (8), then covered with small pieces (13) of copper foil (6 mm at 3 cm intervals, ribbon wires (12) made of thin copper wires were placed upon them, as shown in FIG. 11, and the whole was fixed by sewing with thin copper (7) wires to form electrodes for heating sheet.
The electrodes (4) of the heating sheet (6) of this example do not lack flexibility since the copper pieces (13) are fixed at intervals. Further, in this example terminals were fixed to the copper pieces (.13) and lead wires (9) were connected to the terminals (11).
EXAMPLE 8 As shown in FIG. 10 the parts of the heating sheet element (3) obtained in Example 2 which will compose electrodes were coated with a silver paint (8) then covered with small pieces (13) of copper foil (4 mm at 2 cm intervals, ribbon wires (12) were placed upon them, as shown in FIG. 11 and the whole was fixed by sewing with thin copper wires (7). Further, the same silver paint (8) was applied on the other side to cover the fixing wires on the heating sheet eleement (3) and the copper foils (l3) and to reduce the contact resistance to be used as electrode (4) of the heating sheet The electrode part (4) of the heating sheet (6) of this example is flexible enough because small pieces of copper foil (13) are fixed at intervals.
EXAMPLE 9 EXAMPLE l The parts of the heating sheet element (3) obtained in Example 4 which will compose electrodes (4) were coated with a silver paint (8), then covered with small pieces (13) of copper foil (4 mm at cm intervals and three streaks of thin copper wires (7) were fixed by sewing together with the copper pieces and again the silver paint was applied from outside onto the fixing wires on the heating sheet and the copper pieces to reduce the contact resistance of electrodes. Thus, a heating sheet was composed.
Since the electrode parts (4) of the heating sheet (6) of this example were made of small pieces of copper foil fixed at intervals, they were very flexible.
n EJ911321? which ll. smt p s s q stitw covered with small pieces (1 3) of copper foil (4 mm at 2 cm intervals, ribbon wires (12) were fixed on the parts with thin .copper wires, and the silver paint (8) was applied from outside onto the fixing wires on a heating sheet and the small pieces of copper foil to reduce the contact resistance of electrodes. Thus, a heating sheet (6) was composed.
Since the electrode parts of the heating sheet of this example were made of small pieces of copper foil fixed at intervals, they were sufficiently flexible.
EXAMPLE l2 The parts of the heating sheetelement (3) obtained in Example 2 which will compose electrodes (4) were covered with ribbon wires which were fixed by sewing with thin copper wires (7) and as shown in FIG. 5, the silver paint (8) was applied from inside onto the fixing wires on the heating sheet element to reduce the contact resistance of electrodes. Thus, a heating sheet was formed.
Since the electrodes of the product of this example were good in flexibility, the heating sheet of this exampleas a whole was very flexible.
EXAMPLE 13 The parts of the heating sheet (3) obtained in Exam- P ..?1 W i wi l pose 19F9Ql4l Wip s yer d with small pieces (13) of copper foil (3 mm at 3 cm intervals, ribbon wires (12) were placed upon the areas and they were fixed by sewing all together to form electrodes of a heating sheet.
Since the electrode parts (4) of the heating sheet (6) of this example were covered with small pieces of copper foil (13) fixed at intervals, they were sufficiently flexible.
' applied from outside to cover the fixing wires on the heating sheet to reduce the contact resistance of electrodes. Thus, a heatingsheet (6) was formed.
Since the electrode parts (4) of the product of this example were very flexible, the heating sheet of this example as a whole was sufficiently flexible.
EXAMPLE .1;
At the parts of the heating sheet (3) obtained in Example l which will compose electrodes, small pieces (13) of copper foil wereplaced at 3 cm intervals, four streaks of thin copper wires (7) were fixed by sewing in parallel at the areas, and the silver paint (8) and (8') was applied from both sides, as shown in FIG. 9, to cover the fixing wires on the heating sheet element (3) to reduce the contact resistance of electrodes. Thus, a heating sheet (6) was formed.
Since the electrode parts of the heating sheet of this example were composed of small pieces of copper foil fixed at intervals, they were sufficiently flexible.
EXAMPLE 16 In FIG. 12 and FIG. 13, (21) is a heating sheet, (23) is a ribbon made by knitting fine metal wires which is sewed in a zigzag form onto the heating sheet (21). The seams (25) formed on the heating sheet (21) may be filled with a paint (26) having good electric conductivity so as to reduce the contact resistance betweenthe conductive wire (24) and the heating sheet (21). As for the paint (26) having good electric conductivity, and that used for the portion (22) it may be prepared by dispersing powder such as silver powder dispersed in synthetic resins.
The electrode in this example is prepared by sewing the ribbon (23) of metal wires onto the portion (22) coated with paint having good conductivity in a zigzag form using the fine wire (24).
EXAMPLE 17 In FIG. 14 and FIG. 15, the heating sheet (31) schematically shown is covered on both sides by an insulating material (32) (32) and on one side of thus obtained sheet (33) flexible insulating material (34) is laminated to form a laminated layer (35) and the sheet (33) and the laminated layer (35) are covered by a surface protecting material (36). Thin electrode plates (37), (37) are provided on the heating sheet (31) and lead wires (38), (38') are connected to the electrode plates.
The insulating material (32), (32) may be a flexible thin insulating sheet made of various synthetic sheets and rubber sheet. The flexible insulating material (34) may be made of flexible urethane, foamed rubber, foamed polyethylene etc., and laminated on one side of the heating sheet (33) using a bondingagent. The surface protecting material (36) may be rubber sheet, synthetic resin sheet, synthetic resin leather, etc.
EXAM LE. 1.8
This example shows a water-proof heating unit sheet according to the present invention. In FIG. 1', the heating sheet with electrodes (4) is connected with a lead .wire (15) and covered from both sides. with water- (16) closely adhering the water-proof insulating sheets and (5'). The sealer (16) is positioned at the inner portion of the water-proof insulating sheets (5) and (5' 1n this example, the opening for the lead wire 5 is equipped with a conventional water-proof device. As the water-proof sealer (16) is positioned at the inner portion of the water-proof insulating sheets (5) (5'), and not at the outer edge portion which is subjected impact, this sealer (16) is free from damage. And as the sealer (16) is closely fixed to the inner portion of and completely heated by (5) and (5') there is no danger of water leakage even when the sealer 16) is damaged, due to the close adhesion of the sheets (5) and (5).
What is claimed is:
5 1. A waterproof heating sheet comprising a laminate a. an inner layer of woven fabric composed of flexible heat-resistant synthetic fibers having a coating of an electro-conductive high molecular weight crosslinked paint composed of a graft polymer of a vinyl monomer grafted onto carbon black, wherein said vinyl monomer possesses a functional group selected from the group consisting of -OH, -COOH, -Nl-l =Nl-l, -CONl-l,
SONHMIId is ssil d w th,a rossr inkirsaqm selected from the group consisting of compounds having the formula:
I CH: l R N \CHI wherein R is an aliphatic, aromatic or alicylic group andnis2'or4;v
b. upper and lower waterproof insulating layers completely surrounding said inner layer;
c. said inner layer having spaced-apart, flexible electrodes conductively attached thereto; and
(1. electrical leads connected to said electrodes, said leads extending from said insulating layer and being in sealed relationship therewith.
2. The heating sheet of claim 1 wherein the woven fabric has a porosity of 20 to 65 percent by volume and consists of synthetic fiber filaments having a melting point and thermal decomposition temperature above 250 C.

Claims (2)

1. A waterproof heating sheet comprising a laminate of: a. an inner layer of woven fabric composed of flexible heatresistant synthetic fibers having a coating of an electroconductive high molecular weight cross-linked paint composed of a graft polymer of a vinyl monomer grafted onto carbon black, wherein said vinyl monomer possesses a functional group selected from the group consisting of -OH, -COOH, -NH2, NH, CONH,
2. The heating sheet of claim 1 wherein the woven fabric has a porosity of 20 to 65 percent by volume and consists of synthetic fiber filaments having a melting point and thermal decomposition temperature above 250* C.
US00271518A 1971-07-20 1972-07-13 Waterproof electrical heating unit sheet Expired - Lifetime US3808403A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6348371U JPS518504Y2 (en) 1971-07-20 1971-07-20
JP8808271A JPS517326B2 (en) 1971-11-05 1971-11-05
JP12068171U JPS4875236U (en) 1971-12-22 1971-12-22

Publications (1)

Publication Number Publication Date
US3808403A true US3808403A (en) 1974-04-30

Family

ID=27298190

Family Applications (1)

Application Number Title Priority Date Filing Date
US00271518A Expired - Lifetime US3808403A (en) 1971-07-20 1972-07-13 Waterproof electrical heating unit sheet

Country Status (1)

Country Link
US (1) US3808403A (en)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876968A (en) * 1974-02-12 1975-04-08 Burlington Industries Inc Glass heating fabric
US3935422A (en) * 1974-02-12 1976-01-27 Burlington Industries, Inc. Electrically heated laminate with a glass heating fabric
US4043532A (en) * 1976-01-29 1977-08-23 New England Union Co. Valve with electrically operated actuator
US4250397A (en) * 1977-06-01 1981-02-10 International Paper Company Heating element and methods of manufacturing therefor
US4401545A (en) * 1980-12-31 1983-08-30 Basf Aktiengesellschaft Electrically conductive polypyrrole derivatives
US4514620A (en) * 1983-09-22 1985-04-30 Raychem Corporation Conductive polymers exhibiting PTC characteristics
US4534998A (en) * 1982-05-24 1985-08-13 Hughes Aircraft Company Conductive coating process
US4700054A (en) * 1983-11-17 1987-10-13 Raychem Corporation Electrical devices comprising fabrics
US4719335A (en) * 1984-01-23 1988-01-12 Raychem Corporation Devices comprising conductive polymer compositions
US4761541A (en) * 1984-01-23 1988-08-02 Raychem Corporation Devices comprising conductive polymer compositions
US4777351A (en) * 1984-09-14 1988-10-11 Raychem Corporation Devices comprising conductive polymer compositions
US4845343A (en) * 1983-11-17 1989-07-04 Raychem Corporation Electrical devices comprising fabrics
US5081339A (en) * 1990-06-01 1992-01-14 Sunbeam Corporation Water bed heater
US5138133A (en) * 1988-11-16 1992-08-11 Think Corporation Heating sheet having far infrared radiator attached and various equipments utilizing heating sheet
US5261352A (en) * 1991-10-28 1993-11-16 Joseph Stammelman Heated place for animals
US5415934A (en) * 1988-12-09 1995-05-16 Mori; Norio Composite temperature sensitive element and face heat generator comprising the same
WO1995017800A1 (en) * 1993-12-22 1995-06-29 Proizvodstvenno-Kommercheskaya Firma 'merkuros' Flexible electrical heating element
US5484983A (en) * 1991-09-11 1996-01-16 Tecnit-Techische Textilien Und Systeme Gmbh Electric heating element in knitted fabric
US5679277A (en) * 1995-03-02 1997-10-21 Niibe; Akitoshi Flame-resistant heating body and method for making same
US6078026A (en) * 1998-03-26 2000-06-20 West; Arlen C. Thermal warming blanket for patient temperature management
US6080974A (en) * 1996-10-01 2000-06-27 All 4 House S.P. Clothes- and linen-warming or dehumidification apparatus
US6167883B1 (en) * 1998-01-23 2001-01-02 Respiratory Support Products, Inc. Medical air hose internal flow heater
EP1131982A1 (en) * 1998-09-25 2001-09-12 Arkady Kochman Multi-conductor soft heating element
US6331695B1 (en) 1998-03-26 2001-12-18 Wesco, Inc. Thermal warming blanket for patient temperature management
US6392209B1 (en) * 1998-02-02 2002-05-21 Manfred Elasser Electric heating element
US6432344B1 (en) 1994-12-29 2002-08-13 Watlow Polymer Technology Method of making an improved polymeric immersion heating element with skeletal support and optional heat transfer fins
US6516142B2 (en) 2001-01-08 2003-02-04 Watlow Polymer Technologies Internal heating element for pipes and tubes
US6519835B1 (en) 2000-08-18 2003-02-18 Watlow Polymer Technologies Method of formable thermoplastic laminate heated element assembly
US6563094B2 (en) 1999-05-11 2003-05-13 Thermosoft International Corporation Soft electrical heater with continuous temperature sensing
US6582456B1 (en) 1998-06-26 2003-06-24 Hill-Rom Services, Inc. Heated patient support apparatus
US6713733B2 (en) 1999-05-11 2004-03-30 Thermosoft International Corporation Textile heater with continuous temperature sensing and hot spot detection
US6748646B2 (en) 2000-04-07 2004-06-15 Watlow Polymer Technologies Method of manufacturing a molded heating element assembly
US6770848B2 (en) 2001-04-19 2004-08-03 William S. Haas Thermal warming devices
US20040256381A1 (en) * 2001-04-19 2004-12-23 Haas William S. Thermal warming devices
US20050007406A1 (en) * 2001-04-19 2005-01-13 Haas William S. Controllable thermal warming devices
US20050035705A1 (en) * 2003-08-11 2005-02-17 Haas William S. Illumination system
US20050098684A1 (en) * 2003-03-14 2005-05-12 Watlow Polymer Technologies Polymer-encapsulated heating elements for controlling the temperature of an aircraft compartment
US6958463B1 (en) 2004-04-23 2005-10-25 Thermosoft International Corporation Heater with simultaneous hot spot and mechanical intrusion protection
US20060001727A1 (en) * 2001-04-19 2006-01-05 Haas William S Controllable thermal warming device
EP1710342A1 (en) * 2005-04-04 2006-10-11 Electrolux Home Products Corporation N.V. Household appliances for washing and/or drying clothes
US20070068930A1 (en) * 2005-09-29 2007-03-29 Augustine Scott D Electric warming blanket having optimized temperature zones
US20070068928A1 (en) * 2005-09-29 2007-03-29 Augustine Scott D Temperature sensor assemblies for electric warming blankets
US20070067910A1 (en) * 2005-09-29 2007-03-29 Augustine Scott D Cover for a heating blanket
US20070068916A1 (en) * 2005-09-29 2007-03-29 Augustine Scott D Heating blanket cover construction and methods of manufacture
US20070210074A1 (en) * 2006-02-24 2007-09-13 Christoph Maurer Surface heating element and method for producing a surface heating element
US20080021393A1 (en) * 2004-07-07 2008-01-24 Brijesh Gill Portable Fluid Warming System
WO2008033147A1 (en) 2006-09-13 2008-03-20 Augustine Biomedical And Design Llc Heating blanket
US20080103567A1 (en) * 2006-10-13 2008-05-01 Augustine Scott D Heating blanket
US20080173637A1 (en) * 2005-11-02 2008-07-24 Koshiro Taguchi Insulated waterproof heater
US20080173629A1 (en) * 2007-01-18 2008-07-24 Augustine Biomedical And Design Llc Shut-off timer for a heating blanket
US20080230530A1 (en) * 2007-03-19 2008-09-25 Augustine Biomedical And Design, Llc Heating blanket
US20090099630A1 (en) * 2007-10-12 2009-04-16 Augustine Biomedical And Design Llc Tuckable electric warming blanket for patient warming
US20090152257A1 (en) * 2007-12-12 2009-06-18 Chao-Chuan Cheng Electric Heating Device
US20100161016A1 (en) * 2008-12-19 2010-06-24 Augustine Biomedical And Design, Llc Apparatus and method for effectively warming a patient
US20100205739A1 (en) * 2001-05-25 2010-08-19 Gallant Dennis J Thermoregulation equipment for patient room
US20120234247A1 (en) * 2011-03-15 2012-09-20 Radio Systems Corporation Energy Efficient Heated Pet Pad
US20120279953A1 (en) * 2011-03-16 2012-11-08 Augustine Biomedical And Design Llc Heated under-body warming systems
CN103209503A (en) * 2013-01-24 2013-07-17 洛阳市云际电子科技有限公司 Heating flexible transparent thin film printed with silver paste and carbon paste and production method thereof
US20140097178A1 (en) * 2012-10-10 2014-04-10 Amante Radiant Suppy, Inc. Portable Heating Arrangement
US9271335B1 (en) * 2013-02-03 2016-02-23 Vickie Lamb Snow blanket
US20160262210A1 (en) * 2014-06-25 2016-09-08 Zhelan XIE Electric heating pad for water heater
US20170013677A1 (en) * 2015-07-10 2017-01-12 Mec Addheat Co., Ltd. Heating plate for heated clothing and connecting structure of the same
US9668303B2 (en) 2013-04-17 2017-05-30 Augustine Biomedical And Design, Llc Flexible electric heaters
US20180005766A1 (en) * 2016-07-01 2018-01-04 Wisconsin Alumni Research Foundation Conductive textiles and related devices
US9877358B2 (en) * 2012-04-28 2018-01-23 Tsinghua University Heating pad
US9962122B2 (en) 2014-04-10 2018-05-08 Augustine Temperature Management LLC Underbody warming systems
US10201935B2 (en) 2007-03-19 2019-02-12 Augustine Temperature Management LLC Electric heating pad
US10206248B2 (en) 2014-11-13 2019-02-12 Augustine Temperature Management LLC Heated underbody warming systems with electrosurgical grounding
US10765580B1 (en) 2019-03-27 2020-09-08 Augustine Biomedical And Design, Llc Patient securement system for the surgical trendelenburg position
US11452382B2 (en) 2007-03-19 2022-09-27 Augustine Temperature Management LLC Electric heating pad with electrosurgical grounding
US11505899B2 (en) 2018-12-05 2022-11-22 Nvent Services Gmbh Anti-icing surface with polymeric supports
US11844733B1 (en) 2022-06-23 2023-12-19 Augustine Biomedical And Design, Llc Patient securement system for the surgical Trendelenburg position
RU2811643C1 (en) * 2023-07-07 2024-01-15 Игорь Сергеевич Белышев Thermoelectric mat for heating water-insulating carpet when repairing roll roofs

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1872581A (en) * 1930-03-17 1932-08-16 Continental Diamond Fibre Co Resistor material and method of making the same
US2458184A (en) * 1944-01-15 1949-01-04 Us Rubber Co Electrically conducting panel
US2803566A (en) * 1953-04-28 1957-08-20 S J Chemical Company Method of coating articles with heatresistant electrically conducting compositions
US3056750A (en) * 1961-01-23 1962-10-02 Air Reduction Resin bonded electrical resistors and methods of producing the same
US3130289A (en) * 1962-10-12 1964-04-21 Kaz Heating Products Inc Collapsible heating pad for travelling
US3221145A (en) * 1963-09-06 1965-11-30 Armstrong Cork Co Laminated heating sheet
US3385959A (en) * 1964-05-29 1968-05-28 Ici Ltd Flexible heating elements
US3553834A (en) * 1965-03-22 1971-01-12 Dow Chemical Co Method of making a heating carpet
US3558858A (en) * 1969-06-30 1971-01-26 Delta Control Inc Flexible planar heating unit adapted for mounting on complex curved surfaces
US3591753A (en) * 1969-12-08 1971-07-06 Kem Ind Inc Planar electrical food warmer
US3621192A (en) * 1968-11-11 1971-11-16 Schwarzkopf Dev Co Electrically heated chair

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1872581A (en) * 1930-03-17 1932-08-16 Continental Diamond Fibre Co Resistor material and method of making the same
US2458184A (en) * 1944-01-15 1949-01-04 Us Rubber Co Electrically conducting panel
US2803566A (en) * 1953-04-28 1957-08-20 S J Chemical Company Method of coating articles with heatresistant electrically conducting compositions
US3056750A (en) * 1961-01-23 1962-10-02 Air Reduction Resin bonded electrical resistors and methods of producing the same
US3130289A (en) * 1962-10-12 1964-04-21 Kaz Heating Products Inc Collapsible heating pad for travelling
US3221145A (en) * 1963-09-06 1965-11-30 Armstrong Cork Co Laminated heating sheet
US3385959A (en) * 1964-05-29 1968-05-28 Ici Ltd Flexible heating elements
US3553834A (en) * 1965-03-22 1971-01-12 Dow Chemical Co Method of making a heating carpet
US3621192A (en) * 1968-11-11 1971-11-16 Schwarzkopf Dev Co Electrically heated chair
US3558858A (en) * 1969-06-30 1971-01-26 Delta Control Inc Flexible planar heating unit adapted for mounting on complex curved surfaces
US3591753A (en) * 1969-12-08 1971-07-06 Kem Ind Inc Planar electrical food warmer

Cited By (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935422A (en) * 1974-02-12 1976-01-27 Burlington Industries, Inc. Electrically heated laminate with a glass heating fabric
US3876968A (en) * 1974-02-12 1975-04-08 Burlington Industries Inc Glass heating fabric
US4043532A (en) * 1976-01-29 1977-08-23 New England Union Co. Valve with electrically operated actuator
US4250397A (en) * 1977-06-01 1981-02-10 International Paper Company Heating element and methods of manufacturing therefor
US4401545A (en) * 1980-12-31 1983-08-30 Basf Aktiengesellschaft Electrically conductive polypyrrole derivatives
US4534998A (en) * 1982-05-24 1985-08-13 Hughes Aircraft Company Conductive coating process
US4514620A (en) * 1983-09-22 1985-04-30 Raychem Corporation Conductive polymers exhibiting PTC characteristics
US4845343A (en) * 1983-11-17 1989-07-04 Raychem Corporation Electrical devices comprising fabrics
US4700054A (en) * 1983-11-17 1987-10-13 Raychem Corporation Electrical devices comprising fabrics
US4719335A (en) * 1984-01-23 1988-01-12 Raychem Corporation Devices comprising conductive polymer compositions
US4761541A (en) * 1984-01-23 1988-08-02 Raychem Corporation Devices comprising conductive polymer compositions
US4777351A (en) * 1984-09-14 1988-10-11 Raychem Corporation Devices comprising conductive polymer compositions
US5138133A (en) * 1988-11-16 1992-08-11 Think Corporation Heating sheet having far infrared radiator attached and various equipments utilizing heating sheet
US5415934A (en) * 1988-12-09 1995-05-16 Mori; Norio Composite temperature sensitive element and face heat generator comprising the same
US5081339A (en) * 1990-06-01 1992-01-14 Sunbeam Corporation Water bed heater
US5484983A (en) * 1991-09-11 1996-01-16 Tecnit-Techische Textilien Und Systeme Gmbh Electric heating element in knitted fabric
US5261352A (en) * 1991-10-28 1993-11-16 Joseph Stammelman Heated place for animals
WO1995017800A1 (en) * 1993-12-22 1995-06-29 Proizvodstvenno-Kommercheskaya Firma 'merkuros' Flexible electrical heating element
US6432344B1 (en) 1994-12-29 2002-08-13 Watlow Polymer Technology Method of making an improved polymeric immersion heating element with skeletal support and optional heat transfer fins
US5679277A (en) * 1995-03-02 1997-10-21 Niibe; Akitoshi Flame-resistant heating body and method for making same
US6080974A (en) * 1996-10-01 2000-06-27 All 4 House S.P. Clothes- and linen-warming or dehumidification apparatus
US6167883B1 (en) * 1998-01-23 2001-01-02 Respiratory Support Products, Inc. Medical air hose internal flow heater
US6392209B1 (en) * 1998-02-02 2002-05-21 Manfred Elasser Electric heating element
US6331695B1 (en) 1998-03-26 2001-12-18 Wesco, Inc. Thermal warming blanket for patient temperature management
US6078026A (en) * 1998-03-26 2000-06-20 West; Arlen C. Thermal warming blanket for patient temperature management
US6582456B1 (en) 1998-06-26 2003-06-24 Hill-Rom Services, Inc. Heated patient support apparatus
EP1131982A4 (en) * 1998-09-25 2002-01-30 Arkady Kochman Multi-conductor soft heating element
EP1131982A1 (en) * 1998-09-25 2001-09-12 Arkady Kochman Multi-conductor soft heating element
US6452138B1 (en) 1998-09-25 2002-09-17 Thermosoft International Corporation Multi-conductor soft heating element
US6563094B2 (en) 1999-05-11 2003-05-13 Thermosoft International Corporation Soft electrical heater with continuous temperature sensing
US6713733B2 (en) 1999-05-11 2004-03-30 Thermosoft International Corporation Textile heater with continuous temperature sensing and hot spot detection
US6748646B2 (en) 2000-04-07 2004-06-15 Watlow Polymer Technologies Method of manufacturing a molded heating element assembly
US6519835B1 (en) 2000-08-18 2003-02-18 Watlow Polymer Technologies Method of formable thermoplastic laminate heated element assembly
US6541744B2 (en) * 2000-08-18 2003-04-01 Watlow Polymer Technologies Packaging having self-contained heater
US6516142B2 (en) 2001-01-08 2003-02-04 Watlow Polymer Technologies Internal heating element for pipes and tubes
US20040256381A1 (en) * 2001-04-19 2004-12-23 Haas William S. Thermal warming devices
US20060001727A1 (en) * 2001-04-19 2006-01-05 Haas William S Controllable thermal warming device
US20050007406A1 (en) * 2001-04-19 2005-01-13 Haas William S. Controllable thermal warming devices
US6770848B2 (en) 2001-04-19 2004-08-03 William S. Haas Thermal warming devices
US7022950B2 (en) 2001-04-19 2006-04-04 Haas William S Thermal warming devices
US8683750B2 (en) 2001-05-25 2014-04-01 Hill-Rom Services, Inc. Architectural headwall cabinet for storing a lift device
US8499503B2 (en) 2001-05-25 2013-08-06 Hill-Rom Services, Inc. Thermoregulation equipment for patient room
US20100205739A1 (en) * 2001-05-25 2010-08-19 Gallant Dennis J Thermoregulation equipment for patient room
US20050098684A1 (en) * 2003-03-14 2005-05-12 Watlow Polymer Technologies Polymer-encapsulated heating elements for controlling the temperature of an aircraft compartment
US20050035705A1 (en) * 2003-08-11 2005-02-17 Haas William S. Illumination system
US20050247700A1 (en) * 2004-04-23 2005-11-10 Eric Kochman Heater with simultaneous hot spot and mechanical intrusion protection
US6958463B1 (en) 2004-04-23 2005-10-25 Thermosoft International Corporation Heater with simultaneous hot spot and mechanical intrusion protection
US8753382B2 (en) 2004-07-07 2014-06-17 The Board Of Regents Of The University Of Texas Systems Portable fluid warming system
US20110184501A1 (en) * 2004-07-07 2011-07-28 Brijesh Gill Portable Fluid Warming System
US7891974B2 (en) 2004-07-07 2011-02-22 The Board Of Regents Of The University Of Texas System Portable fluid warming system
US20080021393A1 (en) * 2004-07-07 2008-01-24 Brijesh Gill Portable Fluid Warming System
EP1710342A1 (en) * 2005-04-04 2006-10-11 Electrolux Home Products Corporation N.V. Household appliances for washing and/or drying clothes
US8716628B2 (en) * 2005-04-04 2014-05-06 Electrolux Home Products Corporation N.V. Household appliances for washing and/or drying clothes
CN101175884B (en) * 2005-04-04 2010-08-11 伊莱克斯家用产品股份有限公司 Household appliances for washing and/or drying clothes
WO2006106026A1 (en) * 2005-04-04 2006-10-12 Electrolux Home Products Corporation N.V. Household appliances for washing and/or drying clothes
US20090133285A1 (en) * 2005-04-04 2009-05-28 Elisabetta Bari Household Appliances for Washing and/or Drying Clothes
US7786408B2 (en) 2005-09-29 2010-08-31 Hot Dog International Llc Bus bar interfaces for flexible heating elements
US20070068923A1 (en) * 2005-09-29 2007-03-29 Augustine Scott D Bus bar coupling for conductive fabric heaters
US20070068930A1 (en) * 2005-09-29 2007-03-29 Augustine Scott D Electric warming blanket having optimized temperature zones
US8604391B2 (en) 2005-09-29 2013-12-10 Augustine Temperature Management LLC Heating blankets and pads
US20110233185A1 (en) * 2005-09-29 2011-09-29 Augustine Temperature Management LLC Heating blankets and pads
US20070068931A1 (en) * 2005-09-29 2007-03-29 Augustine Scott D Novel designs for an electric warming blanket including a flexible heater
US20070068929A1 (en) * 2005-09-29 2007-03-29 Augustine Scott D Bus bar interface for conductive fabric heaters
US20070068916A1 (en) * 2005-09-29 2007-03-29 Augustine Scott D Heating blanket cover construction and methods of manufacture
US20070068928A1 (en) * 2005-09-29 2007-03-29 Augustine Scott D Temperature sensor assemblies for electric warming blankets
US7851729B2 (en) 2005-09-29 2010-12-14 Augustine Temperature Management LLC Electric warming blanket having optimized temperature zones
US7543344B2 (en) 2005-09-29 2009-06-09 Augustine Biomedical And Design Llc Cover for a heating blanket
WO2007041389A1 (en) * 2005-09-29 2007-04-12 Augustine Biomedical And Design Llc Heating blanket and pads
US7714255B2 (en) 2005-09-29 2010-05-11 Augustine Biomedical And Design, Llc Bus bar attachments for flexible heating elements
US20070067910A1 (en) * 2005-09-29 2007-03-29 Augustine Scott D Cover for a heating blanket
US20070080155A1 (en) * 2005-09-29 2007-04-12 Augustine Scott D Heating blankets and pads
US20100204763A1 (en) * 2005-09-29 2010-08-12 Hot Dog International Llc Temperature sensor assemblies for electric warming blankets
US20080173637A1 (en) * 2005-11-02 2008-07-24 Koshiro Taguchi Insulated waterproof heater
US20070210074A1 (en) * 2006-02-24 2007-09-13 Christoph Maurer Surface heating element and method for producing a surface heating element
EP2062460A4 (en) * 2006-09-13 2012-11-14 Augustine Biomedical And Design Llc Heating blanket
WO2008033147A1 (en) 2006-09-13 2008-03-20 Augustine Biomedical And Design Llc Heating blanket
EP2062460A1 (en) * 2006-09-13 2009-05-27 Augustine Biomedical and Design, LLC Heating blanket
US8062343B2 (en) 2006-10-13 2011-11-22 Augustine Temperature Management LLC Heating blanket
US20080103567A1 (en) * 2006-10-13 2008-05-01 Augustine Scott D Heating blanket
US8624164B2 (en) 2007-01-18 2014-01-07 Augustine Temperature Management LLC Shut-off timer for a heating blanket
US20080173629A1 (en) * 2007-01-18 2008-07-24 Augustine Biomedical And Design Llc Shut-off timer for a heating blanket
US20080230530A1 (en) * 2007-03-19 2008-09-25 Augustine Biomedical And Design, Llc Heating blanket
US10849193B2 (en) 2007-03-19 2020-11-24 Augustine Temperature Management LLC Electric heating blanket or pad
US10506668B2 (en) 2007-03-19 2019-12-10 Augustine Temperature Management LLC Heating blanket
US8283602B2 (en) 2007-03-19 2012-10-09 Augustine Temperature Management LLC Heating blanket
US11388782B2 (en) 2007-03-19 2022-07-12 Augustine Temperature Management LLC Heating blanket
US11452382B2 (en) 2007-03-19 2022-09-27 Augustine Temperature Management LLC Electric heating pad with electrosurgical grounding
US11465364B2 (en) 2007-03-19 2022-10-11 Augustine Temperature Management LLC Electric heating pad
US10201935B2 (en) 2007-03-19 2019-02-12 Augustine Temperature Management LLC Electric heating pad
US11691350B2 (en) 2007-03-19 2023-07-04 Augustine Temperature Management LLC Electric heating pad
US8772676B2 (en) 2007-03-19 2014-07-08 Augustine Temperature Management LLC Heating blanket
WO2009018025A1 (en) * 2007-08-01 2009-02-05 The Board Of Regents Of The University Of Texas System Portable fluid warming system
US20090099630A1 (en) * 2007-10-12 2009-04-16 Augustine Biomedical And Design Llc Tuckable electric warming blanket for patient warming
US20090152257A1 (en) * 2007-12-12 2009-06-18 Chao-Chuan Cheng Electric Heating Device
US20100161016A1 (en) * 2008-12-19 2010-06-24 Augustine Biomedical And Design, Llc Apparatus and method for effectively warming a patient
US20120234247A1 (en) * 2011-03-15 2012-09-20 Radio Systems Corporation Energy Efficient Heated Pet Pad
US20120279953A1 (en) * 2011-03-16 2012-11-08 Augustine Biomedical And Design Llc Heated under-body warming systems
US9877358B2 (en) * 2012-04-28 2018-01-23 Tsinghua University Heating pad
US20140097178A1 (en) * 2012-10-10 2014-04-10 Amante Radiant Suppy, Inc. Portable Heating Arrangement
US9949318B2 (en) * 2012-10-10 2018-04-17 Amante Radiant Supply, Inc. Portable heating arrangement
CN103209503A (en) * 2013-01-24 2013-07-17 洛阳市云际电子科技有限公司 Heating flexible transparent thin film printed with silver paste and carbon paste and production method thereof
US9271335B1 (en) * 2013-02-03 2016-02-23 Vickie Lamb Snow blanket
US9668303B2 (en) 2013-04-17 2017-05-30 Augustine Biomedical And Design, Llc Flexible electric heaters
US10154543B2 (en) 2013-04-17 2018-12-11 Augustine Temperature Management LLC Flexible electric heaters
US11425796B2 (en) 2013-04-17 2022-08-23 Augustine Temperature Management, Llc Conformable heating blanket
US9962122B2 (en) 2014-04-10 2018-05-08 Augustine Temperature Management LLC Underbody warming systems
US11103188B2 (en) 2014-04-10 2021-08-31 Augustine Temperature Management LLC Patient securing overlay for underbody supports
US10575784B2 (en) 2014-04-10 2020-03-03 Augustine Temperature Management LLC Patient securing overlay for heated underbody supports
US10959675B2 (en) 2014-04-10 2021-03-30 Augustine Temperature Management LLC Patient securing overlay for underbody supports
US11559259B2 (en) 2014-04-10 2023-01-24 Augustine Temperature Management LLC Patient securing overlay for underbody supports
US10433792B2 (en) 2014-04-10 2019-10-08 Augustine Temperature Management LLC Underbody warming systems
US20160262210A1 (en) * 2014-06-25 2016-09-08 Zhelan XIE Electric heating pad for water heater
US10257888B2 (en) * 2014-06-25 2019-04-09 Shenzhen Genesis Lighting Co., Ltd. Electric heating pad for water heater
US10206248B2 (en) 2014-11-13 2019-02-12 Augustine Temperature Management LLC Heated underbody warming systems with electrosurgical grounding
US9961723B2 (en) * 2015-07-10 2018-05-01 Mec Addheat Co., Ltd. Heating plate for heated clothing and connecting structure of the same
US20170013677A1 (en) * 2015-07-10 2017-01-12 Mec Addheat Co., Ltd. Heating plate for heated clothing and connecting structure of the same
US20180005766A1 (en) * 2016-07-01 2018-01-04 Wisconsin Alumni Research Foundation Conductive textiles and related devices
US11505899B2 (en) 2018-12-05 2022-11-22 Nvent Services Gmbh Anti-icing surface with polymeric supports
US10993866B2 (en) 2019-03-27 2021-05-04 Augustine Biomedical And Design, Llc Patient securement system for the surgical trendelenburg position
US11382817B2 (en) 2019-03-27 2022-07-12 Augustine Biomedical And Design, Llc Patient securement system for the surgical Trendelenburg position
US11278463B2 (en) 2019-03-27 2022-03-22 Augustine Biomedical And Design, Llc Patient securement system for the surgical Trendelenburg position
US10980694B2 (en) 2019-03-27 2021-04-20 Augustine Biomedical And Design, Llc Patient securement system for the surgical Trendelenburg position
US11576833B2 (en) 2019-03-27 2023-02-14 Augustine Medical and Design, LLC Patient securement system for the surgical Trendelenburg position
US10765580B1 (en) 2019-03-27 2020-09-08 Augustine Biomedical And Design, Llc Patient securement system for the surgical trendelenburg position
US11801188B2 (en) 2019-03-27 2023-10-31 Augustine Biomedical And Design, Llc Patient securement system for the surgical Trendelenburg position
US11844733B1 (en) 2022-06-23 2023-12-19 Augustine Biomedical And Design, Llc Patient securement system for the surgical Trendelenburg position
RU2811643C1 (en) * 2023-07-07 2024-01-15 Игорь Сергеевич Белышев Thermoelectric mat for heating water-insulating carpet when repairing roll roofs

Similar Documents

Publication Publication Date Title
US3808403A (en) Waterproof electrical heating unit sheet
US4429216A (en) Conductive element
US3935422A (en) Electrically heated laminate with a glass heating fabric
US3878362A (en) Electric heater having laminated structure
US4983814A (en) Fibrous heating element
US5720892A (en) Method of making patterend conductive textiles
US5620794A (en) Releasable adhesive joint, a method for establishing a releasable adhesive joint and an apparatus for releasing such adhesive joints
US20070224898A1 (en) Electrically conductive water repellant fabric composite
JPS59200782A (en) Electrode for electrochemical process
US4442139A (en) Elements comprising fibrous materials
EP0030479B1 (en) Conductive element and process for making the same
EP0123965A2 (en) Porous static electric charge dissipative laminate
JPS6189374A (en) Production of water-proof sheet
US3876968A (en) Glass heating fabric
JPH0243360B2 (en)
US3790406A (en) Method of treating non-conducting and poorly conducting film
JPH0115098Y2 (en)
JPH0515834B2 (en)
NO135655B (en)
EP0144187B1 (en) Electrical devices comprising ptc elements
JPS61185443A (en) Flame-retardant sheet material
GB2173200A (en) Conductive materials
PL75956B1 (en)
JPH0460494B2 (en)
JP2859203B2 (en) Manufacturing method of wide and long amorphous metal sheet