US3797748A - Liquid spraying device - Google Patents

Liquid spraying device Download PDF

Info

Publication number
US3797748A
US3797748A US00343191A US3797748DA US3797748A US 3797748 A US3797748 A US 3797748A US 00343191 A US00343191 A US 00343191A US 3797748D A US3797748D A US 3797748DA US 3797748 A US3797748 A US 3797748A
Authority
US
United States
Prior art keywords
liquid
spray head
chamber
spraying device
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00343191A
Inventor
T Nozawa
T Kishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3797748A publication Critical patent/US3797748A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • B05B9/08Apparatus to be carried on or by a person, e.g. of knapsack type
    • B05B9/085Apparatus to be carried on or by a person, e.g. of knapsack type with a liquid pump
    • B05B9/0877Apparatus to be carried on or by a person, e.g. of knapsack type with a liquid pump the pump being of pressure-accumulation type or being connected to a pressure accumulation chamber
    • B05B9/0883Apparatus to be carried on or by a person, e.g. of knapsack type with a liquid pump the pump being of pressure-accumulation type or being connected to a pressure accumulation chamber having a discharge device fixed to the container

Definitions

  • a cover unit is removably mounted [52] US. Cl 239/321, 239/324, 239/349, on the Open end of the Container, and a Spray head is 239/350, 239/357, 239/359, 239/360, 222/321 rotatably mounted on the cover unit, the rotation of [51] lint.
  • a hollow stem made of rigid 222/321 385 material such as metal or hard plastic is provided for communicating the chamber with a discharge valve [56] References Cited and also serving as a guide for a piston which moves UNITED STAT PATENTS vertically within the cylindrical chamber. With this ar- 1,s45.200 2/1932 Segal 239/357 ran ement, there i little lik lihood hat the stem is 2.572.213 /1951 Steinberg....
  • SHEET 2 OF 3 t mourn swarms DEVICE This invention relates to liquid spraying devices and more particularly to an improved spraying device of the type which produces spray mist similar to that proucked by the common aerosol bomb and which requires no container pressuring gas nor other foreign propellant.
  • liquid spraying devices which are hand operated, and which can spray in mist form the many liquids commonly used today such as hair sprays, perfumes, toilet waters, deodorants and insecticides.
  • Typical of such devices is one which operates to pump a small quantity of liquid to be sprayed from a container to a small chamber wherein the liquid is pressurized by the force ofa spring which is stressed during cocking stroke preparatory to spraying the liquid from the device.
  • a spray head rotatably mounted on the container functions to set the device in cocked position, and on being manually rotated relative to the container, causes a liquid pressurizing piston to move within the chamber in a direction to compress the spring, thereby pressurizing the liquid drawn into the chamber.
  • the pressurized liquid is usually conducted through a flexibile tube to a discharge valve and nozzle assembly. Since, however, the flexible tube extends axially through the coil spring and is adapted to be deformed sinuously upon compression of the spring,
  • Another object of the present invention is to provide a liquid spraying device which is easily held in the hand and which may be operated by finger actuation of a push button.
  • FIG. l is a vertically sectioned view illustrating one embodiment of a liquid spraying device constructed in accordance with the present invention
  • FIG. 2 is a view similar to FIG. 1 but illustrating the device in cocked position
  • FIG. 3 is a horizontal section taken on the line III--III of FIG. 1;
  • FIG. d is a perspective view of a cover unit and a cap ring to be mounted over theunit;
  • FIG. 5 is a perspective view of a slide member and a rotary cylindrical member to be received in the slide member
  • FIG. 6 is a vertical section of a modified liquid spraying device also constructed in accordance with the present invention.
  • FIGS. l and 5 illustrate one embodiment of a liquid spraying device of the present invention which is dimensioned to be conveniently held in the hand.
  • the spray device 110 comprises a cylindrical container 11 for storing a quantity of liquid to be sprayed, a cover unit 12 removably mounted on the container, and a spray head 13 rotatably mounted on the cover unit 12.
  • the device When the head 13 is rotated to the cocked position of FIG. 2, the device operates to pump a small quantity of the liquid from the container to a small chamber 14 wherein the liquid is pressurized by the force of a spring which is stressed during the cocking stroke.
  • the head 13 also includes a discharge nozzle communicating with the chamber M via a discharge valve which is operated by pushing a button at the top of the head to release the spray as required until the pressurized quantity of liquid is exhausted.
  • the device may be cocked again to ready the same for further spraying, as will be explained hereinafter.
  • the container 11 comprises a cylindrical receptacle 20 closedat the bottom by a wall 22 and having an open upper end with internal threads 24 formed therein.
  • the cover unit 12 includes an imperforate wall 26 having an upwardly extending skirt 2% which is exter' nally threaded (see also FIG. 4) to screw into the threads 18 of the receptable 15 to thereby close the upper end of the container against escape of liquid therefrom.
  • the skirt 28 is grooved below the threaded portion to provide a seat for an O-ring seal 29.
  • the cover unit 12 also includes a cylinder 30 extending downwardly from the wall 26, which is closed at its lower end by a wall 32 spaced above the wall 22 of the receptacle 20.
  • a female coupling 34 is formed on the cylinder 30, which depends from the wall 32 to receive the upper end of an inlet tube 36 with a press fit therein. The lower open end of the inlet tube 36 is disposed closely adjacent the bottom wall 22.
  • a check valve 4-0 is mounted in the cylinder 30 at its bottom and, in the illustrated embodiment, comprises a valve member 42 and a pressure ring 44 for holding the valve member in place on the bottom surface of the cylinder.
  • the valve member 42 has an annular opening 46 formed therein, the annular form of which is not complete, a break being provided so that the inner circular portion is elastically connected to the remaining portion of the valve member to provide for valve action.
  • the function of the check valve 40 is to permit flow of the liquid only in one direction, i.e., from the container ill through the inlet tube: 36 and a hole 50 of the wall 32 to the liquid pressurizing chamber M which is formed in the cylinder 30 axially between the cheek valve 40 and a piston ring 52.
  • the piston ring 52 is usually formed of rubber, plastic material or leather and is slidably mounted in the cylinder 30 for reciprocating movement therein.
  • the piston ring has an inwardly directed annular flange 54 which is received in an annular groove 56 of a piston 57 extending downwardly from a slide member 58 for vertical movement therewith. It should be noted that the piston ring may be formed integral. with the lower end of the piston.
  • a hollow stem 60 is provided extending centrally axially within the piston 57 and the slide member and which has a liquid-tight fit in a hole 62; of the piston ring 52.
  • the hollow stem is formed of a material that is sufficiently rigid not to cause the stem to bend when subjected to a considerable force acting axially thereon.
  • the function of the hollow stem is not only to serve as a guide for the vertically moving piston ring 52, but also to communicate the liquid pressurizing chamber 14 with the discharge valve 17.
  • the cover unit l2 also includes a cylindrical guide 6 extending upwardly from the skirt 28 and having an upper end with external threads 66 formed therein (see FIG. 4l).
  • a cap ring 68 is screwed on the threads 66 of the cylindrical guide for the purpose to be described below.
  • the spray head 13 is adapted to telescope onto the cylindrical guide @4 exteriorly thereof to insure that its rotational movement relative to the guide is free sliding and non-hiding.
  • the head has a skirt 70 which slips over and slides on the side wall of the cylindrical guide.
  • the lower edge of the skirt 70 is grooved as at 72 to receive a flange '74 which is provided around the cylindrical guide 64 above the threads 66.
  • the spray head 13 also includes a top wall 78 having a coupling member 80 which extends downwardly from the wall and formed internally with a plurality of equally angularly spaced, axial grooves (not shown).
  • the axial grooves are adapted to receive corresponding protuberances 82 (see FIG. 5) with a friction fit therein, which are externally formed at the upper periphery of a rotary cylindrical member 34
  • the cover unit 112 and the rotary cylindrical member 84 may be preferably moulded integrally.
  • the rotary cylindrical member 84 includes a radially extending flange 86 which has a skirt 88 extending upwardly from the flange.
  • the skirt 88 is adapted to abut the underside of the top wall of the cap ring 68, when the rotary cylindrical member is mounted within the cylindrical guide, so as not to cause a compression coil spring 87 to move the cylindrical member 84 upwardly for the sake of safety.
  • the rotary cylindrical member 84 also has a plurality of equally angularly spaced, axial protuberances 89 formed exteriorly thereof below the flange 86.
  • the protuberances 89 are slidably received in corresponding grooves 90 internally formed in the slide member 58, thereby preventing the cylindrical member 34 and the slide member 58 against rotation relative to each other.
  • the slide member 5% includes a wall 93 from which the piston 57 extends downwardly to carry the piston ring 52 at its lower end.
  • the wall 93 serves as a seat for the coil spring 87, the upper end of the spring being slipped onto an inner cylindrical member 98 formed integrally with the rotary cylindrical member 84'
  • the cylindrical guide 641 has a pair of diametrically opposite, axial grooves 100 formed internally thereof, each of which is adapted to receive a ball 1102 to cooperate with a substantially sinuous groove 104 formed in the outer periphery of the slide member 58 to thereby convert the rotational motion of the spray head into the vertical upward movement of the slide member.
  • the sinous groove 104 comprises a pair of diametrically opposite, axial sections 106 which are connected by two sections W8 each intersecting one axial section at its upper end and the other at its lower end, as is best seen in FIG. 5.
  • the spray head 13 is suitably shaped at its top to receive a commercial discharge valve assembly of the type commonly used in aerosol spray bombs.
  • the valve assembly 1241 is a known type of push button discharge valve and comprises a casing 122 having a bore 124 and which is mounted in a cylindrical boss i126 extending upwardly from the top wall 78 of the spray head 13.
  • the casing 122 has formed thereon a female coupling 128 which extends downwardly from the bottom wall thereof to have a press fit on the upper end of the hollow stem 60 so that it is not pulled out from the coupling.
  • the hollow stem 60 has a passage 13h communicating at its upper end with the bore 124 in the casing 122 through a hole 132 formed in the bottom wall thereof.
  • a cover member 131 3 is tightly fitted in the cylindrical base 126 to hold the casing 122. in place on the bottom wall of the spray head 13 with a gasket 136 interposed between the easing and the cover member.
  • the gasket 136 has a hole 138 centrally formed therein which receives a hollow valve stem 1410 with a liquid-tight fit therein.
  • the discharge valve also includes a valve body 1 .42 formed integral with the hollow valve stem M0 and which is shaped to receive the upper end of a spring 144.
  • the spring 1414 serves to hold the vertically movable valve body 142 at its upper shoulder against the underside of the inboard part of the gasket 136.
  • the hollow valve stem 140 also has a side port 146 extending through its side wall, the port being normally closed by the inner face of the hole 138 in the gasket 136.
  • a trigger push button 150 which comprises a solid piece of plastic, is provided with a vertical hole 152 to receive the upper end of the valve stem 140 with a press fit therein and thereby support the button spaced above the cover member 134.
  • the button K50 has a horizontal bore 154 intersecting the bore 152.
  • a conventional discharge nozzle 156 is formed at the orifice connected to the bore i541 of the button.
  • the above described structure of the spray device is made substantially entirely of suitable plastic material.
  • the hollow stem 6'9 is formed of rigid material such as metal or hard plastic.
  • the container ll may be grasped in one hand and simultaneously the spray head 113 is rotated relative to the container by the other hand in a clockwise direction as viewed from above in FIG. ll.
  • the spray head is rotated from the position shown in FIG. 1 to that shown in FIG. 2, the rotary cylindrical member 84 and accordingly the slide member 58 rotate in the same direction. resulting in an upward movement of the slide member within the cylindrical guide 6d.
  • This will compress the coil spring S7 and simultaneously expand the volume of the chamber M, thus creating a negative pressure in the chamber.
  • This pressure acts to open the check valve All) so that the liquid under atmospheric pressure in the receptacle 20 is forced upwardly through the inlet tube 36, hole Ell and check valve Mi into the chamber 11 i.
  • depression of the push button 150 moves the hollow valve stem 14m downwardly, thereby opening the discharge valve to release pressurized liquid from the liquid pressurizing chamber M through the hollow stem 60, hole 132 and bore 12% of the valve casing ll22, a passage 170 of the valve stem M and nozzle 11%.
  • the pressure exerted on the liquid in the chamber lid by the spring $7 is sufficient to generate a high quality, very fine mist spray comparable to that produced by conventional aerosol boms.
  • the slide member is progressively move downwardly by the action of the spring $7 until the wall 93 of the slide member abuts the wall 26 of the cover unit 112, as illustrated in FIG. ll.
  • FIG. 6 there is illustrated a modified spray device 10 of the present invention which is different from that shown in FIGS. 1 to 5 in that the cylinder 30' defining the liquid pressurizing chamber 14' therein is vertically movable in response to rotation of the spray head 13' while the piston ring 52' is fixed with respect to the cover unit 712.
  • the sprayer llll comprises a container 11' made up of a receptacle 2@', open at its upper end, and a cover unit 112 removably mounted over the open upper end of the receptacle to serve as a cover for the container.
  • the cover unit 12' includes a cylindrical guide 64' extending upwardly from a wall 26' and having a cap ring 68 mounted on its upper end.
  • the cover unit 12' also includes a piston 57' extending centrally upwardly from the wall 26, which is grooved at its upper periphery to fixedly receive a piston ring 52'.
  • the piston 57' is provided with a vertical hole 2011 to receive the upper end of an inlet tube 36' with a press fit therein.
  • a valve seat 202 is formed in an end bore 204 of the piston 57', and a check ball 206 is loosely disposed on the seat.
  • the piston also has a passage 208 extending axially therethrough and communicating the end bore MP4 with the inlet tube 36.
  • a slide member 58' is mounted within the cylindrical guide 6d, and includes an outer cylinder 92' having a sinuous groove 104 formed therein which comprises two axial sections and two intersecting sections, similar to those shown in FIG. 5.
  • the outer cylinder 92' is connected at its lower end by a wall 93 to the lower end of an inner cylinder 30' which is closed at its upper end by a wall 32'.
  • the inner cylinder 30 is adapted to telescope onto the piston 57 having the piston ring 52' provided thereon, and carries a packing member 212 at its top.
  • the packing member 2112 has a central hole 214- for slidably receiving a hollow stern 6d in liquid-tight mariner.
  • the hollow stem fill is tightly fitted on a male coupling 21d of a discharge valve assembly (not shown in FIG. 6).
  • the hollow stem is formed of a material that is sufficient rigid not to cause the stem to bend when subjected to a considerable force acting axially thereon.
  • a rotary cylindrical member M is internally mounted on the spray head 13' for rotation therewith and has a plurality of axial protuberances 89' for cooperating with corresponding grooves 96 internally formed in the outer cylinder 92'.
  • the rotary cylindrical member 84 serves as a seat for the upper end ofa com pression coil spring $7, the lower end of which is received in the slide member 58.
  • the receptacle 20' is unscrewed from the cover unit 12', the required amount of liquid being poured into the open end of the receptacle.
  • the spray head 13 is rotated. relative to the container ill in a fixed direction against the pressure of the spring 87'. Rotation of the spray head moves the slide member 5% upwardly, thereby expanding the volume of the chamber 114' and thus sucking liquid up via the inlet tube 36, passage 208 and past the check ball 24% into the chamber.
  • the check ball 206 seats and the liquid in the chamber 114' is pressurized by the force of the fully compressed spring 37'.
  • the spray device 10' is now ready for dispensing liquid.
  • the present invention provides an improved liquid sprayer which offers many advantages over the prior art devices.
  • the sprayer is completely safe whether or not in the cocked position, and requires no external power source to produce the spray mist.
  • the container is not pressurized but rather serves as a convenient reservoir for the liquid to be sprayed, it is not subject to the explosion hazards of the common aerosol spray bombs.
  • no pressurizing gas or other foreign propellant is required, the liquid is not subject to contamination in the container.
  • the device is reliable due to its simplified construction and operation and is capable of producing an extremely high quality spray.
  • the hollow stem which communicates the liquid pressurizing chamber with the discharge valve is formed of a rigid material such as metal or hard plastic, there is little likelihood that the stem is caught in the spring, hindering compression of the spring or resulting in severance of the stem, as is frequently the case with a flexible tube. Further, it is understood that due to the rigidiness of the hollow stern it is an easy matter to connect the stem to a coupling for the discharge valve and the liquid pressurizing chamber.
  • a liquid spraying device comprising container means including a receptacle adapted to hold a quantity of liquid and having an opening for filling the receptacle with the liquid, cover means removably mounted on the receptacle to close the opening and ineluding an upwardly extending cylindrical guide, spray head means rotatably mounted on the cover means, slide means movably mounted within the cylindrical guide and operably connected to the spray head means whereby rotation of the spray head means relative to the cover means in a fixed direction moves the slide means upwardly, liquid pressurizing pump means including a cylinder and a piston defining a liquid pressurizing chamber, the cylinder being operably connected in fixed relation to one of the cover means and slide means and the piston being operably connected in fixed relation to the other of the means, a spring mounted in the spray head means for biasing the slide means in a direction to decrease the volume of the liquid pressurizing chamber to thereby pressurize liquid therein, an inlet conduit adapted to conduct the liquid in the receptacle to
  • a liquid spraying device comprising a container having a reservoir adapted to hold a quantity of liquid and an opening for filling the same with liquid, a cover unit adapted to close the opening and including a cylinder extending downwardly into the container.
  • the cover unit also including a cylindrical guide extending upwardly therefrom and having a pair of diametrically opposite axial grooves formed interiorly thereof, a spray head rotatably mounted on the cylindrical guide.
  • a slide member mounted in the cylindrical guide for vertical movement-therein and including a piston slidably received in the cylinder.
  • the slide member having a sinuous groove formed exteriorly thereof which comprises a pair of diametrically opposite axial sections and a pair of intersecting sections each intersecting at one end the upper end of one axial section and at the other end the lower end of the other axial section.
  • a cylindrical member mounted in the spray head for transmitting the rotational movement of the head to the slide member.
  • two balls each rotatably received in one of the axial grooves of the cylindrical guide and the sinuous groove of the slide member for causing vertical upward movement of the slide member in response to rotation of the spray head.
  • a spring for biasing the slide member in a direction tending to decrease the volume of the liquid pressurizing chamber.
  • the spray head including a spray nozzle and a discharge valve operable for controlling discharge of liquid under spring pressure from the chamber through the nozzle in the form of a spray, and a hollow stem made of rigid material for communicating the chamber with the discharge valve.
  • a liquid spraying device comprising a container having a reservoir adapted to hold a quantity of liquid and an opening for filling the same with liquid, a cover unit adapted to close the opening and including a piston extending upwardly therefrom, the cover unit also including a cylindrical guide extending upwardly therefrom and having a pair of diametrically opposite axial grooves formed interiorly thereof, a spray head rotatably mounted on the cylindrical guide, a slide member mounted in the cylindrical guide for vertical movement therein and including a cylinder slidably received on the piston, the piston and cylinder defining a liquid pressurizing chamber therebetween, the slide member having a sinuous groove formed exteriorly thereof which comprises a pair of diametrically opposite axial sections and a pair of intersecting sections each intersecting at one end the upper end of one axial section and at the other end the lower end of the other axial section, a cylindrical member mounted in the spray head for transmitting the rotational movement of the head to the slide member.
  • an inlet conduit adapted to conduit the liquid in the receptacle to the chamber, an inlet check valve in the conduit, the spray head including a spray nozzle and a discharge valve operable for controlling discharge of liquid under spring pressure form the chamber through the nozzle in the form of a spray, and a hollow stern made of rigid material for communicating the chamber with the discharge valve.

Abstract

A refillable hand-operated liquid sprayer of the type which requires no container pressurizing gas nor other foreign propellant. It operates to pump a small quantity of liquid to be sprayed from a container to a small cylindrical chamber wherein the liquid is pressurized by the force of a coiled spring which is stressed during ''''cocking'''' stroke preparatory to spraying the liquid from the device. A cover unit is removably mounted on the open end of the container, and a spray head is rotatably mounted on the cover unit, the rotation of the head relative to the unit causing the spring to be compressed thereby sucking liquid up from the container into the chamber. A hollow stem made of rigid material such as metal or hard plastic is provided for communicating the chamber with a discharge valve and also serving as a guide for a piston which moves vertically within the cylindrical chamber. With this arrangement, there is little likelihood that the stem is caught in the spring thereby hindering further compression of the spring or resulting in severance of the stem, as is frequently the case with previous flexible hollow tube.

Description

llite @tates te't 1 1 Nozawa et all.
[ LIQUID SPRAYKNG DEVICE Primary Examiner-Robert S. Ward, Jr. [76] Inventors: Takamitsu Nozawa; Takao llfiishi, Attorney Agent or FlrmEdwm Grelgg both of Tokyo, Japan 22 F1 d M 21 1973 [57] ABSTRACT 1 1e A refillable hand-operated liquid sprayer of the type [21] App]. No.: 343,191 which requires no container pressurizing gas nor other foreign propellant. It operates to pump a small quantity of liquid to be sprayed from a container to a small [30] Forelgn Apphcatmn Prwnty Dam cylindrical chamber wherein the liquid is pressurized Mar. 30, 1972 Japan 47-037544[U] y the force f a il p g which is Stressed during Mar. 30, 1972 Japan 47-O37545[U] g stroke p p y to p y g the liquid from the device. A cover unit is removably mounted [52] US. Cl 239/321, 239/324, 239/349, on the Open end of the Container, and a Spray head is 239/350, 239/357, 239/359, 239/360, 222/321 rotatably mounted on the cover unit, the rotation of [51] lint. Cl B!) 1/32, BOSb 11/00 the head relative to the unit causing the Spring to be Fleld 0f Search compressed h y ki g p from the 239/349 tainer into the chamber. A hollow stem made of rigid 222/321 385 material such as metal or hard plastic is provided for communicating the chamber with a discharge valve [56] References Cited and also serving as a guide for a piston which moves UNITED STAT PATENTS vertically within the cylindrical chamber. With this ar- 1,s45.200 2/1932 Segal 239/357 ran ement, there i little lik lihood hat the stem is 2.572.213 /1951 Steinberg.... caught in the spring thereby hindering further com- 3.471.065 10/1969 Malone 239/337 X pregsion of the spring or resulting in severance of the FOREIGN PATENTS OR APPLICATIONS lsiltellln, 3S frequently the case with previous flexible 1.503.684 10/1967 France 239/350 0 12 Claims, 6 Drawing Figures J 1004 87 a Q5 8 .1 as 102%: 102 64-i I Y L60 r 11 K E PAIENTEDHAR I 9 I974 SHEET 1 BF 3 FIGZ.
FIG.1.
PAIENTEUHAR19 1914 3; 797; 748
SHEET 2 OF 3 t mourn swarms DEVICE This invention relates to liquid spraying devices and more particularly to an improved spraying device of the type which produces spray mist similar to that pro duced by the common aerosol bomb and which requires no container pressuring gas nor other foreign propellant.
l'leretofore, various liquid spraying devices have been devised which are hand operated, and which can spray in mist form the many liquids commonly used today such as hair sprays, perfumes, toilet waters, deodorants and insecticides. Typical of such devices is one which operates to pump a small quantity of liquid to be sprayed from a container to a small chamber wherein the liquid is pressurized by the force ofa spring which is stressed during cocking stroke preparatory to spraying the liquid from the device.
In devices of this type, a spray head rotatably mounted on the container functions to set the device in cocked position, and on being manually rotated relative to the container, causes a liquid pressurizing piston to move within the chamber in a direction to compress the spring, thereby pressurizing the liquid drawn into the chamber. The pressurized liquid is usually conducted through a flexibile tube to a discharge valve and nozzle assembly. Since, however, the flexible tube extends axially through the coil spring and is adapted to be deformed sinuously upon compression of the spring,
there is a tendency for the curved portion of the tube to be caught in the spring, hindering further compression of the spring and, in the worst case, leading to severance of the tube. Another disadvantage resulting from the use of such a flexible tube is the difficulty experienced during assembly of the spraying device in slipping the tube of soft material onto a nipple or other coupling for the discharge valve or the pressurizing piston.
Therefore, it is an object of the present invention to provide a new and improved liquid spraying device.
Another object of the present invention is to provide a liquid spraying device which is easily held in the hand and which may be operated by finger actuation of a push button.
It is a further object of the present invention to provide a liquid spraying device of the above character which employs a hollow stem of rigid material to communicate a liquid pressurizing chamber with a discharge valve, thereby avoiding the problem of the stem being caught in a compression spring thereby hindering compression of the spring.
These and other objects will be apparent from the following description of the invention when taken in conjunction with the accompanying drawings. in which:
FIG. l is a vertically sectioned view illustrating one embodiment of a liquid spraying device constructed in accordance with the present invention;
FIG. 2 is a view similar to FIG. 1 but illustrating the device in cocked position;
FIG. 3 is a horizontal section taken on the line III--III of FIG. 1;
FIG. d is a perspective view of a cover unit and a cap ring to be mounted over theunit;
FIG. 5 is a perspective view of a slide member and a rotary cylindrical member to be received in the slide member; and
FIG. 6 is a vertical section of a modified liquid spraying device also constructed in accordance with the present invention.
Referring in more detail to the accompanying drawings, FIGS. l and 5 illustrate one embodiment of a liquid spraying device of the present invention which is dimensioned to be conveniently held in the hand.
Briefly, the spray device 110 comprises a cylindrical container 11 for storing a quantity of liquid to be sprayed, a cover unit 12 removably mounted on the container, and a spray head 13 rotatably mounted on the cover unit 12. When the head 13 is rotated to the cocked position of FIG. 2, the device operates to pump a small quantity of the liquid from the container to a small chamber 14 wherein the liquid is pressurized by the force of a spring which is stressed during the cocking stroke. The head 13 also includes a discharge nozzle communicating with the chamber M via a discharge valve which is operated by pushing a button at the top of the head to release the spray as required until the pressurized quantity of liquid is exhausted. The device may be cocked again to ready the same for further spraying, as will be explained hereinafter.
As best seen in FIGS. 1 and 2, the container 11 comprises a cylindrical receptacle 20 closedat the bottom by a wall 22 and having an open upper end with internal threads 24 formed therein.
The cover unit 12 includes an imperforate wall 26 having an upwardly extending skirt 2% which is exter' nally threaded (see also FIG. 4) to screw into the threads 18 of the receptable 15 to thereby close the upper end of the container against escape of liquid therefrom. The skirt 28 is grooved below the threaded portion to provide a seat for an O-ring seal 29. The cover unit 12 also includes a cylinder 30 extending downwardly from the wall 26, which is closed at its lower end by a wall 32 spaced above the wall 22 of the receptacle 20. A female coupling 34 is formed on the cylinder 30, which depends from the wall 32 to receive the upper end of an inlet tube 36 with a press fit therein. The lower open end of the inlet tube 36 is disposed closely adjacent the bottom wall 22.
A check valve 4-0 is mounted in the cylinder 30 at its bottom and, in the illustrated embodiment, comprises a valve member 42 and a pressure ring 44 for holding the valve member in place on the bottom surface of the cylinder. The valve member 42 has an annular opening 46 formed therein, the annular form of which is not complete, a break being provided so that the inner circular portion is elastically connected to the remaining portion of the valve member to provide for valve action. The function of the check valve 40 is to permit flow of the liquid only in one direction, i.e., from the container ill through the inlet tube: 36 and a hole 50 of the wall 32 to the liquid pressurizing chamber M which is formed in the cylinder 30 axially between the cheek valve 40 and a piston ring 52.
The piston ring 52 is usually formed of rubber, plastic material or leather and is slidably mounted in the cylinder 30 for reciprocating movement therein. The piston ring has an inwardly directed annular flange 54 which is received in an annular groove 56 of a piston 57 extending downwardly from a slide member 58 for vertical movement therewith. It should be noted that the piston ring may be formed integral. with the lower end of the piston.
A hollow stem 60 is provided extending centrally axially within the piston 57 and the slide member and which has a liquid-tight fit in a hole 62; of the piston ring 52. Preferably, the hollow stem is formed of a material that is sufficiently rigid not to cause the stem to bend when subjected to a considerable force acting axially thereon. The function of the hollow stem is not only to serve as a guide for the vertically moving piston ring 52, but also to communicate the liquid pressurizing chamber 14 with the discharge valve 17.
The cover unit l2 also includes a cylindrical guide 6 extending upwardly from the skirt 28 and having an upper end with external threads 66 formed therein (see FIG. 4l). A cap ring 68 is screwed on the threads 66 of the cylindrical guide for the purpose to be described below.
The spray head 13 is adapted to telescope onto the cylindrical guide @4 exteriorly thereof to insure that its rotational movement relative to the guide is free sliding and non-hiding. The head has a skirt 70 which slips over and slides on the side wall of the cylindrical guide. The lower edge of the skirt 70 is grooved as at 72 to receive a flange '74 which is provided around the cylindrical guide 64 above the threads 66. Thus, the spray head is prevented from vertical movement relative to the cylindrical guide once they are assembled to the position of FIG. ll.
The spray head 13 also includes a top wall 78 having a coupling member 80 which extends downwardly from the wall and formed internally with a plurality of equally angularly spaced, axial grooves (not shown). The axial grooves are adapted to receive corresponding protuberances 82 (see FIG. 5) with a friction fit therein, which are externally formed at the upper periphery of a rotary cylindrical member 34 Thus, when the spray head 13 is rotated, the rotary cylindrical member rotates in the same direction accordingly. The cover unit 112 and the rotary cylindrical member 84 may be preferably moulded integrally.
The rotary cylindrical member 84 includes a radially extending flange 86 which has a skirt 88 extending upwardly from the flange. The skirt 88 is adapted to abut the underside of the top wall of the cap ring 68, when the rotary cylindrical member is mounted within the cylindrical guide, so as not to cause a compression coil spring 87 to move the cylindrical member 84 upwardly for the sake of safety.
As best seen in FIGS. 3 and 5, the rotary cylindrical member 84 also has a plurality of equally angularly spaced, axial protuberances 89 formed exteriorly thereof below the flange 86. The protuberances 89 are slidably received in corresponding grooves 90 internally formed in the slide member 58, thereby preventing the cylindrical member 34 and the slide member 58 against rotation relative to each other.
The slide member 5% includes a wall 93 from which the piston 57 extends downwardly to carry the piston ring 52 at its lower end. The wall 93 serves as a seat for the coil spring 87, the upper end of the spring being slipped onto an inner cylindrical member 98 formed integrally with the rotary cylindrical member 84' As seen in FIGS. 3, 4; and 5, the cylindrical guide 641 has a pair of diametrically opposite, axial grooves 100 formed internally thereof, each of which is adapted to receive a ball 1102 to cooperate with a substantially sinuous groove 104 formed in the outer periphery of the slide member 58 to thereby convert the rotational motion of the spray head into the vertical upward movement of the slide member. The sinous groove 104 comprises a pair of diametrically opposite, axial sections 106 which are connected by two sections W8 each intersecting one axial section at its upper end and the other at its lower end, as is best seen in FIG. 5. When the spray head 13 is rotated relative to the container 1 l in a clockwise direction as viewed from above in FIG. 11, the rotational motion of the head is transmitted through the rotary cylindrical member 8 to the slide member 58, causing it to move upward against the action of the compression spring 87.
The spray head 13 is suitably shaped at its top to receive a commercial discharge valve assembly of the type commonly used in aerosol spray bombs. As best seen in FIG. l and 2, the valve assembly 1241 is a known type of push button discharge valve and comprises a casing 122 having a bore 124 and which is mounted in a cylindrical boss i126 extending upwardly from the top wall 78 of the spray head 13. The casing 122 has formed thereon a female coupling 128 which extends downwardly from the bottom wall thereof to have a press fit on the upper end of the hollow stem 60 so that it is not pulled out from the coupling. The hollow stem 60 has a passage 13h communicating at its upper end with the bore 124 in the casing 122 through a hole 132 formed in the bottom wall thereof. A cover member 131 3 is tightly fitted in the cylindrical base 126 to hold the casing 122. in place on the bottom wall of the spray head 13 with a gasket 136 interposed between the easing and the cover member. The gasket 136 has a hole 138 centrally formed therein which receives a hollow valve stem 1410 with a liquid-tight fit therein. The discharge valve also includes a valve body 1 .42 formed integral with the hollow valve stem M0 and which is shaped to receive the upper end of a spring 144. The spring 1414 serves to hold the vertically movable valve body 142 at its upper shoulder against the underside of the inboard part of the gasket 136. The hollow valve stem 140 also has a side port 146 extending through its side wall, the port being normally closed by the inner face of the hole 138 in the gasket 136. When the valve stem is pushed downwardly to the open position, the gasket is peeled and dished downwardly, bringing the side port 146 into communication with the bore 124 in the casing 122.
A trigger push button 150, which comprises a solid piece of plastic, is provided with a vertical hole 152 to receive the upper end of the valve stem 140 with a press fit therein and thereby support the button spaced above the cover member 134. The button K50 has a horizontal bore 154 intersecting the bore 152. A conventional discharge nozzle 156 is formed at the orifice connected to the bore i541 of the button.
Preferably the above described structure of the spray device is made substantially entirely of suitable plastic material. but the hollow stem 6'9 is formed of rigid material such as metal or hard plastic.
To operate the spray device it), the container ll may be grasped in one hand and simultaneously the spray head 113 is rotated relative to the container by the other hand in a clockwise direction as viewed from above in FIG. ll. As the spray head is rotated from the position shown in FIG. 1 to that shown in FIG. 2, the rotary cylindrical member 84 and accordingly the slide member 58 rotate in the same direction. resulting in an upward movement of the slide member within the cylindrical guide 6d. This will compress the coil spring S7 and simultaneously expand the volume of the chamber M, thus creating a negative pressure in the chamber. This pressure acts to open the check valve All) so that the liquid under atmospheric pressure in the receptacle 20 is forced upwardly through the inlet tube 36, hole Ell and check valve Mi into the chamber 11 i. When the slide member 5% is moved to the position of FIG. 2, the axial grooves we of the slide member 64 are brought into registry with the axial grooves 100 of the cylindrical guide 6%, so that the force of the fully compressed spring $7 acts downwardly on the slide member 5%, thereby tending to move the same downwardly. The spring force thus pressurizes the liquid which is trapped in the chamber 1 1 between the closed check valve 40 and the piston ring 52.
With the spray device it) now cocked, depression of the push button 150 moves the hollow valve stem 14m downwardly, thereby opening the discharge valve to release pressurized liquid from the liquid pressurizing chamber M through the hollow stem 60, hole 132 and bore 12% of the valve casing ll22, a passage 170 of the valve stem M and nozzle 11%. The pressure exerted on the liquid in the chamber lid by the spring $7 is sufficient to generate a high quality, very fine mist spray comparable to that produced by conventional aerosol boms. During spraying, the slide member is progressively move downwardly by the action of the spring $7 until the wall 93 of the slide member abuts the wall 26 of the cover unit 112, as illustrated in FIG. ll.
In FIG. 6, there is illustrated a modified spray device 10 of the present invention which is different from that shown in FIGS. 1 to 5 in that the cylinder 30' defining the liquid pressurizing chamber 14' therein is vertically movable in response to rotation of the spray head 13' while the piston ring 52' is fixed with respect to the cover unit 712.
As shown. the sprayer llll comprises a container 11' made up of a receptacle 2@', open at its upper end, and a cover unit 112 removably mounted over the open upper end of the receptacle to serve as a cover for the container. the cover unit 12' includes a cylindrical guide 64' extending upwardly from a wall 26' and having a cap ring 68 mounted on its upper end. The cover unit 12' also includes a piston 57' extending centrally upwardly from the wall 26, which is grooved at its upper periphery to fixedly receive a piston ring 52'. The piston 57' is provided with a vertical hole 2011 to receive the upper end of an inlet tube 36' with a press fit therein. A valve seat 202 is formed in an end bore 204 of the piston 57', and a check ball 206 is loosely disposed on the seat. The piston also has a passage 208 extending axially therethrough and communicating the end bore MP4 with the inlet tube 36.
A slide member 58' is mounted within the cylindrical guide 6d, and includes an outer cylinder 92' having a sinuous groove 104 formed therein which comprises two axial sections and two intersecting sections, similar to those shown in FIG. 5. The outer cylinder 92' is connected at its lower end by a wall 93 to the lower end of an inner cylinder 30' which is closed at its upper end by a wall 32'. The inner cylinder 30 is adapted to telescope onto the piston 57 having the piston ring 52' provided thereon, and carries a packing member 212 at its top. The packing member 2112 has a central hole 214- for slidably receiving a hollow stern 6d in liquid-tight mariner. The upper end of the hollow stem fill is tightly fitted on a male coupling 21d of a discharge valve assembly (not shown in FIG. 6). As in the embodiment shown in FIGS. l to 5, the hollow stem is formed of a material that is sufficient rigid not to cause the stem to bend when subjected to a considerable force acting axially thereon.
A rotary cylindrical member M is internally mounted on the spray head 13' for rotation therewith and has a plurality of axial protuberances 89' for cooperating with corresponding grooves 96 internally formed in the outer cylinder 92'. The rotary cylindrical member 84 serves as a seat for the upper end ofa com pression coil spring $7, the lower end of which is received in the slide member 58.
To fill the container 1111 with liquid, the receptacle 20' is unscrewed from the cover unit 12', the required amount of liquid being poured into the open end of the receptacle. To load the liquid pressurizing chamber 14, the spray head 13 is rotated. relative to the container ill in a fixed direction against the pressure of the spring 87'. Rotation of the spray head moves the slide member 5% upwardly, thereby expanding the volume of the chamber 114' and thus sucking liquid up via the inlet tube 36, passage 208 and past the check ball 24% into the chamber. When the spray head is released, the check ball 206 seats and the liquid in the chamber 114' is pressurized by the force of the fully compressed spring 37'. The spray device 10' is now ready for dispensing liquid.
From the foregoing description, it will now be apparent that the present invention provides an improved liquid sprayer which offers many advantages over the prior art devices. For example, the sprayer is completely safe whether or not in the cocked position, and requires no external power source to produce the spray mist. Since the container is not pressurized but rather serves as a convenient reservoir for the liquid to be sprayed, it is not subject to the explosion hazards of the common aerosol spray bombs. Further, since no pressurizing gas or other foreign propellant is required, the liquid is not subject to contamination in the container. Moreover, the device is reliable due to its simplified construction and operation and is capable of producing an extremely high quality spray.
In addition, it should be noted that since the hollow stem which communicates the liquid pressurizing chamber with the discharge valve is formed of a rigid material such as metal or hard plastic, there is little likelihood that the stem is caught in the spring, hindering compression of the spring or resulting in severance of the stem, as is frequently the case with a flexible tube. Further, it is understood that due to the rigidiness of the hollow stern it is an easy matter to connect the stem to a coupling for the discharge valve and the liquid pressurizing chamber.
What is claimed is:
l. A liquid spraying device comprising container means including a receptacle adapted to hold a quantity of liquid and having an opening for filling the receptacle with the liquid, cover means removably mounted on the receptacle to close the opening and ineluding an upwardly extending cylindrical guide, spray head means rotatably mounted on the cover means, slide means movably mounted within the cylindrical guide and operably connected to the spray head means whereby rotation of the spray head means relative to the cover means in a fixed direction moves the slide means upwardly, liquid pressurizing pump means including a cylinder and a piston defining a liquid pressurizing chamber, the cylinder being operably connected in fixed relation to one of the cover means and slide means and the piston being operably connected in fixed relation to the other of the means, a spring mounted in the spray head means for biasing the slide means in a direction to decrease the volume of the liquid pressurizing chamber to thereby pressurize liquid therein, an inlet conduit adapted to conduct the liquid in the receptacle to the chamber, an inlet check valve in the conduit, a discharge valve in the spray head means for controlling the discharge of pressurized liquid from the chamber in the form of a spray. and a ho]- low stem made of rigid material and adapted to conduct pressurized liquid from the chamber to the discharge valve.
2. A liquid spraying device as set forth in claim 1, in which the hollow stem is made of metal.
3. A liquid spraying device as set forth in claim 1, in which the hollow stem is made of hard plastic material.
4. A liquid spraying device as set forth in claim 1, in which the hollow stem is fixed with respect to the spray head means.
5. A liquid spraying device as set forth in claim 4, in which the upper end of the hollow stem is fixedly mounted on the discharge valve which in turn is fixedly mounted on the spray head means.
6. A liquid spraying device as set forth in claim 4, in which the lower end of the hollow stem extends into the liquid pressurizing chamber and has a liquid-tight slide fit in the opening formed in one of the cylinder and piston which is operably connected in fixed relation to the slide means.
7. A liquid spraying device comprising a container having a reservoir adapted to hold a quantity of liquid and an opening for filling the same with liquid, a cover unit adapted to close the opening and including a cylinder extending downwardly into the container. the cover unit also including a cylindrical guide extending upwardly therefrom and having a pair of diametrically opposite axial grooves formed interiorly thereof, a spray head rotatably mounted on the cylindrical guide. a slide member mounted in the cylindrical guide for vertical movement-therein and including a piston slidably received in the cylinder. the piston and cylinder defining a liquid pressurizing chamber therebetween, the slide member having a sinuous groove formed exteriorly thereof which comprises a pair of diametrically opposite axial sections and a pair of intersecting sections each intersecting at one end the upper end of one axial section and at the other end the lower end of the other axial section. a cylindrical member mounted in the spray head for transmitting the rotational movement of the head to the slide member. two balls each rotatably received in one of the axial grooves of the cylindrical guide and the sinuous groove of the slide member for causing vertical upward movement of the slide member in response to rotation of the spray head. a spring for biasing the slide member in a direction tending to decrease the volume of the liquid pressurizing chamber.
an inlet conduit adapted to conduct the liquid in the receptacle to the chamber, an inlet check valve in the conduit, the spray head including a spray nozzle and a discharge valve operable for controlling discharge of liquid under spring pressure from the chamber through the nozzle in the form of a spray, and a hollow stem made of rigid material for communicating the chamber with the discharge valve.
8. A liquid spraying device as set forth in claim 7, in which the upper end of the hollow stem is fixedly mounted on the discharge valve which in turn is fixedly mounted on the spray head.
9. A liquid spraying device as set forth in claim 8, in which the piston had a piston ring mounted thereon, the piston ring being formed with an opening for slidably receiving the lower end of the hollow stem in the liquid-tight manner.
10. A liquid spraying device comprising a container having a reservoir adapted to hold a quantity of liquid and an opening for filling the same with liquid, a cover unit adapted to close the opening and including a piston extending upwardly therefrom, the cover unit also including a cylindrical guide extending upwardly therefrom and having a pair of diametrically opposite axial grooves formed interiorly thereof, a spray head rotatably mounted on the cylindrical guide, a slide member mounted in the cylindrical guide for vertical movement therein and including a cylinder slidably received on the piston, the piston and cylinder defining a liquid pressurizing chamber therebetween, the slide member having a sinuous groove formed exteriorly thereof which comprises a pair of diametrically opposite axial sections and a pair of intersecting sections each intersecting at one end the upper end of one axial section and at the other end the lower end of the other axial section, a cylindrical member mounted in the spray head for transmitting the rotational movement of the head to the slide member. two balls each rotatably received in one of the axial grooves of the cylindrical guide and the sinuous groove of the slide member for causing vertical upward movement of the slide member in response to rotation of the spray head, a spring for biasing the slide member in a direction tending to decrease the volume of the liquid pressurizing chamber. an inlet conduit adapted to conduit the liquid in the receptacle to the chamber, an inlet check valve in the conduit, the spray head including a spray nozzle and a discharge valve operable for controlling discharge of liquid under spring pressure form the chamber through the nozzle in the form of a spray, and a hollow stern made of rigid material for communicating the chamber with the discharge valve.
11. A liquid spraying device as set forth in claim 10, in which the upper end of the hollow stem is fixedly mounted on the discharge valve which in turn is fixedly mounted on the spray head.
12. A liquid spraying device as set forth in claim 11, in which the lower end of the hollow stem has a liquidtight slide fit in an opening formed in the cylinder.
=l RE =l

Claims (12)

1. A liquid spraying device comprising container means including a receptacle adapted to hold a quantity of liquid and having an opening for filling the receptacle with the liquid, cover means removably mounted on the receptacle to close the opening and including an upwardly extending cylindrical guide, spray head means rotatably mounted on the cover means, slide means movably mounted within the cylindrical guide and operably connected to the spray head means whereby rotation of the spray head means relative to the cover means in a fixed direction moves the slide means upwardly, liquid pressurizing pump means including a cylinder and a piston defining a liquid pressurizing chamber, the cylinder being operably connected in fixed relation to one of the cover means and slide means and the piston being operably connected in fixed relation to the other of the means, a spring mounted in the spray head means for biasing the slide means in a direction to decrease the volume of the liquid pressurizing chamber to thereby pressurize liquid therein, an inlet conduit adapted to conduct the liquid in the receptacle to the chamber, an inlet check valve in the conduit, a discharge valve in the spray head means for controlling the discharge of pressurized liquid from the chamber in the form of a spray, and a hollow stem made of rigid material and adapted to conduct pressurized liquid from the chamber to the discharge valve.
2. A liquid spraying device as set forth in claim 1, in which the hollow stem is made of metal.
3. A liquid spraying device as set forth in claim 1, in which the hollow stem is made of hard plastic material.
4. A liquid spraying device as set forth in claim 1, in which the hollow stem is fixed with respect to the spray head means.
5. A liquid spraying device as set forth in claim 4, in which the upper end of the hollow stem is fixedly mounted on the discharge valve which in turn is fixedly mounted on the spray head means.
6. A liquid spraying device as set forth in claim 4, in which the lower end of the hollow stem extends into the liquid pressurizing chamber and has a liquid-tight slide fit in the opening formed in one of the cylinder and piston which is operably connected in fixed relation to the slide means.
7. A liquid spraying device comprising a container having a reservoir adapted to hold a quantity of liquid and an opening for filling the same with liquid, a cover unit adapted to close the opening and including a cylinder extending downwardly into the container, the cover unit also including a cylindrical guide extending upwardly therefrom and having a pair of diametrically opposite axial grooves formed interiorly thereof, a spray head rotatably mounted on the cylindrical guide, a slide member mounted in the cylindrical guide for vertical movement therein and including a piston slidably received in the cylinder, the piston and cylinder defining a liquid pressurizing chamber therebetween, the slide member having a sinuous groove formed exteriorly thereof which comprises a pair of diametrically opposite axial sections and a pair of intersecting sections each intersecting at one end the upper end of one axial section and at the other end the lower end of the other axial section, a cylindrical member mounted in the spray head for transmitting the rotational movement of the head to the slide member, two balls each rotatably received in one of the axial grooves of the cylindrical guide and the sinuous groove of the slide member for causing vertical upward movement of the slide member in response to rotation of the spray head, a spring for biasing the slide member in a direction tending to decrease the volume of the liquid pressurizing chamber, an inlet conduit adapted to conduct the liquid in the receptacle to the chamber, an inlet check valve in the conduit, the spray head including a spray nozzle and a discharge valve operable for controlling discharge of liquid under spring pressure from the chamber through the nozzle in the form of a spray, and a hollow stem made of rigid material for communicating the chamber with the discharge valve.
8. A liquid spraying device as set forth in claim 7, in which the upper end of the hollow stem is fixedly mounted on the discharge valve which in turn is fixedly mounted on the spray head.
9. A liquid spraying device as set forth in claim 8, in which the piston had a piston ring mounted thereon, the piston ring being formed with an opening for slidably receiving the lower end of the hollow stem in the liquid-tight manner.
10. A liquid spraying device comprising a container having a reservoir adapted to hold a quantity of liquid and an opening for filling the same with liquid, a cover unit adapted to close the opening and including a piston extending upwardly therefrom, the cover unit also including a cylindrical guide extending upwardly therefrom and having a pair of diametrically opposite axial grooves formed interiorly thereof, a spray head rotatably mounted on the cylindrical guide, a slide member mounted in the cylindrical guide for vertical movement therein and including a cylinder slidably received on the piston, the piston and cylinder defining a liquid pressurizing chamber therebetween, the slide member having a sinuous groove formed exteriorly thereof which comprises a pair of diametrically opposite axial sections and a pair of intersecting sections each intersecting at one end the upper end of one axial section and at the other end the lower end of the other axial section, a cylindrical member mounted in the spray head for transmitting the rotational movement of the head to the slide member, two balls each rotatably received in one of the axial grooves of the cylindrical guide and the sinuous groove of the slide member for causing vertical upward movement of the slide member in response to rotation of the spray head, a spring for biasing the slide member in a direction tending to decrease the volume of the liquid pressurizing chamber, an inlet conduit adapted to conduit the lIquid in the receptacle to the chamber, an inlet check valve in the conduit, the spray head including a spray nozzle and a discharge valve operable for controlling discharge of liquid under spring pressure form the chamber through the nozzle in the form of a spray, and a hollow stem made of rigid material for communicating the chamber with the discharge valve.
11. A liquid spraying device as set forth in claim 10, in which the upper end of the hollow stem is fixedly mounted on the discharge valve which in turn is fixedly mounted on the spray head.
12. A liquid spraying device as set forth in claim 11, in which the lower end of the hollow stem has a liquid-tight slide fit in an opening formed in the cylinder.
US00343191A 1972-03-30 1973-03-21 Liquid spraying device Expired - Lifetime US3797748A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3754472 1972-03-30
JP3754572 1972-03-30

Publications (1)

Publication Number Publication Date
US3797748A true US3797748A (en) 1974-03-19

Family

ID=26376664

Family Applications (1)

Application Number Title Priority Date Filing Date
US00343191A Expired - Lifetime US3797748A (en) 1972-03-30 1973-03-21 Liquid spraying device

Country Status (7)

Country Link
US (1) US3797748A (en)
CA (1) CA1078796A (en)
CH (1) CH566821A5 (en)
DE (1) DE7311726U (en)
FR (1) FR2178712A5 (en)
GB (1) GB1423863A (en)
IT (1) IT983609B (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949939A (en) * 1975-03-26 1976-04-13 Smithkline Corporation Metered spray device
US4033700A (en) * 1976-02-02 1977-07-05 Spatz Corporation Dispenser for fluent material
US4147280A (en) * 1975-07-21 1979-04-03 Spatz Corporation Pump device for dispensing fluids
US4155485A (en) * 1975-07-21 1979-05-22 Spatz Corporation Pump devices for dispensing fluids
US4167941A (en) * 1976-10-05 1979-09-18 James D. Pauls, Ltd. (Limited Partnership) Mechanically operated dispensing device for increasing discharge pressure and dispensing time
US4174055A (en) * 1977-04-20 1979-11-13 James D. Pauls & J. Claybrook Lewis & Associates, Ltd. Non-aerosol pressure dispenser
US4196828A (en) * 1979-01-10 1980-04-08 The Clorox Company Manually charged fluid dispenser having a hydraulically biased charging rod
US4441634A (en) * 1982-01-13 1984-04-10 Philip Meshberg Dispenser adapted for fast pressure filling
DE3302160A1 (en) * 1983-01-22 1984-07-26 Ing. Erich Pfeiffer GmbH & Co KG, 7760 Radolfzell OPERATING DOSING DEVICE
US5240153A (en) * 1989-12-28 1993-08-31 Yoshino Kogyosho Co., Ltd. Liquid jet blower
EP0627230A2 (en) 1990-03-21 1994-12-07 Dmw (Technology) Limited Atomising device for inhaler
US5402943A (en) * 1990-12-04 1995-04-04 Dmw (Technology) Limited Method of atomizing including inducing a secondary flow
US5405084A (en) * 1990-12-04 1995-04-11 Dmw (Technology) Limited Nozzle assembly for preventing back-flow
US5419463A (en) * 1990-10-05 1995-05-30 Yoshino Kogyosho Co.. Ltd. Liquid sprayer
US5582957A (en) * 1995-03-28 1996-12-10 Eastman Kodak Company Resuspension optimization for photographic nanosuspensions
US5810211A (en) * 1997-03-06 1998-09-22 Hayes Products, Llc Pump assembly with sliding plug
US5816447A (en) * 1997-03-06 1998-10-06 Hayes Products, Llc Non-aerosol pump spray apparatus
US5918782A (en) * 1997-03-06 1999-07-06 Hayes Products, Llc Pump assembly with sprayer
US5964416A (en) * 1995-10-04 1999-10-12 Boehringer Ingelheim Gmbh Device for producing high pressure in a fluid in miniature
USD417618S (en) * 1997-08-28 1999-12-14 Hayes Products, Llc Pump assembly
USD418201S (en) * 1997-08-27 1999-12-28 Hayes Products, Llc Bottle, pump and sprayer assembly
US6082358A (en) * 1998-05-05 2000-07-04 1263152 Ontario Inc. Indicating device for aerosol container
US6089414A (en) * 1997-03-06 2000-07-18 Hayes Products, Llc Pump assembly with one piece piston
US6142339A (en) * 1998-01-16 2000-11-07 1263152 Ontario Inc. Aerosol dispensing device
US6336453B1 (en) 1999-04-30 2002-01-08 Trudell Medical International Indicating device for aerosol container
US6360922B1 (en) 1999-04-27 2002-03-26 Hayes Products, Llc Pump assembly with pressure release capability
US6435372B1 (en) 1998-01-16 2002-08-20 1263152 Ontario Inc. Delivery system for a medicament and method for the assembly thereof
US20030178020A1 (en) * 2002-03-21 2003-09-25 Scarrott Peter Mykola Indicating device for aerosol container
US6729330B2 (en) 1998-05-05 2004-05-04 Trudell Medical International Indicating device for aerosol container
US6745760B2 (en) 2001-05-15 2004-06-08 Trudell Medical International Medicament applicator
US20040238572A1 (en) * 2001-08-20 2004-12-02 Blake William S Mechanically pressurized dispenser system
US20050126469A1 (en) * 2003-12-15 2005-06-16 Lu Winston Z. Dose indicating device
US20050139618A1 (en) * 2003-10-20 2005-06-30 Shanklin Donald J. Hand held pressurized sprayer
US20060060192A1 (en) * 2004-09-20 2006-03-23 Lu Winston Z Dose indicating device with display elements attached to container
US20060175345A1 (en) * 2005-01-20 2006-08-10 Winston Lu Dispensing device
US20080029085A1 (en) * 2006-08-01 2008-02-07 Greg Lawrence Dispensing device
US20090272312A1 (en) * 2008-05-05 2009-11-05 Michael Nuttall Drive mechanism for an indicating device
US7621273B2 (en) 2003-10-28 2009-11-24 Trudell Medical International Indicating device with warning dosage indicator
US20100101570A1 (en) * 2008-10-22 2010-04-29 Adam Meyer Modular aerosol delivery system
US7789275B2 (en) 2002-04-02 2010-09-07 Meadwestvaco Calmar, Inc. Pump assembly with continuous tube
US8177101B1 (en) * 2007-02-06 2012-05-15 William Sydney Blake One turn actuated duration spray pump mechanism
US8181591B1 (en) 2008-05-23 2012-05-22 Trudell Medical International Domed actuator for indicating device
US8286837B1 (en) * 2008-07-14 2012-10-16 William Sydney Blake One turn actuated duration dual mechanism spray dispenser pump
JP2013132615A (en) * 2011-12-27 2013-07-08 Yoshino Kogyosho Co Ltd Spray device
JP2013132638A (en) * 2011-12-27 2013-07-08 Yoshino Kogyosho Co Ltd Jetting container
JP2016027986A (en) * 2015-10-01 2016-02-25 オルターナティヴ・パッケージング・ソリューションズ・エルエルシーAlternative Packaging Solutions, Llc One turn actuated duration spray pump mechanism
US9415401B2 (en) 2012-04-04 2016-08-16 Alternative Packaging Solutions Llc One turn actuated duration spray pump mechanism
JP2016172589A (en) * 2016-03-03 2016-09-29 オルターナティヴ・パッケージング・ソリューションズ・エルエルシーAlternative Packaging Solutions, Llc One turn actuated duration spray dispenser
CN106144188A (en) * 2012-04-11 2016-11-23 替代包装解决方案公司 The lasting spray dispenser that individual pen is rotary-actuated
WO2018044617A1 (en) * 2016-08-29 2018-03-08 Silgan Dispensing Systems Corporation Inline vacuum spring sustained duration sprayer
EP3479907A1 (en) * 2012-04-04 2019-05-08 Alternative Packaging Solutions, LLC Method for dispensing a product

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799448A (en) * 1972-04-15 1974-03-26 Yoshino Kogyosho Co Ltd Liquid spraying device
FR2378572A1 (en) * 1977-01-28 1978-08-25 Normos Norbert Spray head for hair lacquer - has manually operated spring loaded valve and is recharged by fitting onto container
GB0913812D0 (en) * 2009-08-07 2009-09-16 Reckitt & Colman Overseas Domestic liquid spraying device
CN105413913A (en) * 2015-12-25 2016-03-23 中山市美捷时包装制品有限公司 Built-out spring universal spray pump
CN105413912A (en) * 2015-12-25 2016-03-23 中山市美捷时包装制品有限公司 Built-out spring spray pump
CN111871156A (en) * 2020-07-22 2020-11-03 刘朋妃 Chemical industry contains hydrogen sulfide gas cooling absorption system's mechanism that sprays

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1845200A (en) * 1929-03-16 1932-02-16 Hyman R Segal Atomizer
US2572213A (en) * 1947-02-26 1951-10-23 Steinberg Gregory Atomizer
FR1503684A (en) * 1966-10-10 1967-12-01 Idees Improvements to volumetric dose dispensing devices defined by a variable volume capacity
US3471065A (en) * 1965-09-20 1969-10-07 Afa Corp Liquid spraying device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR768271A (en) * 1934-02-08 1934-08-03 Container for dispensing substances and in particular pasty substances
FR1287318A (en) * 1959-06-13 1962-03-16 Sprayer for various liquids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1845200A (en) * 1929-03-16 1932-02-16 Hyman R Segal Atomizer
US2572213A (en) * 1947-02-26 1951-10-23 Steinberg Gregory Atomizer
US3471065A (en) * 1965-09-20 1969-10-07 Afa Corp Liquid spraying device
FR1503684A (en) * 1966-10-10 1967-12-01 Idees Improvements to volumetric dose dispensing devices defined by a variable volume capacity

Cited By (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949939A (en) * 1975-03-26 1976-04-13 Smithkline Corporation Metered spray device
US4147280A (en) * 1975-07-21 1979-04-03 Spatz Corporation Pump device for dispensing fluids
US4155485A (en) * 1975-07-21 1979-05-22 Spatz Corporation Pump devices for dispensing fluids
US4033700A (en) * 1976-02-02 1977-07-05 Spatz Corporation Dispenser for fluent material
US4167941A (en) * 1976-10-05 1979-09-18 James D. Pauls, Ltd. (Limited Partnership) Mechanically operated dispensing device for increasing discharge pressure and dispensing time
US4176764A (en) * 1976-10-05 1979-12-04 James D. Pauls, Ltd. Mechanically operated mixing dispenser having a plurality of expansible chambers and a plurality of accumulating chambers
US4174055A (en) * 1977-04-20 1979-11-13 James D. Pauls & J. Claybrook Lewis & Associates, Ltd. Non-aerosol pressure dispenser
US4196828A (en) * 1979-01-10 1980-04-08 The Clorox Company Manually charged fluid dispenser having a hydraulically biased charging rod
US4441634A (en) * 1982-01-13 1984-04-10 Philip Meshberg Dispenser adapted for fast pressure filling
DE3302160A1 (en) * 1983-01-22 1984-07-26 Ing. Erich Pfeiffer GmbH & Co KG, 7760 Radolfzell OPERATING DOSING DEVICE
US4565302A (en) * 1983-01-22 1986-01-21 Ing. Erich Pfeiffer Gmbh & Co. Kg Actuatable dosing mechanism
US5392959A (en) * 1989-12-28 1995-02-28 Yoshino Kogyosho Co., Ltd. Suckback drain valve for a liquid jet blower
US5240153A (en) * 1989-12-28 1993-08-31 Yoshino Kogyosho Co., Ltd. Liquid jet blower
US5328062A (en) * 1989-12-28 1994-07-12 Yoshino Kogyosho, Co., Ltd. Liquid jet blower
US5474215A (en) * 1989-12-28 1995-12-12 Yoshino Kogyosho Co., Ltd. Liquid jet blower
US5497944A (en) * 1990-03-21 1996-03-12 Dmw (Technology) Limited Atomising devices and methods
EP0627230A2 (en) 1990-03-21 1994-12-07 Dmw (Technology) Limited Atomising device for inhaler
US5662271A (en) * 1990-03-21 1997-09-02 Boehringer Ingelheim International Gmbh Atomizing devices and methods
US5419463A (en) * 1990-10-05 1995-05-30 Yoshino Kogyosho Co.. Ltd. Liquid sprayer
US5405084A (en) * 1990-12-04 1995-04-11 Dmw (Technology) Limited Nozzle assembly for preventing back-flow
US5402943A (en) * 1990-12-04 1995-04-04 Dmw (Technology) Limited Method of atomizing including inducing a secondary flow
US5582957A (en) * 1995-03-28 1996-12-10 Eastman Kodak Company Resuspension optimization for photographic nanosuspensions
US20050252990A1 (en) * 1995-10-04 2005-11-17 Joachim Jaeger Device for producing high pressure in a fluid in miniature
US20040178227A1 (en) * 1995-10-04 2004-09-16 Boehringer International Gmbh Device for producing high pressure in a fluid in miniature
US6402055B1 (en) 1995-10-04 2002-06-11 Boehringer Ingelheim Gmbh Device for producing high pressure in a fluid in miniature
US7104470B2 (en) 1995-10-04 2006-09-12 Boehringer Ingelheim International Gmbh Device for producing high pressure in a fluid in miniature
US5964416A (en) * 1995-10-04 1999-10-12 Boehringer Ingelheim Gmbh Device for producing high pressure in a fluid in miniature
US6497373B2 (en) 1995-10-04 2002-12-24 Boehringer International Gmbh Device for producing high pressure in a fluid in miniature
US6918547B2 (en) 1995-10-04 2005-07-19 Joachim Jaeger Device for producing high pressure in a fluid in miniature
US6467657B2 (en) 1997-03-06 2002-10-22 Donald J. Shanklin Pump assembly with one piece piston
US5810211A (en) * 1997-03-06 1998-09-22 Hayes Products, Llc Pump assembly with sliding plug
US20050023305A1 (en) * 1997-03-06 2005-02-03 Shanklin Donald J. Pump assembly with one piece piston
US5816447A (en) * 1997-03-06 1998-10-06 Hayes Products, Llc Non-aerosol pump spray apparatus
US6296154B1 (en) 1997-03-06 2001-10-02 Hayes Products, Llc Pump assembly with one piece piston
US5860574A (en) * 1997-03-06 1999-01-19 Hayes Products, Llc Pump assembly with bayonet lock
US6089414A (en) * 1997-03-06 2000-07-18 Hayes Products, Llc Pump assembly with one piece piston
US5918782A (en) * 1997-03-06 1999-07-06 Hayes Products, Llc Pump assembly with sprayer
US7198178B2 (en) 1997-03-06 2007-04-03 Shanklin Donald J Pump assembly with piston
USD418201S (en) * 1997-08-27 1999-12-28 Hayes Products, Llc Bottle, pump and sprayer assembly
USD417618S (en) * 1997-08-28 1999-12-14 Hayes Products, Llc Pump assembly
US7575130B2 (en) 1998-01-16 2009-08-18 Trudell Medical International Indicating device
US8944285B2 (en) 1998-01-16 2015-02-03 Trudell Medical International Indicating device
US7984826B2 (en) 1998-01-16 2011-07-26 Trudell Medical International Indicating device
US6561384B2 (en) 1998-01-16 2003-05-13 1263152 Ontario Inc. Medicament dispensing device and method for the use thereof
US8505773B2 (en) 1998-01-16 2013-08-13 Trudell Medical International Indicating device
US20030230304A1 (en) * 1998-01-16 2003-12-18 Richard Blacker Indicating device
US8157128B2 (en) 1998-01-16 2012-04-17 Trudell Medical International Indicating device
US6435372B1 (en) 1998-01-16 2002-08-20 1263152 Ontario Inc. Delivery system for a medicament and method for the assembly thereof
US20060086749A1 (en) * 1998-01-16 2006-04-27 Richard Blacker Indicating device
US20090320839A1 (en) * 1998-01-16 2009-12-31 Richard Blacker Indicating device
US20040222237A1 (en) * 1998-01-16 2004-11-11 Richard Blacker Indicating device
US9649455B2 (en) 1998-01-16 2017-05-16 Trudell Medical International Indicating device
US6997349B2 (en) 1998-01-16 2006-02-14 Trudell Medical International Indicating device
US6161724A (en) * 1998-01-16 2000-12-19 1263152 Ontario Inc. Indicating device
US6142339A (en) * 1998-01-16 2000-11-07 1263152 Ontario Inc. Aerosol dispensing device
US6938796B2 (en) 1998-01-16 2005-09-06 1263152 Ontario Inc. Indicating device
US6729330B2 (en) 1998-05-05 2004-05-04 Trudell Medical International Indicating device for aerosol container
US9168343B2 (en) 1998-05-05 2015-10-27 Trudell Medical International Dispensing device
US7757688B2 (en) 1998-05-05 2010-07-20 Trudell Medical International Dispensing device
US20050205512A1 (en) * 1998-05-05 2005-09-22 Trudell Medical International Indicating device
US6953039B2 (en) 1998-05-05 2005-10-11 Trudell Medical International Medicament dispensing device
US7568481B2 (en) 1998-05-05 2009-08-04 Trudell Medical International Indicating device
US7516738B2 (en) 1998-05-05 2009-04-14 Trudell Medical International Indicating device
US6082358A (en) * 1998-05-05 2000-07-04 1263152 Ontario Inc. Indicating device for aerosol container
US20040226555A1 (en) * 1998-05-05 2004-11-18 Scarrott Peter Mycola Indicating device
US6761161B2 (en) 1998-05-05 2004-07-13 Trudell Medical International Indicating device
US6926002B2 (en) 1998-05-05 2005-08-09 Trudell Medical International Indicating device
US20060150976A1 (en) * 1998-05-05 2006-07-13 Scarrott Peter M Indicating device
US20060162724A1 (en) * 1998-05-05 2006-07-27 Scarrott Peter M Indicating device
US6328037B1 (en) 1998-05-05 2001-12-11 1263152 Ontario Inc. Indicating device for aerosol container
US7341057B2 (en) 1998-05-05 2008-03-11 Trudell Medical International Indicating device
US8074643B2 (en) 1998-05-05 2011-12-13 Trudell Medical International Dispensing device
US7650883B2 (en) 1998-05-05 2010-01-26 Trudell Medical International Dispensing device
US8662075B2 (en) 1998-05-05 2014-03-04 Trudell Medical International Dispensing device
USD456292S1 (en) 1998-05-05 2002-04-30 1263152 Ontario Inc. Indicating device
US20070084467A1 (en) * 1998-05-05 2007-04-19 Trudell Medical International Dispensing device
USD439534S1 (en) 1998-05-05 2001-03-27 1263152 Ontario Inc. Indicating device
US6360922B1 (en) 1999-04-27 2002-03-26 Hayes Products, Llc Pump assembly with pressure release capability
US6336453B1 (en) 1999-04-30 2002-01-08 Trudell Medical International Indicating device for aerosol container
US6745760B2 (en) 2001-05-15 2004-06-08 Trudell Medical International Medicament applicator
US20040238572A1 (en) * 2001-08-20 2004-12-02 Blake William S Mechanically pressurized dispenser system
US7845521B2 (en) * 2001-08-20 2010-12-07 Alternative Packaging Solutions, LLP Mechanically pressurized dispenser system
US20060102182A1 (en) * 2002-03-21 2006-05-18 Scarrott Peter M Indicating device for aerosol container
US8327847B2 (en) 2002-03-21 2012-12-11 Trudell Medical International Indicating device for aerosol container
US7597102B2 (en) 2002-03-21 2009-10-06 Trudell Medical International Indicating device for aerosol container
US20030178020A1 (en) * 2002-03-21 2003-09-25 Scarrott Peter Mykola Indicating device for aerosol container
US7004164B2 (en) 2002-03-21 2006-02-28 Trudell Medical International Indicating device for aerosol container
US20100126508A1 (en) * 2002-03-21 2010-05-27 Peter Mykola Scarrott Indicating device for aerosol container
US7789275B2 (en) 2002-04-02 2010-09-07 Meadwestvaco Calmar, Inc. Pump assembly with continuous tube
US7427004B2 (en) 2003-10-20 2008-09-23 Meadwestvaco Calmar, Inc. Hand held pressurized sprayer
US20050139618A1 (en) * 2003-10-20 2005-06-30 Shanklin Donald J. Hand held pressurized sprayer
US7621273B2 (en) 2003-10-28 2009-11-24 Trudell Medical International Indicating device with warning dosage indicator
US8578934B2 (en) 2003-10-28 2013-11-12 Trudell Medical International Indicating device with warning dosage indicator
US9968748B2 (en) 2003-10-28 2018-05-15 Trudell Medical International Indicating device with warning dosage indicator
US20100163031A1 (en) * 2003-10-28 2010-07-01 Robert Morton Indicating Device with Warning Dosage Indicator
US7100530B2 (en) 2003-12-15 2006-09-05 Trudell Medical International, Inc. Dose indicating device
US7584712B2 (en) 2003-12-15 2009-09-08 Trudell Medical International Dose indicating device
US8869735B2 (en) 2003-12-15 2014-10-28 Trudell Medical International, Inc. Dose indicating device
US20070056502A1 (en) * 2003-12-15 2007-03-15 Trudell Medical Internatioal Inc. Dose indicating device
US20100095962A1 (en) * 2003-12-15 2010-04-22 Trudell Medical International, Inc. Dose indicating device
US8074594B2 (en) 2003-12-15 2011-12-13 Trudell Medical International Dose indicating device
US20050126469A1 (en) * 2003-12-15 2005-06-16 Lu Winston Z. Dose indicating device
US7543582B2 (en) 2004-09-20 2009-06-09 Trudell Medical International Dose indicating device with display elements attached to container
US20060060192A1 (en) * 2004-09-20 2006-03-23 Lu Winston Z Dose indicating device with display elements attached to container
US8079362B2 (en) 2004-09-20 2011-12-20 Trudell Medical International Method for displaying dosage indicia
US9656032B2 (en) 2005-01-20 2017-05-23 Trudell Medical International Dispensing device
US20060175345A1 (en) * 2005-01-20 2006-08-10 Winston Lu Dispensing device
US8973784B2 (en) 2005-01-20 2015-03-10 Trudell Medical International Dispensing device
US7743945B2 (en) 2005-01-20 2010-06-29 Trudell Medical International Dispensing device
US20060180606A1 (en) * 2005-01-20 2006-08-17 Winston Lu Dispensing device
US7886934B2 (en) 2005-01-20 2011-02-15 Trudell Medical International Dispensing device
US8141550B2 (en) 2006-08-01 2012-03-27 Trudell Medical International Dispensing device
US9265901B2 (en) 2006-08-01 2016-02-23 Trudell Medical International Dispensing device
US10950149B2 (en) 2006-08-01 2021-03-16 Trudell Medical International Dispensing device
US20080029085A1 (en) * 2006-08-01 2008-02-07 Greg Lawrence Dispensing device
CN104395710A (en) * 2007-02-06 2015-03-04 威廉姆·悉尼·布莱克 One turn actuated duration spray pump mechanism
US8177101B1 (en) * 2007-02-06 2012-05-15 William Sydney Blake One turn actuated duration spray pump mechanism
WO2013154555A1 (en) * 2007-02-06 2013-10-17 Blake William Sydney One turn actuated duration spray pump mechanism
CN106622750B (en) * 2007-02-06 2020-01-17 替代包装解决方案公司 One-turn actuated continuous spray pump mechanism
CN104395710B (en) * 2007-02-06 2017-01-18 替代包装解决方案公司 One turn actuated duration spray pump mechanism
CN106622750A (en) * 2007-02-06 2017-05-10 替代包装解决方案公司 Continuous spraying pump mechanism with single-cycle rotating actuation
US8082873B2 (en) 2008-05-05 2011-12-27 Trudell Medical International Drive mechanism for an indicating device
US20090272312A1 (en) * 2008-05-05 2009-11-05 Michael Nuttall Drive mechanism for an indicating device
US8181591B1 (en) 2008-05-23 2012-05-22 Trudell Medical International Domed actuator for indicating device
US8286837B1 (en) * 2008-07-14 2012-10-16 William Sydney Blake One turn actuated duration dual mechanism spray dispenser pump
EP3222363A1 (en) * 2008-07-14 2017-09-27 Alternative Packaging Solutions, LLC One turn actuated duration spray dispenser
US9242057B2 (en) 2008-10-22 2016-01-26 Trudell Medical International Modular aerosol delivery system
US8596265B2 (en) 2008-10-22 2013-12-03 Trudell Medical International Modular aerosol delivery system
US9032953B2 (en) 2008-10-22 2015-05-19 Trudell Medical International Modular aerosol delivery system
US20100101570A1 (en) * 2008-10-22 2010-04-29 Adam Meyer Modular aerosol delivery system
JP2013132615A (en) * 2011-12-27 2013-07-08 Yoshino Kogyosho Co Ltd Spray device
JP2013132638A (en) * 2011-12-27 2013-07-08 Yoshino Kogyosho Co Ltd Jetting container
US10151692B2 (en) 2012-04-04 2018-12-11 Alternative Packaging Solutions, Llc Method for dispensing a product from a container
US9415401B2 (en) 2012-04-04 2016-08-16 Alternative Packaging Solutions Llc One turn actuated duration spray pump mechanism
EP3479907A1 (en) * 2012-04-04 2019-05-08 Alternative Packaging Solutions, LLC Method for dispensing a product
US9751102B2 (en) 2012-04-04 2017-09-05 Alternative Packaging Solutions Llc Method for dispensing a product from a container
CN106144188A (en) * 2012-04-11 2016-11-23 替代包装解决方案公司 The lasting spray dispenser that individual pen is rotary-actuated
CN104395199B (en) * 2012-04-11 2016-08-31 替代包装解决方案公司 The lasting spray dispenser that individual pen is rotary-actuated
CN104395199A (en) * 2012-04-11 2015-03-04 威廉姆·悉尼·布莱克 One turn actuated duration spray dispenser
WO2013154554A1 (en) * 2012-04-11 2013-10-17 Blake William Sydney One turn actuated duration spray dispenser
JP2016027986A (en) * 2015-10-01 2016-02-25 オルターナティヴ・パッケージング・ソリューションズ・エルエルシーAlternative Packaging Solutions, Llc One turn actuated duration spray pump mechanism
JP2016172589A (en) * 2016-03-03 2016-09-29 オルターナティヴ・パッケージング・ソリューションズ・エルエルシーAlternative Packaging Solutions, Llc One turn actuated duration spray dispenser
WO2018044617A1 (en) * 2016-08-29 2018-03-08 Silgan Dispensing Systems Corporation Inline vacuum spring sustained duration sprayer
CN109890270A (en) * 2016-08-29 2019-06-14 斯勒冈分配系统公司 In-line arrangement vacuum spring duration lasting sprinkler
US10618072B2 (en) * 2016-08-29 2020-04-14 Silgan Dispensing Systems Corporation Inline vacuum spring sustained duration sprayer

Also Published As

Publication number Publication date
FR2178712A5 (en) 1973-11-09
DE7311726U (en) 1979-10-31
CA1078796A (en) 1980-06-03
GB1423863A (en) 1976-02-04
CH566821A5 (en) 1975-09-30
IT983609B (en) 1974-11-11

Similar Documents

Publication Publication Date Title
US3797748A (en) Liquid spraying device
US3799448A (en) Liquid spraying device
US4222501A (en) Dual chamber, continuous action dispenser
US4260082A (en) Manually operated liquid dispensing device
US4147284A (en) Air propellant-aerosol dispenser and compressor
US4244525A (en) Writing instrument with refillable scent dispenser
US3955720A (en) Low pressure dispensing apparatus with air pump
US4174055A (en) Non-aerosol pressure dispenser
US3471065A (en) Liquid spraying device
US3940029A (en) Rechargeable sprayer with improved valve system and charge cycle limit stop therefor
US4154401A (en) Spray unit and pressurizing adapter therefor
EP3022132B1 (en) Foam dispenser
US4174056A (en) Pump type dispenser with continuous flow feature
US2841190A (en) Refillable pressure spray device
US2701163A (en) Metering aerosol bottle
US2031172A (en) Beverage dispensing bottle
US4197884A (en) Airless sprayer and pressurizing system
US4872595A (en) Mechanically pressurized aerosol dispenser
US4071172A (en) Manually operated liquid dispenser
US3406909A (en) Liquid atomizer
EP1427537A1 (en) Mechanically pressurized dispenser system
US5865350A (en) Spray bottle with built-in pump
US3228570A (en) Dispensing pump valve structure
GB1572702A (en) Valve and dispensing unit
HU225004B1 (en) Precompression system, sprinkle head and sprinkle device comprising such system