US3795896A - Wireless alarm system - Google Patents

Wireless alarm system Download PDF

Info

Publication number
US3795896A
US3795896A US00247570A US3795896DA US3795896A US 3795896 A US3795896 A US 3795896A US 00247570 A US00247570 A US 00247570A US 3795896D A US3795896D A US 3795896DA US 3795896 A US3795896 A US 3795896A
Authority
US
United States
Prior art keywords
alarm
signal
transmitter
inhibit
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00247570A
Inventor
R Isaacs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVANT GUARD DEVICES Inc
Original Assignee
AVANT GUARD DEVICES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVANT GUARD DEVICES Inc filed Critical AVANT GUARD DEVICES Inc
Application granted granted Critical
Publication of US3795896A publication Critical patent/US3795896A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems

Definitions

  • a wireless alarm system suitable for home and office use which includes transmitter and receiver assem- [211 Appl' NOT-Z 247570 blies.
  • Two types of transmitters are includeable in this system, with one of said transmitters providing an 52 us.
  • 32 11 112; 7 234 The second of the transmitters may be portable, and
  • both transmitters can send coded signals to the re- 5 References Cited Civer which includes a decoder or detector means to UNITED STATES PATENTS provide a signal for operation of the receiver.
  • An alarm is connected to the receiver and is actuated et a] 2 2 thereby upon receipt of a suitable alarm signal.
  • This invention relates to an alarm system, and more particularly, to a wireless alarm system.
  • FIG. 1 is a schematic diagram of the transmitter assembly used with this invention
  • FIG. 2 is a schematic diagram of the receiver and alarm assembly used with this invention.
  • FIG. 3 presents a plurality of timing signals illustrative of the operation of this invention.
  • FIG. 1 there is shown a schematic diagram of a transmitter assembly which comprises an actuation portion 10, a timing portion 12, a transmitter 14 and an antenna 16.
  • timer circuit which serves as a basic building block used in both the transmitter and receiver assemblies of FIGS. 1 and 2.
  • the timer assembly is well known prior art and is found in the General Electric SCR Manual, 1964 Edition, on page 212.
  • the timer circuit comprises a unijunction transistor 22 having an emitter terminal 24, B terminal 26 and 8: terminal 28.
  • the B terminal 28 is connected to the cathode of an SCR 200, the anode thereof being connected to a source of voltage 202.
  • a resistor 204 is connected between B2 28 and emitter 24 while a capacitor 206is connected between emitter 24 and a point of reference potential 208.
  • One end of a capacitor 210 is connected to mina 28 h l the other and s s tmcst d. through a parallel combination of resistor 212 and diode 214 toB terminal 26.
  • the anode of diode 214 is also is also connected to B terminal 26.
  • a resistor 216 is connected between B terminal 26 and the point of reference potential 208 which may be ground.
  • a pair of resistors 218 and 220 form a voltage divider and are connected at their divider point to the base of a transistor 222 having its collector terminal connected to the emitter terminal 24 of unijunction transistor 22 and its emitter connected to ground 208.
  • the SCR 200 is triggered in the conventional manner by a pulse applied to its gate terminal 224 and voltage then is carried to the B terminal 28.
  • the charge path formed by capacitor 210 and resistors 212 and 216 is much faster than the charge path formed by resistor 204 and capacitor 206 so that after a short period of time, capacitor 210 has assumed approximately the value of the positive supply voltage 202.
  • transistor 222 When capacitor 206 thereafter charges to a predetermined voltage level, the unijunction transistor 22 will turn on causing a trigger pulse to develop at B terminal 26. This positive trigger pulse is carried through the now forwardly biased diode 214 and through capacitor 210 to place a more positive voltage on the cathode of SCR 200 than on its anode thereby turning off the SCR and turning off the power previously carried therethrough to timer circuit 20.
  • transistor 222 when in a saturated condition serves as a reset means since it discharges or damps capacitor 206 and also prevents capacitor 206 from being charged and 7 therefore, adds an additional amount of timing control to the timer 20. Transistor 222 can be saturated by means of a sufficiently positive voltage occurring at its base terminal.
  • the transmitter assembly includes the previously described SCR 200' having its anode connected to the source of positive potential 202 with a parallel combination of a resistor 18 and a capacitor connected between the source of positive potential 202 and one side of a push button switch 102 the other side of which is connected to the gate electrode 224 of SCR 200' and through a resistor 104 to the cathode of SCR 200.
  • the transmitter 14 is conventional and is powered from the cathode side of SCR 200 and will be so powered long as the SCR is conducting.
  • the transmitter 14 provides a coded signal which may be coded in frequency or time domain to make the present system relatively foolproof.
  • resistor 106 and 108 are shown in the timer control circuit 12 of FIG. 1 two selectively controlled resistors 106 and 108 connected between B terminal 28 and the emitter terminal 24.
  • the selectivity of those resistors is controlled by means of a switch 110.
  • resistor 108 is permanently'wired into the timer control 12 while hereinafter the description will include a resistor 106.
  • a push button switch 102 is depressed either by manual means or by a magnetic switch or sensor located at an entry point to the protected premises. Switch 102 may also be a tire sensor or other transducer responsive ,to certain environmental conditions. When the switch is closed, a surge of current flows through capacitor 100 to trigger SCR 200' into its-conducting condition.
  • transmitter 14 begins to send its coded signal.
  • the peak voltage developed when unijunction transistor 22 begins to conduct which is carried through diode 214 back biases SCR 200 to cut off the supply of power to the transmitter thus terminating its operation.
  • the duration of time during which transmitter 14 is sending its coded signal is controlled by the charging rate as determined by resistor 108 and capacitor 206.
  • resistor 106 can be selectively utilized with capacitor 206, so that the charge time is changed in order to change the duration of time during which the transmitter 14 is operating.
  • resistor 106 will be identified as setting a duration which is identifiable as an inhibit duration, while resistor 108 will control a time duration identifiable as an alarm duration. Other time durations can be utilized herein to control and identify additional conditions.
  • FIG. 2 there is shown a schematic diagram of the receiver circuit and the alarm circuit responsive to the transmitter of FIG. 1.
  • an antenna 226 connected to a decoding receiver and de tector 228 for receiving the coded signal generated by transmitter 14 and converting the same to a DC level.
  • the capacitor 230 is connected between the output of detector 228 and ground to damp transients from reaching the remainder of the receiver circuitry illustrated in FIG. 2.
  • the output of decoding receiver and detector 228 is also connected to the base oftransistor 232, the emitter of which is connected through a resistor 234 to the source of reference potential 208.
  • the collector of transistor 232 is connected to the source of positive potential 202.
  • the emitter of transistor 232 is connected through a capacitor 236 and a forwardly biased diode 238 to a trigger terminal 240 of SCR 242, the anode of which is connected to the positive source of potential 202.
  • a resistor 244 is connected between the connection point of capacitor 236 and diode 238 and ground while another resistor 246 is connected between the gate and cathode terminals of SCR 242.
  • the cathode is also connected to a timing circuit relatively similar to that illustrated in block 20 except as to minor variations thereof.
  • the cathode is connected to one side of a resistor 248, the other side of which is connected to the emitter of a unijunction transistor 250, and the cathode is also connected to the 8, terminal of the unijunction transistor.
  • Resistors 252 and 254 are connected in series from the emitter of transistor 232 to ground with the connection point of the resistors beingjoined to the base ofa transistor 256.
  • a capacitor 258 is connected between the collector and emitter terminals of transistor 256 and the collector is also connected to the emitter terminal of unijunction transistor 250.
  • One side of a resistor 260 is connected to the B, terminal of the unijunction transistor while the other side is connected to ground as is the emitter of transistor 256.
  • capacitor 258 In operation, when transistor 256 is saturated, capacitor 258 is prevented from charging while when transistor 256 is not conducting, a charge path is formed of resistor 248 and capacitor 258 to cause a pulse to be generated across resistor 260 when unijunction transistor 250 begins to conduct. The time delay will be discussed in more detail below.
  • the B, terminal of transistor 250 is connected through a resistor 262 to the collector of a transistor 264 and through a forwardly biased diode 266 to the gate electrode of an SCR 268.
  • the anode of SCR 268 is connected to one side of a battery 270 while the other side is connected through a switch 272, preferably operated by a key 274 to ground.
  • a biasing resistor 276 is connected between the gate electrode of switch 268 and the cathode thereof with the cathode being connected through an alarm means such as a bell 278 to ground.
  • the cathode of SCR 242 is connected to a twin timing circuit more fully described hereinafter.
  • the cathode is connected to one side of a resistor 280, a resistor 282, a capacitor 284 and to the B terminal of a unijunction transistor 286.
  • the other side of resistor 280 is connected through a capacitor 288 to ground and through forward biased diode 290 and 292 to the emitter terminal of unijunction transistor 286 and the emitter terminal ofa unijunction transistor 294 respectively.
  • the other side of capacitor 284 is connected through a parallel combination of diode 296 and resistor 298 to the B, terminal of unijunction transistor 286 and through a resistor 300 to ground.
  • resistor 282 is connected to the B terminal of unijunction transistor 294, while its B, terminal is connected through a forward biased diode 302 to the gate electrode 224 of SCR 200 and the B, terminal is also connected through a resistor 304 to ground.
  • FIG. 3a represents the time duration for an alarm signal as generated by resistor 108 and capacitor 206' of FIG. 1
  • FIG. 3b illustrates the time duration during which transmitter 14 is operating when an inhibit signal is sent under timing control of resistor 106 and capacitor 206.
  • the inhibit signal lasts for a longer period than does the alarm signal.
  • the wave forms illustrated in FIGS. 3a and 3b would appear at the output of decoding receiver and detector 228, since it produces a DC level representative of the length of time transmitter 14 is operating.
  • a triggering pulse which begins a predetermined period of time a after the termination of the alarm signal in FIG. 3a, said triggering pulse occuring when unijunction transistor 250 becomes conducting.
  • a triggering pulse present at terminal B, of the unijunction transistor which is present a time period (1" after the termination of the inhibit signal illustrated in FIG. 312.
  • the timing circuit including unijunction transistor 286 causes the SCR to become back biased after a predetermined period of time as discussed above with reference to block 20, thereby interrupting the power available for the remainder of the receiver circuit.
  • the time duration or delay of this latter circuit is identified as b in FIG. 36 and is at least as long as the length of the wave form illustrated in FIG. 3)).
  • FIG. 3f presents a time delay generated by the timing circuit including unijunction transistor 294 and its time delay or duration is designated by c, said duration 0" being greater than the duration of the alarm signal in wave form 3a plus duration 0, but less than time duration h.”
  • Illustrated in FIGS. 3g and 3h are inhibit time period wave forms of relatively long duration as compared with the time durations illustrated above.
  • a triggering pulse illustrated in FIG. 30 is generated at the B, terminal of unijunction transistor 250 which is carried through diode 266 to trigger SCR 268 into its conducting condition. Assuming key switch 274 to have closed switch 272, the bell 278 will then sound and will continue to sound until the key switch causes switch 272 to be opened, thereby interrupting the supply of power to the bell.
  • the transmitter illustrated in FIG. 1 having both resistors 106 and 108 is capable of generating not only the just described alarm signal but is also capable of generating an inhibit signal.
  • the inhibit signal When the inhibit signal is received, it should prevent the sounding of the alarm so that the person operating the inhibit signal can enter or leave the premises without sounding the alarm.
  • the inhibit signal is of a predetermined duration so that the entry or exit procedure may be accomplished without undue fear that the warning will be inadvertently sounded.
  • the wave form 312 isillustrative of the duration during which transmitter 14 has been operated.
  • Wave form 3f generated by the timing circuit including unijunction transistor 294 causes SCR 200 to conduct which places transistor 264 into a saturated state. While SCR 200 is conducting, SCR 268 cannot be triggered because of the virtual ground on the output of unijunction transistor 250 through transistor 264.
  • SCR 242 becomes back biased, as described above, and therefore all power to the receiver circuit is interrupted, although SCR 200 still remains conducting.
  • the pulse illustrated in FIG; 3d at the output of unijunction transistor 250 was to have occurred, the power therefor will have been interrupted, and transistor 264 is stillsatu'rated. Therefore, the pulse generated in FIG. 3d does not cause SCR 268 to conduct and the bell is not sounded.
  • FIG. 3d illustrates a pulse occurring time delay "a" after the end of the inhibit signal
  • the inhibit signal which is generated prevents the sounding of the alarm for a predetermined period of time which is generally much greater than the time delay previously discussed.
  • the timing control circuit illustrated in block will cause SCR 200 to become back biased after the time delay illustrated in FIGS. 3g and 3h depending upon whether or notthe received signal is an alarm or an inhibit signal.
  • transistor 264 Prior to turning off SCR 200, transistor 264 will always be maintained in a saturated state from time period 0" as illustrated in FIG. 3funtil the time periods illustrated in FIGS. 3g and 3h.
  • Capacitor 230 serves to damp transients and to ensure that the receiver circuit will be responsive not only to input signals lasting a predetermined duration but will be insensitive to signals of less than a predetermined duration.
  • a wireless alarm system comprising transmitter means and receiver means
  • said transmitter means comprising means for transmitting at least two signals having different durations, the first of said two signals being an alarm signal and the second of said two signals being an inhibit signal,
  • said receiver means being capable of receiving said alarm and said inhibit signals and comprising means for sounding an alarm only if said alarm signal is received.
  • said receiver means comprises trigger means responsive to the termination of the duration of said alarm signal for producing a trigger signal, said trigger signal being coupled to said alarm means to energize said alarm means, the time duration of said inhibit signal being greater than the time duration of said alarm signal and being greater than the time at which said trigger signal is produced, said alarm means being prevented from being energized if said inhibit signal is present when said trigger signal is produced.
  • said transmitter means further comprises a transmitter and timing means connected to said transmitter for controlling the length of time said transmitter operates, and switch means connected to said timing means for controlling the operation of said timing means to produce either an alarm or an inhibit signal.

Abstract

A wireless alarm system suitable for home and office use which includes transmitter and receiver assemblies. Two types of transmitters are includeable in this system, with one of said transmitters providing an alarm signal of a predetermined duration while the other of said transmitters selectively provides an alarm or an inhibit signal, each having different durations. The second of the transmitters may be portable, and both transmitters can send coded signals to the receiver which includes a decoder or detector means to provide a signal for operation of the receiver. An alarm is connected to the receiver and is actuated thereby upon receipt of a suitable alarm signal.

Description

lsaacs Mar. 5, 1974 [54] WIRELESS ALARM SYSTEM 3,569,949 3/l97l lsaacs 343/225 X l [75] Inventor Roger saacs, Staten Island, N Y Primary ExaminerfiDonald J. Yusko [73] Assignee: Avant-Guard Devices, inc, New
York, -Y- [57] ABSTCT [22] Filed: Apr. 26, 1972 i A wireless alarm system suitable for home and office use which includes transmitter and receiver assem- [211 Appl' NOT-Z 247570 blies. Two types of transmitters are includeable in this system, with one of said transmitters providing an 52 us. CI. .L 340/171 R, 343/225 alarm Sign?! of a rgredeteflninsd duratifm while the [51 Int. Cl. llllMb 7/00 other of transmltters selfictlvely Provldes an alarm 5 Field f Search 340 1 4 17 1 7 343 225; or an inhibit signal, each having different durations. 32 11 112; 7 234 The second of the transmitters may be portable, and
7 both transmitters can send coded signals to the re- 5 References Cited ceiver which includes a decoder or detector means to UNITED STATES PATENTS provide a signal for operation of the receiver. An alarm is connected to the receiver and is actuated et a] 2 2 thereby upon receipt of a suitable alarm signal. 35151992 6/1970 Marbury et al. 340/164 R X 6 Claims, 11 Drawing Figures PATENTEDNAR 51914 SHEET 2 OF 2 vMw mow
8 35 mun MON wNN
WIRELESS ALARM sYsTEM This invention relates to an alarm system, and more particularly, to a wireless alarm system.
Conventional burglar alarm systems for home and office use often require complex and cumbersome hand wiring techniques which are undesirable from many vantage points. Recently there have been developed wireless alarm systems but these systems suffer from being complex and expensive. In addition, these prior art wireless systems use only the most simple of wireless transmission techniques and are fairly easy to be overcome and bypassed by intruders. Accordingly, this invention provides an improved wireless alarm system which seeks to remedy the above-mentioned problems and others that will become apparent hereinafter.
FIG. 1 is a schematic diagram of the transmitter assembly used with this invention;
FIG. 2 is a schematic diagram of the receiver and alarm assembly used with this invention; and
FIG. 3 (FIG. 3a 3h) presents a plurality of timing signals illustrative of the operation of this invention.
Referring to the Figures and more particularly to FIG. 1, there is shown a schematic diagram of a transmitter assembly which comprises an actuation portion 10, a timing portion 12, a transmitter 14 and an antenna 16.
Before describing the operation of FIG. 1, reference ismade to FIG. 2 and to a timer circuit which serves as a basic building block used in both the transmitter and receiver assemblies of FIGS. 1 and 2. The timer assembly is well known prior art and is found in the General Electric SCR Manual, 1964 Edition, on page 212. Briefly, the timer circuit comprises a unijunction transistor 22 having an emitter terminal 24, B terminal 26 and 8: terminal 28. For purposes of discussion herein,
' the B terminal 28 is connected to the cathode of an SCR 200, the anode thereof being connected to a source of voltage 202. A resistor 204 is connected between B2 28 and emitter 24 while a capacitor 206is connected between emitter 24 and a point of reference potential 208. One end of a capacitor 210 is connected to mina 28 h l the other and s s tmcst d. through a parallel combination of resistor 212 and diode 214 toB terminal 26. The anode of diode 214 is also is also connected to B terminal 26. A resistor 216 is connected between B terminal 26 and the point of reference potential 208 which may be ground. A pair of resistors 218 and 220 form a voltage divider and are connected at their divider point to the base of a transistor 222 having its collector terminal connected to the emitter terminal 24 of unijunction transistor 22 and its emitter connected to ground 208. In operation, the SCR 200 is triggered in the conventional manner by a pulse applied to its gate terminal 224 and voltage then is carried to the B terminal 28. The charge path formed by capacitor 210 and resistors 212 and 216 is much faster than the charge path formed by resistor 204 and capacitor 206 so that after a short period of time, capacitor 210 has assumed approximately the value of the positive supply voltage 202. When capacitor 206 thereafter charges to a predetermined voltage level, the unijunction transistor 22 will turn on causing a trigger pulse to develop at B terminal 26. This positive trigger pulse is carried through the now forwardly biased diode 214 and through capacitor 210 to place a more positive voltage on the cathode of SCR 200 than on its anode thereby turning off the SCR and turning off the power previously carried therethrough to timer circuit 20. In addition to that described above, transistor 222 when in a saturated condition serves as a reset means since it discharges or damps capacitor 206 and also prevents capacitor 206 from being charged and 7 therefore, adds an additional amount of timing control to the timer 20. Transistor 222 can be saturated by means of a sufficiently positive voltage occurring at its base terminal.
Referring again to FIG. 1, there is shown the timing control 12 which includes a timer circuit substantially similar to the timer circuit 20 described above except for the omission of transistor 222. Therefore, the same numerals have been used with primed designations to illustrate the same components. The transmitter assembly includes the previously described SCR 200' having its anode connected to the source of positive potential 202 with a parallel combination of a resistor 18 and a capacitor connected between the source of positive potential 202 and one side of a push button switch 102 the other side of which is connected to the gate electrode 224 of SCR 200' and through a resistor 104 to the cathode of SCR 200. The transmitter 14 is conventional and is powered from the cathode side of SCR 200 and will be so powered long as the SCR is conducting.
As contemplated, the transmitter 14 provides a coded signal which may be coded in frequency or time domain to make the present system relatively foolproof.
There is shown in the timer control circuit 12 of FIG. 1 two selectively controlled resistors 106 and 108 connected between B terminal 28 and the emitter terminal 24. The selectivity of those resistors is controlled by means of a switch 110. For purposes herein, it will be assumed that resistor 108 is permanently'wired into the timer control 12 while hereinafter the description will include a resistor 106. In. operation, a push button switch 102 is depressed either by manual means or by a magnetic switch or sensor located at an entry point to the protected premises. Switch 102 may also be a tire sensor or other transducer responsive ,to certain environmental conditions. When the switch is closed, a surge of current flows through capacitor 100 to trigger SCR 200' into its-conducting condition. As soon as this occurs, transmitter 14 begins to send its coded signal. A predetermined period thereafter, the peak voltage developed when unijunction transistor 22 begins to conduct which is carried through diode 214 back biases SCR 200 to cut off the supply of power to the transmitter thus terminating its operation. The duration of time during which transmitter 14 is sending its coded signal is controlled by the charging rate as determined by resistor 108 and capacitor 206. As indicated hereinabove, resistor 106 can be selectively utilized with capacitor 206, so that the charge time is changed in order to change the duration of time during which the transmitter 14 is operating. At this point, and for ease of identification, resistor 106 will be identified as setting a duration which is identifiable as an inhibit duration, while resistor 108 will control a time duration identifiable as an alarm duration. Other time durations can be utilized herein to control and identify additional conditions.
As contemplated herein, most transmitters connected at points of entry will only have resistor 108 permanently wired therein, while a portable hand carried transmitter usable by an operator will have both resistors 106 and 108 and switch 110 so that an alarm or an inhibit signal may be selectively sent.
Referring now to FIG. 2, there is shown a schematic diagram of the receiver circuit and the alarm circuit responsive to the transmitter of FIG. 1. There is shown an antenna 226 connected to a decoding receiver and de tector 228 for receiving the coded signal generated by transmitter 14 and converting the same to a DC level. The capacitor 230 is connected between the output of detector 228 and ground to damp transients from reaching the remainder of the receiver circuitry illustrated in FIG. 2. v
The output of decoding receiver and detector 228 is also connected to the base oftransistor 232, the emitter of which is connected through a resistor 234 to the source of reference potential 208. The collector of transistor 232 is connected to the source of positive potential 202. The emitter of transistor 232 is connected through a capacitor 236 and a forwardly biased diode 238 to a trigger terminal 240 of SCR 242, the anode of which is connected to the positive source of potential 202. A resistor 244 is connected between the connection point of capacitor 236 and diode 238 and ground while another resistor 246 is connected between the gate and cathode terminals of SCR 242. The cathode is also connected to a timing circuit relatively similar to that illustrated in block 20 except as to minor variations thereof. In particular, the cathode is connected to one side of a resistor 248, the other side of which is connected to the emitter of a unijunction transistor 250, and the cathode is also connected to the 8, terminal of the unijunction transistor. Resistors 252 and 254 are connected in series from the emitter of transistor 232 to ground with the connection point of the resistors beingjoined to the base ofa transistor 256. A capacitor 258 is connected between the collector and emitter terminals of transistor 256 and the collector is also connected to the emitter terminal of unijunction transistor 250. One side of a resistor 260 is connected to the B, terminal of the unijunction transistor while the other side is connected to ground as is the emitter of transistor 256.
In operation, when transistor 256 is saturated, capacitor 258 is prevented from charging while when transistor 256 is not conducting, a charge path is formed of resistor 248 and capacitor 258 to cause a pulse to be generated across resistor 260 when unijunction transistor 250 begins to conduct. The time delay will be discussed in more detail below.
The B, terminal of transistor 250 is connected through a resistor 262 to the collector of a transistor 264 and through a forwardly biased diode 266 to the gate electrode of an SCR 268. The anode of SCR 268 is connected to one side of a battery 270 while the other side is connected through a switch 272, preferably operated by a key 274 to ground. A biasing resistor 276 is connected between the gate electrode of switch 268 and the cathode thereof with the cathode being connected through an alarm means such as a bell 278 to ground. The cathode of SCR 242 is connected to a twin timing circuit more fully described hereinafter. The cathode is connected to one side of a resistor 280, a resistor 282, a capacitor 284 and to the B terminal of a unijunction transistor 286. The other side of resistor 280 is connected through a capacitor 288 to ground and through forward biased diode 290 and 292 to the emitter terminal of unijunction transistor 286 and the emitter terminal ofa unijunction transistor 294 respectively. The other side of capacitor 284 is connected through a parallel combination of diode 296 and resistor 298 to the B, terminal of unijunction transistor 286 and through a resistor 300 to ground. The other side of resistor 282 is connected to the B terminal of unijunction transistor 294, while its B, terminal is connected through a forward biased diode 302 to the gate electrode 224 of SCR 200 and the B, terminal is also connected through a resistor 304 to ground.
Referring now to FIG. 3 in which a plurality oftiming diagrams are presented, the circuit of FIG. 2 will now be discussed in more detail. FIG. 3a represents the time duration for an alarm signal as generated by resistor 108 and capacitor 206' of FIG. 1, while FIG. 3b illustrates the time duration during which transmitter 14 is operating when an inhibit signal is sent under timing control of resistor 106 and capacitor 206. As can be seen therein, the inhibit signal lasts for a longer period than does the alarm signal. The wave forms illustrated in FIGS. 3a and 3b would appear at the output of decoding receiver and detector 228, since it produces a DC level representative of the length of time transmitter 14 is operating. When either signal is present at the base of transistor 232, it is caused to conduct which causes transistor 256 to saturate. In this condition, capacitor 258 is prevented from charging thus preventing the timing circuit in which unijunction transistor 250 is located from operating. The pulse signal present at the base of transistor 232 is also carried through capacitor 236 to trigger SCR 242 into a conducting state thereby placing a source of positive potential at its cathode. When the alarm signal is present, that is the signal of FIG. 3a, transistor 256 is saturated, while after it terminates, the timing circuit including unijunction transistor 250 is enabled to operate.
Referring now to FIG. 3c, there is shown a triggering pulse which begins a predetermined period of time a after the termination of the alarm signal in FIG. 3a, said triggering pulse occuring when unijunction transistor 250 becomes conducting. Similarly in FIG. 3d,'there is shown a triggering pulse present at terminal B, of the unijunction transistor which is present a time period (1" after the termination of the inhibit signal illustrated in FIG. 312.
When SCR 242 conducts, the timing circuit including unijunction transistor 286 causes the SCR to become back biased after a predetermined period of time as discussed above with reference to block 20, thereby interrupting the power available for the remainder of the receiver circuit. The time duration or delay of this latter circuit is identified as b in FIG. 36 and is at least as long as the length of the wave form illustrated in FIG. 3)). FIG. 3f presents a time delay generated by the timing circuit including unijunction transistor 294 and its time delay or duration is designated by c, said duration 0" being greater than the duration of the alarm signal in wave form 3a plus duration 0, but less than time duration h."
Illustrated in FIGS. 3g and 3h are inhibit time period wave forms of relatively long duration as compared with the time durations illustrated above.
Referring now to FIG. 2, when an alarm signal is received, a triggering pulse illustrated in FIG. 30 is generated at the B, terminal of unijunction transistor 250 which is carried through diode 266 to trigger SCR 268 into its conducting condition. Assuming key switch 274 to have closed switch 272, the bell 278 will then sound and will continue to sound until the key switch causes switch 272 to be opened, thereby interrupting the supply of power to the bell.
The transmitter illustrated in FIG. 1 having both resistors 106 and 108 is capable of generating not only the just described alarm signal but is also capable of generating an inhibit signal. When the inhibit signal is received, it should prevent the sounding of the alarm so that the person operating the inhibit signal can enter or leave the premises without sounding the alarm. The inhibit signal is of a predetermined duration so that the entry or exit procedure may be accomplished without undue fear that the warning will be inadvertently sounded.
When the inhibit signal is received, the wave form 312 isillustrative of the duration during which transmitter 14 has been operated. Wave form 3f generated by the timing circuit including unijunction transistor 294 causes SCR 200 to conduct which places transistor 264 into a saturated state. While SCR 200 is conducting, SCR 268 cannot be triggered because of the virtual ground on the output of unijunction transistor 250 through transistor 264. At time delay period b, SCR 242 becomes back biased, as described above, and therefore all power to the receiver circuit is interrupted, although SCR 200 still remains conducting. When the pulse illustrated in FIG; 3d at the output of unijunction transistor 250 was to have occurred, the power therefor will have been interrupted, and transistor 264 is stillsatu'rated. Therefore, the pulse generated in FIG. 3d does not cause SCR 268 to conduct and the bell is not sounded.
Although FIG. 3d illustrates a pulse occurring time delay "a" after the end of the inhibit signal, it should now be apparent that because of the turn off signal generated at time duration b the pulse in FIG. 3d will never actually occur because the power for that timing circuit will have been interrupted. As discussed above, the inhibit signal which is generated prevents the sounding of the alarm for a predetermined period of time which is generally much greater than the time delay previously discussed. In particular, the timing control circuit illustrated in block will cause SCR 200 to become back biased after the time delay illustrated in FIGS. 3g and 3h depending upon whether or notthe received signal is an alarm or an inhibit signal. Prior to turning off SCR 200, transistor 264 will always be maintained in a saturated state from time period 0" as illustrated in FIG. 3funtil the time periods illustrated in FIGS. 3g and 3h.
If the inhibit signal has been transmitted and the operator wants to reinhibit the circuit for the full inhibit time duration, all he need do is reactivate the inhibit button after an inconsequential time period which will cause transistor 222 of timing control circuit 20 to become saturated thus dischargin capacitor 206.
Capacitor 230 serves to damp transients and to ensure that the receiver circuit will be responsive not only to input signals lasting a predetermined duration but will be insensitive to signals of less than a predetermined duration.
It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained and, since certain changes may be made in the above apparatus without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
I claim:
1. A wireless alarm system comprising transmitter means and receiver means,
said transmitter means comprising means for transmitting at least two signals having different durations, the first of said two signals being an alarm signal and the second of said two signals being an inhibit signal,
said receiver means being capable of receiving said alarm and said inhibit signals and comprising means for sounding an alarm only if said alarm signal is received.
2. A wireless alarm system as set forth in claim 1, wherein said receiver further comprises alarm means responsive to a received alarm signal to energize said alarm means, and inhibit means responsive to a received inhibit signal to prevent said alarm means from being energized.
3. A wireless alarm system as set forth in claim 2, wherein said inhibit means comprises means for inhibiting said alarm means from being energized for a predetermined period of time.
4. A wireless alarm system as set forth in claim 3, wherein said receiver means comprises trigger means responsive to the termination of the duration of said alarm signal for producing a trigger signal, said trigger signal being coupled to said alarm means to energize said alarm means, the time duration of said inhibit signal being greater than the time duration of said alarm signal and being greater than the time at which said trigger signal is produced, said alarm means being prevented from being energized if said inhibit signal is present when said trigger signal is produced.
5. A wireless alarm system as set forth in claim 4, wherein said transmitter means further comprises a transmitter and timing means connected to said transmitter for controlling the length of time said transmitter operates, and switch means connected to said timing means for controlling the operation of said timing means to produce either an alarm or an inhibit signal.
6. A wireless alarm system as set forth in claim 4, wherein said receiver includes capacitor means for rejecting signals having a duration less than the duration of said alarm signal.

Claims (6)

1. A wireless alarm system comprising transmitter means and receiver means, said transmitter means comprising means for transmitting at least two signals having different durations, the first of said two signals being an alarm signal and the second of said two signals being an inhibit signal, said receiver means being capable of receiving said alarm and said inhibit signals and comprising means for sounding an alarm only if said alarm signal is received.
2. A wireless alarm system as set forth in claim 1, wherein said receiver further comprises alarm means responsive to a received alarm signal to energize said alarm means, and inhibit means responsive to a received inhibit signal to prevent said alarm means from being energized.
3. A wireless alarm system as set forth in claim 2, wherein said inhibit means comprises means for inhibiting said alarm means from being energized for a predetermined period of time.
4. A wireless alarm system as set forth in claim 3, wherein said receiver means comprises trigger means responsive to the termination of the duration of said alarm signal for producing a trigger signal, said trigger signal being coupled to said alarm means to energize said alarm means, the time duration of said inhibit signal being greater than the time duration of said alarm signal and being greater than the time at which said trigger signal is produced, said alarm means being prevented from being energized if said inhibit signal is present when said trigger signal is produced.
5. A wireless alarm system as set forth in claim 4, wherein said transmitter means further comprises a transmitter and timing means connected to said transmitter for controlling the length of time said transmitter operates, and switch means connected to said timing means for controlling the operation of said timing means to produce either an alarm or an inhibit signal.
6. A wireless alarm system as set forth in claim 4, wherein said receiver includes capacitor means for rejecting signals having a duration less than the duration of said alarm signal.
US00247570A 1972-04-26 1972-04-26 Wireless alarm system Expired - Lifetime US3795896A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US24757072A 1972-04-26 1972-04-26

Publications (1)

Publication Number Publication Date
US3795896A true US3795896A (en) 1974-03-05

Family

ID=22935399

Family Applications (1)

Application Number Title Priority Date Filing Date
US00247570A Expired - Lifetime US3795896A (en) 1972-04-26 1972-04-26 Wireless alarm system

Country Status (1)

Country Link
US (1) US3795896A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074269A (en) * 1976-06-16 1978-02-14 Justin Hartley Burglar alarm for use with an automatic garage door opener
US4218763A (en) * 1978-08-04 1980-08-19 Brailsford Lawrence J Electronic alarm signaling system
US4257038A (en) * 1979-02-28 1981-03-17 Notifier Company Coded security system
US4271405A (en) * 1978-01-03 1981-06-02 Kitterman Lawrence P Alarm control system
US4331953A (en) * 1979-12-26 1982-05-25 The Boeing Company Communication system for use in hazardous confined areas
US4523193A (en) * 1983-11-21 1985-06-11 Levinson Samuel H Remote-controlled doorbell signal receiver
US4523178A (en) * 1982-02-22 1985-06-11 Fulhorst George E Wireless alarm system in conjunction with at least one vehicle
US4736196A (en) * 1986-11-18 1988-04-05 Cost-Effective Monitoring Systems, Co. Electronic monitoring system
US4819053A (en) * 1986-05-09 1989-04-04 Halavais Richard A Single-point locating system
US5032836A (en) * 1988-01-27 1991-07-16 Namco, Ltd. Guiding device for visually handicapped person
US5412963A (en) * 1993-06-21 1995-05-09 Winner International Royalty Corporation Remote control anti-theft device
US5646606A (en) * 1991-05-30 1997-07-08 Wilson; Alan L. Transmission of transmitter parameters in a digital communication system
US5686887A (en) * 1994-12-07 1997-11-11 Schoeferisch Aeusserung Anstalt Electronic locating device
US6380860B1 (en) 1999-12-14 2002-04-30 Joseph R. Goetz Portable wireless cellular fire alarm system apparatus and method
US20070285226A1 (en) * 2006-06-12 2007-12-13 Healthpia Co., Ltd. System and method for emergency alarm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3256488A (en) * 1963-07-17 1966-06-14 Arnoux Corp Pulse generator having controllable pulse width and repetition rate
US3268814A (en) * 1963-06-03 1966-08-23 Lab For Electronics Inc Plural carrier frequency telemetry and control system using pulse width modulation
US3515992A (en) * 1967-06-09 1970-06-02 Itt Automatic alarm detector
US3569949A (en) * 1968-02-12 1971-03-09 Roger Isaacs Wireless remote control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3268814A (en) * 1963-06-03 1966-08-23 Lab For Electronics Inc Plural carrier frequency telemetry and control system using pulse width modulation
US3256488A (en) * 1963-07-17 1966-06-14 Arnoux Corp Pulse generator having controllable pulse width and repetition rate
US3515992A (en) * 1967-06-09 1970-06-02 Itt Automatic alarm detector
US3569949A (en) * 1968-02-12 1971-03-09 Roger Isaacs Wireless remote control system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074269A (en) * 1976-06-16 1978-02-14 Justin Hartley Burglar alarm for use with an automatic garage door opener
US4271405A (en) * 1978-01-03 1981-06-02 Kitterman Lawrence P Alarm control system
US4218763A (en) * 1978-08-04 1980-08-19 Brailsford Lawrence J Electronic alarm signaling system
US4257038A (en) * 1979-02-28 1981-03-17 Notifier Company Coded security system
US4331953A (en) * 1979-12-26 1982-05-25 The Boeing Company Communication system for use in hazardous confined areas
US4523178A (en) * 1982-02-22 1985-06-11 Fulhorst George E Wireless alarm system in conjunction with at least one vehicle
US4523193A (en) * 1983-11-21 1985-06-11 Levinson Samuel H Remote-controlled doorbell signal receiver
US4819053A (en) * 1986-05-09 1989-04-04 Halavais Richard A Single-point locating system
US4736196A (en) * 1986-11-18 1988-04-05 Cost-Effective Monitoring Systems, Co. Electronic monitoring system
US5032836A (en) * 1988-01-27 1991-07-16 Namco, Ltd. Guiding device for visually handicapped person
US5646606A (en) * 1991-05-30 1997-07-08 Wilson; Alan L. Transmission of transmitter parameters in a digital communication system
US5412963A (en) * 1993-06-21 1995-05-09 Winner International Royalty Corporation Remote control anti-theft device
US5686887A (en) * 1994-12-07 1997-11-11 Schoeferisch Aeusserung Anstalt Electronic locating device
US5796334A (en) * 1994-12-07 1998-08-18 Schoepferisch Aeusserung Anstalt Voltage monitoring circuit
US6380860B1 (en) 1999-12-14 2002-04-30 Joseph R. Goetz Portable wireless cellular fire alarm system apparatus and method
US20070285226A1 (en) * 2006-06-12 2007-12-13 Healthpia Co., Ltd. System and method for emergency alarm
US7764170B2 (en) * 2006-06-12 2010-07-27 Seyfarth Shaw LLP System and method for emergency alarm

Similar Documents

Publication Publication Date Title
US3795896A (en) Wireless alarm system
US3848231A (en) Alarm system utilizing pulse position modulation and dual conductor sensor
US4191948A (en) Digital transmission apparatus particularly adapted for security systems
US4092643A (en) Security device
US3833895A (en) Intrusion alarm with indication of prior activation
US5854588A (en) Home security system for detecting an intrusion into a monitored area by an infrared detector
US4833450A (en) Fault detection in combination intrusion detection systems
EP0073681A2 (en) Improvements relating to position detection devices
US4631527A (en) Transmitter-receiver coded security alarm system
US4095211A (en) Coded electronic security system
US3487404A (en) Combined fire alarm,burglar alarm,and intercommunication system
US6166635A (en) Radio burglar alarm system for travel bag
US3984803A (en) Seismic intrusion detector system
US3828338A (en) Safe
US4010461A (en) Alerting system with dual-address memory
US4207559A (en) Alarm system with acoustically coupled transmitters and receiver
US4380760A (en) Smoke detector with delayed alarm after change to stand-by power
US4012728A (en) Back up alarm system
US4435699A (en) Process and installation for the remote control of a premises watch radar apparatus
US3820102A (en) Premises entry and exit signaling system
US3733598A (en) Vibration-responsive apparatus
US3868479A (en) Telephonic alarm reporting apparatus
US4234874A (en) Alarm system and method thereof
GB919172A (en)
US4713660A (en) Electronic proximity key and lock