US3789164A - Earphone assembly - Google Patents

Earphone assembly Download PDF

Info

Publication number
US3789164A
US3789164A US00231560A US23156072A US3789164A US 3789164 A US3789164 A US 3789164A US 00231560 A US00231560 A US 00231560A US 23156072 A US23156072 A US 23156072A US 3789164 A US3789164 A US 3789164A
Authority
US
United States
Prior art keywords
transducer
high frequency
sound signals
signals
acoustic chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00231560A
Inventor
R Ryder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00231560A priority Critical patent/US3789164A/en
Application granted granted Critical
Publication of US3789164A publication Critical patent/US3789164A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/345Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/04Supports for telephone transmitters or receivers
    • H04M1/05Supports for telephone transmitters or receivers specially adapted for use on head, throat or breast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1075Mountings of transducers in earphones or headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/26Spatial arrangements of separate transducers responsive to two or more frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • H04R5/0335Earpiece support, e.g. headbands or neckrests

Definitions

  • An earphone assembly is provided of the pneumatic type such as are presently used on aircraft, and which is constructed to improve the reproduction quality of the instrument by providing high frequency transducers directly at the ear pieces for producing high frequency sound signals which would otherwise be attenuated in the flexible plastic tubes coupling the ear pieces to the main electrical/acoustical transducer.
  • Earphones are provided for the individual passengers, and these are plugged into sockets in the corresponding transducers.
  • the earphones comprise simply a pair of acoustical ear pieces, and flexible plastic tubes extending from the ear pieces to a tubular plug assembly which may be plugged directly into the aforesaid transducer. In this way the sound signals produced by the transducer are carried through the plastic tubes to the ear pieces, and into the ears of the passenger wearing the earphone assembly.
  • FIG. 1 is a representation of an earphone assembly constructed in accordance with one embodiment of the invention and which plugs, for example, into an electro/acoustical transducer mounted in the arm of an aircraft seat;
  • FIG. 2 is an enlarged view of an appropriate plug used by the assembly of FIG. 1;
  • FIG. 3 is a plan view of the plug of FIG. 2, taken along the line 33 of FIG. 2;
  • FIG. 4 is a somewhat schematic representation of a section of one of the ear piece units of FIG. 1, and taken essentially along the line 4-4 of FIG. 1;
  • FIG. 5 is a schematic functional diagram of the system of FIG. 1;
  • FIG. 6 is a representation of an earphone assembly constructed in accordance with a second embodiment of the invention.
  • FIG. 7 is a schematic diagram of the electro/acoustical system associated with the earphone assembly of FIG. 6.
  • a first electro/acoustical transducer 10 is mounted, for example, in the arm of an aircraft seat 12, and the transducer 10 includes a socket which receives, for example, a dual plug assembly 14.
  • the system illustrated in the drawings is a stereo type of system so that two tubes 20 and 22 and two separate plugs 16 and 18, are provided for carrying the stereo sound signals to the ear pieces 24 and 26.
  • the present invention provides for small high frequency electro-acoustical transducers 30 and 32 to be mounted directly on the respective ear pieces 24 and 26.
  • Electric wires such as the wires 34, which carry electric current to the transducers 30 and 32 are connected to the transducers, and these wires may be imbedded in the walls of the tubes 20 and 22 to extend along the tubes to the plug 14.
  • the plug 14 also includes, for example, an electric plug 36 to which the wires are connected.
  • three wires are used, and they are connected to the transducers 30 and 32 so that stereo signals may b produced by the high frequency transduers.
  • the transducers 30 and 32 may be of any appropriate type and, as shown in FIG. 4, for example, the ear piece 24 may include a housing defining an acoustical chamber 24a, the tube 22 being coupled to the interior'of the acoustical chamber, so that the sound signals may be passed into the chamber and through the section 24b which is designated to fit into the ear of the wearer.
  • the high frequency transducer 30, for example, is mounted adjacent the acoustical chamber 240, and it includes a conventional crystal transducer 38 energized through wires 34.
  • the transducer 30 produces high frequency sound signals which pass into the acoustical chamber 240, and which are combined with the sound signals from the tube 22, in order to compensate for any attenuation of the high frequency sound signals in the tube 22. It will be understood, of course, that the ear piece 26 and transducer 32 are similarly constructed.
  • the ear pieces 24 and 26 be maintained in alignment with the ear canals of the listener, which means that the ear pieces should be held substantially on a horizontal axis regardless of the head width of the listener.
  • An adjustment is provided in the earphone assembly of FIG. 1, so that this criteria may be met for various head sizes.
  • the ear pieces 24 and 26 are supported by a pair of elongated resilient members 40 and 42 each of which, for example, may comprise a resilient wire composed, for example, of steel, and surrounded by an appropriate tubular member which may, for example, be composed of polyvinylchloride.
  • the free ends of the members 40 and 42 are mounted,,for example, on a rack and pinion assembly 44, or its equivalent.
  • An adjustment knob 44a is provided, and it may be turned to move the rack 44b in and out of the assembly, so as to adjust the distance between the ear pieces 24 and 26, and to adjust the ear pieces to different head sizes.
  • the rack and pinion assembly 44 may be replaced by any equivalent adjustment, such as a lead screw, or the like.
  • the plug 14 has a right angle bend formed in its body portion. This is advantageous in that it provides a polarizing control for the plugs 16 and 18, and assures that the plugs will be plugged into the proper sockets in the transducer 10, so that the proper sounds will be carried to the proper ears for the correct stereo sound effect.
  • the electric plug 36 may be part of thesame plug as the plugs 16 and 18, as shown in FIGS. 2 and 3, so that all the plugs may be inserted as a unit into the corresponding sockets in the transducer 10.
  • the ear pieces 24 and 26 need not necessarily be of such configuration that they penetrate the ear cavity or canal. They may assume, for example, the form of ear muffs in which the sound channels enter from diverse angles.
  • the stereo electrical input is amplified in separate amplifiers 50 and 52.
  • the amplifiers are connected through corresponding volume controls 54 and 56 to the low frequency transducers designated a and 10b in FIG. 5.
  • the volume controls 54 and 56 may be mechanically intercoupled so that a single control may be used to adjust the volume of the two stereo signals.
  • the tubes 20 and 22 intercouple the transducers 10a and 10b to the respective ear pieces 24 and 26, whereas wires 34 extend to the respective high frequency transducers and 32.
  • the response of the transducers 10a and 10b may be substantially uniform throughout the entire audio range, and the response of the high frequency transducers 30 and 32 may be such that they compensate for the resulting attenuation of the higher frequency sound signals in the tubes 20 and 22. It is also appropriate to design the transducers 10a and 10b to respond only to the low frequency part of the audio signal range, so that only the lower frequency sound signals are produced by the transducers 10a and 10b, since these are the signals which may be appropriately carried by the tubes 20 and 22. Then, the high frequency transducers 30 and 32 are controlled so that all the higher frequency sound signals are produced only by the latter transducer.
  • the transducers 30 and 32 are only required to produce the higher frequencysound signals, these transducers may be small and light, and also they may be inexpensive. Therefore, the high frequency transducers may be conveniently mounted directly on the ear pieces without adding materially to the cost or weight of the earphone assembly. The resulting assembly, including the adjustment means described above, may be comfortably supported in the ears of the listener, and it provides for an ideal high fidelity sound reproducing system. 7
  • the ear pieces 24 and 26 are mounted on the ends of respective plastic elongated support brackets 50 and 52, each of which has a generally arcuate shape, the support brackets being hinged by a suitable hinge member 54.
  • the hinge member 54 holds the brackets 50 and 52 in a relatively tight frictional engagement, so that they may be opened or closed to suit various head sizes of the users, and to cause the assembly to be firmly held on the head of the user.
  • the transducer 31 is coupled into the acoustical chamber of the ear piece 24 at an angle with respect to the transducer 30.
  • the transducer 33 is coupled into the acoustical chamber of the ear piece 26 at an angle with respect to the transducer 32.
  • This angular relationship between the transducers 30 and 31 and between the transducers 32 and 33 changes the character of the high frequency sound signals entering the respective acoustical chambers, since those from the transducers 31 and 33 effectively have to bend around a corner when entering the acoustical chamber.
  • This relationship simulates the reflection of sound from the walls, for example, of an auditorium, so that a person using the assembly of FIG. 6 actually has the sensation of listening to a concert in full high fidelity range, and seated, for example, in an auditorium.
  • the assembly of FIG. 6 is intended to be used in conjunction with a four-channel stereo sound system. For that reason, a first tube 56 (tube A) is coupled to the ear piece 24, and a second tube 58 (tube B) is coupled to the ear piece 26.
  • the tubes 56 and 58 correspond to the flexible plastic tubes 20 and 22 of the embodiment of FIG. 1.
  • the-tube 56 carries the low frequency sound signals from two of the stereo sources to the ear piece 24, whereas the tube 58 carries the low frequency sound signals from the remaining two stereo sources to the ear piece 26.
  • the high frequency sound components from one of the stereo sources are produced, as before, by the transducer 30, whereas the high frequency sound signals from the second stereo source are produced, as before, by the transducer 32.
  • the transducer 31 reproduces the high frequency sound signals from the third stereo source, whereas the transducer 33 reproduces the high frequency sound signals from the remaining stereo source.
  • the transducer 30 is activated by wires 60, and the transducer 32 is activated by wires 62.
  • the wires 60 and 62 are carried, for example, in a flexible plastic tube 64 (tube C).
  • the transducer 31 is activated by wires 66, whereas the transducer 33 is activated by wires 68.
  • the wires 66 and 68 are carried, for example, in a flexible plastic tube 70 (tube D).
  • FIG. 7 A portion of a four-channel stereo system for operation in conjunction with the assembly of FIG. 6 is shown schematically in FIG. 7.
  • the stereo electrical input signals from the first and second stereo sources are applied to a block 100
  • the electrical signals from the third and fourth stereo sources are applied to a block 102.
  • the blocks and 102 contain appropriate low frequency transducers, such as described above, so that the low frequency sound signals corresponding to the various stereo sources may be obtained.
  • the low frequency sound signals from the first stereo source are carried in a tube 104
  • the low frequency stereo signals from the second stereo source are carried in a tube 106.
  • the tubes 104 and 106 are plugged into the low frequency transducers by means of a plug 109.
  • the low frequency sound signals from the third stereo source are carried by a tube 108 which, as shown, is coupled into the tube 104
  • the low frequency sound signals from the fourth stereo source are carried by a tube 110 which, as shown, is coupled into the tube 106.
  • the combined tubes 104 and 108 are coupled through a bleed valve and through a tube 122 into a socket 124
  • the combined tubes 106 and 110 are coupled through the bleed valve 120 to a tube 126 which, likewise, is coupled into the socket 124.
  • the tube 122 carries the low frequency sound signals from the first and third stereo sources
  • the tube 126 carries the low frequency sound signals from the second and fourth stereo sources.
  • the tubes 56 and 58 are plugged into the socket 124 by means, for example, of a plug 130. When so coupled, the tube 56 carries the low frequency sound signals from the first and third stereo sources to the ear piece 24, whereas the tube 58 carries the low frequency sound signals from the second and fourth sources to the ear piece 26.
  • the electrical inputs from the first and second stereo sources are also carried, by way of a plug 132 to the wires 60 and 62 respectively.
  • the wires 60 carry the electric signals from the first source to the high frequency transducer 30, whereas the wires 62 carry the electric signals from the second source to the high frequency transducer 32.
  • the electrical signals from the third and fourth stereo sources are carried by way of a plug 134 to the wires 66 and 68. In this way, the wires 66 carry the electric signals from the third stereo source to the high frequency transducer 31, whereas the wires 68 carry the electric signals from the fourth source to the high frequency transducer 33.
  • the bleed valve 120 has a control 120a which may be turned to cause an intermixing of the low frequency sound signals in the tubes, so that various blending effects may be achieved, if so desired.
  • a desired blending of all the low frequency sounds may be achieved by setting the control 120a of the bleed valve 120.
  • an auditorium effect is achieved with respect to the high frequency sounds from the third and fourth sources, by virtue of the positioning ofthe respective high frequency transducers 31 and 33 with respect to the respective acoustic chambers 24a and 260.
  • An earphone assembly including:
  • a first ear piece defining a first acoustic chamber and a second car piece defining a second acoustic chamber;
  • a first electrical/acoustical transducer for producing sound signals in response to audio electrical signals applied thereto
  • a first tubular member intercoupling said first transducer to said first acoustic chamber for carrying the sound signals from said first transducer to said first ear piece;
  • a second electrical/acoustical transducer for producing sound signals in response to audio electrical signals applied thereto;
  • a bleed valve member intercoupling said first and second tubular members and adjustable to produce an intermixing between the sound signals in said first and second tubular members.
  • An earphone assembly including: a first ear piece defining a first acoustic chamber and a second ear piece defining a second acoustic chamber; a first electrical/acoustical transducer for producing sound signals in response to audio electrical signals derived from a first signal source and applied thereto; a first tubular member intercoupling said first transducer to said first acoustic chamber for carrying relatively low frequency sound signals from said first transducer to said first ear piece; a second electrical/acoustical transducer for producing sound signals in response to audio electrical signals derived from a second signal source and applied thereto; a second tubular member intercoupling said second transducer to said second acoustic chamber for carrying relatively low frequency sound signals from said second transducer to said second ear piece; a first high frequency electrical/acoustical transducer mounted on said first ear piece for introducing relatively high frequency sound signal into said first acoustic chamber along a predetermined axis in response to applied audio electrical

Abstract

An earphone assembly is provided of the pneumatic type such as are presently used on aircraft, and which is constructed to improve the reproduction quality of the instrument by providing high frequency transducers directly at the ear pieces for producing high frequency sound signals which would otherwise be attenuated in the flexible plastic tubes coupling the ear pieces to the main electrical/acoustical transducer.

Description

United States Patent [191 Ryder EARPHONE ASSEMBLY [76] Inventor: Robert Ryder, PO. Box 90331, Los
Angeles, Calif. 90009 [22] Filed: Mar. 3, 1972 [21] Appl. No.: 231,560
Related US. Application Data [63] Continuation-impart of Ser. No. 64,484, Aug. 17,
1970, abandoned.
[52] US. Cl. 179/156 R, 179/1 G [51] Int. Cl H04m 1/05, H04r 5/00 [58] Field of Search 179/1 GP, 156, 182, 1 VB, 1 PC [56] References Cited UNITED STATES PATENTS 2,978,543 4/1961 Kennedy 179/1 GP fl/j Freya/away frdnrau car Jan. 29, 1974 3,450,839 6/1969 Scanlon 179/1 VE 2,946,862 7/1960 Wadsworth et al. 179/182 R 2,846,521 8/1958 Beidler 179/182 R 2,827,514 3/1958 Murray 179/1 GP Primary Examiner-William C. Cooper Attorney, Agent, or Firm-Jessup & Beecher 7] ABSTRACT An earphone assembly is provided of the pneumatic type such as are presently used on aircraft, and which is constructed to improve the reproduction quality of the instrument by providing high frequency transducers directly at the ear pieces for producing high frequency sound signals which would otherwise be attenuated in the flexible plastic tubes coupling the ear pieces to the main electrical/acoustical transducer.
6 Claims, 7 Drawing Figures PAIENTED JAN 2 91974 sum 2 or 4 4 a a) Fra l/allay fwd/1110a I I I I I I I 1. a w Prague/ray ire 1/09 #4 4 fra aemy Panxduaer 3Z.-
l y/er Arr may PATENTEB JAN 2 91974 sum 3 BF 4 1 EARPHONE ASSEMBLY This application is a continuation-in-part of copending application Ser. No. 64,484 filed for Robert Ryder on Aug. 17, 1970, and entitled EARPHONE ASSEM- BLY, now abandoned.
BACKGROUND OF THE INVENTION In the sound reproducing systems used in present day aircraft, it is usual to install an electro/acoustical transducer at each seat. Earphones are provided for the individual passengers, and these are plugged into sockets in the corresponding transducers. The earphones comprise simply a pair of acoustical ear pieces, and flexible plastic tubes extending from the ear pieces to a tubular plug assembly which may be plugged directly into the aforesaid transducer. In this way the sound signals produced by the transducer are carried through the plastic tubes to the ear pieces, and into the ears of the passenger wearing the earphone assembly.
It has been found, however, that the higher frequency sounds are attenuated in the aforesaid flexible plastic tubes, and the quality of the sound reproduction by the prior art systems of the aforesaid type is somewhat impaired. This situation is corrected by the system of the present invention, in which small high frequency electro/acoustical transducers are mounted directly adjacent the ear pieces and are electrically connected to the electrical audio signal source, so that the higher frequency sounds are not lost and high fidelity reproduction may be achieved.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a representation of an earphone assembly constructed in accordance with one embodiment of the invention and which plugs, for example, into an electro/acoustical transducer mounted in the arm of an aircraft seat;
FIG. 2 is an enlarged view of an appropriate plug used by the assembly of FIG. 1;
FIG. 3 is a plan view of the plug of FIG. 2, taken along the line 33 of FIG. 2;
FIG. 4 is a somewhat schematic representation of a section of one of the ear piece units of FIG. 1, and taken essentially along the line 4-4 of FIG. 1;
FIG. 5 is a schematic functional diagram of the system of FIG. 1;
FIG. 6 is a representation of an earphone assembly constructed in accordance with a second embodiment of the invention; and
FIG. 7 is a schematic diagram of the electro/acoustical system associated with the earphone assembly of FIG. 6.
DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS As shown in the drawings, a first electro/acoustical transducer 10 is mounted, for example, in the arm of an aircraft seat 12, and the transducer 10 includes a socket which receives, for example, a dual plug assembly 14. The dual plug assembly 14, as shown in FIGS. 2 and 3, for example, includes a first pair of tubular plugs 16 and 18 which extends into appropriate sockets in the transducer 10, so as to introduce the corresponding sound signals into a pair of flexible plastic tubes 20 and 22, the plastic tubes extending to a pair of acoustical ear pieces 24 and 26.
The system illustrated in the drawings, as is usual with most systems used in present day installations, is a stereo type of system so that two tubes 20 and 22 and two separate plugs 16 and 18, are provided for carrying the stereo sound signals to the ear pieces 24 and 26.
As mentioned above, it' has been found that the higher frequency sound signals are attenuated in the tubes 20 and 22. For that reason, the present invention provides for small high frequency electro- acoustical transducers 30 and 32 to be mounted directly on the respective ear pieces 24 and 26. Electric wires, such as the wires 34, which carry electric current to the transducers 30 and 32 are connected to the transducers, and these wires may be imbedded in the walls of the tubes 20 and 22 to extend along the tubes to the plug 14. The plug 14 also includes, for example, an electric plug 36 to which the wires are connected. For the usual stereo system, three wires are used, and they are connected to the transducers 30 and 32 so that stereo signals may b produced by the high frequency transduers.
The transducers 30 and 32 may be of any appropriate type and, as shown in FIG. 4, for example, the ear piece 24 may include a housing defining an acoustical chamber 24a, the tube 22 being coupled to the interior'of the acoustical chamber, so that the sound signals may be passed into the chamber and through the section 24b which is designated to fit into the ear of the wearer. The high frequency transducer 30, for example, is mounted adjacent the acoustical chamber 240, and it includes a conventional crystal transducer 38 energized through wires 34. In this way, the transducer 30 produces high frequency sound signals which pass into the acoustical chamber 240, and which are combined with the sound signals from the tube 22, in order to compensate for any attenuation of the high frequency sound signals in the tube 22. It will be understood, of course, that the ear piece 26 and transducer 32 are similarly constructed.
For satisfactory high fidelity reception, it is important that the ear pieces 24 and 26 be maintained in alignment with the ear canals of the listener, which means that the ear pieces should be held substantially on a horizontal axis regardless of the head width of the listener. An adjustment is provided in the earphone assembly of FIG. 1, so that this criteria may be met for various head sizes.
In the illustrated embodiment, the ear pieces 24 and 26 are supported by a pair of elongated resilient members 40 and 42 each of which, for example, may comprise a resilient wire composed, for example, of steel, and surrounded by an appropriate tubular member which may, for example, be composed of polyvinylchloride. The free ends of the members 40 and 42 are mounted,,for example, on a rack and pinion assembly 44, or its equivalent.
An adjustment knob 44a is provided, and it may be turned to move the rack 44b in and out of the assembly, so as to adjust the distance between the ear pieces 24 and 26, and to adjust the ear pieces to different head sizes. As mentioned above, the rack and pinion assembly 44 may be replaced by any equivalent adjustment, such as a lead screw, or the like.
It will be appreciated from a consideration of FIGS. 2 and 3, for example, that the plug 14 has a right angle bend formed in its body portion. This is advantageous in that it provides a polarizing control for the plugs 16 and 18, and assures that the plugs will be plugged into the proper sockets in the transducer 10, so that the proper sounds will be carried to the proper ears for the correct stereo sound effect. The electric plug 36 may be part of thesame plug as the plugs 16 and 18, as shown in FIGS. 2 and 3, so that all the plugs may be inserted as a unit into the corresponding sockets in the transducer 10. The ear pieces 24 and 26 need not necessarily be of such configuration that they penetrate the ear cavity or canal. They may assume, for example, the form of ear muffs in which the sound channels enter from diverse angles.
In the system of FIG. 5, the stereo electrical input is amplified in separate amplifiers 50 and 52. The amplifiers are connected through corresponding volume controls 54 and 56 to the low frequency transducers designated a and 10b in FIG. 5. The volume controls 54 and 56 may be mechanically intercoupled so that a single control may be used to adjust the volume of the two stereo signals. As illustrated in FIG. 5, the tubes 20 and 22 intercouple the transducers 10a and 10b to the respective ear pieces 24 and 26, whereas wires 34 extend to the respective high frequency transducers and 32.
The response of the transducers 10a and 10b may be substantially uniform throughout the entire audio range, and the response of the high frequency transducers 30 and 32 may be such that they compensate for the resulting attenuation of the higher frequency sound signals in the tubes 20 and 22. It is also appropriate to design the transducers 10a and 10b to respond only to the low frequency part of the audio signal range, so that only the lower frequency sound signals are produced by the transducers 10a and 10b, since these are the signals which may be appropriately carried by the tubes 20 and 22. Then, the high frequency transducers 30 and 32 are controlled so that all the higher frequency sound signals are produced only by the latter transducer.
Since the transducers 30 and 32 are only required to produce the higher frequencysound signals, these transducers may be small and light, and also they may be inexpensive. Therefore, the high frequency transducers may be conveniently mounted directly on the ear pieces without adding materially to the cost or weight of the earphone assembly. The resulting assembly, including the adjustment means described above, may be comfortably supported in the ears of the listener, and it provides for an ideal high fidelity sound reproducing system. 7
In the assembly of FIG. 6 the ear pieces 24 and 26 are mounted on the ends of respective plastic elongated support brackets 50 and 52, each of which has a generally arcuate shape, the support brackets being hinged by a suitable hinge member 54. The hinge member 54 holds the brackets 50 and 52 in a relatively tight frictional engagement, so that they may be opened or closed to suit various head sizes of the users, and to cause the assembly to be firmly held on the head of the user.
The assembly of FIG. 6, in addition to the high frequency transducers 30 and 32, also includes a second pair of high frequency transducers 31 and 33 which are also mounted on the respective ear pieces 24 and 26, as shown. As shown in FIG. 6, the transducer 31 is coupled into the acoustical chamber of the ear piece 24 at an angle with respect to the transducer 30. Likewise, the transducer 33 is coupled into the acoustical chamber of the ear piece 26 at an angle with respect to the transducer 32. This angular relationship between the transducers 30 and 31 and between the transducers 32 and 33, changes the character of the high frequency sound signals entering the respective acoustical chambers, since those from the transducers 31 and 33 effectively have to bend around a corner when entering the acoustical chamber. This relationship simulates the reflection of sound from the walls, for example, of an auditorium, so that a person using the assembly of FIG. 6 actually has the sensation of listening to a concert in full high fidelity range, and seated, for example, in an auditorium. V
The assembly of FIG. 6 is intended to be used in conjunction with a four-channel stereo sound system. For that reason, a first tube 56 (tube A) is coupled to the ear piece 24, and a second tube 58 (tube B) is coupled to the ear piece 26. The tubes 56 and 58 correspond to the flexible plastic tubes 20 and 22 of the embodiment of FIG. 1. In the case of the assembly of FIG. 6, the-tube 56 carries the low frequency sound signals from two of the stereo sources to the ear piece 24, whereas the tube 58 carries the low frequency sound signals from the remaining two stereo sources to the ear piece 26.
The high frequency sound components from one of the stereo sources are produced, as before, by the transducer 30, whereas the high frequency sound signals from the second stereo source are produced, as before, by the transducer 32. The transducer 31 reproduces the high frequency sound signals from the third stereo source, whereas the transducer 33 reproduces the high frequency sound signals from the remaining stereo source.
The transducer 30 is activated by wires 60, and the transducer 32 is activated by wires 62. The wires 60 and 62 are carried, for example, in a flexible plastic tube 64 (tube C). The transducer 31 is activated by wires 66, whereas the transducer 33 is activated by wires 68. The wires 66 and 68 are carried, for example, in a flexible plastic tube 70 (tube D).
A portion of a four-channel stereo system for operation in conjunction with the assembly of FIG. 6 is shown schematically in FIG. 7. As shown in FIG. 7, the stereo electrical input signals from the first and second stereo sources are applied to a block 100, whereas the electrical signals from the third and fourth stereo sources are applied to a block 102. The blocks and 102 contain appropriate low frequency transducers, such as described above, so that the low frequency sound signals corresponding to the various stereo sources may be obtained. The low frequency sound signals from the first stereo source are carried in a tube 104, whereas the low frequency stereo signals from the second stereo source are carried in a tube 106.
The tubes 104 and 106 are plugged into the low frequency transducers by means of a plug 109. The low frequency sound signals from the third stereo source are carried by a tube 108 which, as shown, is coupled into the tube 104, whereas the low frequency sound signals from the fourth stereo source are carried by a tube 110 which, as shown, is coupled into the tube 106. The combined tubes 104 and 108 are coupled through a bleed valve and through a tube 122 into a socket 124, whereas the combined tubes 106 and 110 are coupled through the bleed valve 120 to a tube 126 which, likewise, is coupled into the socket 124.
Therefore, the tube 122 carries the low frequency sound signals from the first and third stereo sources, whereas the tube 126 carries the low frequency sound signals from the second and fourth stereo sources. The tubes 56 and 58 are plugged into the socket 124 by means, for example, of a plug 130. When so coupled, the tube 56 carries the low frequency sound signals from the first and third stereo sources to the ear piece 24, whereas the tube 58 carries the low frequency sound signals from the second and fourth sources to the ear piece 26.
The electrical inputs from the first and second stereo sources are also carried, by way of a plug 132 to the wires 60 and 62 respectively. The wires 60 carry the electric signals from the first source to the high frequency transducer 30, whereas the wires 62 carry the electric signals from the second source to the high frequency transducer 32. Likewise, the electrical signals from the third and fourth stereo sources are carried by way of a plug 134 to the wires 66 and 68. In this way, the wires 66 carry the electric signals from the third stereo source to the high frequency transducer 31, whereas the wires 68 carry the electric signals from the fourth source to the high frequency transducer 33.
The bleed valve 120 has a control 120a which may be turned to cause an intermixing of the low frequency sound signals in the tubes, so that various blending effects may be achieved, if so desired. With the system described above, a desired blending of all the low frequency sounds may be achieved by setting the control 120a of the bleed valve 120. Also, an auditorium effect is achieved with respect to the high frequency sounds from the third and fourth sources, by virtue of the positioning ofthe respective high frequency transducers 31 and 33 with respect to the respective acoustic chambers 24a and 260.
It is apparent that although particular embodiments of the invention have been shown and described, modifications may be made. It is intended in the following claims to cover all modifications that fall within the spirit and scope of the invention.
What is claimed is:
1. An earphone assembly including:
a first ear piece defining a first acoustic chamber and a second car piece defining a second acoustic chamber;
a first electrical/acoustical transducer for producing sound signals in response to audio electrical signals applied thereto;
a first tubular member intercoupling said first transducer to said first acoustic chamber for carrying the sound signals from said first transducer to said first ear piece;
a second electrical/acoustical transducer for producing sound signals in response to audio electrical signals applied thereto;
a second tubular member intercoupling said second transducer to said second acoustic chamber for carrying the sound signals from said second transducer to said second ear piece; and
a bleed valve member intercoupling said first and second tubular members and adjustable to produce an intermixing between the sound signals in said first and second tubular members.
2. An earphone assembly including: a first ear piece defining a first acoustic chamber and a second ear piece defining a second acoustic chamber; a first electrical/acoustical transducer for producing sound signals in response to audio electrical signals derived from a first signal source and applied thereto; a first tubular member intercoupling said first transducer to said first acoustic chamber for carrying relatively low frequency sound signals from said first transducer to said first ear piece; a second electrical/acoustical transducer for producing sound signals in response to audio electrical signals derived from a second signal source and applied thereto; a second tubular member intercoupling said second transducer to said second acoustic chamber for carrying relatively low frequency sound signals from said second transducer to said second ear piece; a first high frequency electrical/acoustical transducer mounted on said first ear piece for introducing relatively high frequency sound signal into said first acoustic chamber along a predetermined axis in response to applied audio electrical signals; a second high frequency electrical/acoustical transducer mounted on said second ear piece for introducing relatively high frequency sound signals into said second acoustic chamber along a predetermined axis in response to applied audio electrical signals; circuit means for introducing the audio electrical signals from said first signal source to said first high frequency transducer; and circuit means for introducing the audio electrical signals from said second signal source to said second high frequency transducer.
3. The assembly defined in claim 2, and which includes a third high frequency electrical/acoustical transducer mounted on said first ear piece for introducing relatively high frequency sound signals into said first acoustic chamber in response to audio electrical signals applied thereto; circuit means connecting said third high frequency transducer to a third signal source for introducing audio signals from said third signal source to said third high frequency transducer; a fourth high frequency electrical/acoustical transducer mounted on said second ear piece for introducing relatively high frequency sound signals into said second acoustic chamber in response to audio electrical signals applied thereto; and circuitry connecting said fourth high frequency transducer to a fourth signal source for introducing the audio electrical signals from said fourth signal source to said fourth high frequency transducer.
4. The assembly defined in claim 3, in which said first and third high frequency transducers introduce sound signals into said first acoustic chamber along respective axes displaced angularly from one another, and in which said second and fourth high frequency transducers introduce sound signals into said second acoustic chamber along respective axes angularly displaced from one another.
5. The assembly defined in claim 2, and which includes resilient elongated means interconnecting said ear pieces to position said ear pieces in the ears of the listener.
6. The assembly defined in claim 5, and which includes mechanically adjustable means interposed in said resilient means for adjusting the distance between said ear pieces to different head sizes.

Claims (6)

1. An earphone assembly including: a first ear piece defining a first acoustic chamber and a second ear piece defining a second acoustic chamber; a first electrical/acoustical transducer for producing sound signals in response to audio electrical signals applied thereto; a first tubular member intercoupling said first transducer to said first acoustic chamber for carrying the sound signals from said first transducer to said first ear piece; a second electrical/acoustical transducer for producing sound signals in response to audio electrical signals applied thereto; a second tubular member intercoupling said second transducer to said second acoustic chamber for carrying the sound signals from said second transducer to said second ear piece; and a bleed valve member intercoupling said first and second tubular members and adjustable to produce an intermixing between the sound signals in said first and second tubular members.
2. An earphone assembly including: a first ear piece defining a first acoustic chamber and a second ear piece defining a second acoustic chamber; a first electrical/acoustical transducer for producing sound signals in response to audio electrical signals derived from a first signal source and applied thereto; a first tubular member intercoupling said first transducer to said first acoustic chamber for carrying relatively low frequency sound signals from said first transducer to said first ear piece; a second electrical/acoustical transducer for producing sound signals in response to audio electrical signals derived from a second signal source and applied thereto; a second tubular member intercoupling said second transducer to said second acoustic chamber for carrying relatively low frequency sound signals from said second transducer to said second ear piece; a first high frequency electrical/acoustical transducer mounted on said first ear piece for introducing relatively high frequency sound signal into said first acoustic chamber along a predetermined axis in response to applied audio electrical signals; a second high frequency electrical/acoustical transducer mounted on said second ear piece for introducing relatively high frequency sound signals into said second acoustic chamber along a predetermined axis in response to applied audio electrical signals; circuit means for introducing the audio electrical signals from said first signal source to said first high frequency transducer; and circuit means for introducing the audio electrical signals from said second signal source to said second high frequency transducer.
3. The assembly defined in claim 2, and which includes a third high frequency electrical/acoustical transducer mounted on said first ear piece for introducing relatively high frequency sound signals into said first acoustic chamber in response to audio electrical signals applied thereto; circuit means connecting said third high frequency transducer to a third signal source for introducing audio signals from said third signal source to said third high frequency transducer; a fourth high frequency electrical/acoustical transducer mounted on said second ear piece for introducing relatively high frequency sound signals into said second acoustic chamber in response to audio electrical signals applied thereto; and circuitry connecting said fourth high frequency transducer to a fourth siGnal source for introducing the audio electrical signals from said fourth signal source to said fourth high frequency transducer.
4. The assembly defined in claim 3, in which said first and third high frequency transducers introduce sound signals into said first acoustic chamber along respective axes displaced angularly from one another, and in which said second and fourth high frequency transducers introduce sound signals into said second acoustic chamber along respective axes angularly displaced from one another.
5. The assembly defined in claim 2, and which includes resilient elongated means interconnecting said ear pieces to position said ear pieces in the ears of the listener.
6. The assembly defined in claim 5, and which includes mechanically adjustable means interposed in said resilient means for adjusting the distance between said ear pieces to different head sizes.
US00231560A 1970-08-17 1972-03-03 Earphone assembly Expired - Lifetime US3789164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00231560A US3789164A (en) 1970-08-17 1972-03-03 Earphone assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6448470A 1970-08-17 1970-08-17
US00231560A US3789164A (en) 1970-08-17 1972-03-03 Earphone assembly

Publications (1)

Publication Number Publication Date
US3789164A true US3789164A (en) 1974-01-29

Family

ID=26744566

Family Applications (1)

Application Number Title Priority Date Filing Date
US00231560A Expired - Lifetime US3789164A (en) 1970-08-17 1972-03-03 Earphone assembly

Country Status (1)

Country Link
US (1) US3789164A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935401A (en) * 1974-08-29 1976-01-27 Shore Sidney X Earpiece for acoustic headset
US3969583A (en) * 1974-03-02 1976-07-13 Sennheiser Electronic Method of stereophonic recording
US4243851A (en) * 1979-07-16 1981-01-06 Forney Robert B Ear cushioning device for headphones
US4347405A (en) * 1979-09-06 1982-08-31 Cbs Inc. Sound reproducing systems utilizing acoustic processing unit
US4565258A (en) * 1984-08-07 1986-01-21 Butler Donald F Stereo headset system for use in a wet environment
FR2570050A1 (en) * 1984-07-20 1986-03-14 Messerschmitt Boelkow Blohm Passenger cabin management in aircraft
US4649570A (en) * 1985-03-29 1987-03-10 Hughes Aircraft Company Headset receiver cartridge and earphone case therefor
US5257318A (en) * 1989-01-11 1993-10-26 Carroll Robert J Earphone spacer with electronically variable sound level
US5561275A (en) * 1994-04-28 1996-10-01 Delstar Services Informatiques (1993) Inc. Headset for electronic stethoscope
EP0852104A1 (en) * 1995-09-19 1998-07-08 Interval Research Corporation Acoustically transparent earphones
EP0852105A1 (en) * 1995-09-19 1998-07-08 Interval Research Corporation Earphones with eyeglass attachments
EP0885546A1 (en) * 1995-06-07 1998-12-23 Interval Research Corporation Wearable audio system with enhanced performance
EP0890293A1 (en) * 1995-06-07 1999-01-13 Interval Research Corporation Sampled chamber transducer with enhanced low frequency response
US5887070A (en) * 1992-05-08 1999-03-23 Etymotic Research, Inc. High fidelity insert earphones and methods of making same
US6801633B2 (en) * 2001-01-25 2004-10-05 Dennis A. Tracy Subwoofer assembly
US6993144B1 (en) 1999-09-30 2006-01-31 Etymotic Research, Inc. Insert earphone assembly for audiometric testing and method for making same
USRE40696E1 (en) * 1992-05-08 2009-04-07 Etymotic Research, Inc. High fidelity insert earphones and methods of making same
EP2595410A1 (en) * 2011-11-17 2013-05-22 Plastoform Industries Limited A wearable speaker system with satellite speakers and a passive radiator
USD742355S1 (en) 2013-06-25 2015-11-03 Google Inc. Headphone assembly
USD743370S1 (en) 2013-06-25 2015-11-17 Google Inc. Headphone assembly
US9241209B2 (en) 2013-06-25 2016-01-19 Google Inc. Headphones with adaptable fit
USD806053S1 (en) * 2015-09-03 2017-12-26 Gn Netcom A/S Pair of headphones
USD844586S1 (en) 2017-08-04 2019-04-02 Google Llc Audio assembly
USD867326S1 (en) 2017-07-21 2019-11-19 Google Llc Wireless earbuds
USD879075S1 (en) 2018-07-11 2020-03-24 Google Llc Earbud stand assembly
USD890696S1 (en) 2017-07-21 2020-07-21 Google Llc Earbud charging case
USD896781S1 (en) 2017-08-04 2020-09-22 Google Llc Audio assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2827514A (en) * 1955-05-19 1958-03-18 Mc Graw Edison Co Stereophonic reception
US2846521A (en) * 1957-07-18 1958-08-05 Beidler Sheppard Dual channel headset
US2946862A (en) * 1955-03-21 1960-07-26 Clark Co Inc David Ear protector and communication equipment
US2978543A (en) * 1955-05-23 1961-04-04 David F Kennedy Sound reproducing apparatus
US3450839A (en) * 1966-11-07 1969-06-17 Pm & E Electronics Inc Selective transducer apparatus for passenger vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2946862A (en) * 1955-03-21 1960-07-26 Clark Co Inc David Ear protector and communication equipment
US2827514A (en) * 1955-05-19 1958-03-18 Mc Graw Edison Co Stereophonic reception
US2978543A (en) * 1955-05-23 1961-04-04 David F Kennedy Sound reproducing apparatus
US2846521A (en) * 1957-07-18 1958-08-05 Beidler Sheppard Dual channel headset
US3450839A (en) * 1966-11-07 1969-06-17 Pm & E Electronics Inc Selective transducer apparatus for passenger vehicles

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969583A (en) * 1974-03-02 1976-07-13 Sennheiser Electronic Method of stereophonic recording
US3935401A (en) * 1974-08-29 1976-01-27 Shore Sidney X Earpiece for acoustic headset
US4243851A (en) * 1979-07-16 1981-01-06 Forney Robert B Ear cushioning device for headphones
US4347405A (en) * 1979-09-06 1982-08-31 Cbs Inc. Sound reproducing systems utilizing acoustic processing unit
FR2570050A1 (en) * 1984-07-20 1986-03-14 Messerschmitt Boelkow Blohm Passenger cabin management in aircraft
US4565258A (en) * 1984-08-07 1986-01-21 Butler Donald F Stereo headset system for use in a wet environment
US4649570A (en) * 1985-03-29 1987-03-10 Hughes Aircraft Company Headset receiver cartridge and earphone case therefor
US5257318A (en) * 1989-01-11 1993-10-26 Carroll Robert J Earphone spacer with electronically variable sound level
US5887070A (en) * 1992-05-08 1999-03-23 Etymotic Research, Inc. High fidelity insert earphones and methods of making same
USRE40696E1 (en) * 1992-05-08 2009-04-07 Etymotic Research, Inc. High fidelity insert earphones and methods of making same
USRE38351E1 (en) 1992-05-08 2003-12-16 Etymotic Research, Inc. High fidelity insert earphones and methods of making same
US5561275A (en) * 1994-04-28 1996-10-01 Delstar Services Informatiques (1993) Inc. Headset for electronic stethoscope
EP0885546A4 (en) * 1995-06-07 1999-11-17 Interval Research Corp Wearable audio system with enhanced performance
EP0890293A1 (en) * 1995-06-07 1999-01-13 Interval Research Corporation Sampled chamber transducer with enhanced low frequency response
EP0885546A1 (en) * 1995-06-07 1998-12-23 Interval Research Corporation Wearable audio system with enhanced performance
EP0890293A4 (en) * 1995-06-07 1999-11-17 Interval Research Corp Sampled chamber transducer with enhanced low frequency response
EP0852105A4 (en) * 1995-09-19 1999-11-17 Interval Research Corp Earphones with eyeglass attachments
EP0852104A4 (en) * 1995-09-19 1999-12-08 Interval Research Corp Acoustically transparent earphones
EP0852105A1 (en) * 1995-09-19 1998-07-08 Interval Research Corporation Earphones with eyeglass attachments
EP0852104A1 (en) * 1995-09-19 1998-07-08 Interval Research Corporation Acoustically transparent earphones
US6993144B1 (en) 1999-09-30 2006-01-31 Etymotic Research, Inc. Insert earphone assembly for audiometric testing and method for making same
US7298858B2 (en) 1999-09-30 2007-11-20 Etymotic Research, Inc. Insert earphone assembly for audiometric testing and method for making same
US6801633B2 (en) * 2001-01-25 2004-10-05 Dennis A. Tracy Subwoofer assembly
EP2595410A1 (en) * 2011-11-17 2013-05-22 Plastoform Industries Limited A wearable speaker system with satellite speakers and a passive radiator
US8818013B2 (en) 2011-11-17 2014-08-26 Plastoform Industries Limited Wearable speaker system with satellite speakers and a passive radiator
US9241209B2 (en) 2013-06-25 2016-01-19 Google Inc. Headphones with adaptable fit
USD743370S1 (en) 2013-06-25 2015-11-17 Google Inc. Headphone assembly
USD743932S1 (en) 2013-06-25 2015-11-24 Google Inc. Headphone assembly
USD742355S1 (en) 2013-06-25 2015-11-03 Google Inc. Headphone assembly
US10194229B2 (en) 2013-06-25 2019-01-29 Google Llc Headphones with adaptable fit
USD742356S1 (en) 2013-06-25 2015-11-03 Google Inc. Headphone assembly
US10506321B2 (en) 2013-06-25 2019-12-10 Google Llc Headphones with adaptable fit
USD806053S1 (en) * 2015-09-03 2017-12-26 Gn Netcom A/S Pair of headphones
USD890696S1 (en) 2017-07-21 2020-07-21 Google Llc Earbud charging case
USD867326S1 (en) 2017-07-21 2019-11-19 Google Llc Wireless earbuds
USD844586S1 (en) 2017-08-04 2019-04-02 Google Llc Audio assembly
USD894152S1 (en) 2017-08-04 2020-08-25 Google Llc Audio assembly
USD896781S1 (en) 2017-08-04 2020-09-22 Google Llc Audio assembly
USD921610S1 (en) 2017-08-04 2021-06-08 Google Llc Audio assembly
USD879075S1 (en) 2018-07-11 2020-03-24 Google Llc Earbud stand assembly

Similar Documents

Publication Publication Date Title
US3789164A (en) Earphone assembly
CN110495186B (en) Sound reproduction system and head-mounted device
US3488457A (en) Earphone housing with offset opening for sound quality variation
US5073936A (en) Stereophonic microphone system
JP2529933B2 (en) Sound reproduction method with realism and sound image
US4993074A (en) Earphone spacer
US6356644B1 (en) Earphone (surround sound) speaker
US3384719A (en) Stereophonic speaker arrangement
US9131311B2 (en) Canal phones with structure and method for selectively passing or blocking environmental ambient sound and switchable electrical connections
WO1989000802A1 (en) Extended imaging split mode loudspeaker system
US3939310A (en) Stereophonic headset with ear to ear acoustical passageway
US20090154738A1 (en) Mixable earphone-microphone device with sound attenuation
US3592978A (en) Stereo earphones
US6990210B2 (en) System for headphone-like rear channel speaker and the method of the same
EP0705053A2 (en) Headphone for surround sound effect
US10171930B1 (en) Localized audibility sound system
US3609240A (en) Stereophonic headphones
US3790711A (en) Sterophony - simulating earphone
JPH01314098A (en) Surround headphone
US6983054B2 (en) Means for compensating rear sound effect
US7050596B2 (en) System and headphone-like rear channel speaker and the method of the same
JPH0595591A (en) Acoustic reproducing system
JPH0715780A (en) Headphone
US20230362578A1 (en) System for reproducing sounds with virtualization of the reverberated field
JP3374731B2 (en) Binaural playback device, binaural playback headphones, and sound source evaluation method