US3787235A - Method of electrophotographic sensitive paper - Google Patents

Method of electrophotographic sensitive paper Download PDF

Info

Publication number
US3787235A
US3787235A US00291437A US3787235DA US3787235A US 3787235 A US3787235 A US 3787235A US 00291437 A US00291437 A US 00291437A US 3787235D A US3787235D A US 3787235DA US 3787235 A US3787235 A US 3787235A
Authority
US
United States
Prior art keywords
layer
paper
electroconductive
colloidal
employed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00291437A
Inventor
S Honjo
Y Tamai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Application granted granted Critical
Publication of US3787235A publication Critical patent/US3787235A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • G03G5/101Paper bases
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • G03G5/104Bases for charge-receiving or other layers comprising inorganic material other than metals, e.g. salts, oxides, carbon

Definitions

  • This invention relates to electrophotography and more specifically to electrophotographic members and methods for providing same.
  • a visible image may be formed by employing sensitized and unsensitized paper.
  • unsensitized paper an electrophotographic member, normally a photoconductive member, is charged, exposed, and developed and then the image so formed is transferred to the unsensitized paper and normally fused thereon using appropriate means.
  • a sensitized paper is employed which is charged and selectively illuminated and then developed.
  • Such electrophotographic sensitive paper or electrostatic recording paper medium usually comprises a base paper which is given a special treatment so as to acquire a high degree of electroconductivity in a particularly wide range of humidity and an insulative recording layer formed thereover by spreading or other means.
  • Treatments usually employed for conferring such electroconductivity are broadly divided into two classes: to oneclass belongs the methods by which such substances as hygroscopic inorganic salts, hygroscopic polyhydroxy compounds, cationic active agents, or quaternary ammonium salt polymers are caused to impregnate the fiber structure of the paper through its entire thickness; and the other class of treatment given for conferring electroconductivity is such that a continuous film of low resistance is formed on the surface of the Side closer to the recording layer.
  • the former compound may be used either alone or in combination.
  • Film forming agents may be employed such as polyacrylic acid, salts thereof or polyvinyl alcohol.
  • polyacrylic acid, salts thereof or polyvinyl alcohol since these substances have relativelylow electroconductivity in an environment having low humidity, recent methods hage come to employ polymers derived from monomers containing the structure of quaternary ammonium salts. Polymers of this type are able to form films which exhibit a high degree of electroconductivity in a wide range of humidity. It has been found, however, that where it is desired to obtain an image of continuous tone equivalent in quality to that of the conventional silver halide process by electrophotography, methods of treatment of the base paper known in the art often prove unsatisfactory in terms of performance. Inadequacy of performance is due to a number of problem areas which exhibit themselves in the unsatisfactory quality of reproduction obtained.
  • SUMMARY OF THE INVENTION comprising paper may be rendered suitable for the reproduction of continuous tone images.
  • Still another object of this invention is to provide a novel electrophotographic system.
  • Another object of this invention is to provide a novel method for producing electrophotographic paper.
  • an electrophotographic paper comprising treating a waterproofed paper with a processing liquid comprising colloidal silica and/or colloidal alumina having a non-volatile content of at least percent by weight forming on the treated surface of the base an electroconductive layer having as a principal ingredient a member selected from the group consisting of quaternary ammonium salt polymers, polyvinyl benzene sulfonic acid, and the water-soluble salt of said acid, then forming an electrophotographic sensitive layer on the electroconductive layer so obtained.
  • the water resistant layer is usually composed of clay in combination with materials, such as, starch, casein, styrenebutadiene copolymers or butadiene-acrylester copolymers serving as a binding agent. Since the aqueous solution of this resin possesses a high water repellence, it cannot be applied to the base because it is repelled very strongly. It is difficult to solve this problem by changing the solvent since any resin having high electroconductivity is sparingly soluble in organic solvents and, therefore, can only be dissolved using water so that a surface active agent may be employed to subdue or eliminate this repellence.
  • materials such as, starch, casein, styrenebutadiene copolymers or butadiene-acrylester copolymers serving as a binding agent.
  • the pigment layer is porous, the solution as spread is found to penetrate into the pigment layer more quickly and as a consequence thereof a laterally continuous film cannot be formed. Consequently, when an electrophotographic layer is formed thereon, there is observed a heavy deposition of toner particles in the areas of low charged density.
  • the system of the present invention contemplates employing a water type inorganic colloidal solution which when applied to a smooth water resistant layer may be spread thereon without being repelled at all and is able to fill voids present in the porous structure conferring strong hydrophillic properties to the surface thereof.
  • the aqueous solution of the resin to be employed having a high electroconductivity may be spread uniformly without resort to the use of a surface active agent. It is found that the film formed upon drying is perfectly continuous in the lateral direction.
  • the conductive paper base obtained as a result of the treatment has been found to have a smoothness equal to a plastic film covered by a layer of vacuum deposited metal and, consequently, may serve as an ideal base in the reproduction of continuous tone images.
  • colloidal silica and colloidal alumina are preferred. Of these two, colloidal alumina is found to form a film having a higher degree of electroconductivity than the silica film in a wide range of humidity conditions. It is, therefore, more desirable to employ colloidal alumina in an environment where there is a requirement for a base of particularly low resistance. Water dispersions of both colloidal alumina and colloidal silica are commercially available. If desired, a small quan tity of film forming substance may be added to the colloidal dispersion.
  • any such film forming substance to a maximum of up to about 30 percent by weight of the inorganic colloidal dispersion.
  • the film forming substance so added may be in the form of a water emulsion of a water-insoluble resin or of a resin which becomes insoluble upon hardening. Since colloidal silica offers a higher degree of colloidal stability, it is found to permit the incorporation of many substances without disturbing the dispersion. In the case of colloidal alumina, on the other hand, it is found desirable to employ the substance by itself.
  • the colloid may be employed in a concentration of about 0.1 grams (g) to 3 g per meter squared (M of the area covered and preferably from about 0.2g to about 1.5 g per M It is found in the case where the inorganic colloid is employed alone that a coating of excessive thickness is undesirable because the colloidal layer tends to form cracks and in subsequent coatings tends to become brittle and break.
  • binding agent is not added to the'inorganic colloidal layer since no advantage is gained by the addition thereof.
  • binding agents are normally preferred to be and are found to be water insoluble so that no particular advantages are obtained since the subsequent application of an electroconductive layer is accomplished normally with water. It is, therefore, found to be more desirable to use the colloidal solution, for example, colloidal silica or colloidal alumina by itself.
  • colloidal silica When colloidal silica is spread at a rate of about 1 g per M on the surface of a machine coat paper, the surface resistance upon drying is found to have a resistance of about 5 X 10 ohms per square in an atmosphere of about 40 percent relative humidity.
  • a coating of colloidal alumina spread at about the same concentration results in a surface resistance having a value decreased by a power of 100. It is permissible to incorporate into the inorganic colloidal layer a hydroscopic inorganic salt or a hydroscopic polyhydro compound.
  • colloidal alumina dispersions an electroconductive layer is obtained having highly desirable properties so that it is not necessary to incorporate such additives. Therefore, alumina dispersions are generally preferred.
  • the surface of the inorganic colloidal dispersions obtained are found to be highly hydrophillic and, therefore, is highly desirable for use in connection with an aqueous solution to be spread thereover.
  • the electroconductive layer applied thereover is accomplished with facility because it is a hydrophillic resinous layer. Any suitable hydrophillic resinous layer may be employed to provide the desired electroconductivity.
  • Cationic polymers obtained from monomers incorporated in the quaternary ammonium salt, polyvinyl benzene sulfonic acid and salts thereof, and sulfonates of polystyrene are preferred resins because they possess a high degree of electroconductivity over a wide range of humidities and form ideal surfaces capable of completely preventing permeation of organic solvents.
  • the resin solution is found to be spread easily on the surface without being repelled and does not penneate excessively into the porous layer of the surface, but results in a laterally continuous film.
  • the film of resinous material so applied is spread in a concentration of from about 1 g to about 4 g per M
  • Polyvinyl benzene potassium sulfonate . is a preferred resin because it forms a film more resistant to permeation of solvent than cationic polymer resins.
  • the electroconductive resin layer may also contain a polyhydric alcohol, a hygroscopic inorganic salt, a misicible resin having still higher resistance, and still other components.
  • Polyvinyl alcohol is particularly inexpensive and provides a satisfactory film and, therefore, is preferred for use over other additives. Since the addition of large quantities of substances, such as, polyvinyl alcohol which has a relatively low electroconductivity results in a degraded electroconductivity at lower humidities it is desirable to avoid the addition of such quantities.
  • FIG. 1 illustrates one embodiment of the electrophotographic sensitive paper produced in accordance with the system of the present invention.
  • FIG. 2 represents the same structure as seen in FIG. 1 with the exception that an extremely thin insulating barrier 21 has been added.
  • FIG. 3 represents the structure as illustrated in FIG. 1 with the exception that a highly electroconductive carbon layer 31 has been provided.
  • FIG. 1 is seen one embodiment of the electrophotographic sensitive paper of the present invention
  • the paper base 1 has coated thereover a clay layer 2 which may comprise a baryta layer or a machine coat layer or the like having coated thereover a film composed mainly of colloidal silica or colloidal alumina 3 having coated thereover an electroconductive water soluble resinous layer 4, and finally, having coated thereover an electroconductive sensitive layer 5.
  • a clay layer 2 which may comprise a baryta layer or a machine coat layer or the like having coated thereover a film composed mainly of colloidal silica or colloidal alumina 3 having coated thereover an electroconductive water soluble resinous layer 4, and finally, having coated thereover an electroconductive sensitive layer 5.
  • Layer 6 underlying the fibrous paper layer I is included to illustrate the application of a curl-balancing layer which may be employed when desired. When so employed this layer is selected so that it possess a high degree of electroconductivity.
  • FIG. 2 is seen the structure as illustrated in FIG. 1 with the exception that an extremely thin insulative barrier layer '21 is provided between layers 4 and 5. This layer is hardened and designed so as not to be dissolved by the solvent which is used in coating the sensitive layer 5.
  • FIG. 3 is seen a structure as illustrated in FIG. l with the exception that a highly electroconductive carbon layer 31 is provided below layer 2, the black color of the carbon layer being completely masked by layer 2.
  • a black electroconductive paint comprising a water emulsion of vinyl acetate resin and carbon black is spread on the non-art surface of a one face art paper having a thickness of about 90 microns.
  • To the art surface of a portion of this paper is applied about a 10 percent aqueous solution of polyvinyl benzene potassium sulfonate resulting in the appearance of small spot-- shaped beads repelled by the surface indicating that the solution may not be spread uniformly thereover.
  • To another portion of the paper the same solution is coated with the addition of a small quantity of surface active agent resulting in greatly improved wettability.
  • the film after drying has no luster indicating that the solution has penetrated into the clay layer.
  • a water dispersion containing colloidal alumina at about 5 percent by weight is spread to a concentration of about 0.5 g per M on the art layer and then dried. Over this is spread the 10 percent aqueous solution of polyvinyl benzene potassium sulfonate as previously used resulting in an extremely smooth uniform film.
  • An electrophotographic sensitive layer comprising zinc oxide and an alkyd resin is spread with toluene over the polyvinyl benzene potassium sulfonate layer over portions of the paper both treated and not treated with the colloidal alumina. The material is then dried and adapted to darkness.
  • EXAMPLE II A water dispersion of colloidal alumina is spread to a concentration of about 1 g per M on both surfaces of a two surface art paper having a thickness of about microns.
  • Calgon Conductive Polymer 261 a 40 percent aqueous solution of a conductive polymer having the formula:
  • CH3 CH3 Cli is diluted with water and applied to only one side of the surfaces resulting in an extremely smooth surface. To this is applied an electrophotographic layer similar to that as described in 'Example I. When the paper is imaged as in Example I, an excellent reproduction of a continuous tome image is obtained.
  • EXAMPLE III The same procedure as outlined in Example I is performed with the exception that colloidal silica is used in place of colloidal alumina and the electroconductive layer comprising polyvinyl benzene potassium sulfomate is substituted by a film comprising about 10 parts of polyvinyl benzene potassium sulfonate and about 10 parts of glycerin.
  • colloidal silica is used in place of colloidal alumina and the electroconductive layer comprising polyvinyl benzene potassium sulfomate is substituted by a film comprising about 10 parts of polyvinyl benzene potassium sulfonate and about 10 parts of glycerin.
  • Example IV The method as outlined in Example II is performed with the exception that the colloidal alumina is substituted by a mixture of 8 parts of colloidal silica with about 2 parts of polyvinyl alcohol. When employed in an imaging process as in Example I there is obtained an excellent continuous tone image.
  • EXAMPLE V An electrophotographic paper is provided as in Example I with the exception that an insulative layer having the thickness of about 1 micron comprising a mixture of styrene-maleic anhydride copolymer with epoxy resin is formed on the electroconductive layer of polyvinyl benzene potassium sulfonate prior to the formation of the electrophotographic sensitive layer, heated at about 80 C for about I hour and then coated with the sensitive layer.
  • an excellent reproduction of a continuous tone image is obtained.
  • EXAMPLE VI A layer comprising gelatin and carbon black is applied to one surface of paper. Over this layer is applied a baryta layer such as that generally employed in photographic printing paper. This paper is then treated as in Example I with a colloidal dispersion and then coated as in Example I with an electroconductive layer and then finally with an electrophotographic sensitive layer. This electrophotographic sensitive paper when imaged as in Example I results in an extremely high quality reproduction when liquid development is employed.
  • EXAMPLE VII A solution comprising about 10 parts alumina sol, and 90 parts methanol is spread on the art layer of a one surface art paper having a weight of about I to g per M so that upon drying the weight of the coating is found to be about 2 g per M About a 10 percent aqueous solution of polyvinyl benzene potassium sulfonated is spread thereover forming an extremely smooth film. Over this electroconductive layer an electrophotographic sensitive layer similar to that of Example I is formed. When imaged employing techniques as employed in Example I, an excellent reproduction of a continuous tone image is obtained.
  • any of the above listed typical materals may be substituted when suitable in the above examples with similar results.
  • steps or modifications may be used if desirable.
  • other layers may be employed to the non-imaging surface of the electrophotographic paper to desirably adjust colloidal properties.
  • other materials may be incorporated in the system of the present invention which will enhance, synergize or otherwise desirably affect the properties of the systems for their present use.
  • other layers employed on the imaging surface may also be applied to the underside ornon-image surface of the paper as desired.
  • a waterproofed paper substrate having coated on at least one surface thereof an inorganic colloidal oxide resin, the inorganic colloidal oxide resin being further overcoated with an electroconductive hydrophillic resinous layer, said electroconductive layer being further overcoated with an photoconductive insulating layer,
  • the improvement comprising providing the uncoated surface of the paper substrate with an electroconductive curl-balancing layer.
  • a waterproofed paper substrate having coated on at least one surface thereof an inorganic colloidal oxide resin, the inorganic colloidal oxide being further overcoated with an electroconductive hydrophillic resinous layer, said electroconductive layer being further overcoated with a photoconductive insulating layer,
  • the improvement comprising providing an electrically insulating barrier layer interposed between the photoconductive insulating layer and the electroconductive layer.

Abstract

Electrophotographic paper is provided which comprises a waterproof paper treated with inorganic colloidal oxide dispersion having an electroconductive layer coated on the treated surface and a photoconductive insulating layer residing on the surface of the electroconductive layer.

Description

lllonjo et al.
METHOD OF ELECTROPHOTOGRAPHIC SENSITIVE PAPER Inventors: Satoru Honjo; Ya suo Tamai, both of Osaka, Japan Assignee: Xerox Corporation, Stamford,
Conn.
Filed: Sept. 22, 1972 -Appl. No.: 291,437
Related US. Application Data Division of Ser. No. 52,311, July 6, 1970, Pat, No. 3,720,514.
US. Cl 117/218, 96/l.5, 117/200, 117/213,162/138 Int. Cl B44d 1/18, G03g 5/00, B44d 1/10 Field of Search 117/218; 96/1.5; 162/138,181, 162/181 C References Cited UNlTED STATES PATENTS 12/1966 Lucken 162/138 X 12/1970 Boothe et al. 12/1961 Silvernail et al. 162/138 X 11 3,787,35 [451 Jan. 22', 19M
3,493,427 2/1970 Fakagi et al. 96/1 X 1,230,095 2/1916 Baum ..'162/18l X 2,340,728 2/1944 Baker et al. 162/181 X OTHER PUBLICATIONS Hackhs Chemical Dictionary, 1969, page 614. Labarre, A Dictionary of Paper and Paper-Making Terms, 1936, page 232.
Rowland et al., The Alumina Content of Rosin-Free Hard-Sheets in Relation to Tub Sizing, Paper Trade Journal; Vol. 119; No. 20, Nov. 16, 1944; pages Primary ExaminerJ. Travis Brown Assistant ExaminerJohn R. Miller Attorney, Agent, or FirmJames J. Ralabate et al.
2 Claims, 3 Drawing Figures METHOD OF ELECTROPHOTOGRAlPll-ITC SENSITIVE PAPER This application is a divisional of co-pending application Ser. No. 52,31 1, filed July 6, 1970, now US. Pat. No. 3,720,514.
- BACKGROUND OF THE INVENTION This invention relates to electrophotography and more specifically to electrophotographic members and methods for providing same. I
'In the well known art of electrophotography, commonly called xerography, more fully described in US. Pat. No. 2,296,671, it is known that a visible image may be formed by employing sensitized and unsensitized paper. Where unsensitized paper is employed an electrophotographic member, normally a photoconductive member, is charged, exposed, and developed and then the image so formed is transferred to the unsensitized paper and normally fused thereon using appropriate means. When it is desired to form an image directly on the paper eliminating the transfer step a sensitized paper is employed which is charged and selectively illuminated and then developed. Such electrophotographic sensitive paper or electrostatic recording paper medium usually comprises a base paper which is given a special treatment so as to acquire a high degree of electroconductivity in a particularly wide range of humidity and an insulative recording layer formed thereover by spreading or other means. Treatments usually employed for conferring such electroconductivity are broadly divided into two classes: to oneclass belongs the methods by which such substances as hygroscopic inorganic salts, hygroscopic polyhydroxy compounds, cationic active agents, or quaternary ammonium salt polymers are caused to impregnate the fiber structure of the paper through its entire thickness; and the other class of treatment given for conferring electroconductivity is such that a continuous film of low resistance is formed on the surface of the Side closer to the recording layer. The former compound may be used either alone or in combination. Film forming agents may be employed such as polyacrylic acid, salts thereof or polyvinyl alcohol. However, since these substances have relativelylow electroconductivity in an environment having low humidity, recent methods hage come to employ polymers derived from monomers containing the structure of quaternary ammonium salts. Polymers of this type are able to form films which exhibit a high degree of electroconductivity in a wide range of humidity. It has been found, however, that where it is desired to obtain an image of continuous tone equivalent in quality to that of the conventional silver halide process by electrophotography, methods of treatment of the base paper known in the art often prove unsatisfactory in terms of performance. Inadequacy of performance is due to a number of problem areas which exhibit themselves in the unsatisfactory quality of reproduction obtained.
When it is desired to obtain a continuous tone image by developing an electrostaticlatent image employing a liquid developing agent comprising extremely fine toner particles, it is found that the nature of the base employed affects the highlight areas of the reproduction so obtained. If the base employed has insufficient smoothness or the electroconductive film is not a complete continuous film in the lateral direction, it is found that the highlight area. for example fails to be developed to a low density uniformly. This is caused by the toner depositing in fine-or finer areas to a relatively higher denisty apparently in conformity to the structure of the base giving rise to an extremely objectionable appearance. It is found that if the smoothness and electrical quality of the base are not adequate there may result a slight variation in thickness and electrostatic capacity of the sensitive layer which may cause corona discharge depriving the surface charge density of uniformity and, consequently, making photosensitivity nonuniform. This absence of uniformity becomes conspicuous when substantially all surface charge is removed and only a small portion of it is permitted to remain as a consequence of exposure to light. This explanation is found to agree with experimentation and satisfactorily explains why such unevenness is observed clearly in about two stages of the highlight area having a very low density and not observed either in the area of high density or in the completely discharged or when, for example, an optical wedge is developed on an electrophotographic sensitive paper. That roughness of the highlight area of the print obtained will substantially affect the clarity of the print is known. This shortcoming tends to become detrimentally conspicuous particularly when obtaining a multi-color image with continuous tone as compared with a monochromatic image. In order to remedy this problem, i.e. to obtain adequate smoothness of the paper base and the proper electroconductive properties, a polished metal layer or a vacuum deposited metal overlying a smooth plastic base or the like may be employed. Thus, it is seen that a base having a high smoothness and extremely high degree of electroconductivity is particularly preferable for the reproduction of continuoustone images. However, it is extremely difficult to fabricate such a base from paper material which is porous and characteristically has fiber-like rough surfaces and is inherently less electroconductive than metals.
SUMMARY OF THE INVENTION comprising paper may be rendered suitable for the reproduction of continuous tone images.
Still another object of this invention is to provide a novel electrophotographic system.
Yet, another object of this invention is to provide a novel method for producing electrophotographic paper.
These and other objects are accomplished in accordance with the system 'of the present invention by providing an electrophotographic paper comprising treating a waterproofed paper with a processing liquid comprising colloidal silica and/or colloidal alumina having a non-volatile content of at least percent by weight forming on the treated surface of the base an electroconductive layer having as a principal ingredient a member selected from the group consisting of quaternary ammonium salt polymers, polyvinyl benzene sulfonic acid, and the water-soluble salt of said acid, then forming an electrophotographic sensitive layer on the electroconductive layer so obtained. It is known that to provide water resistance to paper generally involves the impregnation by a water resistant binding agent and inorganic pigment particles, such as, for example, clay or barium sulfate, resulting in a water resistant paper which when immersed in an organic solvent, is found not to substantially impede the penetration by organic solvents. Further, such water resistant paper as above described has been shown to provide insufficient electroconductivity and, therefore, is found to be unsuitable without further modification as a base paper for electrophotography. In order to improve the electroconductivity of the base paper, a resin layer is provided which overlies the water resistant layer. The water resistant layer is usually composed of clay in combination with materials, such as, starch, casein, styrenebutadiene copolymers or butadiene-acrylester copolymers serving as a binding agent. Since the aqueous solution of this resin possesses a high water repellence, it cannot be applied to the base because it is repelled very strongly. It is difficult to solve this problem by changing the solvent since any resin having high electroconductivity is sparingly soluble in organic solvents and, therefore, can only be dissolved using water so that a surface active agent may be employed to subdue or eliminate this repellence. Since the pigment layer is porous, the solution as spread is found to penetrate into the pigment layer more quickly and as a consequence thereof a laterally continuous film cannot be formed. Consequently, when an electrophotographic layer is formed thereon, there is observed a heavy deposition of toner particles in the areas of low charged density.
Without resorting to constant adjustment as hereinbefore mentioned the system of the present invention contemplates employing a water type inorganic colloidal solution which when applied to a smooth water resistant layer may be spread thereon without being repelled at all and is able to fill voids present in the porous structure conferring strong hydrophillic properties to the surface thereof. The aqueous solution of the resin to be employed having a high electroconductivity may be spread uniformly without resort to the use of a surface active agent. It is found that the film formed upon drying is perfectly continuous in the lateral direction. Although it is seen that a two step treatment is involved, the conductive paper base obtained as a result of the treatment has been found to have a smoothness equal to a plastic film covered by a layer of vacuum deposited metal and, consequently, may serve as an ideal base in the reproduction of continuous tone images.
Although any suitable inorganic colloidal solution may be employed in the system of the present invention, colloidal silica and colloidal alumina are preferred. Of these two, colloidal alumina is found to form a film having a higher degree of electroconductivity than the silica film in a wide range of humidity conditions. It is, therefore, more desirable to employ colloidal alumina in an environment where there is a requirement for a base of particularly low resistance. Water dispersions of both colloidal alumina and colloidal silica are commercially available. If desired, a small quan tity of film forming substance may be added to the colloidal dispersion. However, it is preferred to control the addition of any such film forming substance to a maximum of up to about 30 percent by weight of the inorganic colloidal dispersion. The film forming substance so added may be in the form of a water emulsion of a water-insoluble resin or of a resin which becomes insoluble upon hardening. Since colloidal silica offers a higher degree of colloidal stability, it is found to permit the incorporation of many substances without disturbing the dispersion. In the case of colloidal alumina, on the other hand, it is found desirable to employ the substance by itself. The colloid may be employed in a concentration of about 0.1 grams (g) to 3 g per meter squared (M of the area covered and preferably from about 0.2g to about 1.5 g per M It is found in the case where the inorganic colloid is employed alone that a coating of excessive thickness is undesirable because the colloidal layer tends to form cracks and in subsequent coatings tends to become brittle and break.
In the normal course of manufacture, a binding agent is not added to the'inorganic colloidal layer since no advantage is gained by the addition thereof. Such binding agents are normally preferred to be and are found to be water insoluble so that no particular advantages are obtained since the subsequent application of an electroconductive layer is accomplished normally with water. It is, therefore, found to be more desirable to use the colloidal solution, for example, colloidal silica or colloidal alumina by itself.
When colloidal silica is spread at a rate of about 1 g per M on the surface of a machine coat paper, the surface resistance upon drying is found to have a resistance of about 5 X 10 ohms per square in an atmosphere of about 40 percent relative humidity. A coating of colloidal alumina spread at about the same concentration results in a surface resistance having a value decreased by a power of 100. It is permissible to incorporate into the inorganic colloidal layer a hydroscopic inorganic salt or a hydroscopic polyhydro compound. However, in the case of colloidal alumina dispersions an electroconductive layer is obtained having highly desirable properties so that it is not necessary to incorporate such additives. Therefore, alumina dispersions are generally preferred.
The surface of the inorganic colloidal dispersions obtained are found to be highly hydrophillic and, therefore, is highly desirable for use in connection with an aqueous solution to be spread thereover. The electroconductive layer applied thereover is accomplished with facility because it is a hydrophillic resinous layer. Any suitable hydrophillic resinous layer may be employed to provide the desired electroconductivity. Cationic polymers obtained from monomers incorporated in the quaternary ammonium salt, polyvinyl benzene sulfonic acid and salts thereof, and sulfonates of polystyrene are preferred resins because they possess a high degree of electroconductivity over a wide range of humidities and form ideal surfaces capable of completely preventing permeation of organic solvents. In addition, where a pretreatment is made such as with alumina colloid, the resin solution is found to be spread easily on the surface without being repelled and does not penneate excessively into the porous layer of the surface, but results in a laterally continuous film. The film of resinous material so applied is spread in a concentration of from about 1 g to about 4 g per M Polyvinyl benzene potassium sulfonate .is a preferred resin because it forms a film more resistant to permeation of solvent than cationic polymer resins. The electroconductive resin layer may also contain a polyhydric alcohol, a hygroscopic inorganic salt, a misicible resin having still higher resistance, and still other components. Polyvinyl alcohol is particularly inexpensive and provides a satisfactory film and, therefore, is preferred for use over other additives. Since the addition of large quantities of substances, such as, polyvinyl alcohol which has a relatively low electroconductivity results in a degraded electroconductivity at lower humidities it is desirable to avoid the addition of such quantities.
The general nature of the invention having been set forth, the invention will now be described illustratively in terms of the following specification and the drawings in which:
FIG. 1 illustrates one embodiment of the electrophotographic sensitive paper produced in accordance with the system of the present invention.
FIG. 2 represents the same structure as seen in FIG. 1 with the exception that an extremely thin insulating barrier 21 has been added.
FIG. 3 represents the structure as illustrated in FIG. 1 with the exception that a highly electroconductive carbon layer 31 has been provided.
In FIG. 1 is seen one embodiment of the electrophotographic sensitive paper of the present invention,
wherein the paper base 1 has coated thereover a clay layer 2 which may comprise a baryta layer or a machine coat layer or the like having coated thereover a film composed mainly of colloidal silica or colloidal alumina 3 having coated thereover an electroconductive water soluble resinous layer 4, and finally, having coated thereover an electroconductive sensitive layer 5. Layer 6 underlying the fibrous paper layer I is included to illustrate the application of a curl-balancing layer which may be employed when desired. When so employed this layer is selected so that it possess a high degree of electroconductivity.
In FIG. 2 is seen the structure as illustrated in FIG. 1 with the exception that an extremely thin insulative barrier layer '21 is provided between layers 4 and 5. This layer is hardened and designed so as not to be dissolved by the solvent which is used in coating the sensitive layer 5.
In FIG. 3 is seen a structure as illustrated in FIG. l with the exception that a highly electroconductive carbon layer 31 is provided below layer 2, the black color of the carbon layer being completely masked by layer 2.
DESCRIPTION OF THE PREFERRED EMBODIMENTS To further define the specifics of the present invention the following examples are intended to illustrate and not limit the particulars of the present system. Parts and percentages are by weight unless otherwise indicated.
EXAMPLE I A black electroconductive paint comprising a water emulsion of vinyl acetate resin and carbon black is spread on the non-art surface of a one face art paper having a thickness of about 90 microns. To the art surface of a portion of this paper is applied about a 10 percent aqueous solution of polyvinyl benzene potassium sulfonate resulting in the appearance of small spot-- shaped beads repelled by the surface indicating that the solution may not be spread uniformly thereover. To another portion of the paper the same solution is coated with the addition of a small quantity of surface active agent resulting in greatly improved wettability. However, it is found that the film after drying has no luster indicating that the solution has penetrated into the clay layer. To a third portion of this paper a water dispersion containing colloidal alumina at about 5 percent by weight is spread to a concentration of about 0.5 g per M on the art layer and then dried. Over this is spread the 10 percent aqueous solution of polyvinyl benzene potassium sulfonate as previously used resulting in an extremely smooth uniform film. An electrophotographic sensitive layer comprising zinc oxide and an alkyd resin is spread with toluene over the polyvinyl benzene potassium sulfonate layer over portions of the paper both treated and not treated with the colloidal alumina. The material is then dried and adapted to darkness. When both portions of the paper are charged and exposed utilizing methods as hereinbefore described and developed employing a liquid developing agent, it is found that on the treated paper the uniformity of density in the low density area is very good wherein in the case of the untreated paper, uneven density is conspicuously present in the low density areas.
EXAMPLE II A water dispersion of colloidal alumina is spread to a concentration of about 1 g per M on both surfaces of a two surface art paper having a thickness of about microns. Calgon Conductive Polymer 261, a 40 percent aqueous solution of a conductive polymer having the formula:
CH3 CH3 Cli is diluted with water and applied to only one side of the surfaces resulting in an extremely smooth surface. To this is applied an electrophotographic layer similar to that as described in 'Example I. When the paper is imaged as in Example I, an excellent reproduction of a continuous tome image is obtained.
EXAMPLE III The same procedure as outlined in Example I is performed with the exception that colloidal silica is used in place of colloidal alumina and the electroconductive layer comprising polyvinyl benzene potassium sulfomate is substituted by a film comprising about 10 parts of polyvinyl benzene potassium sulfonate and about 10 parts of glycerin. When this paper is imaged as in Example I, an excellent continuous tone image is obtained.
EXAMPLE IV The method as outlined in Example II is performed with the exception that the colloidal alumina is substituted by a mixture of 8 parts of colloidal silica with about 2 parts of polyvinyl alcohol. When employed in an imaging process as in Example I there is obtained an excellent continuous tone image.
EXAMPLE V An electrophotographic paper is provided as in Example I with the exception that an insulative layer having the thickness of about 1 micron comprising a mixture of styrene-maleic anhydride copolymer with epoxy resin is formed on the electroconductive layer of polyvinyl benzene potassium sulfonate prior to the formation of the electrophotographic sensitive layer, heated at about 80 C for about I hour and then coated with the sensitive layer. When this paper is imaged utilzing techniques similar to those as employed in Example I, an excellent reproduction of a continuous tone image is obtained.
EXAMPLE VI A layer comprising gelatin and carbon black is applied to one surface of paper. Over this layer is applied a baryta layer such as that generally employed in photographic printing paper. This paper is then treated as in Example I with a colloidal dispersion and then coated as in Example I with an electroconductive layer and then finally with an electrophotographic sensitive layer. This electrophotographic sensitive paper when imaged as in Example I results in an extremely high quality reproduction when liquid development is employed.
EXAMPLE VII A solution comprising about 10 parts alumina sol, and 90 parts methanol is spread on the art layer of a one surface art paper having a weight of about I to g per M so that upon drying the weight of the coating is found to be about 2 g per M About a 10 percent aqueous solution of polyvinyl benzene potassium sulfonated is spread thereover forming an extremely smooth film. Over this electroconductive layer an electrophotographic sensitive layer similar to that of Example I is formed. When imaged employing techniques as employed in Example I, an excellent reproduction of a continuous tone image is obtained.
Although the present examples were specific in terms of conditions and materials used, any of the above listed typical materals may be substituted when suitable in the above examples with similar results. In addition to the steps used to carry out the process of the present invention, other steps or modifications may be used if desirable. For example, other layers may be employed to the non-imaging surface of the electrophotographic paper to desirably adjust colloidal properties. In addition, other materials may be incorporated in the system of the present invention which will enhance, synergize or otherwise desirably affect the properties of the systems for their present use. For example, other layers employed on the imaging surface may also be applied to the underside ornon-image surface of the paper as desired.
Anyone skilled in the art will have other modifications occur to him based on the teachings of the present invention. These modifications are intended to be encompassed within the scope of this invention.
What is claimed is:
1. In a method for preparation of an electrophoto graphic paper suitable for use in continuous tone imaging wherein a waterproofed paper substrate is provided having coated on at least one surface thereof an inorganic colloidal oxide resin, the inorganic colloidal oxide resin being further overcoated with an electroconductive hydrophillic resinous layer, said electroconductive layer being further overcoated with an photoconductive insulating layer,
the improvement comprising providing the uncoated surface of the paper substrate with an electroconductive curl-balancing layer.
2. In a process for preparation of an electroconductive paper suitable for use in continuous tone imaging wherein a waterproofed paper substrate is provided having coated on at least one surface thereof an inorganic colloidal oxide resin, the inorganic colloidal oxide being further overcoated with an electroconductive hydrophillic resinous layer, said electroconductive layer being further overcoated with a photoconductive insulating layer,
the improvement comprising providing an electrically insulating barrier layer interposed between the photoconductive insulating layer and the electroconductive layer.
UNITED STATES PATENT OFFICE CERTIFICATE UF CURREUHUN Patent No. 37 7735 Dated January 22 1974 Inventor(s) Satoru Honjo; Yasuo Tamai It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
1. Column 1, line 46The word "hage" should be-have--.
2 Column 2 line 4-The word "denisty" should be--density 3. Column 6, line 56The word "tome" should be-tone---.
4.. Column 7, line l9-The word "utilzing" should be -utilizing.
Signed and sealed this 17th day of September 1974,
(SEAL) Attest:
McCQY M. GIBSON JR. C. MARSHLL DANN Attesting Officer Commissioner of Patents M O 1050 (10 69) USCOMM-DC 60376-P69 fi u.s4 GOVERNMENT PRINTING OFFICE 1969 0-366-334.

Claims (1)

  1. 2. In a process for preparation of an electroconductive paper suitable for use in continuous tone imaging wherein a waterproofed paper substrate is provided having coated on at least one surface thereof an inorganic colloidal oxide resin, the inorganic colloidal oxide being further overcoated with an electroconductive hydrophillic resinous layer, said electroconductive layer being further overcoated with a photoconductive insulating layer, the improvement comprising providing an electrically insulating barrier layer interposed between the photoconductive insulating layer and the electroconductive layer.
US00291437A 1970-07-06 1972-09-22 Method of electrophotographic sensitive paper Expired - Lifetime US3787235A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5231170A 1970-07-06 1970-07-06
US29143772A 1972-09-22 1972-09-22

Publications (1)

Publication Number Publication Date
US3787235A true US3787235A (en) 1974-01-22

Family

ID=26730453

Family Applications (1)

Application Number Title Priority Date Filing Date
US00291437A Expired - Lifetime US3787235A (en) 1970-07-06 1972-09-22 Method of electrophotographic sensitive paper

Country Status (1)

Country Link
US (1) US3787235A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037017A (en) * 1975-12-08 1977-07-19 Hercules Incorporated Electroconductive paper
US4272569A (en) * 1977-08-24 1981-06-09 Allied Paper Incorporated Water and solvent resistant coated paper and method for making the same
US4293629A (en) * 1977-08-24 1981-10-06 Allied Paper Incorporated Electrostatic master and method for making the same
US4304626A (en) * 1977-08-24 1981-12-08 Allied Paper Incorporated Method for making water and solvent resistant paper
US4400440A (en) * 1981-01-02 1983-08-23 Allied Paper Incorporated Electrostatic paper base and method of making the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1230095A (en) * 1916-02-11 1917-06-19 James E Baum Jr Paper.
US2340728A (en) * 1939-06-28 1944-02-01 Philadelphia Quartz Co Method of sizing paper
US3011918A (en) * 1959-05-29 1961-12-05 Dow Chemical Co Electroconductive coated paper and method of making the same
US3293115A (en) * 1964-03-20 1966-12-20 Riegel Paper Corp Process for impregnating paper while partially dry with a quaternized resin polyelectrolyte and a clay coating
US3493427A (en) * 1963-07-06 1970-02-03 Fujitsu Ltd Recording body for electrostatic recording
US3544318A (en) * 1965-06-09 1970-12-01 Calgon C0Rp Electroconductive paper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1230095A (en) * 1916-02-11 1917-06-19 James E Baum Jr Paper.
US2340728A (en) * 1939-06-28 1944-02-01 Philadelphia Quartz Co Method of sizing paper
US3011918A (en) * 1959-05-29 1961-12-05 Dow Chemical Co Electroconductive coated paper and method of making the same
US3493427A (en) * 1963-07-06 1970-02-03 Fujitsu Ltd Recording body for electrostatic recording
US3293115A (en) * 1964-03-20 1966-12-20 Riegel Paper Corp Process for impregnating paper while partially dry with a quaternized resin polyelectrolyte and a clay coating
US3544318A (en) * 1965-06-09 1970-12-01 Calgon C0Rp Electroconductive paper

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Hackh s Chemical Dictionary, 1969, page 614. *
Labarre, A Dictionary of Paper and Paper Making Terms, 1936, page 232. *
Rowland et al., The Alumina Content of Rosin Free Hard Sheets in Relation to Tub Sizing, Paper Trade Journal; Vol. 119; No. 20, Nov. 16, 1944; pages 199 203. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037017A (en) * 1975-12-08 1977-07-19 Hercules Incorporated Electroconductive paper
US4272569A (en) * 1977-08-24 1981-06-09 Allied Paper Incorporated Water and solvent resistant coated paper and method for making the same
US4293629A (en) * 1977-08-24 1981-10-06 Allied Paper Incorporated Electrostatic master and method for making the same
US4304626A (en) * 1977-08-24 1981-12-08 Allied Paper Incorporated Method for making water and solvent resistant paper
US4400440A (en) * 1981-01-02 1983-08-23 Allied Paper Incorporated Electrostatic paper base and method of making the same

Similar Documents

Publication Publication Date Title
US5340676A (en) Imaging element comprising an electrically-conductive layer containing water-insoluble polymer particles
US4579801A (en) Electrophotographic photosensitive member having phenolic subbing layer
GB2048719A (en) Transfer film for electrostatic photography and method for preparing original for projection using said transfer film
US3394001A (en) Electrophotographic sensitive material containing electron-donor dye layers
US3329590A (en) Electrolytic development of a subtractive color-forming photoconductive member
US4571371A (en) Electrophotographic photosensitive layer comprising silicone compound leveling agent
US4256822A (en) Electrophotographic plate containing quaternary ammonium salt polymer interlayer
US3753709A (en) Crosslinked resin overcoated electrophotographic elements useful in lithography
US3740217A (en) Photoconductive coating employing an imbibed conductive interlayer
US3787235A (en) Method of electrophotographic sensitive paper
US3720514A (en) Electrophotographic paper having an inorganic colloidal oxide coating
US3745002A (en) Method of preparing a printing master by xerography
US3656949A (en) Method of producing an electrophotographic and electrographic recording member
US3743537A (en) Method of making an electrophotographic recording member
US4937163A (en) Imaging member and processes thereof
US3808026A (en) Liquid development of electrostatic latent image
US3476659A (en) Electrophotographic imaging and copying process
US3758327A (en) Transfer of liquid developed electrographic images
US3773507A (en) Electrophotographic reversal development process employing a pre-toner
EP1672007B1 (en) Imaging member
US4374916A (en) Electrically conductive interlayer for electrically activatable recording element and process
US3672988A (en) Method of manufacturing bases for electrostatic recording material or electrophotographic material
US4692392A (en) Color electrophotographic process uses layered photosensitive element having conductive film on side portion
US3681065A (en) Dye transfer color electrophotography
US3867145A (en) Methanol and heat treated zinc oxide