US3774317A - Ultrasonic instructional kit, method and apparatus - Google Patents

Ultrasonic instructional kit, method and apparatus Download PDF

Info

Publication number
US3774317A
US3774317A US00110401A US3774317DA US3774317A US 3774317 A US3774317 A US 3774317A US 00110401 A US00110401 A US 00110401A US 3774317D A US3774317D A US 3774317DA US 3774317 A US3774317 A US 3774317A
Authority
US
United States
Prior art keywords
ultrasonic
light
motion
magnet
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00110401A
Inventor
L Balamuth
A Kuris
A Farina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ultrasonic Systems Inc
Original Assignee
Ultrasonic Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ultrasonic Systems Inc filed Critical Ultrasonic Systems Inc
Application granted granted Critical
Publication of US3774317A publication Critical patent/US3774317A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/24Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for chemistry
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/06Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/36Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for zoology

Definitions

  • This invention relates to a new and improved instructional device as well as the method of demonstrating various principles in the field'of physics, biology and chemistry. To-this' end, the..device' isprovidedin' the form of 'a kit to be used, by thein'structo'r or student in apublic school, high school, or colle 'ge level.
  • the present; invention furtherpermits the introduction into the science curriculum of the student a teach ing of highfrequency mechanical vibrations in the ultrasonic frequency range to demonstrate someof the novel characteristics attributable'to vibrations at this frequency and so that a teaching of. high frequency mechanical vibrations. can be, obtained by the student.
  • the introduction or education in the field of ultrasonic energy has been generally limited tothe college level and only a' few colleges inthe country, to the knowledge of the inventors, offer any curriculum in the'field of ultrasonic.mechanicalvibrations.
  • the present apparatus permits" the user to obtain anactual working knowledgeof various-characteristics attributable to the "field of ultrasound and permits the user to experiment with same during his early educationaltrainin'g so as to be better equipped to understand and apply ultrasonic energy to a number of problems that might arise during his workingcareer.
  • the presentxinvention permits for the first time to have'available in the form of a kit, as well as apparatus,
  • the chart illustrates the utilization of the ultrasonic instructional device with respect to three particular areas of science; namely, physics, chemistry, and biology.
  • the chart is not intended to be all inclusive but merely to outline the general utility of the present invention and to show that it does relate to a number of various specific aspects in the field of physics, chemistry, and biology.
  • other applications are continuously being developed for the utilization of the present invention and the list is not intended to be all inclusive but, once again, merely indicative of the innumerable uses thereof.
  • DEMONSTRATIONS/EXPERIMENTS Physics 7 Zone of motion effect due to acceleration of thousands of gs '2. Atom'ization num foil) 2. fi Direct conversion of elastic energy into heat 5 Pumping action of ultrasound vibrations 6'. Magnetism plus electricity to produce motion 1 7. Cavitation in a liquid (sound transmission in water) 8. Ultrasonic wind 9. Degassing or Effervescence Chemistry l0. Accelerating'hydration (dissolving sugar in water) I i l. Ionization 7 12. Reduction of PH (Irradiation of CCL in H O to turn blue litmus paper red) l3. Colloidal production (Tyndalleffect) l4. Reversible viscosity of gelatin (accelerated syneresis) l5.
  • Emulsification e.g., lipids (fats, oils, waxes) l6. Degassing or Effervescence 17. Polymerization l8. Catalysis l9. Accelerated hydrolysis 20.- Acceleration of chemical reactions (electrolysis process) 21. Reduction of Iodine 22 Cavitation in aliquid Biology 23 Accelerating hydration (dissolving sugar in water) 24'. Emulsification; e.g., lipids (fats, oils, waxes) 25. Accelerated hydrolysis 26; Sterilization 27. Acceleration of diffusion through a permeable membrane (osmosis) 28. Cell disruption 29. Cytolysis 30 Disruption of tissue culture cells subsequent to enzyme studies 31. Disruption of bacteria to yield intact mitochondria' 32. Disruption of bacteria for the study of viral replication 33. Parasitic extraction; e.g., virus from host cells 34. Disaggregation of clodding materials; e.g., algae,
  • an educational kit includes essentially a converter for providing electrical current at an ultrasonic rate and adapted to be connected with an ultrasonic motor which converts electrical energy by a transducer contained therein to high frequency mechanical energy in the ultrasonic rate.
  • a plurality of accessories are provided that are adapted to be connected to the output end of the motor such that ultrasonic vibrations are transmitted to the respective accessory coupled to the motor.
  • interchangeable elements are provided that'are adapted to be removably secured to any accessory for transmission of the ultrasonic vibrations.
  • the removable elements take various shapes and forms depending upon the demonstration to be illustrated.
  • kits may be quickly and easily assembled such that either a male or female instructor can easily prepare the kit to perform the desired demonstration and/or experiment.
  • the particular accessories may be of s'ufficient size so that it may be viewed by a number of students at the same time in a classroom.
  • the kit may be assembled by the student such that one or more students may individually or together carry out various demonstrations that they have decided to conduct.
  • the kit further includes supporting stands as well as clamps necessary to hold the motor in respective positions to conduct the various experiments as well as a manual which outlines the various demonstrations that may be performed with the particular components of the kit.
  • educational apparatus is provided to perform demonstrations in the field of physics, biology, and chemistry, such that the instructor, for example, may illustrate the friction reduction between two sliding members, the joiningof plastic components, a mixing of various substances, etc.
  • FIG. 1 is a chart indicating the relationship of the principal elements forming the invention
  • FIG. 2 is a perspective view of the related elements forming the kit of the instructional device
  • FIG. 3 is a perspective view of an instructional device embodying the present invention in assembled relationship for demonstrating a particular phenomenon of friction
  • FIG. 4 is a perspective view of an instructional device embodying the present invention in assembled relationship for demonstrating a particular phenomenon of mixing of materials
  • FIG. 5 is a perspective view of an instructional device embodying the present invention in assembled relationship for demonstrating a particular phenomenon of propulsion
  • FIG. 6 is a perspective view of an instructional device embodying the present inventionrin assembled relationship for demonstrating a particular phenomenon of ultrasonic assembly
  • FIG. 7 is a perspective view of an instructional device PREFERRED EMBODIMENTS OF THE INVENTION
  • the respective components thereof are essentially a converter 12, used in conjunction with an ultransoic motor 25, having accessories 35 adapted to be secured to the motor and in turn one or more removable elements 50 that may be in turn utilized with the respective accessory 35 to form the novel combination of elements.
  • peripheral components 33 such as clamps, stands, component parts, manual, projector, magnet, candle, and whatever else is required to perform some of the demonstrations and/or experiments required in respect to the present invention may be supplied.
  • FIG. 2 illustrates the educational kit generally indicated by reference numeral 10 and seen to include a converter 12 adapted to convert normal electric current; i.e.', cycles per second, to current at an ultrasonic rate, defined herein as being in the frequency range of approximately 5,000 to 500,000 cycles per second, and which converter may be battery powered or adapted to be plugged into a wall outlet in a conventional manner.
  • the converter 12 is seen to include thereon a power control knob 14 for varying the power from the converter 12, which may generally be in the range of approximately 2 to 200 watts, as well as an on/off switch 16 contained on the front panel 18 of the converter which is contained in a cabinet20.
  • An indicator light 22 on the front panel 18 is connected to the switch 16 to indicate to the user when current is made available to the ultrasonic motor 25.
  • the ultrasonic motor 25 is seen to include a housing 26 which encloses an electro-mechanical transducer adapted to convert the electrical energy of the converter to high frequency mechanical vibrations which is transmitted from the transducer to the output section or connecting member 28 extending from the ultra sonic motor 25 and having an output end 30 which vibrates at an ultrasonic rate, generally having an amplitude of vibrations in the range of approximately 0.0005-0.0l0 inches, such that the energy may be coupled to one or more accessories 35.
  • the ultrasonic converter 12 and ultrasonic motor 25 may be one ofa'variety well known in the art to produce the necessary vibratory motion as for example presently available from Ultrasonic Systems, Inc., Farmingdale, New York. a
  • the accessories 35 are designed to be used in conjunction with the converter .12 and motor 25 when they are assembled in order to perform various demonstrations.
  • the demonstrations may be in any of the sciences I so that they may be tightened relative to each other by fastening means 40 which may include a tapped hole 41 extending axially in the connecting member 28 and with a threaded stud 39. which extends from the accessory 35 and into the threaded section 41.
  • the accessories 35 take various forms and shapes depending upon the demonstrations to be performed by either the instructor .or teacher as well as the student. Although the kit 10 isdesigned to demonstrate various aspects of the sciences, it may also be used on an experimental basis by the student if he so desires.
  • the accessories 35 are hereinafter illustrated in detail with respect to specific demonstrations and 7 may be in the formof a tool 42 having a rear surface 43 which abuts the output end 30 of the motor 25 when assembled and a front end 44 which has a tapped hole 45 extending axially therein to receive one or more interchangeable elements 50, thatrare screwed into the tool 42, or other accessory tools that, are provided.
  • Accessory tool 46 is similar to tool 42 except that extending from the tapped hole 45 is an axial bore extending-axially therein and mating with a transverse bore 48 that connects with each other such that the fIow-through of fluids may occur as seen in FIG. 4, and may be energized by the ultrasonic energy in the tool Element 51 is seen to'include a head portion 52 with a threaded stud 53 extending therefrom and adapted to a'knife portion 56 extending from the head portion 57 with a threaded portion 58 extending rearwardly of the output end of the ultrasonic motor as seen in FIG. 7.
  • Interchangeable element 60 having a head 57 and 6 other, and having stop means 68 at each end of the blade surface 66 to limit relative motion of one or more friction blocks 70 supplied to be used in conjunction with the blade 65, demonstrating the friction reduction property of a vibratory surface.
  • Accessory bar 75 has a relatively thin dimension in the plane in which it is energized and contains a channel or groove 76 along one surface thereof and adapted to be secured to the output end 30-of the'ultrasonic motor 25 such that flexural vibrations are induced with respect thereto as seen in FIG. 8'.
  • a manual 78 covering various demonstrations and the apparatus is provided as one of the components 33 of the kit 10.
  • the kit 10, as seen in FIG. 3, may further include one or more components 33 such as a stand 80 have a base 81 with a vertical support shaft 82 extending vertically from the base with one or more clamps 84 adapted to secure the ultrasonic motor 25 in a fixed position relative to the stand 80.
  • Clamps 84 may be'of a conventional type having a screw portion for securement to i the shaft 82 and gripping arms 85 to hold the motor 25 or some other portion of the kit.
  • FIG. 3 illustrates the kit assembled to perform one demonstration relating to the reduction of friction between dry sliding bodies, and includes the ultrasonic converter 12 contained in the cabinet 20 with a power I dial 14 on the front panel 18 such that the power of the converter can be transmitted to the ultrasonic motor 25 by means of the power cable 27 connecting the two together.
  • the switch 16 When the switch 16 is placed in the On position, the indicating light 22 indicates same to the user.
  • a pair of stands 80 are positioned on'a head portion and similarly adapted to be secured to the threaded portion 58 is'adapted to be used for plastic assembly with component parts 61 and 62 as seen in FIG. 6 that may be supplied with the kit 10 in conjunction with a nest 63 for holding the parts in relative position to each other such that when the ultrasonic energy is applied the components 61 and 62 are joined together.
  • the kit 10 may further include a vibratory blade 65 that may be used to perform a friction reduction experiment as hereinafter discussed in detail with respect to FIG. 3.
  • the blade 65 includes a front supporting surface 66 with a spaced apart rear surface 67, which surfaces may be in parallel spaced relationship to each surface in spaced relation to each other with the vertical support 82 extending from the base 81 and on one stand thereof, we have the ultrasonic motor 25 with a clamp 84 having its fingers 85 holding the housing 26 in a fixed position such that the connecting member 28 extends substantially vertically, or if desired may be inclined.
  • the output end 30 of the ultrasonic motor 25 is in turn coupled to the rear end 67 of-the blade member 65 with the front end 66 having a friction block supported thereon and in spaced relation from the stop means 68 on one end of the blade.
  • the friction block 70 has overhanging lips to assure that it remains on the blade when the support surface 66 is vibrated.
  • the second support stand has a pulley 86 mounted thereto by clamp 84 with a cord 'or string 87 extending from the front end of the block 70 and around the essentially frictionless pulley 86 with a weight support link 88 secured to the free end of the string 87 at one end thereof and with a weight platform or holder 92 at its bottom end having one or more slotted weights 89 thereon.
  • the frictional force f is proportional to the normal force N for a given pair of dry. sliding surfaces.
  • FIG. 4 illustrates the use of the kit for the purposes of performing a homogenization demonstration in which we have a converter 12 with an ultrasonic motor 25 vertically mounted from stand 80 with a flowthrough tool member 46 mounted to extend from the motor 25 and having a metal fitting 93 extending from the upper portion of tool 46 and connected to a tubular in-flow tube 94 that in turn is connected to a funnel 95 that is held in position by a clamp 84 relative to the stand support 82 such that a mixture of fluid and powder may be introduced into the funnel 95 so as to flow through the tube 94 into the tube 46 and out from the front end of the tool and within a plastic tube 96 or directly into the beaker 94 positioned on the stand 80 to contain the homogenized mixture.
  • certain materials which may be oil and water, liquid and powder may be mixed together to form a homogeneous mixture.
  • FIG. 5 illustrates another application of the present invention used to illustrate a propulsion effect in a similar manner as to a golfer hitting a golf ball and effecting a force thereon.
  • the equipment is seen to illustrate the converter 12 connected to the ultrasonic motor 25 which is positioned in the stand in a substantially vertical manner and having a tool member 41 secured thereto with a removable element 71 having a substantially flat head.
  • the motor 25 is maintained in position by clamp 84, as well as the plastic tubular member, which is maintained in alignment with the ultrasonic motor similarly by clamps 84 such that the inner diameter of the tubular member 59 is in axial alignment with the tip 71 such that a ball 72 may be positioned therein.
  • the ball or spherical member 72 is preferably of a hard elastic substance such as metal; i.e., steel. Positioned at the opposite open endof the tubular member 59 is means for indicating when the toolmember 72 has reached the open end of the tubular memberand which means may be in the form of a bell 73 held in place by clamp 84.
  • a I 1 Let us examine the phenomena of the accelerated steel ball 72. As a comparison, we will use thecase of a golfer to follow through on his swing. The golf ball is elastic (It will compress and decompress back to its original form.) as is the steel ball 72. When the club face comes in contact with the ball, it compresses the ball.
  • FIG. 6 illustrates the utilization of the kit to demonstrate the joining of plastic components 61 and 62 with a removable element 60 attached to properly engage the plastic element 61 and connected to the tool 42 which in turn is connected to the connecting member 28 of the ultrasonic motor 25.
  • the bottom element 62 is contained in a nest 63 which has a mating cavity for retaining the component parts in proper orientation and as illustrated the ultrasonic bond at the interface of the parts may be obtained with the motor 25 being held by the user.
  • FIG. 7 illustrates the utilization of the ultrasonic knife element 55 having a knife portion 56 with a head 57 that abuts the tool member 42 with the threaded portion 58 being contained within the tool member 42 and the head portion 57 being shaped such that it may be secured in place by a wrench or other means.
  • Tool 42 is secured to the output end 28 of the ultrasonic motor 25 and'adapted to be held in place by the user to perform cutting on a substance such as clay 91 to illustrate the difference between the frictionless effect with the energy on, or the energy off when the knife is not vibrated ultrasonically.
  • the user may hold the member 91 manually as illustrated or, if desired, the relative components may be fixtured such that a more be monitored.
  • FIG. 8 illustrates another demonstration thatmay be selected by theteacher'with' thekit and includes the ultrasonic motor 'su'pported'in a'rnariner-suchthat' the bar member75 has its groove 76in a substantially horizontal plane such that particles 98 which may be of sand or other material maybe contained therein.
  • the bar 95 is vibrated at the ultrasonicjrare, loopsand nodes of vibration are set up causing stresses in the material with the result that the particles 98 are contained at the nodal regions of vibration where vibratory motion is nil.
  • FIG. 9 is another demonstration performable'with an ultrasonic motor to illustrate the Zone of Motion generatedat the output end of a tool42 to illustrate the cyclic spacial relationship between magnet 102 and the vibrating toolend.
  • the ultrasonic motor 25' iss'upported by stand 80 with the front 'endof the tool, 44 contained within a projector 100 with a screen 101 in spaced relation to the projector such that a magnet 102 will, when the motor is energized, be seen to oscillatebetween a position as seen in FIG. 9 in which the magnet 102 is in spaced relation to the tool front end 44 in one position and wherein the magnet 102 is'substantially in contact with the front end 44 in another'position relativetothe vibratory movementof the tool 42-.
  • the vibrating surface 44 has a definite area
  • Equation III a very important relationship, asserts the way in which the frequency, the peak acceleration, peak speed, and peak stroke of an ultrasonic motor output are connected.
  • an ultrasonic motor is distinguished by the fact that its frequency of reciprocation'is generally above the limit of human hearing, or above about 16,000 vibrationsper second, while its peak stroke is generally microscopically small,'usually expressed in mils (or thousandths of an inch).
  • its frequency of reciprocation' is generally above the limit of human hearing, or above about 16,000 vibrationsper second
  • its peak stroke is generally microscopically small,'usually expressed in mils (or thousandths of an inch).
  • FIG. 10 shows what we have been discussing.
  • P and P are extremities of the motor stroke, and P is the mid-point of peak speed, v Due to successive contraction and expansion of the motor output section, the area, S, will oscillate around the point P between the extreme points P and P If themagnetic disc'l02 is placed on the output surface 44 of the tool 42, the question arises as to how the disc 102 will respond to this zone of motion reciprocation. From FIG. if the output surface (S) is at P then in the next instant it will move upward with an acceleration of 41 ,OOOg. For the magnet 102 to follow (S) it must be able to attain this same high acceleration at (P But the magnet cannot sustain such an acceleration and therefore is left behind.
  • the output surface (S) starts its return sweep and comes in contact with the magnet for a fraction of a second, the magnet being attracted to it. This phenomenon proliferates 20,000 times a second, in consequence of which the magnetic disc 102 appears on the screen 101 to be suspended in space. This demonstration may also be conducted under a microscope.
  • kits to be utilized for the teaching of the sciences in a mannerwhich permits an instructor to demonstratephenomenathat in some cases have not been demonstratable prior to the present invention.
  • the kit of the present invention is multifunctional and provides an educational system by which one or more students may be appropriately indoctrinated in the sciences as well as the field of high frequency vibratory energy in the ultrasonic range.
  • Apparatus for demonstrating the Zone of Motion comprising 7 v A. means for producing a beam of light,
  • i I I E means for vibrating said member at an ultrasonic rate, wherein the motion of said vibrating member is visible on said screen to illustrate the cyclic spacial relationship between said magnet and, said vibrating member.
  • Apparatus for demonstrating the Zone of Motion as defined in claim 1, and further including means for magnifying said member and magnet associated with said means for producing said beam of light.
  • Apparatus for demonstrating the Zone of Motion comprising Y A. converter means for providing electrical current at an ultrasonic rate,
  • E. means coupling said accessory to said ultrasonic motor, 1 v
  • G a projector having magnification means and capable of generating a beam of light
  • H means for supporting said motor wherein said output end and magnet are within the beam of light generated by said projector, and means in spaced relation to said projector to display said beam of light thereon such that when said motor is vibrated, the cyclic spacial relationship between said output end and magnet is visible thereon to demonstrate the Zone of Motion.
  • the method of demonstrating the Zone of Motion comprising the steps of A. producing a beam of said beam of light is visible, B. positioning a vibratory member including magnetically attractive material along said beam of light, C. placing a magnet on said vibratory member, and D. vibrating said member at an ultrasonic rate, whereby the motion of said vibrating member is visible on said surface to illustrate the cyclic spacial relationship between said magnet and said vibrating member; 5.
  • the method of demonstrating the Zone of Motion as defined in claim 4, and further including means for magnifying said member associated with said means for producing said beam of light.

Abstract

An instructional device to facilitate the teaching of physics, chemistry, and biology in the form of a number of related components including a converter for transforming normal 60 cycle per second current to an ultrasonic rate for generating mechanical vibratory energy, and a plurality of accessories of various shapes and configurations designed to perform one or more demonstrations or experiments when coupled to the output end of the ultrasonic motor.

Description

United States Patent [1 1 Balamuth et al.. a
1 51 Nov. 27, 1973 1 ULTRASONICINSTRUCTIONAL KIT,
METHOD AND APPARATUS [75] Inventors: Lewis Balamuth, New York; Arthur Kuris, Riverdale; Anthony P. Farina, Centereach, all of [73] Assignee: Ultrasonic Systems, Inc.,
Farmingdale, NY.
[22] Filed: Jan. 28, 1971 [211 Appl. No.: 110,401
[52] US. Cl. 35/19 R, 310/26 [51] Int. Cl. [58] Field of Search 32/58, DIG. 4; 35/19 R, 19 A, 13; 310/1, 26; 128/24 A; 175/56; 356/164, 165; 51/59 SS References Cited UNITED STATES PATENTS 7 1955 Grossman; ..35/26X 2,774,193 12/1956 Thatcher 51/59 SS 3,277,779 10/1966 Doran 356/ 164 3,488,851 1/1970 l-laydu 32/58 3,526,219 9/1970 Balamuth.... 32/58 X 3,591,862 7/1971 Winston 51/59 SS X 3,614,484 10/1971 Shoh 5l/59 SS X Primary Examiner-Harland S. Skogquist Att0rney-Leonard W. Suroff I ABSTRACT An instructional device to facilitate the teaching of physics, chemistry, and biology in the form of a number of related components including a converter for transforming normal 60 cycle per second current to an ultrasonic rate for generating mechanical viratory energy, and a plurality of accessories of various shapes and configurations designed to perform one or more demonstrations or experiments when coupled to the output end of the ultrasonic motor. I
5 Claims, 10 Drawing Figures Patented Nov. 27, 1973 8 Sheets-Sheet 1 EDUCATIONAL DEVICE ULTRASONIC CONVERTER MOTOR COMPONENTS ACCESSORiES 50 ELEMENTS INVENTORS.
Patnted Nov. 27, 1973 3,774,317
8 Sheets-Sheet z 1 I'NVENTORS.
' LEW|$ BALAMU H BY ARTHUR KURIS AN HONY P. FAR-INA 5 'A T 'T ORNEY Patented Nov. 27, 1973 3,774,317
8 Sheets-Sheet 3 INYENTORS. LiiWIS BALAMUTH BY ARTHUR KURIS ANTHONY P. FARINA Patented Nov. 27, 1973 3,774,317
8 Shoots-Sheet 4 H. F/G. 4 o:
lm'EwToRs. LEWIS BALAMUTH ARTHUR KURIS A OR EY ANTHONY R FARINA Patented Nov. 27,1973v I 3,774,317
8 Sheets-Sheet 5 INVENTORS.
LEWIS BALAMUTH y ARTHUR KURIS ANTHONY P. FARINA Patent ed Nov. 27, 1973 3,774,317
8 Sheets-Sheet INVENTORS. LEWIS BALAMUTH 'ARTHUR KURIS ANTHONY P. FARINA Patentd Nov. 2-7, 1973 5 7 3,774,317
8 Sheets-Sheet 7 INVEN RS.
LEWIS BAL TH y UR KURIS ONY P. FARINA A ORNEY Patented Nov. 27, 1973 8 Sheets-Sheet 8 ULTRASONIC MOTOR OUTPUT INVENTORS. LEWIS BALAMUTH ARTHUR KURIS ANTHONY P. FARINA A OR! EY ULTRASONIC.INSTRUCTIONAL KIT, METHOD AND APPARATUS BACKGROUND or THE INVENTION This invention relates to a new and improved instructional device as well as the method of demonstrating various principles in the field'of physics, biology and chemistry. To-this' end, the..device' isprovidedin' the form of 'a kit to be used, by thein'structo'r or student in apublic school, high school, or colle 'ge level.
The present; invention furtherpermits the introduction into the science curriculum of the student a teach ing of highfrequency mechanical vibrations in the ultrasonic frequency range to demonstrate someof the novel characteristics attributable'to vibrations at this frequency and so that a teaching of. high frequency mechanical vibrations. can be, obtained by the student. Heretofore, the introduction or education in the field of ultrasonic energy has been generally limited tothe college level and only a' few colleges inthe country, to the knowledge of the inventors, offer any curriculum in the'field of ultrasonic.mechanicalvibrations. The present apparatus permits" the user to obtain anactual working knowledgeof various-characteristics attributable to the "field of ultrasound and permits the user to experiment with same during his early educationaltrainin'g so as to be better equipped to understand and apply ultrasonic energy to a number of problems that might arise during his workingcareer.
' The presentxinvention permits for the first time to have'available in the form of a kit, as well as apparatus,
' and the method of use thereof, such that a host of phenomena may be demonstrated in a clear and concise manner and whichdemonstrations and/or experiments may be utilized in conjunction with present-day textbooks in the respective sciences such that the fundamental scientific concepts of the particular subject is demonstratable. The term demonstration is being used herein'to denote demonstration, experiment, and other similar terms and definitions. To illustrate the scope of the present invention in the fields of physics, chemistry, andbiology, a chart is provided below to illustrate just some of the particular demonstrations that may be provided with the equipment disclosed herein, or with the addition of certain other easily obtainable items, such that acomplete host of demonstrations can be performed.
The chart illustrates the utilization of the ultrasonic instructional device with respect to three particular areas of science; namely, physics, chemistry, and biology. The chart is not intended to be all inclusive but merely to outline the general utility of the present invention and to show that it does relate to a number of various specific aspects in the field of physics, chemistry, and biology. Obviously, other applications are continuously being developed for the utilization of the present invention and the list is not intended to be all inclusive but, once again, merely indicative of the innumerable uses thereof.
. DEMONSTRATIONS/EXPERIMENTS Physics 7 1. Zone of motion effect due to acceleration of thousands of gs '2. Atom'ization num foil) 2. fi Direct conversion of elastic energy into heat 5 Pumping action of ultrasound vibrations 6'. Magnetism plus electricity to produce motion 1 7. Cavitation in a liquid (sound transmission in water) 8. Ultrasonic wind 9. Degassing or Effervescence Chemistry l0. Accelerating'hydration (dissolving sugar in water) I i l. Ionization 7 12. Reduction of PH (Irradiation of CCL in H O to turn blue litmus paper red) l3. Colloidal production (Tyndalleffect) l4. Reversible viscosity of gelatin (accelerated syneresis) l5. Emulsification; e.g., lipids (fats, oils, waxes) l6. Degassing or Effervescence 17. Polymerization l8. Catalysis l9. Accelerated hydrolysis 20.- Acceleration of chemical reactions (electrolysis process) 21. Reduction of Iodine 22 Cavitation in aliquid Biology 23 Accelerating hydration (dissolving sugar in water) 24'. Emulsification; e.g., lipids (fats, oils, waxes) 25. Accelerated hydrolysis 26; Sterilization 27. Acceleration of diffusion through a permeable membrane (osmosis) 28. Cell disruption 29. Cytolysis 30 Disruption of tissue culture cells subsequent to enzyme studies 31. Disruption of bacteria to yield intact mitochondria' 32. Disruption of bacteria for the study of viral replication 33. Parasitic extraction; e.g., virus from host cells 34. Disaggregation of clodding materials; e.g., algae,
fungi 1 35. Disruption of spermatozoa OBJECTS OF THE INVENTION the sciences by use of high frequency vibratory mechanical energy.
Other objects and advantages of the present invention will be obvious as the disclosure proceeds.
SUMMARY OF THE INVENTION The present invention includes a novel combination I a 3 of elements working together in interrelated combination with each other so as to perform a series of demonstrations or experiments for instructional purposes. In accordance with one embodiment of the invention, an educational kit is provided that includes essentially a converter for providing electrical current at an ultrasonic rate and adapted to be connected with an ultrasonic motor which converts electrical energy by a transducer contained therein to high frequency mechanical energy in the ultrasonic rate. To permit the user to demonstratevarious phenomena, a plurality of accessories are provided that are adapted to be connected to the output end of the motor such that ultrasonic vibrations are transmitted to the respective accessory coupled to the motor. In addition, for certain of the accessories, interchangeable elements are provided that'are adapted to be removably secured to any accessory for transmission of the ultrasonic vibrations. The removable elements take various shapes and forms depending upon the demonstration to be illustrated. The
respective components may be quickly and easily assembled such that either a male or female instructor can easily prepare the kit to perform the desired demonstration and/or experiment. The particular accessories may be of s'ufficient size so that it may be viewed by a number of students at the same time in a classroom. In addition, the kit may be assembled by the student such that one or more students may individually or together carry out various demonstrations that they have decided to conduct.
The kit further includes supporting stands as well as clamps necessary to hold the motor in respective positions to conduct the various experiments as well as a manual which outlines the various demonstrations that may be performed with the particular components of the kit.
In accordance with another aspect of the invention, educational apparatus is provided to perform demonstrations in the field of physics, biology, and chemistry, such that the instructor, for example, may illustrate the friction reduction between two sliding members, the joiningof plastic components, a mixing of various substances, etc.
BRIEF DESCRIPTION OF THE DRAWINGS Although the characteristic features of this invention will be particularly pointed out in the claims, the invention itself, and the manner in which it may be made and used, may be better understood by referring to the following description taken in connection with the accompanying drawings forming a part hereof, wherein like reference numerals refer to like parts throughout the several views and in which:
FIG. 1 is a chart indicating the relationship of the principal elements forming the invention;
FIG. 2 is a perspective view of the related elements forming the kit of the instructional device;
FIG. 3 is a perspective view of an instructional device embodying the present invention in assembled relationship for demonstrating a particular phenomenon of friction;
FIG. 4 is a perspective view of an instructional device embodying the present invention in assembled relationship for demonstrating a particular phenomenon of mixing of materials;
FIG. 5 is a perspective view of an instructional device embodying the present invention in assembled relationship for demonstrating a particular phenomenon of propulsion;
FIG. 6 is a perspective view of an instructional device embodying the present inventionrin assembled relationship for demonstrating a particular phenomenon of ultrasonic assembly;
FIG. 7 is a perspective view of an instructional device PREFERRED EMBODIMENTS OF THE INVENTION Referring now to the drawings and particularly to FIG. 1 thereof, we have illustrated diagramatically the ultrasonic instructional device of the present invention indicating that the respective components thereof are essentially a converter 12, used in conjunction with an ultransoic motor 25, having accessories 35 adapted to be secured to the motor and in turn one or more removable elements 50 that may be in turn utilized with the respective accessory 35 to form the novel combination of elements. In addition, a number of peripheral components 33, such as clamps, stands, component parts, manual, projector, magnet, candle, and whatever else is required to perform some of the demonstrations and/or experiments required in respect to the present invention may be supplied.
FIG. 2 illustrates the educational kit generally indicated by reference numeral 10 and seen to include a converter 12 adapted to convert normal electric current; i.e.', cycles per second, to current at an ultrasonic rate, defined herein as being in the frequency range of approximately 5,000 to 500,000 cycles per second, and which converter may be battery powered or adapted to be plugged into a wall outlet in a conventional manner. The converter 12 is seen to include thereon a power control knob 14 for varying the power from the converter 12, which may generally be in the range of approximately 2 to 200 watts, as well as an on/off switch 16 contained on the front panel 18 of the converter which is contained in a cabinet20. An indicator light 22 on the front panel 18 is connected to the switch 16 to indicate to the user when current is made available to the ultrasonic motor 25.
The ultrasonic motor 25 is seen to include a housing 26 which encloses an electro-mechanical transducer adapted to convert the electrical energy of the converter to high frequency mechanical vibrations which is transmitted from the transducer to the output section or connecting member 28 extending from the ultra sonic motor 25 and having an output end 30 which vibrates at an ultrasonic rate, generally having an amplitude of vibrations in the range of approximately 0.0005-0.0l0 inches, such that the energy may be coupled to one or more accessories 35.
The ultrasonic converter 12 and ultrasonic motor 25 may be one ofa'variety well known in the art to produce the necessary vibratory motion as for example presently available from Ultrasonic Systems, Inc., Farmingdale, New York. a
The accessories 35 are designed to be used in conjunction with the converter .12 and motor 25 when they are assembled in order to perform various demonstrations. The demonstrations may be in any of the sciences I so that they may be tightened relative to each other by fastening means 40 which may include a tapped hole 41 extending axially in the connecting member 28 and with a threaded stud 39. which extends from the accessory 35 and into the threaded section 41.
The accessories 35 take various forms and shapes depending upon the demonstrations to be performed by either the instructor .or teacher as well as the student. Although the kit 10 isdesigned to demonstrate various aspects of the sciences, it may also be used on an experimental basis by the student if he so desires. The accessories 35 are hereinafter illustrated in detail with respect to specific demonstrations and 7 may be in the formof a tool 42 having a rear surface 43 which abuts the output end 30 of the motor 25 when assembled and a front end 44 which has a tapped hole 45 extending axially therein to receive one or more interchangeable elements 50, thatrare screwed into the tool 42, or other accessory tools that, are provided.
Accessory tool 46 is similar to tool 42 except that extending from the tapped hole 45 is an axial bore extending-axially therein and mating with a transverse bore 48 that connects with each other such that the fIow-through of fluids may occur as seen in FIG. 4, and may be energized by the ultrasonic energy in the tool Element 51 is seen to'include a head portion 52 with a threaded stud 53 extending therefrom and adapted to a'knife portion 56 extending from the head portion 57 with a threaded portion 58 extending rearwardly of the output end of the ultrasonic motor as seen in FIG. 7. Interchangeable element 60 having a head 57 and 6 other, and having stop means 68 at each end of the blade surface 66 to limit relative motion of one or more friction blocks 70 supplied to be used in conjunction with the blade 65, demonstrating the friction reduction property of a vibratory surface. I
Accessory bar 75 has a relatively thin dimension in the plane in which it is energized and contains a channel or groove 76 along one surface thereof and adapted to be secured to the output end 30-of the'ultrasonic motor 25 such that flexural vibrations are induced with respect thereto as seen in FIG. 8'. A manual 78 covering various demonstrations and the apparatus is provided as one of the components 33 of the kit 10.-
The kit 10, as seen in FIG. 3, may further include one or more components 33 such as a stand 80 have a base 81 with a vertical support shaft 82 extending vertically from the base with one or more clamps 84 adapted to secure the ultrasonic motor 25 in a fixed position relative to the stand 80. Clamps 84 may be'of a conventional type having a screw portion for securement to i the shaft 82 and gripping arms 85 to hold the motor 25 or some other portion of the kit. v
FIG. 3 illustrates the kit assembled to perform one demonstration relating to the reduction of friction between dry sliding bodies, and includes the ultrasonic converter 12 contained in the cabinet 20 with a power I dial 14 on the front panel 18 such that the power of the converter can be transmitted to the ultrasonic motor 25 by means of the power cable 27 connecting the two together. When the switch 16 is placed in the On position, the indicating light 22 indicates same to the user.
. As illustrated, a pair of stands 80 are positioned on'a head portion and similarly adapted to be secured to the threaded portion 58 is'adapted to be used for plastic assembly with component parts 61 and 62 as seen in FIG. 6 that may be supplied with the kit 10 in conjunction with a nest 63 for holding the parts in relative position to each other such that when the ultrasonic energy is applied the components 61 and 62 are joined together.
The kit 10 may further include a vibratory blade 65 that may be used to perform a friction reduction experiment as hereinafter discussed in detail with respect to FIG. 3. The blade 65 includes a front supporting surface 66 with a spaced apart rear surface 67, which surfaces may be in parallel spaced relationship to each surface in spaced relation to each other with the vertical support 82 extending from the base 81 and on one stand thereof, we have the ultrasonic motor 25 with a clamp 84 having its fingers 85 holding the housing 26 in a fixed position such that the connecting member 28 extends substantially vertically, or if desired may be inclined. The output end 30 of the ultrasonic motor 25 is in turn coupled to the rear end 67 of-the blade member 65 with the front end 66 having a friction block supported thereon and in spaced relation from the stop means 68 on one end of the blade.
The friction block 70 has overhanging lips to assure that it remains on the blade when the support surface 66 is vibrated. The second support stand has a pulley 86 mounted thereto by clamp 84 with a cord 'or string 87 extending from the front end of the block 70 and around the essentially frictionless pulley 86 with a weight support link 88 secured to the free end of the string 87 at one end thereof and with a weight platform or holder 92 at its bottom end having one or more slotted weights 89 thereon.
The reduction of friction phenomenon when the blade 65 is vibrating is very much different than the static and kinetic frictions with which we are familiar.
This demonstration is the foundation for the student for bration. Thus, the block 70 actually rides on a cushion of air and friction is therefore reduced to almost zero suchthat a minimalweight89 is required.
A sample procedure for this demonstration would be as follows: I
1. Weigh the stainless steel and brass blocks 70. They should weigh between 110-120 grams.
2. Set up the apparatus as shown in FIG. 3, using the stainless steel block. Make sure the'output end 66 of the blade 65 is level.
3. With the converter 12 operate switch 16 in the OFF position, add the slotted weights 89 to weight holder 88 (W,) until uniform motion is obtained. Note the value of the Weight (W required.
4. Remove the slotted weights 89 from weight holder 5. Turn the converter operate switch 16 to the ON position. The block 70 should slide across the surface of the blade 65 quite rapidly.
6. Remove the weight holder 92 (WL) with just the connecting link 88 remaining on the end of the connecting cord 87. The block 70 should move with approximatelyuniform motion. Note that the connecting link 88 weights 1 gram. I I I From the results in the procedure, we can see that we have reduced the friction force between the surfaces of the block and the blade 65 quite substantially.
The frictional force f is proportional to the normal force N for a given pair of dry. sliding surfaces.
Thus:
. Where p, coefficient of friction From equation (a) we see that p. is the ratio of the force (W necessary to overcome friction to the normal force (N) acting between the two surfaces. -I f f= If i If we calculate the values of ,1, with the converter 12 off and .1. with the converter 12 on we have for p. (estimated) These results strikingly point out the amount by which we have reduced the coefficient of friction.
FIG. 4 illustrates the use of the kit for the purposes of performing a homogenization demonstration in which we have a converter 12 with an ultrasonic motor 25 vertically mounted from stand 80 with a flowthrough tool member 46 mounted to extend from the motor 25 and having a metal fitting 93 extending from the upper portion of tool 46 and connected to a tubular in-flow tube 94 that in turn is connected to a funnel 95 that is held in position by a clamp 84 relative to the stand support 82 such that a mixture of fluid and powder may be introduced into the funnel 95 so as to flow through the tube 94 into the tube 46 and out from the front end of the tool and within a plastic tube 96 or directly into the beaker 94 positioned on the stand 80 to contain the homogenized mixture. In this manner, it is easy to demonstrate to the student that certain materials, which may be oil and water, liquid and powder may be mixed together to form a homogeneous mixture.
FIG. 5 illustrates another application of the present invention used to illustrate a propulsion effect in a similar manner as to a golfer hitting a golf ball and effecting a force thereon. The equipment is seen to illustrate the converter 12 connected to the ultrasonic motor 25 which is positioned in the stand in a substantially vertical manner and having a tool member 41 secured thereto with a removable element 71 having a substantially flat head. The motor 25 is maintained in position by clamp 84, as well as the plastic tubular member, which is maintained in alignment with the ultrasonic motor similarly by clamps 84 such that the inner diameter of the tubular member 59 is in axial alignment with the tip 71 such that a ball 72 may be positioned therein.
The ball or spherical member 72 is preferably of a hard elastic substance such as metal; i.e., steel. Positioned at the opposite open endof the tubular member 59 is means for indicating when the toolmember 72 has reached the open end of the tubular memberand which means may be in the form of a bell 73 held in place by clamp 84. a I 1 Let us examine the phenomena of the accelerated steel ball 72. As a comparison, we will use thecase of a golfer to follow through on his swing. The golf ball is elastic (It will compress and decompress back to its original form.) as is the steel ball 72. When the club face comes in contact with the ball, it compresses the ball. In following through the golfer is actually keeping the club face in contact with theball until the'ball decompresses. If the club face is not kept in contact with the ball, the ball will attain a velocity (v) determined by the initial velocity (v at the moment of impact, neglecting any frictional forces.
When the club face is kept in contact with the ball, the ball will attain a velocity equal to the initial velocity (v,,) plus the velocity due to the decompression of the ball against the club face. So it is evident that the velocity attained by the ball will be greater when the club face is kept in contact with the ball. 1
If we relate our example of the golf ball to the steel ball 72 and the output motion ofthe tool, we can determine the height the ball travels if unimpeded by the bell 73, or we can calculate the velocity of the steel ball 72 depending on the amount of time it remains in contact with the output tip 71. 7
FIG. 6 illustrates the utilization of the kit to demonstrate the joining of plastic components 61 and 62 with a removable element 60 attached to properly engage the plastic element 61 and connected to the tool 42 which in turn is connected to the connecting member 28 of the ultrasonic motor 25. The bottom element 62 is contained in a nest 63 which has a mating cavity for retaining the component parts in proper orientation and as illustrated the ultrasonic bond at the interface of the parts may be obtained with the motor 25 being held by the user.
FIG. 7 illustrates the utilization of the ultrasonic knife element 55 having a knife portion 56 with a head 57 that abuts the tool member 42 with the threaded portion 58 being contained within the tool member 42 and the head portion 57 being shaped such that it may be secured in place by a wrench or other means. Tool 42 is secured to the output end 28 of the ultrasonic motor 25 and'adapted to be held in place by the user to perform cutting on a substance such as clay 91 to illustrate the difference between the frictionless effect with the energy on, or the energy off when the knife is not vibrated ultrasonically. The user may hold the member 91 manually as illustrated or, if desired, the relative components may be fixtured such that a more be monitored.
9 controlled rate of movement as'well as force, etc., may
Itis also appreciated erally seen to be of the'type to increase the amplitude of vibration in the form of an acoustical impedance transformer, may be eliminated and a removable elemerit secured'directly to the output end 30of the ultrasonic motor'when sodesired. The utilization of the accessory member is designedto'permit a greater'degree of flexibility. in the interchangeability of the various components forming the kit.
FIG. 8 illustrates another demonstration thatmay be selected by theteacher'with' thekit and includes the ultrasonic motor 'su'pported'in a'rnariner-suchthat' the bar member75 has its groove 76in a substantially horizontal plane such that particles 98 which may be of sand or other material maybe contained therein. As the bar 95 is vibrated at the ultrasonicjrare, loopsand nodes of vibration are set up causing stresses in the material with the result that the particles 98 are contained at the nodal regions of vibration where vibratory motion is nil. Y FIG. 9is another demonstration performable'with an ultrasonic motor to illustrate the Zone of Motion generatedat the output end of a tool42 to illustrate the cyclic spacial relationship between magnet 102 and the vibrating toolend. To perform the demonstration, the ultrasonic motor 25'iss'upported by stand 80 with the front 'endof the tool, 44 contained within a projector 100 with a screen 101 in spaced relation to the projector such that a magnet 102 will, when the motor is energized, be seen to oscillatebetween a position as seen in FIG. 9 in which the magnet 102 is in spaced relation to the tool front end 44 in one position and wherein the magnet 102 is'substantially in contact with the front end 44 in another'position relativetothe vibratory movementof the tool 42-.
This demonstration coverstl'ie' important aspect of the'ultrasonic vibrating-motor 25 'in'the motion of its output surface 44. Let usfocus our attention on the rethat the accessory whichisgenstanding most of the effects, many of which are unique 'which'an ultrasonic motor can produce. There is a sixth relationship which expresses Newton s Second Law of Motion and may be written: v
ciprocating output surface 44 of the'motor 25 in order to review the simple characteristics of such motion.
I First of all, the vibrating surface 44 has a definite area,
and this area, home complete'reciprocation or period, sweeps out a definite volume whose value is just the surface area times the total stroke of the reciprocation. In sweeping out'this volume, the output surface of the motor passes through a peak velocity, andthen passes through an extreme point of instantaneous zero speed, but peak acceleration; Summing up'this description of the output motion of an ultrasonic motor, we may say that there are seveninterrelated"quantities which are useful in assessing the motorsbehavior. These are: I 1. Area of output'surface S v 2-. Total linear stroke from one extremity to the other I- of one reciprocation s I *3. Peak velocity of motor surface 'v,,,-,, Peak acceleration of motor surface a 5. Time of onecomplete reciprocation T, 6. Frequency of vibration of the motor surface f,
[7.- Linear displacement at any time (t) x From the elementaryph'ysics we'obtain the following relationships:
=(S/2) SIN flfd) V about 7 miles per hour, while it also reaches a peak acwhere F represents the net external force on the mass,
m,and a is the acceleration of m produced by F. Equation III, a very important relationship, asserts the way in which the frequency, the peak acceleration, peak speed, and peak stroke of an ultrasonic motor output are connected.
Now, an ultrasonic motor is distinguished by the fact that its frequency of reciprocation'is generally above the limit of human hearing, or above about 16,000 vibrationsper second, while its peak stroke is generally microscopically small,'usually expressed in mils (or thousandths of an inch). In order to see what kind of ballpark were playing in, as tothe magnitude of these quantities, suppose we take a commonly found case for ultrasonic motors; namely, a frequency of 20,000 cycles per second and a peak stroke of 2 mils. In this case, we can calculate the peak speed, v and the peak accelerat'ion a from equation II and III. Doing so, we
get;
v,,,,,, 10.5 feet/secj a 41,000,;
(g acceleration of '(gravity 32.2 ft/sec (f 20,000 cycles/sec Equation VIItells us that the output surface, S, of our ultrasonic motor reaches a peak speed of 10.5/sec or celeration of 41,000 times the acceleration of gravity! ln other words, under the prescribed conditions of frequency and stroke, the ultrasonic motor describes an invisible zone of motion, never attaining more than a horse-and-buggy speed, but witha peak acceleration which isenormous compared with gravity. This unique state of affairs cannot be duplicated by any other known means.
FIG. 10 shows what we have been discussing. P and P are extremities of the motor stroke, and P is the mid-point of peak speed, v Due to successive contraction and expansion of the motor output section, the area, S, will oscillate around the point P between the extreme points P and P If themagnetic disc'l02 is placed on the output surface 44 of the tool 42, the question arises as to how the disc 102 will respond to this zone of motion reciprocation. From FIG. if the output surface (S) is at P then in the next instant it will move upward with an acceleration of 41 ,OOOg. For the magnet 102 to follow (S) it must be able to attain this same high acceleration at (P But the magnet cannot sustain such an acceleration and therefore is left behind.
Furthermore, in the next twenty-five microseconds (remember the period of Y reciprocation equals (1 [20,000) sec. or 50 microseconds) the output surface (S) starts its return sweep and comes in contact with the magnet for a fraction of a second, the magnet being attracted to it. This phenomenon proliferates 20,000 times a second, in consequence of which the magnetic disc 102 appears on the screen 101 to be suspended in space. This demonstration may also be conducted under a microscope.
CONCLUSION Applicants have herein disclosed new and novel apparatus, methods, and a kit to be utilized for the teaching of the sciences in a mannerwhich permits an instructor to demonstratephenomenathat in some cases have not been demonstratable prior to the present invention. The kit of the present invention is multifunctional and provides an educational system by which one or more students may be appropriately indoctrinated in the sciences as well as the field of high frequency vibratory energy in the ultrasonic range.
Although illustrative embodiments of the invention have been described in detail herein with reference to the accompanying drawing, it is to be understood that the invention is not limited to those precise embodiments, and that various changes and modifications may be effected therein without departing from the scope or spirit of the invention, except as defined in the appended claims.
We claim:
1. Apparatus for demonstrating the Zone of Motion, comprising 7 v A. means for producing a beam of light,
B. a screen in spaced relation to said means on which said beam of light is visible,
C. a vibratory member including magnetically attractive material positioned along said path of said beam of light,
D. a magnet positioned on said vibratory member,
and i I I E. means for vibrating said member at an ultrasonic rate, wherein the motion of said vibrating member is visible on said screen to illustrate the cyclic spacial relationship between said magnet and, said vibrating member.
2. Apparatus for demonstrating the Zone of Motion as defined in claim 1, and further including means for magnifying said member and magnet associated with said means for producing said beam of light.
3. Apparatus for demonstrating the Zone of Motion, comprising Y A. converter means for providing electrical current at an ultrasonic rate,
B. an ultrasonic motor,
C. means connecting said converter means to said ultrasonic motor for transmission of said electrical energy to said motor,
D. an accessory capable of transmitting ultrasonic mechanical vibrations having an output end,
E. means coupling said accessory to said ultrasonic motor, 1 v
F. a magnet on said output end,
G. a projector having magnification means and capable of generating a beam of light, and
H. means for supporting said motor wherein said output end and magnet are within the beam of light generated by said projector, and means in spaced relation to said projector to display said beam of light thereon such that when said motor is vibrated, the cyclic spacial relationship between said output end and magnet is visible thereon to demonstrate the Zone of Motion. 4. The method of demonstrating the Zone of Motion, comprising the steps of A. producing a beam of said beam of light is visible, B. positioning a vibratory member including magnetically attractive material along said beam of light, C. placing a magnet on said vibratory member, and D. vibrating said member at an ultrasonic rate, whereby the motion of said vibrating member is visible on said surface to illustrate the cyclic spacial relationship between said magnet and said vibrating member; 5. The method of demonstrating the Zone of Motion, as defined in claim 4, and further including means for magnifying said member associated with said means for producing said beam of light.
light on a surface on which

Claims (5)

1. Apparatus for demonstrating the Zone of MotiOn, comprising A. means for producing a beam of light, B. a screen in spaced relation to said means on which said beam of light is visible, C. a vibratory member including magnetically attractive material positioned along said path of said beam of light, D. a magnet positioned on said vibratory member, and E. means for vibrating said member at an ultrasonic rate, wherein the motion of said vibrating member is visible on said screen to illustrate the cyclic spacial relationship between said magnet and, said vibrating member.
2. Apparatus for demonstrating the Zone of Motion as defined in claim 1, and further including means for magnifying said member and magnet associated with said means for producing said beam of light.
3. Apparatus for demonstrating the Zone of Motion, comprising A. converter means for providing electrical current at an ultrasonic rate, B. an ultrasonic motor, C. means connecting said converter means to said ultrasonic motor for transmission of said electrical energy to said motor, D. an accessory capable of transmitting ultrasonic mechanical vibrations having an output end, E. means coupling said accessory to said ultrasonic motor, F. a magnet on said output end, G. a projector having magnification means and capable of generating a beam of light, and H. means for supporting said motor wherein said output end and magnet are within the beam of light generated by said projector, and means in spaced relation to said projector to display said beam of light thereon such that when said motor is vibrated, the cyclic spacial relationship between said output end and magnet is visible thereon to demonstrate the Zone of Motion.
4. The method of demonstrating the Zone of Motion, comprising the steps of A. producing a beam of light on a surface on which said beam of light is visible, B. positioning a vibratory member including magnetically attractive material along said beam of light, C. placing a magnet on said vibratory member, and D. vibrating said member at an ultrasonic rate, whereby the motion of said vibrating member is visible on said surface to illustrate the cyclic spacial relationship between said magnet and said vibrating member.
5. The method of demonstrating the Zone of Motion, as defined in claim 4, and further including means for magnifying said member associated with said means for producing said beam of light.
US00110401A 1971-01-28 1971-01-28 Ultrasonic instructional kit, method and apparatus Expired - Lifetime US3774317A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11040171A 1971-01-28 1971-01-28

Publications (1)

Publication Number Publication Date
US3774317A true US3774317A (en) 1973-11-27

Family

ID=22332810

Family Applications (1)

Application Number Title Priority Date Filing Date
US00110401A Expired - Lifetime US3774317A (en) 1971-01-28 1971-01-28 Ultrasonic instructional kit, method and apparatus

Country Status (1)

Country Link
US (1) US3774317A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358276A (en) * 1981-07-20 1982-11-09 Robert Ehrlich Educational devices
US4363992A (en) * 1981-01-26 1982-12-14 Branson Ultrasonics Corporation Resonator exhibiting uniform motional output
US4567797A (en) * 1984-01-30 1986-02-04 Folk Donald C Ultrasonic cutting apparatus and methods
US6214294B1 (en) * 1997-08-20 2001-04-10 Kabushiki Kaisha Toshiba Stirring device and automatic analyzer incorporating the stirring device
US20040191275A1 (en) * 2003-01-09 2004-09-30 Henry Milner Ultrasonic dispersion apparatus, system, and method
US20100248202A1 (en) * 2009-03-30 2010-09-30 Walter Bennett Thompson Multi-component learning kit
US20170340920A1 (en) * 2016-05-31 2017-11-30 Polar Electro Oy System for monitoring physiological activity
USD843596S1 (en) 2014-01-09 2019-03-19 Axiosonic, Llc Ultrasound applicator
US10565899B1 (en) * 2015-03-06 2020-02-18 Mentis Sciences, Inc. Reconfigurable learning aid for performing multiple science experiments

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2712189A (en) * 1954-02-12 1955-07-05 Grossman Ralph Emery Painting kit
US2774193A (en) * 1955-10-10 1956-12-18 Thatcher Tools for ultrasonic cutting
US3277779A (en) * 1964-05-11 1966-10-11 John G Doran Information selector device and projection system
US3488851A (en) * 1968-04-18 1970-01-13 Zoltan Haydu Ultrasonic devices
US3526219A (en) * 1967-07-21 1970-09-01 Ultrasonic Systems Method and apparatus for ultrasonically removing tissue from a biological organism
US3591862A (en) * 1970-01-12 1971-07-06 Ultrasonic Systems Ultrasonic motor transmission system
US3614484A (en) * 1970-03-25 1971-10-19 Branson Instr Ultrasonic motion adapter for a machine tool

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2712189A (en) * 1954-02-12 1955-07-05 Grossman Ralph Emery Painting kit
US2774193A (en) * 1955-10-10 1956-12-18 Thatcher Tools for ultrasonic cutting
US3277779A (en) * 1964-05-11 1966-10-11 John G Doran Information selector device and projection system
US3526219A (en) * 1967-07-21 1970-09-01 Ultrasonic Systems Method and apparatus for ultrasonically removing tissue from a biological organism
US3488851A (en) * 1968-04-18 1970-01-13 Zoltan Haydu Ultrasonic devices
US3591862A (en) * 1970-01-12 1971-07-06 Ultrasonic Systems Ultrasonic motor transmission system
US3614484A (en) * 1970-03-25 1971-10-19 Branson Instr Ultrasonic motion adapter for a machine tool

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363992A (en) * 1981-01-26 1982-12-14 Branson Ultrasonics Corporation Resonator exhibiting uniform motional output
US4358276A (en) * 1981-07-20 1982-11-09 Robert Ehrlich Educational devices
US4567797A (en) * 1984-01-30 1986-02-04 Folk Donald C Ultrasonic cutting apparatus and methods
US6214294B1 (en) * 1997-08-20 2001-04-10 Kabushiki Kaisha Toshiba Stirring device and automatic analyzer incorporating the stirring device
US20040191275A1 (en) * 2003-01-09 2004-09-30 Henry Milner Ultrasonic dispersion apparatus, system, and method
US9174176B2 (en) 2003-01-09 2015-11-03 Disperse Systems, Inc. Ultrasonic dispersion apparatus, system, and method
US9446356B2 (en) 2003-01-09 2016-09-20 Disperse Systems, Inc. Ultrasonic dispersion apparatus, system, and method
US20100248202A1 (en) * 2009-03-30 2010-09-30 Walter Bennett Thompson Multi-component learning kit
USD843596S1 (en) 2014-01-09 2019-03-19 Axiosonic, Llc Ultrasound applicator
US10565899B1 (en) * 2015-03-06 2020-02-18 Mentis Sciences, Inc. Reconfigurable learning aid for performing multiple science experiments
US20170340920A1 (en) * 2016-05-31 2017-11-30 Polar Electro Oy System for monitoring physiological activity

Similar Documents

Publication Publication Date Title
US3774317A (en) Ultrasonic instructional kit, method and apparatus
Garrett Understanding acoustics: an experimentalist’s view of sound and vibration
US10565899B1 (en) Reconfigurable learning aid for performing multiple science experiments
Al-Azzawi Physical optics: principles and practices
CN203535864U (en) A circular standing wave generating device
CN214475882U (en) Ultrasonic characteristic demonstration device
CN201449683U (en) A vibrating sound generating demonstrator
Härtel The tides-a neglected topic
CN211604512U (en) Teaching device for demonstrating seismic waveform and damage degree
Uchida A variable focal length lens made from a food preservation lid
CN204348187U (en) A kind of sound wave apparatus for demonstrating
JP2017173682A (en) Liquefaction phenomenon testing device
Plumb Hard sphere simulation of statistical mechanical behavior of molecules
Bajkó Chaos Physics in Secondary School. A material applicable in online teaching
Hands-on Learning the Basics of Light and Optics. A Comenius 2 Project Proposal
CN207397552U (en) A kind of generation of sound and characteristic demonstration instrument for teaching
Krupczak et al. Hands-On Design Activities for Introduction to Engineering Courses to Accommodate Students of Varying Backgrounds
CN214564148U (en) English teaching show teaching aid
Polasek et al. Workshop: Hands-On Design Activities for Introduction to Engineering Courses to Accommodate Students of Varying Backgrounds
Shimada et al. Observation of paramagnetic property of oxygen by simple method-A simple experiment for college chemistry and physics courses
Viennot Physics in sequence, physics in pieces
Sirathanakul Development of an Educational Experiment Setup for Measuring the Speed of Sound
Rowe Interactive language simulation systems: Technology for a national language base
SU1078456A1 (en) Teaching-aid apparatus on mechanics
Imai et al. A teaching tool for molecular kinetics