US3771009A - Electrode discharge device with electrode-activating fill - Google Patents

Electrode discharge device with electrode-activating fill Download PDF

Info

Publication number
US3771009A
US3771009A US00212458A US3771009DA US3771009A US 3771009 A US3771009 A US 3771009A US 00212458 A US00212458 A US 00212458A US 3771009D A US3771009D A US 3771009DA US 3771009 A US3771009 A US 3771009A
Authority
US
United States
Prior art keywords
envelope
discharge device
complex
electrodes
volts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00212458A
Inventor
H Silver
A Heller
P Gardner
G Argue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Verizon Laboratories Inc
Original Assignee
GTE Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GTE Laboratories Inc filed Critical GTE Laboratories Inc
Application granted granted Critical
Publication of US3771009A publication Critical patent/US3771009A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/125Selection of substances for gas fillings; Specified operating pressure or temperature having an halogenide as principal component

Definitions

  • ABSTRACT An electric discharge device comprising a sealed lighttransmissive envelope having a pair of electrodes spaced therein, and a quantity of material within the envelope for facilitating an arc discharge between the electrodes, the quantity of material including, as the primary light-emitting material, at least one high melting, relatively non-volatile metallic iodide complexed with an iodide of a Group IllA element to give a volatile complex having the general formula LnM 1 where Ln represents a lanthanide element or a Group lllB element; M represents a Group IllA element selected from the group consisting of boron, aluminum, indium and gallium, particularly aluminum; and x 3 to 4.
  • this complex eliminates the need to use a heating element adjacent to but outside the sealed envelope to maintain sufficient amounts of the metallic iodide in the vaporous state, but, in addition. and quite unexpectedly, it has been found that its use eliminates the need to pre-activate the spaced electrodes with an electronemissive material, such as thorium.
  • the till includes an iodide of a lanthanide element or a Group 1118 element complexed with a plurality of molecules of an iodide of a Group IIIA element selected from the group consisting of boron, aluminum, gallium and indium, particularly aluminum iodide.
  • high pressure electric discharge devices have been manufactured which contain a fill of mercury alone.
  • a mercury is ionized and emits its characteristic spectral lines, principally in the ultraviolet and blue-green region of the spectrum.
  • these devices could be modified in their spectral emission by the inclusion of metals other than mercury, whereby the light produced .is the combined emission of mercury and the included metals. Blending of emissions in this manner can produce wide variations in colors and, most importantly, an essentially white spectrum can be attained.
  • Included metals which have been suggested have been the rare earth metals, added either in the form of the metal per se or as its halide.
  • rare earth metals when dissociated from the halogen in the arc ofa discharge lamp, emit a dense line spectrum predominantly in the visible region, thus producing a light source of good color.
  • a sufficiently high vapor pressure of the rare earth additive must be attained in order to achieve such emission. It has been found that the temperature of the coolest part of the envelope must be maintained above about 900C if such vapor pressures are to be attained.
  • High pressure discharge lamps including both mercury and metal iodide lamps, require activation of the tungsten electrodes to increase the current and to lower the operating voltages.
  • Many metals and metal oxides that have low work functions increase the electrode thermionic emission, reducing ballast requirements, and thus the cost of the lighting system.
  • thorium atoms are knocked off the tip of the tungsten electrode and react near the wall with iodine to form volatile thorium iodide.
  • the thorium iodide so formed decomposes at the tungsten electrode, depositing thorium metal on the hot tip and releasing iodine, thus providing a cycle that continuously reactivates the tungsten electrodes of those lamps containing iodine or iodides in the fill.
  • Thorium was believed to be the only useful activator, since the other metals and compounds either did not have sufficiently high boiling points to remain on the electrodes or did not have iodides with appropriate vapor pressures and decomposition temperatures to continuously reactivate the electrodes.
  • FIGURE of the drawing shows an electric discharge device embodying the present invention.
  • an electric discharge device having a sealed lighttransmissive envelope, a pair of electrodes spaced within the envelope, and a fill within the envelope, the fill including, as the primary light-emitting material, a quantity of a high melting, relatively non-volatile metallic iodide complexed with an iodide of a Group IIIA element selected from the group consisting of boron, aluminum, gallium and indium, particularly aluminum iodide, to give a volatile iodide complex having the general formula LnM l where Ln represents either a lanthanide element, such as cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium, or the Group l
  • the elements represented by Ln in the general formula above may hereafter sometimes be referred to as the metallic elements.
  • the iodides of the suitable Group IIIA elements include boron iodide, aluminum iodide, gallium iodide and indium iodide.
  • Group IIIA element iodide is used below in this specification, it should be understood to identify only those iodides listed in this paragraph.
  • Aluminum iodide is presently preferred.
  • Boron iodide attacks quartz envelopes. Accordingly, when boron iodide is used, an inert envelope, such as boron oxide should be used. Additionally, other components of the device, such as the seals, etc., should be selected, to the extent possible, from materials which offer greater resistance to attack by boron iodide and its dissociation products.
  • the metallic iodide complexes containing aluminum iodide are the presently preferred materials since they generally have higher vapor pressures at any particular temperature than the other halide complexes. Additionally, the iodide complexes are preferred because the use thereof precludes electrode transport problems such as might be encountered in tungsten electrode discharge lamps.
  • the complexes are solid materials, they can be added to the envelope in solid form. It has been determined that the advantages of the present invention are attained if sufficient complex is added to give, at cold fill, about 0.03-0.25 mg of the lanthanide element or Group IIIB element per cubic centimeter of envelope volume, though about 0.06 mg/cc of such element is generally used.
  • the complex can be added per se, or materials can be added which will decompose, react, etc. during operation to give the required complex.
  • the complex can be generated during operation by the addition of a mixture of (a) a lanthanide element iodide and a suitable Group IIIA element iodide; (b) a lanthanide element, iodine, and a suitable Group IIIA element iodide; (c) a lanthanide element, a suitable Group IllA element, and iodine; (d) a lanthanide element, a suitable Group llIA element, and mercuric iodide; etc.; including the corresponding situations where the Group IIIB elements are substitued for the lanthanide element or iodide.
  • the last exemplary selection of materials [i.e.
  • (d)] is presently preferred because the materials can be attained in rigorously anhydrous form this is desirable because fewer contaminants will be added to the envelope which might adversely affect the operation and lifetime of the discharge device.
  • the mixture of'materials must be in the proper proportions to give the required complex, or a mixture of complexes, either of the same or different metallic elements.
  • 30 mg of the individual elements required to form the volatile complex are added to an envelope having a. volume of about 14cc 18 cc.
  • the spectral output of the lamps of this invention is characterized by a whiter light than that obtained from mercury discharge lamps; however, depending upon the exact selection of the materials added to the envelope for generation of the fill during operation, the spectral output can be varied to give a variety of different colors. Furthermore, since these devices operate at temperatures that can be maintained by the heat generated by the device itself, external means to heat the device are not needed. As indicated above, this eliminates the need to provide an external heater between the sealed envelope and an outer bulb, for example, as shown by Thouret et al. US. Pat. No. 3,445,719. Additionally, the devices of this invention can be operated, with some loss in efficiency, without an outer bulb.
  • the envelope is generally made of quartz, although other types of glass may be used, such as Vycor, the latter being a glass containing a high proportion of silica. It is essential, of course, that the material utilized for the envelope and the materials utilized in the fill should not adversely react with one another, or with reactive products that might be produced during discharge device operation.
  • the spaced electrodes can be of any desired configurations, and generally are prepared from a suitable metal, such as tungsten. As indicated above, the electrodes need not be activated, as with thorium, to increase their electron emissivity. It was unexpectedly found that, during the operation of the discharge devices herein described, ordinary tungsten electrodes were activated due to the composition of the fill employed, whereby the devices could be operated at a lower operating potential than that required by such a device with thorium activated electrodes. In many cases, the operating potential can be lowered by as much as percent below the operating potential required for devices with thorium activated electrodes.
  • the envelope contains, in addition to the complex herein described, a small quantity of a noble gas, such as argon, and a small quantity of mercury which, during operation gives a pressure up to about eight to 10 atmospheres, generally about two to three atmospheres. During operation, the pressure within the envelope is principally generated by the volatization of the mercury with only a small contribution to the total pressure being made by the volatile complex.
  • a noble gas such as argon
  • mercury a small quantity of mercury which, during operation gives a pressure up to about eight to 10 atmospheres, generally about two to three atmospheres.
  • the pressure within the envelope is principally generated by the volatization of the mercury with only a small contribution to the total pressure being made by the volatile complex.
  • other well known additives can be added to the fill for their known purposes. For example, color additives, such as sodium iodide or thallium iodide, can be added to the fill to adjust the spectral output of the discharge device, as desired. 1
  • discharge device 1 comprises an outer vitreous bulb or jacket 2 of generally tubular form having a central bulbous portion 3.
  • the jacket is provided at its end with a re-entrant stem having a press through which extend relatively stiff lead-in wires 6 and 7 connected at their outer ends to the electrical contacts of the usual screwtype base 8 and at their inner ends to envelope 12 and the harness.
  • Sealed in the envelope 12 at the opposite ends thereof are main discharge electrodes 15 and 16 which are supported on lead-in wires 4 and 5 respectively.
  • Each main electrode 15 and 16 comprises a core portion which may be a prolongation of the lead-in wires 4 and 5 and may be prepared of a suitable metal such as, for example, molybdenum or tungsten.
  • the prolongations of these lead-in wires 4 and 5 are surrounded by molybdenum or tungsten wire helixes 13.
  • An auxiliary starting electrode 18, generally prepared of tantalum or tungsten, is provided at the base end ofthe envelope 12 adjacent main electrode 16 and comprises an inwardly projecting end of another lead in wire.
  • Each of the current lead-in wires described have their ends welded to intermediate foil sections of molybdenum which are hermetically sealed within the pinched sealed portions of the envelope.
  • the foil sections are very thin, for example, approximately 0.0008 inch thick and go into tension without rupturing or scaling off when the heated envelope cools.
  • Relatively short molybdenum wires 23, 24 and 35 are welded to the outer ends of the foils and serve to convey current to the various electrodes inside envelope 12.
  • Metal strips 45 and 46 are welded to the lead-in wires 23 and 24, respectively.
  • a resistor 26 is welded to foil strip 45 which, in turn, is welded to the envelope harness.
  • the resistor which may have, for example, a value of 40,000 ohms, serves to limit current to auxiliary electrode 18 during normal starting of the lamp.
  • Metal foil strip 46 is welded directlyto stiff lead-in wire 7.
  • Lead-in wire 35 is welded at one end to a piece of molybdenum foil sealed in envelope 12.
  • the foil is welded to main electrode. via lead-in wire 4.
  • Metal foil strip 47 is welded to the other end of lead-in wire 35 and at the other end to the harness.
  • the pinched or flattened end portions of envelope 12 form a seal whichcan be of any desirable width and can be made by flattening or compressing the ends of envelope 12 while they are being heated.
  • the U-shaped internal wireassembly or envelope harness serves to maintain the position of the envelope 12 substantially coaxial within jacket 2.
  • stiff lead-in wire 6 is welded to base 53 of the harness. Because stiff lead-in wires 6 and 7 are connected to opposite sides of a power line, they, and all members associated with each of them, must be electrically insulated from each other.
  • Clamps 56 and 57 fixedly attached to legs 54 of the harness, hold envelope 12 at the end portions thereof.
  • Rod 59 bridges the free ends of the U-shaped support 'wire 54 and is fixedly attached thereto for imparting stability to the structure.
  • the free ends of the U-shaped wire 54 are also provided with a pair of metal leaf springs 60, frictionally engaging the upper tubular portion ofjack et 2.
  • a heat shield 61 can be disposed beneath envelope l2 and above resistor 26 so as to protect the resistor from excessive heat generated during lamp operation.
  • the present invention is considered distinct and separate from the method developed by Oye and Gruen [J.Amer.Chem. Soc. 91 (1969)] for increasing the vapor pressure of neodymium chloride by complexing that metal halide with aluminum chloride.
  • Oye and Gruen J.Amer.Chem. Soc. 91 (1969)
  • the authors of the aforementioned article teach that the vapor pressure of neodymium chloride can be significantly increased by the complexing thereof with aluminum chloride, they do not relate their activities to electric discharge devices, do not suggest the use of the iodide complexes as herein proposed for use in electric discharge devices and, most importantly, because such materials were not used in electric discharge devices, they do not teach the highly unexpected results herein described as'to the elimination of electron-emissive material activated electrodes in such discharge devices.
  • the electron-emissive material treated electrodes could be eliminated, it has been postulated that the volatile complex breaks down at the hot electrode tips to generate either a non-volatile metallic compound or the metal itself.
  • This decomposition material is either sputtered off or boiled off of the hot electrodes and is transported to the cold inner wall of the sealed envelope where it reacts with iodine and the Group IIIA iodide present to regenerate the initial complex.
  • the complex is a volatile material
  • the non-volatile metallic compound or metal is continuously removed from the system as it is generated bydecomposition of the complex at the hot electrode tips.
  • the volatile complex istransported to the hot electrodes where it decomposes as described above.
  • the electrode materials are uniformly coated with a thin layer of a metallic compound or the metal itself. It is further believed that this uniform layer functions as an electron-emissive activator which enables nonactivated electrodes to be utilized in the electric discharge devices herein described.
  • the 175 watt envelope has a volume of about 3.4 cc., a diameter of about l.5 cm, a length of about 3.8 cm and a length between the adjacent tips of the spaced electrodes of about 3.0 cm.
  • envelope is made of quartz.
  • the 400 watt and the 400 watt S.P. envelopes are each made of quartz, have dimeters of about 2.3 cm, lengths of about 6.0 cm, and lengths between electrode tips of about 5.3 cm. Because of slightly different shapes of the ends of each envelope about the electrodes, the volume of the 400 watt envelope is about 14.0 cc. whereas the volume of the 400 watt S.P. envelope is about l7.8 cc.
  • tungsten electrodes are utilized. They are connected to molybdenum foils which, in turn, are connected to tantalum lead-in wires. Where the peak operating potentials of the discharge devices of the present invention are contrasted with those potentials obtained from devices having activated electrodes, the activated electrodes are made of tungsten activated with about 2 percent thorium.
  • strike potential is defined as the peak AC voltage (with reference to zero potential) required for lamp ignition
  • peak potential is defined as the peak AC voltage (with ref- 7 terics measured during ignition and lamp stabilization.
  • strike potential is defined as the peak AC voltage (with reference to zero potential) required for lamp ignition
  • peak potential is defined as the peak AC voltage (with ref- 7 terics measured during ignition and lamp stabilization.
  • EXAMPLE I A mg sample of NdAl l complex was placed in a I75 watt envelope together with about 2 mg Hgl and 23 mm. Ar, the latter two additives being introduced to facilitate ignition of the lamp. An AC power source was used for the operation of the lamp at 2 amps, 85 volts. After an initial warm-up period of a few seconds, the discharge of the lamp assumed an intense white color with a tinge of green. The temperature of the quartz envelope walls was measured by thermocouple to be about 600C, a temperature apparently quite adequate to generate a considerable vapor pressure of the NdAl l complex. An atomic line spectrum taken of the lamp emission revealed numerous Nd lines throughout the range of 2000A to 8500A.
  • EXAMPLE II A 400 watt envelope is filled with the individual elements which will yield 30 mg TmAl l during lamp operation, and 50 mg Hg.
  • the lamp When operated at 410 watts and 2.55 amps, the lamp had a strike potential of 1600 volts, a peak potential of 378 volts, a color temperature of IOK, and an efficiency of 54 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with a slight tinge of blue.
  • EXAMPLE III A 400 watt envelope is filled with the individual elements which will yield 30 mg TmAl l during lamp operation; 5 mg NaAlL; and 50 mg Hg.
  • the lamp When operated at 418 watts and 3.13 amps, the lamp had a strike potential of 1200 volts, a peak potential of 330 volts, a color temperature of about 3900I(, and an efficiency of 62.7 lm/w. After an initial warm-up period of a few seconds, the discharge assumed an exceptionally fine intense white color offering good flesh tones.
  • the lamp When a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 427 watts and 2.45 amps, the lamp had a strike potential of I300 volts and a peak potential of 550 volts. Thus, the lamp without the thorium activated electrodes could be operated at an operating potential of about 40 percent of that required for the lamp with thorium activated tungsten electrodes.
  • EXAMPLE IV A 400 watt envelope was filled with the individual elements which will yield 30 mg TmAl l during lamp operation; 5 mg NaAlI 5 mg TII; and 50 mg Hg.
  • the lamp When operated at about 410 watts and about 2.8 amps, the lamp had a strike potential of 1500 volts, a peak potential of 375 volts, a color temperature of about 4900K, and an efficiency of 77.8 lm/w. After an initial warm-up period of a few seconds, the discharge assumed an intense white color with only slightly yellow flesh tones.
  • the lamp had a strike potential of 1000 volts, and a peak potential of 420 volts. A similar spectral output was obtained.
  • the lamp without the thorium activated electrodes could be operated at an operating potential of about percent of that required for the lamp with the thorium activated tungsten electrodes.
  • EXAMPLE V A 400 watt S.P. envelope is filled with the individual elements which will yield 40 mg CeAl I during lamp operation; 5 mg Tll; 5 mg NaAlh; and 60 mg Hg.
  • the lamp When operated at 395 watts and 3.5 volts, the lamp had a strike potential of 1000 volts, a peak potential of 260 volts, a color temperature of about 8000K, and an efficiency of 5 l .2 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a blue-white color with slightly green flesh tones.
  • EXAMPLE VI A 400 watt S.P. envelope is filled with the individual elements which will yield 40 mg PrAl l during lamp operation; 5 mg Tll; 5 mg NaAlI. and 60 mg Hg.
  • a lamp When operated at 400 watts and 3.6 amps, a lamp had a strike potential of 1400 volts, a peak potential of 240 volts, a color temperature of about 6500I(, and an efficiency of 56.9 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a blue-white color with slightly green flesh tones.
  • EXAMPLE VII A 400 watt S.P. envelope is filled with the individual elements which will yield 30 mg SmAl I during lamp operation; 5 mg Tll; 5 mg NaAlI and 50 mg Hg.
  • the lamp When operated at 404 watts and 3.5 amps, the lamp had a strike potential of 1400 volts, a peak potential of 260 volts, a color temperature of about 5200K, and an efficiency of 60.3 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with slightly yellow-orange flesh tones.
  • EXAMPLE VIII A 400 watt S.P. envelope is filled with the individual elements which will.yield 45 mg EuAl l during lamp operation; 5 mg Tll; 5 mg NaAlI and 60 mg Hg. When operated at 402 watts and 3.47 amps, the lamp had a strike potential of 1300 volts, a peak potential of 260 volts, a color temperature of about 5700I(, and an efficiency of 48 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color.
  • EXAMPLE IX A 400 watt envelope is filled with the individual elements which will yield 30 mg GdAl l duringlamp operation; 5 mg TII; 5 mg NaAlI, and 50mg Hg.
  • the lamp When operated at 405 watts and 2.93 amps, the lamp had a strike potential of 1200 volts, a peak potential of 315 volts, a color'temperature of 8500K, and an efficiency of 58.1 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with a slight blue-white tinge.
  • EXAMPLE X A 400 watt envelope is filled with the individual elements which will yield 30 mg TbAl' l during lamp operation; 5 mg TII; 5 mg NaAlh; and 50 mg Hg.
  • the lamp When operated at404 watts and 2.7 am'ps, the lamp had a strike potential of 1300 volts, a peak potential of 350 volts, a color temperatureof about 7750K, and an effi- I ciency of"60.7 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with a slight blue-white tinge.
  • EXAMPLE Xl A 400 watt envelope is filled with the individual elements which will yield 30 mg DyAl l duringlamp operation; 5 mg Tll; 5 mg NaAlh; and 50 mg Hg.
  • the lamp When operated at 406'watts and 2.75 amps, the lamp had a strike potential of 1600 volts, a peak potential of 360 volts, a color temperature of about 5000K, and an efficiency of 55.3 lm/w. After an initial warm-up period of a few' seconds, the discharge assumed a white color with slightly orange flesh tones.
  • EXAMPLE XII A 400 watt envelope is filled with the individual elements which will yield 30 mg HoAl l during lamp operation; 5 mg TI]; 5 mg NaAlI.,; and 50 mg Hg.
  • the lamp When operated at 408 watts and 2.5 amps, the lamp had a strike potential of I200 volts, a peak potential of 410 volts, a color temperature of about 5 lK and an efficiency of 65.1 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with slightly yellow-orange flesh tones.
  • EXAMPLE Xlll A 400 watt envelope is filled with the individual elements which will yield 30 mg ErAl lfl during lamp operation; mg Tll;-5 mg NaAlh; and 50 mg Hg.
  • the lamp When operated at 396 wattsand 2.7 amps, the lamp had a strike potential of 1300 volts, a peak potential of 365 volts, a color temperature of about 5600K and an efficiency of 59.8 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with slightly organge flesh tones.
  • EXAMPLE XIV EXAMPL Xv A400 watt S.P. envelope is filled with the individual elements which will yield 30 mg LuAl l during lamp operation; 5 mg Tll; 5 mg NaAlh; and 50 mg Hg.
  • the lamp When operated at 395 watts and 3.7 amps, the lamp had a strike potential of 1200 volts, a peak potential of 210 volts, a color temperature of about 6750K and an efficiency of 62.2 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white I color with slightly yellow-green flesh tones.
  • EXAMPLE XVI A 400 watt S.P. envelope is filled with 6 mg Tb, 26 mg All 7 mg NaI, 10 mg Hgl and 75 mg Hg. When operated at 408 watts and 2.39 amps, the lamp had a strike potential of 1600 volts, apeak potential of 350 volts, a color temperature of 50,000K, and an efficiency of 31 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a blue-white color with a slight tinge of purple.
  • Example XVII is repeated except 6 mg Nd is substituted for the 6 mg Tb.
  • the lamp had a strike potential of 1600 volts, a peak potential of 270 volts, a color temperature of about 10,500K and an efficiency of 43.9 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a blue-white color with slightly yellow flesh tones.
  • Example XVI is repeated except 6 mg Tm is substituted for the 6 mg Tb.
  • the lamp had a strike potential of 1300 volts, a peak potential of 285 volts, a color temperature of 9000I(, and an efficiency of 61.2 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with slightly yellow flesh tones.
  • EXAMPLE XIX 'A 400 watt envelope is filled with 6 mg Dy, 26 mg A11 7 mg NaI, 10 mg I--Igl and 25 mg Hg.
  • the lamp When operated at 398 watts and 3.5 amps, the lamp had a strike potential of 1200 volts, a peak potential of 200 volts, and an efficiency of 31.8 lm/w. After an initial warmup period of a few seconds, the discharge assumed a blue-white color.
  • EXAMP E XX A 400 watt envelope is filled with 25 mg of a mixture of Dy, NaI, and Hgl 30 mg Gal and 25 mg Hg. When operated at 394 watts and 3.34 amps, the lamp had a strike potential of 1500 volts, a p-eakpotential of 275 volts and an efficiency of 35.3 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a blue-white color with a slight tinge of purple.
  • Example XXI Example XX is repeated except 35 mg Inl is substituted for the 30 mg Gal of Example XX. When operated at 406 watts and 3.33 amps, the lamp had a strike potential of 1600 volts, a peak potential of 295 volts, a color temperature of about 5750K and an efficiency of 31.1 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with a purple tint.
  • EXAMPLE XXII A 400 watt envelope is filled with 6 mg Dy, 7 mg Nal, [0 mg Hg! 2, 20 mgTll and 25 mg Hg. When operated at 400 watts and 3.38 amps, the lamp had a strike potential of 1300 volts, a peak potential of 180 volts, a color temperature of about 7000K, and an efficiency of 50.4 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a green-white color.
  • EXAMPLE XXIII EXAMPLE XXIV A I75 watt envelope is filled with 4 mg Dy, 1 mg Sc, 3 mg Na], 15 mg TN, 3 mg Hgl and 25 mg Hg.
  • the lamp When operated at 172 watts and 1.55 amps, the lamp had a strike potential of 1000 volts, a peak potential of 195 volts, a color temperature of about 6750K, and an efficiency of 36.7 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with a slightly yellow-green tint.
  • EXAMPLE XXV A 175 watt envelope is filled with 0.6 mg Sc, 3.0 mg All 0.9 mg Nal, 1.1 mg Hgl and 25 mg Hg. When operated at 176 watts and 1.2 amps, a lamp had a strike potential of 1100 volts, a peak potential of 330 volts, and an efficiency of 57.5 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a bluewhite color with a slight pink tint.
  • EXAMPLE XXVI A 175 watt envelope is filled with 4.6 mg NaAlI 0.5 mg Sc, 2.5 mg Hgl and 25 mg Hg. When operated at l78 watts and 1.7 amps, the lamp had apeak potential of 190 volts, and an an efficiency of 58.8 lm/w. After an initial warm-up period of a few seconds thedischarge assumed a white color with a slight green tint to flesh tones.
  • EXAMPLE XXVII A 175 watt envelope is filled with 0.5 mg Sc, 9.1 mg NaAll 2.5 mg Hgl and 25.0 mg Hg. When operated at 184 watts and 1.5 amps, the lamp had a strike potential of 2400 volts, a peak potential of 305 volts, a color temperature of about 8250K and an efficiency of 67.2 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a blue-white color with good flesh tones.
  • EXAMPLE XXVIII A 400 watt S.P. envelope is filled with the individual mwt biQ willyield m mAlih d a l mp operation and 50 mg Hg. When operated at 399 watts and 3.52 amps, the lamp had a strike potential of 1500 volts, a peak potential of 240 volts, a color temperature of about 9500K, and an eff ciency of 39.6 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a blue-white color with a slight purple tint.
  • A1, 48 mg Hgl 30 mg Hg, and 23 mm Ar When operated at 400 watts and 3.00 amps, the lamp had a peak potential of 278 volts andangefficiengy of 5 8 lm/w.
  • the lamp When a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 400 watts and 1.63 amps, the lamp had a peak Pot nti 02. .59 rvp t wyia stfis r s f 7 lm/W- The discharge in both cases was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 73 percent was attained.
  • Example XXIX is repeated except 4 mg Pr is substituted for the 4 mg Ce of Example XXIX.
  • the lamp When operated at 400 watts and 2.93 amps, the lamp had a peak potential of 31 7 volts and an efficie ncy of 48 lm/w.
  • a similar envelope having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 408 watts and 1.8 amps, the lamp had a peak potential of 760 volts and an efficiency of 65 lm/w. Both lamps had a white discharge with a slight tint of blue. Without the thorium activated electrodes, a decrease in the peak operating potential of about 58 percent was attained.
  • Example XXIX is repeated except 4 mg Nd is substituted for the 4 mg Ce.
  • the lamp When operated at 400 watts and 3.19 amps, the lamp had a peak potential of 272 volts and an efficiency of 45 lm/w.
  • the lamp When a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 400 watts and 1.74 amps, the lamp had a peak potential of 900 volts and an efficiency of 77 lm/w. In both cases, the discharge was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about percent was attained.
  • Example XXII is repeated except 4 mg Sm is substituted for the 4 mg Ce of Example XXIX.
  • the lamp When operated at 40] watts and 2.95 amps, the lamp had a peak potential of 292 volts and an efficiency of 47 lm/w.
  • the lamp When a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 402 watts and 2.38 amps, the lamp had a peak potential of 504 volts and an efficiency of 62 lm/w. In both cases, the discharge was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 41 percent was attained.
  • EXAMPLE XXXIII charge was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 67 percent was attained.
  • EXAMPLE XXXIV charge wa s blue-white. Without the thorium activated electrodes, a decrease in the peak operatingpotential of about 60 percent was attained.
  • Example XXIX is repeated except 4 mg Tb iis substituted for the 4 mg Ce of Example XXIX.
  • the lamp When operated at 403 watts and 3.1 1 amps, the lamp had a peak potential of 279 volts and an efficiency of 46 lm/w.
  • the discharge was white with a pink-purple tint.
  • a similar envelope having the same charge of materials but thorium activated tungsten electrodes .in place of the non-activated tungsten electrodes, was operated at 399 watts and 1.82 amps, the lamp had a peakpotential charge was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 62percent was attained.
  • Example XXXVI Example XXIX is repeated except 4 mg Dy is substituted for the 4 mg Ce of Example XXIX.
  • the lamp When operated at 400 watts and 3.19 amps, the lamp had a peak qtsn ial of .4 qt sa aas fis n ufl lm/W- The discharge was white with a pink-purple tint.
  • a similar envelope having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 397 watts and 1.76 amps, the lamp had a peak potential of 760 voltsand an efficiency of 69 lm/w. The discharge was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 67 percent was attained.
  • Example XXIX is repeated except 4 mg H0 is substi-' 402 watts and 1.97 amps, the lamp had a peak potential of 660 volts and an effic iency 9f 65 lmlw. Thedischarge was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 60 percent was attained.
  • Example XXIX is repeated except 4 mg Er is substituted for the 4 mg Ce of Example XXIX.
  • the lamp When operated at 400 watts and 2.96 amps, the lamp had a peak P t nt q 211fi99fi0 sffls qasy of 521W we The discharge was white with a blue-purple tint.
  • the lamp When a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated, at 400 watts and 1.88 amps, the lamp had a peak potential of 780 volts and an efficiency of 64 lm/w. The discharge was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 63 percent was attained.
  • Example XXIX is repeated except 4 mg Tm is substituted for the 4 mg Ce of Example XXIX.
  • the lamp Whenoperated at 400 watts and 3.16 amps, the lamp had a peak potential of 25 volts and an efliciency of 52 lm/w. T'H discharge was blue-white.
  • the lamp When a similar envelope, having the same charge of materials but thorium activated electrodes in place of the non-activated of the non-activated tungsten electrodes, was operated at 400 watts and 2.08 amps, the lamp had a peak potential of 15 13 nd an ffi9l2f 1?. 19 2; Tbs is was also blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about percent was attained.
  • Example XXIX is repeated except 4 mg Yb is substituted for the 4 mg Ce of Example XXIX.
  • the lamp When operated at 403 watts and 2.97 amps, the lamp had a peak potential of 300 volts and an efficiency of 52 lrn/ w The discharge was blue-white.
  • a similar envelope having the same charge of materials but thorium activated tungsten electrodes in place of the nonactivated tungsten electrodes, was operated at 401 watts and 2.31 amps, the lamp had a peak potential of 605 volts and 73 lm/w. The discharge was also blue: white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 50 percent was attained.
  • Example XXIX is repeated except 4 mg Lu is substituted for the 4 mg Ce of Example XXIX. When operated at 400 watts and 3.38 amps, the lamp had a peak,
  • the discharge was white with a blue-purple tint.
  • n n a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 402 watts and 2.04 amps, the lamp had a peak potential f 7 v s d an qiensiaf 7 lml Th2. lischarge was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 66 percent was attained.
  • Example XXIX is repeated except 6.1 mg In is substiated at 400 watts and 2.79 amps, the lamp had a peak potential of 347 volts and an efficiency of 55 lm/w. The discharge was blue-white.
  • Example XXIX was repeated except 2 mg Dy and 2 mg Lu are substituted for the 4 mg Ce of Example XXIX.
  • the lamp When operated at 400 watts and 2.97 amps, the lamp had a peak potential of 290 volts and an efficiency of 54 lm/w. The discharge was white with a slight purple tint.
  • Example XLIV is repeated except 2 mg Gd is substituted for the 2 mg Lu of Example XLlV.
  • the lamp When operated at 400 watts and 3.21 amps, the lamp had a peak potential of 248 volts and an efficiency of 44 lm/w. The discharge was white with a purple tint, but with good flesh tones.
  • EXAMPLE XLVl Example XLIV is repeated except a 400 watt S.P. envelope is used, 2 mg Tm is'substituted for the 2 mg Lu of Example XLlV, and 5 mg Nal and 2 mg Tll are additionally added.
  • the lamp When operated at 401 watts and 3.87 amps, the lamp had a strike potential of 1700 volts, a peak potential of 210 volts, and an efficiency of 66 lm/w. The discharge was white with a redpurple tint.
  • Example XLVl is repeated except 2 mg Pr is substituted for the 2 mg Tm of Example XLVI.
  • the lamp When operated at 398 watts and 3.66 amps, the lamp had a strike potential of 1600 volts, a peak potential of 220 volts, and aiieffiEiency of 63 lm/wflhe discErge was white with a pink tint.
  • EXAMPLE XLVIlI EXAMPLE IL A 400 watt .P. envelope is filled with 6 mg Tm, 1.1 mg A1, 31 mg HgI ,5 mg Nal 3 mg Ce, and l mgTlI, 36 mg Hg and 23 torr Ar. When operated at 403 watts and 3.62 amps, the lamp had a strike potential of 1300 volts, a peak pgtentialof 192 volts, a color temperature of 6250K, and an efficiency of 95.2 lm/w. After an initial warm-up period of a fewseconds, the discharge assumed a greenish-white color.
  • EXAMPLE L A 400 8.1. envelope is filled with 8 mg Tm, 1.4 mg A1, 48 mg Hgl 5 mg Nal, 2 mg TH, 14 mg Hg, and 23 torr Ar. When operated at 400 watts and 3.25 amps, the lamp had a strike potential of 1700 volts, a peak p tential of 225 volts, a color temperature of about 5800 K,"'5i1d B efficiency if 103.5 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with a slight green tint.
  • EXAMPLE Ll A 400 watt envelope is filled with 0.75 mg Sc, 0.60 mg Al, 20 mg Hgl 48 mg Hg and 23 mm Ar. When operated at 400 watts and 2.93 amps, the lamp had a strike potential of 1200 volts, a peak potential of 280 volts, and an efficiency of 63 lm/w. The discharge was white with a blue-green tint. When a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 400 watts and 1.83 amps, the lamp had a strike potential @2000 volts, at peak potential of 720 volts, and an efficiency of 62 lm/w. The discharge was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 50 percent was attained.
  • Example L1 is repeated except 1.5 mg Y is substituted for the 0.75 mg Sc of Example Ll.
  • the lamp When operated at 401 watts and 3.4 amps, the lamp had a strike potential of 1650 volts, a peak potential of 194 volts, and an efficiency of 42 lm /w. Th discharge w as white with a blue-purple tint.
  • Example L1 is repeated except 2.4 mg La is substituted for the 0.75 mg So of Example Ll.
  • the lamp When operated at 400 watts and 3.41 amps, the lamp had a strike potential of 1700 volts, a peak potential of volts, and an efficiency of 41 lm/w.
  • a similar envelope having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 400 watts and 2.91 amps, the lamp had a strike potentialof 1200 volts, a peak potential of 450 volts, and an efficiency of 61 lm/w. In both cases the discharge was blue white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 60 percent was attained.
  • the molar ratios of the lanthanide element, the Group IIIA element, and iodine are l to 4 to 15, respectively.
  • EXAMPLE LIV A 400 watt envelope is filled with 4 mg Ce, 1.9 mg A1, 60.4 mg Hgl 25 mg Hg, and 23 torr Ar. When operated at 402 watts and2.77 amps, the lamp had a strike potential c af1650 volts, a peak potential of 318 volts, and an efiiciency 0f 44 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with a slight blue-green tint.
  • EXAMPLE LV Example LIV is repeated except 4 mg Gd is substituted for the 4 mg Ce of Example LIV.
  • the lamp When operated at 402 watts and 287 amps, the lamp had a strike potential of 1650 volts, a peak potential of 320 volts, and an efficiency of 42 lni/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with a slight blue-purple tint.
  • EXAMPLE LVl Example LIV is repeated except 4 mg Tm is substituted for the 4 mg Ce of Example LIV.
  • the lamp When operated at 400 watts and 2.98 amps, the lamp had a strike potential of 1500 volts, a peak potential of 297 volts, and an efficiency of 52 lmlw After an initial warm-up period of a few seconds, the discharge assumed a white color with a slight purple tint.
  • EXAMPLE LVll Example LlV is repeated except 4 mg Lu is substituted for the 4 mg Ce of Example LIV.
  • the lamp When operated at 400 watts and 2.83 amps, the lamp had a strike potential of 1050 volts, a peak potential of 315 volts, and an efficiency of 45 l m/ w. After an initial warm-upperiod of a few seconds, the discharge assumed a white color with a slight pink-purple tint.
  • Nal When Nal is added to the envelopetfor example to decrease the operating potential and/or to-adjust the spectral output), it can be added as the complex thereof with the iodide of the Group lllA metal (eg. All that is, it can be added as NaAll During lamp operation, an equilibrium exists between the volatile complex herein described and its dissociation compo nents, i.e., the metallic iodide (eg. Tml and the iodide of the Group IIIA element (eg. All When NaI is added as Nal, it forms a complex with All,, and alters the equilibrium that would otherwise be established in the operation of the device. This results in a decrease in the concentration of the volatile complex availale for volatilization. When Nal is added as Nal'All (i.e., NaAll however, the equilibrium which would normally be established is not disrupted since the NaA- does not tie up All; dissociated from the volatile complex.
  • Nal'All i.e.
  • An electric discharge device comprising a sealed light-transmissive envelope; a pair of unactivated electrodes spaced within said envelope and capable of being connected, at those portions thereof extending outside of said envelope, to means for applying an electrical potential thereto; and a fill within said sealed envelope, said fill including at least one volatile complex having the formula LnM I where Ln is a lanthanide element, M represents a Group llIlA element selected from the group consisting of boron, aluminum, gallium and indium, and x 3 to 4, said complex serving to activate said electrodes during operation of said discharge device whereby the need to provide electronemissive material activated electrodes is eliminated; said volatile complex being present in sufficient quantity to constitute the primary light-emitting component of the fill.
  • Ln is se lected from the group consisting of cerium, praseodymiurn, neodymium, samarium, europium, gadolinium,
  • terbium dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  • Ln is selected from the group consisting of thulium, dysprosium, and cerium.
  • M is selected from the group consisting of gallium and indium.
  • An electric discharge device comprising asealed light-transmissive envelope; a pair of unactivated electrodes spaced within said sealed envelope, said electrodes being initially free of electron emissive material which would function to lower the operating potential of the device during operation; and a fill within said envelope, said fill including at least one volatile complex having the general formula LnM I where Ln represents a lanthanide element, M represents a Group lllA element selected from the group consisting of boron, aluminum, gallium, and indium, and x equals 3 to 4, said complex serving to activate said electrode during operation of said device whereby the need to initially provide electron-emissive material activated electrodes is eliminated, said volatile complex being present in sufficient quantity to constitute the primary lightemitting component of the fill.
  • M is selected from the group consisting of gallium and indium.
  • Ln is selected from the group consisting of thulium, dysprosium, and cerium.

Abstract

An electric discharge device comprising a sealed lighttransmissive envelope having a pair of electrodes spaced therein, and a quantity of material within the envelope for facilitating an arc discharge between the electrodes, the quantity of material including, as the primary light-emitting material, at least one high melting, relatively non-volatile metallic iodide complexed with an iodide of a Group IIIA element to give a volatile complex having the general formula LnMxI3x 3, where Ln represents a lanthanide element or a Group IIIB element; M represents a Group IIIA element selected from the group consisting of boron, aluminum, indium and gallium, particularly aluminum; and x 3 to 4. The use of this complex eliminates the need to use a heating element adjacent to but outside the sealed envelope to maintain sufficient amounts of the metallic iodide in the vaporous state, but, in addition and quite unexpectedly, it has been found that its use eliminates the need to pre-activate the spaced electrodes with an electron-emissive material, such as thorium.

Description

United States Patent 1 Silver et a].
[ 1 Nov. 6, 1973 ELECTRODE DISCHARGE DEVICE WITH ELECTRODE-ACTIVATING FILL [75] Inventors: H. Graham Silver, Kings Port, N.Y.; Adam Heller, Sharon, Mass; Phillip J. Gardner, Bayside, N.Y.; Gary R. Argue, Winchester, Mass.
[73] Assignee: GTE Laboratories Incorporated, Bayside, N.Y.
[22] Filed: Dec. 27, 1971 [21] Appl. No.: 212,458
[52] US. Cl. 313/228, 313/229 [51] Int. Cl. H0lj 61/18 [58] Field of Search 313/225, 226, 227, 313/228, 229
[56] References Cited UNITED STATES PATENTS 3,234,421 2/1966 Reiling 313/225 3,259,777 7/1966 Fridrich 313/229 3,319,119 5/1967 Rendina 313/225 3,445,719 5/1969 Thouret et al. 313/225 3,452,238 6/1969 Larson 313/228 3,536,947 10/1970 l-ligashi et a1... 313/229 3,654,506 4/1972 Kuhl 313/225 Primary ExaminerRoy Lake Assistant Examiner-Siegfried H. Grimm Attorney-Irving M. Kriegsman [57] ABSTRACT An electric discharge device comprising a sealed lighttransmissive envelope having a pair of electrodes spaced therein, and a quantity of material within the envelope for facilitating an arc discharge between the electrodes, the quantity of material including, as the primary light-emitting material, at least one high melting, relatively non-volatile metallic iodide complexed with an iodide of a Group IllA element to give a volatile complex having the general formula LnM 1 where Ln represents a lanthanide element or a Group lllB element; M represents a Group IllA element selected from the group consisting of boron, aluminum, indium and gallium, particularly aluminum; and x 3 to 4. The use of this complex eliminates the need to use a heating element adjacent to but outside the sealed envelope to maintain sufficient amounts of the metallic iodide in the vaporous state, but, in addition. and quite unexpectedly, it has been found that its use eliminates the need to pre-activate the spaced electrodes with an electronemissive material, such as thorium.
25 Claims, 1 Drawing Figure ELECTRODE DISCHARGE DEVICE WITH ELECTRODE-ACTIVATING FILL BACKGROUND OF THE INVENTION This invention relates to electric discharge devices, 5
particularly of the type wherein the till includes an iodide of a lanthanide element or a Group 1118 element complexed with a plurality of molecules of an iodide of a Group IIIA element selected from the group consisting of boron, aluminum, gallium and indium, particularly aluminum iodide.
In the prior art, high pressure electric discharge devices have been manufactured which contain a fill of mercury alone. When a potential is imposed across the spaced electrodes in such a device, a mercury is ionized and emits its characteristic spectral lines, principally in the ultraviolet and blue-green region of the spectrum. It has recently been discovered that these devices could be modified in their spectral emission by the inclusion of metals other than mercury, whereby the light produced .is the combined emission of mercury and the included metals. Blending of emissions in this manner can produce wide variations in colors and, most importantly, an essentially white spectrum can be attained. Included metals which have been suggested have been the rare earth metals, added either in the form of the metal per se or as its halide.
Many of the rare earth metals, when dissociated from the halogen in the arc ofa discharge lamp, emit a dense line spectrum predominantly in the visible region, thus producing a light source of good color. However, a sufficiently high vapor pressure of the rare earth additive must be attained in order to achieve such emission. It has been found that the temperature of the coolest part of the envelope must be maintained above about 900C if such vapor pressures are to be attained.
Heretofore, the use of such rare earth additives in an arc discharge lamp, although known, was rarely considered because of the problem of maintaining the envelope at the high temperature required to generate sufficient additive vapor pressure. Such temperatures would most probably cause softening of the quartz envelope, particularly at the glass-to-metal seal, in high pressure mercury lamps. However, the use of such rare earth additives has been accomplished in certain, lowpressure cases by mounting the discharge envelope and a heating element within an outer glass envelope, the space between the inner and outer glass walls either being evacuated or filled with nitrogen or a noble gas to a pressure which meets the requirement of proper discharge envelope warmup. Such a lamp is shown, for example, in Thouret et al. U.S. Pat. No. 3,445,719. The need to maintain a high envelope and seal temperature increases, however, the chance for its earlier failure during operation.
High pressure discharge lamps, including both mercury and metal iodide lamps, require activation of the tungsten electrodes to increase the current and to lower the operating voltages. Many metals and metal oxides that have low work functions increase the electrode thermionic emission, reducing ballast requirements, and thus the cost of the lighting system. Of these, only one metal, thorium, has been used in the past in arc lamps, since it boils at a sufficiently high temperature (=3900C) to coat and remain on the tip of the hot tungsten electrode. However, due to electronimpact, thorium atoms are knocked off the tip of the tungsten electrode and react near the wall with iodine to form volatile thorium iodide. The thorium iodide so formed decomposes at the tungsten electrode, depositing thorium metal on the hot tip and releasing iodine, thus providing a cycle that continuously reactivates the tungsten electrodes of those lamps containing iodine or iodides in the fill. Thorium was believed to be the only useful activator, since the other metals and compounds either did not have sufficiently high boiling points to remain on the electrodes or did not have iodides with appropriate vapor pressures and decomposition temperatures to continuously reactivate the electrodes.
As the need for such electrodes increases the cost of the discharge device, it would be desirable to provide a metal halide-type discharge device in which the active light-emitting component also activates the electrodes, allowing operation at a relatively low potential.
OBJECTS OF THE INVENTION It is, therefore, an object of the present invention to provide a novel electric discharge device.
It is an object of the present invention to provide an electric discharge device of the metal halide type which allows operation at lower envelope and seal temperatures and eliminates the need for electron-emissive treated electrodes, such elimination being achieved by the use of the novel fill herein described.
It is a further object of the present invention to provide an electric discharge device of the metal halide type which eliminates the need for (a) an external heating element to maintain sufficent amounts of the light emitting material in the vaporous state and (b) electron-emissive material treated electrodes, such eliminations being achieved by the use of the novel fill herein described.
It is a further object of the present invention to provide an electric discharge device which, by providing a novel fill material, eliminates the need to provide, as part of the initial discharge device configuration, electrodes which are treated, or incorporate, an electronemissive material.
These and still further objects, features and advantages of the present invention will become apparent upon consideration of the following detailed disclosure.
BRIEF DESCRIPTION OF THE DRAWING The single FIGURE of the drawing shows an electric discharge device embodying the present invention.
BRIEF SUMMARY OF THE INVENTION These and still further objects ofthe present invention are achieved, in accordance therewith, by providing an electric discharge device having a sealed lighttransmissive envelope, a pair of electrodes spaced within the envelope, and a fill within the envelope, the fill including, as the primary light-emitting material, a quantity of a high melting, relatively non-volatile metallic iodide complexed with an iodide of a Group IIIA element selected from the group consisting of boron, aluminum, gallium and indium, particularly aluminum iodide, to give a volatile iodide complex having the general formula LnM l where Ln represents either a lanthanide element, such as cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium, or the Group lIIB element, such as scandium, yttrium, and lanthanum; M represents a Group IIIA element selected from the group consisting of boron, aluminum, gallium and indium, particularly aluminum; and x equals 3 to 4. In order to enhance the color rendition of the arc discharge in any portion of the visible spectrum, mixtures of some or all of the metallic iodide complexes discussed above can be used in varying proportions to produce white light or light of a variety of desired hues.
For brevity, the elements represented by Ln in the general formula above may hereafter sometimes be referred to as the metallic elements.
The iodides of the suitable Group IIIA elements include boron iodide, aluminum iodide, gallium iodide and indium iodide. Where the term Group IIIA element iodide is used below in this specification, it should be understood to identify only those iodides listed in this paragraph. Aluminum iodide is presently preferred. Boron iodide attacks quartz envelopes. Accordingly, when boron iodide is used, an inert envelope, such as boron oxide should be used. Additionally, other components of the device, such as the seals, etc., should be selected, to the extent possible, from materials which offer greater resistance to attack by boron iodide and its dissociation products.
The metallic iodide complexes containing aluminum iodide are the presently preferred materials since they generally have higher vapor pressures at any particular temperature than the other halide complexes. Additionally, the iodide complexes are preferred because the use thereof precludes electrode transport problems such as might be encountered in tungsten electrode discharge lamps.
Since the complexes are solid materials, they can be added to the envelope in solid form. It has been determined that the advantages of the present invention are attained if sufficient complex is added to give, at cold fill, about 0.03-0.25 mg of the lanthanide element or Group IIIB element per cubic centimeter of envelope volume, though about 0.06 mg/cc of such element is generally used. The complex can be added per se, or materials can be added which will decompose, react, etc. during operation to give the required complex. For example, the complex can be generated during operation by the addition ofa mixture of (a) a lanthanide element iodide and a suitable Group IIIA element iodide; (b) a lanthanide element, iodine, and a suitable Group IIIA element iodide; (c) a lanthanide element, a suitable Group IllA element, and iodine; (d) a lanthanide element, a suitable Group llIA element, and mercuric iodide; etc.; including the corresponding situations where the Group IIIB elements are substitued for the lanthanide element or iodide. The last exemplary selection of materials [i.e. (d)], is presently preferred because the materials can be attained in rigorously anhydrous form this is desirable because fewer contaminants will be added to the envelope which might adversely affect the operation and lifetime of the discharge device. Of course, the mixture of'materials must be in the proper proportions to give the required complex, or a mixture of complexes, either of the same or different metallic elements. As an exemplary way to achieve the desired concentration, 30 mg of the individual elements required to form the volatile complex are added to an envelope having a. volume of about 14cc 18 cc.
The spectral output of the lamps of this invention is characterized by a whiter light than that obtained from mercury discharge lamps; however, depending upon the exact selection of the materials added to the envelope for generation of the fill during operation, the spectral output can be varied to give a variety of different colors. Furthermore, since these devices operate at temperatures that can be maintained by the heat generated by the device itself, external means to heat the device are not needed. As indicated above, this eliminates the need to provide an external heater between the sealed envelope and an outer bulb, for example, as shown by Thouret et al. US. Pat. No. 3,445,719. Additionally, the devices of this invention can be operated, with some loss in efficiency, without an outer bulb.
The envelope is generally made of quartz, although other types of glass may be used, such as Vycor, the latter being a glass containing a high proportion of silica. It is essential, of course, that the material utilized for the envelope and the materials utilized in the fill should not adversely react with one another, or with reactive products that might be produced during discharge device operation.
The spaced electrodes can be of any desired configurations, and generally are prepared from a suitable metal, such as tungsten. As indicated above, the electrodes need not be activated, as with thorium, to increase their electron emissivity. It was unexpectedly found that, during the operation of the discharge devices herein described, ordinary tungsten electrodes were activated due to the composition of the fill employed, whereby the devices could be operated at a lower operating potential than that required by such a device with thorium activated electrodes. In many cases, the operating potential can be lowered by as much as percent below the operating potential required for devices with thorium activated electrodes.
The envelope contains, in addition to the complex herein described, a small quantity of a noble gas, such as argon, and a small quantity of mercury which, during operation gives a pressure up to about eight to 10 atmospheres, generally about two to three atmospheres. During operation, the pressure within the envelope is principally generated by the volatization of the mercury with only a small contribution to the total pressure being made by the volatile complex. In addition, other well known additives can be added to the fill for their known purposes. For example, color additives, such as sodium iodide or thallium iodide, can be added to the fill to adjust the spectral output of the discharge device, as desired. 1
The sealed envelope is desirably held within an outer jacket or bulb, such a device being shown in elevational form in the FIGURE. Referring to the FIGURE, discharge device 1 comprises an outer vitreous bulb or jacket 2 of generally tubular form having a central bulbous portion 3. The jacket is provided at its end with a re-entrant stem having a press through which extend relatively stiff lead-in wires 6 and 7 connected at their outer ends to the electrical contacts of the usual screwtype base 8 and at their inner ends to envelope 12 and the harness. Sealed in the envelope 12 at the opposite ends thereof are main discharge electrodes 15 and 16 which are supported on lead-in wires 4 and 5 respectively. Each main electrode 15 and 16 comprises a core portion which may be a prolongation of the lead-in wires 4 and 5 and may be prepared of a suitable metal such as, for example, molybdenum or tungsten. The prolongations of these lead-in wires 4 and 5 are surrounded by molybdenum or tungsten wire helixes 13.
An auxiliary starting electrode 18, generally prepared of tantalum or tungsten, is provided at the base end ofthe envelope 12 adjacent main electrode 16 and comprises an inwardly projecting end of another lead in wire.
Each of the current lead-in wires described have their ends welded to intermediate foil sections of molybdenum which are hermetically sealed within the pinched sealed portions of the envelope. The foil sections are very thin, for example, approximately 0.0008 inch thick and go into tension without rupturing or scaling off when the heated envelope cools. Relatively short molybdenum wires 23, 24 and 35 are welded to the outer ends of the foils and serve to convey current to the various electrodes inside envelope 12.
Metal strips 45 and 46 are welded to the lead-in wires 23 and 24, respectively. A resistor 26 is welded to foil strip 45 which, in turn, is welded to the envelope harness. The resistor, which may have, for example, a value of 40,000 ohms, serves to limit current to auxiliary electrode 18 during normal starting of the lamp. Metal foil strip 46 is welded directlyto stiff lead-in wire 7. Lead-in wire 35 is welded at one end to a piece of molybdenum foil sealed in envelope 12. The foil, in turn, is welded to main electrode. via lead-in wire 4. Metal foil strip 47 is welded to the other end of lead-in wire 35 and at the other end to the harness. The pinched or flattened end portions of envelope 12 form a seal whichcan be of any desirable width and can be made by flattening or compressing the ends of envelope 12 while they are being heated.
The U-shaped internal wireassembly or envelope harness serves to maintain the position of the envelope 12 substantially coaxial within jacket 2. To support envelope 12 within the jacket, stiff lead-in wire 6 is welded to base 53 of the harness. Because stiff lead-in wires 6 and 7 are connected to opposite sides of a power line, they, and all members associated with each of them, must be electrically insulated from each other. Clamps 56 and 57, fixedly attached to legs 54 of the harness, hold envelope 12 at the end portions thereof. Rod 59 bridges the free ends of the U-shaped support 'wire 54 and is fixedly attached thereto for imparting stability to the structure. The free ends of the U-shaped wire 54 are also provided with a pair of metal leaf springs 60, frictionally engaging the upper tubular portion ofjack et 2. Optionally, a heat shield 61 can be disposed beneath envelope l2 and above resistor 26 so as to protect the resistor from excessive heat generated during lamp operation.
. The present invention is considered distinct and separate from the method developed by Oye and Gruen [J.Amer.Chem. Soc. 91 (1969)] for increasing the vapor pressure of neodymium chloride by complexing that metal halide with aluminum chloride. Although the authors of the aforementioned article teach that the vapor pressure of neodymium chloride can be significantly increased by the complexing thereof with aluminum chloride, they do not relate their activities to electric discharge devices, do not suggest the use of the iodide complexes as herein proposed for use in electric discharge devices and, most importantly, because such materials were not used in electric discharge devices, they do not teach the highly unexpected results herein described as'to the elimination of electron-emissive material activated electrodes in such discharge devices.
Subsequent to the realization that, by using the metallic iodide-Group IIIA element iodide complexes of the present invention as the primary component of the fill, the electron-emissive material treated electrodes could be eliminated, it has been postulated that the volatile complex breaks down at the hot electrode tips to generate either a non-volatile metallic compound or the metal itself. This decomposition material is either sputtered off or boiled off of the hot electrodes and is transported to the cold inner wall of the sealed envelope where it reacts with iodine and the Group IIIA iodide present to regenerate the initial complex. Since the complex is a volatile material, the non-volatile metallic compound or metal is continuously removed from the system as it is generated bydecomposition of the complex at the hot electrode tips. The volatile complex istransported to the hot electrodes where it decomposes as described above. In this manner, it is believed that at all times during operation of the discharge de' vice, the electrode materials are uniformly coated with a thin layer of a metallic compound or the metal itself. It is further believed that this uniform layer functions as an electron-emissive activator which enables nonactivated electrodes to be utilized in the electric discharge devices herein described.
DESCRIPTION OF SPECIFIC EMBODIMENTS The following Examples are given to enable those skilled in the art to more fully understand and practice the present invention. They should not be considered as a limitation upon the scope of the invention but merely as being illustrative and representative thereof.
In the following Examples, three different envelope configurations have been utilized. These are a watt envelope, a 400 watt envelope, .and a 400 watt shallow-press (S.P.) envelope. The 175 watt envelope has a volume of about 3.4 cc., a diameter of about l.5 cm, a length of about 3.8 cm and a length between the adjacent tips of the spaced electrodes of about 3.0 cm. The
envelope is made of quartz.
The 400 watt and the 400 watt S.P. envelopes are each made of quartz, have dimeters of about 2.3 cm, lengths of about 6.0 cm, and lengths between electrode tips of about 5.3 cm. Because of slightly different shapes of the ends of each envelope about the electrodes, the volume of the 400 watt envelope is about 14.0 cc. whereas the volume of the 400 watt S.P. envelope is about l7.8 cc.
In all of the Examples, tungsten electrodes are utilized. They are connected to molybdenum foils which, in turn, are connected to tantalum lead-in wires. Where the peak operating potentials of the discharge devices of the present invention are contrasted with those potentials obtained from devices having activated electrodes, the activated electrodes are made of tungsten activated with about 2 percent thorium.
When given in the followingExarnples, strike potential is defined as the peak AC voltage (with reference to zero potential) required for lamp ignition, and peak potential" is defined as the peak AC voltage (with ref- 7 terics measured during ignition and lamp stabilization. In Examples XXIX-XLVII and LVII the identified characteristics were measured without a cooling period.
EXAMPLE I A mg sample of NdAl l complex was placed in a I75 watt envelope together with about 2 mg Hgl and 23 mm. Ar, the latter two additives being introduced to facilitate ignition of the lamp. An AC power source was used for the operation of the lamp at 2 amps, 85 volts. After an initial warm-up period of a few seconds, the discharge of the lamp assumed an intense white color with a tinge of green. The temperature of the quartz envelope walls was measured by thermocouple to be about 600C, a temperature apparently quite adequate to generate a considerable vapor pressure of the NdAl l complex. An atomic line spectrum taken of the lamp emission revealed numerous Nd lines throughout the range of 2000A to 8500A. As a reference, another 175 watt envelope was filled with 20 mg Ndl 2 mg HgI and 23 mm Ar, and operated under exactly the same conditions as the lamp containing the NdAl l complex. No Nd lines were observable in this reference spectrum. This confirms that a volatile neodymium iodide-aluminum iodine complex was operative in the former case.
EXAMPLE II A 400 watt envelope is filled with the individual elements which will yield 30 mg TmAl l during lamp operation, and 50 mg Hg. When operated at 410 watts and 2.55 amps, the lamp had a strike potential of 1600 volts, a peak potential of 378 volts, a color temperature of IOK, and an efficiency of 54 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with a slight tinge of blue. A similar envelope, but with thorium activated electrodes, when charged with components yielding the same fill and operated at 400 watts and 1.86 amps, had a strike potential of 1700 volts, a peak potential of 900 volts and an efficiency of 66.4 lm/w. The discharge was white with a slight blue-green tint. Thus, the lamp without the thorium activated electrodes could be operated at an operating potential of about 45 percent of that required for the lamp with the thorium activated tungsten electrodes.
EXAMPLE III A 400 watt envelope is filled with the individual elements which will yield 30 mg TmAl l during lamp operation; 5 mg NaAlL; and 50 mg Hg. When operated at 418 watts and 3.13 amps, the lamp had a strike potential of 1200 volts, a peak potential of 330 volts, a color temperature of about 3900I(, and an efficiency of 62.7 lm/w. After an initial warm-up period of a few seconds, the discharge assumed an exceptionally fine intense white color offering good flesh tones. When a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 427 watts and 2.45 amps, the lamp had a strike potential of I300 volts and a peak potential of 550 volts. Thus, the lamp without the thorium activated electrodes could be operated at an operating potential of about 40 percent of that required for the lamp with thorium activated tungsten electrodes.
EXAMPLE IV A 400 watt envelope was filled with the individual elements which will yield 30 mg TmAl l during lamp operation; 5 mg NaAlI 5 mg TII; and 50 mg Hg. When operated at about 410 watts and about 2.8 amps, the lamp had a strike potential of 1500 volts, a peak potential of 375 volts, a color temperature of about 4900K, and an efficiency of 77.8 lm/w. After an initial warm-up period of a few seconds, the discharge assumed an intense white color with only slightly yellow flesh tones. By comparison, when a similar envelope having an identical charge and thorium activated electrodes was operated at 409 watts and 2.5 amps, the lamp had a strike potential of 1000 volts, and a peak potential of 420 volts. A similar spectral output was obtained. Thus, the lamp without the thorium activated electrodes could be operated at an operating potential of about percent of that required for the lamp with the thorium activated tungsten electrodes.
EXAMPLE V A 400 watt S.P. envelope is filled with the individual elements which will yield 40 mg CeAl I during lamp operation; 5 mg Tll; 5 mg NaAlh; and 60 mg Hg. When operated at 395 watts and 3.5 volts, the lamp had a strike potential of 1000 volts, a peak potential of 260 volts, a color temperature of about 8000K, and an efficiency of 5 l .2 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a blue-white color with slightly green flesh tones.
EXAMPLE VI A 400 watt S.P. envelope is filled with the individual elements which will yield 40 mg PrAl l during lamp operation; 5 mg Tll; 5 mg NaAlI. and 60 mg Hg. When operated at 400 watts and 3.6 amps, a lamp had a strike potential of 1400 volts, a peak potential of 240 volts, a color temperature of about 6500I(, and an efficiency of 56.9 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a blue-white color with slightly green flesh tones.
EXAMPLE VII A 400 watt S.P. envelope is filled with the individual elements which will yield 30 mg SmAl I during lamp operation; 5 mg Tll; 5 mg NaAlI and 50 mg Hg. When operated at 404 watts and 3.5 amps, the lamp had a strike potential of 1400 volts, a peak potential of 260 volts, a color temperature of about 5200K, and an efficiency of 60.3 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with slightly yellow-orange flesh tones.
. EXAMPLE VIII A 400 watt S.P. envelope is filled with the individual elements which will.yield 45 mg EuAl l during lamp operation; 5 mg Tll; 5 mg NaAlI and 60 mg Hg. When operated at 402 watts and 3.47 amps, the lamp had a strike potential of 1300 volts, a peak potential of 260 volts, a color temperature of about 5700I(, and an efficiency of 48 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color.
EXAMPLE IX A 400 watt envelope is filled with the individual elements which will yield 30 mg GdAl l duringlamp operation; 5 mg TII; 5 mg NaAlI, and 50mg Hg. When operated at 405 watts and 2.93 amps, the lamp had a strike potential of 1200 volts, a peak potential of 315 volts, a color'temperature of 8500K, and an efficiency of 58.1 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with a slight blue-white tinge.
EXAMPLE X A 400 watt envelope is filled with the individual elements which will yield 30 mg TbAl' l during lamp operation; 5 mg TII; 5 mg NaAlh; and 50 mg Hg. When operated at404 watts and 2.7 am'ps, the lamp had a strike potential of 1300 volts, a peak potential of 350 volts, a color temperatureof about 7750K, and an effi- I ciency of"60.7 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with a slight blue-white tinge.
EXAMPLE Xl A 400 watt envelope is filled with the individual elements which will yield 30 mg DyAl l duringlamp operation; 5 mg Tll; 5 mg NaAlh; and 50 mg Hg. When operated at 406'watts and 2.75 amps, the lamp had a strike potential of 1600 volts, a peak potential of 360 volts, a color temperature of about 5000K, and an efficiency of 55.3 lm/w. After an initial warm-up period of a few' seconds, the discharge assumed a white color with slightly orange flesh tones.
EXAMPLE XII A 400 watt envelope is filled with the individual elements which will yield 30 mg HoAl l during lamp operation; 5 mg TI]; 5 mg NaAlI.,; and 50 mg Hg. When operated at 408 watts and 2.5 amps, the lamp had a strike potential of I200 volts, a peak potential of 410 volts, a color temperature of about 5 lK and an efficiency of 65.1 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with slightly yellow-orange flesh tones.
EXAMPLE Xlll A 400 watt envelope is filled with the individual elements which will yield 30 mg ErAl lfl during lamp operation; mg Tll;-5 mg NaAlh; and 50 mg Hg. When operated at 396 wattsand 2.7 amps, the lamp had a strike potential of 1300 volts, a peak potential of 365 volts, a color temperature of about 5600K and an efficiency of 59.8 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with slightly organge flesh tones.
EXAMPLE XIV EXAMPL Xv A400 watt S.P. envelope is filled with the individual elements which will yield 30 mg LuAl l during lamp operation; 5 mg Tll; 5 mg NaAlh; and 50 mg Hg. When operated at 395 watts and 3.7 amps, the lamp had a strike potential of 1200 volts, a peak potential of 210 volts, a color temperature of about 6750K and an efficiency of 62.2 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white I color with slightly yellow-green flesh tones.
EXAMPLE XVI A 400 watt S.P. envelope is filled with 6 mg Tb, 26 mg All 7 mg NaI, 10 mg Hgl and 75 mg Hg. When operated at 408 watts and 2.39 amps, the lamp had a strike potential of 1600 volts, apeak potential of 350 volts, a color temperature of 50,000K, and an efficiency of 31 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a blue-white color with a slight tinge of purple.
EXAMPLE XVII Example XVI is repeated except 6 mg Nd is substituted for the 6 mg Tb. When operated at 404 watts and 2.66 amps, the lamp had a strike potential of 1600 volts, a peak potential of 270 volts, a color temperature of about 10,500K and an efficiency of 43.9 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a blue-white color with slightly yellow flesh tones.
EXAMPLE XVIII Example XVI is repeated except 6 mg Tm is substituted for the 6 mg Tb. When operated at 408 watts and 2.5 amps, the lamp had a strike potential of 1300 volts, a peak potential of 285 volts, a color temperature of 9000I(, and an efficiency of 61.2 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with slightly yellow flesh tones.
EXAMPLE XIX 'A 400 watt envelope is filled with 6 mg Dy, 26 mg A11 7 mg NaI, 10 mg I--Igl and 25 mg Hg. When operated at 398 watts and 3.5 amps, the lamp had a strike potential of 1200 volts, a peak potential of 200 volts, and an efficiency of 31.8 lm/w. After an initial warmup period of a few seconds, the discharge assumed a blue-white color.
EXAMP E XX A 400 watt envelope is filled with 25 mg of a mixture of Dy, NaI, and Hgl 30 mg Gal and 25 mg Hg. When operated at 394 watts and 3.34 amps, the lamp had a strike potential of 1500 volts, a p-eakpotential of 275 volts and an efficiency of 35.3 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a blue-white color with a slight tinge of purple.
. EXAMPLE XXI Example XX is repeated except 35 mg Inl is substituted for the 30 mg Gal of Example XX. When operated at 406 watts and 3.33 amps, the lamp had a strike potential of 1600 volts, a peak potential of 295 volts, a color temperature of about 5750K and an efficiency of 31.1 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with a purple tint.
EXAMPLE XXII A 400 watt envelope is filled with 6 mg Dy, 7 mg Nal, [0 mg Hg! 2, 20 mgTll and 25 mg Hg. When operated at 400 watts and 3.38 amps, the lamp had a strike potential of 1300 volts, a peak potential of 180 volts, a color temperature of about 7000K, and an efficiency of 50.4 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a green-white color.
EXAMPLE XXIII EXAMPLE XXIV A I75 watt envelope is filled with 4 mg Dy, 1 mg Sc, 3 mg Na], 15 mg TN, 3 mg Hgl and 25 mg Hg. When operated at 172 watts and 1.55 amps, the lamp had a strike potential of 1000 volts, a peak potential of 195 volts, a color temperature of about 6750K, and an efficiency of 36.7 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with a slightly yellow-green tint.
EXAMPLE XXV A 175 watt envelope is filled with 0.6 mg Sc, 3.0 mg All 0.9 mg Nal, 1.1 mg Hgl and 25 mg Hg. When operated at 176 watts and 1.2 amps, a lamp had a strike potential of 1100 volts, a peak potential of 330 volts, and an efficiency of 57.5 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a bluewhite color with a slight pink tint.
EXAMPLE XXVI A 175 watt envelope is filled with 4.6 mg NaAlI 0.5 mg Sc, 2.5 mg Hgl and 25 mg Hg. When operated at l78 watts and 1.7 amps, the lamp had apeak potential of 190 volts, and an an efficiency of 58.8 lm/w. After an initial warm-up period of a few seconds thedischarge assumed a white color with a slight green tint to flesh tones.
EXAMPLE XXVII A 175 watt envelope is filled with 0.5 mg Sc, 9.1 mg NaAll 2.5 mg Hgl and 25.0 mg Hg. When operated at 184 watts and 1.5 amps, the lamp had a strike potential of 2400 volts, a peak potential of 305 volts, a color temperature of about 8250K and an efficiency of 67.2 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a blue-white color with good flesh tones.
EXAMPLE XXVIII A 400 watt S.P. envelope is filled with the individual mwt biQ willyield m mAlih d a l mp operation and 50 mg Hg. When operated at 399 watts and 3.52 amps, the lamp had a strike potential of 1500 volts, a peak potential of 240 volts, a color temperature of about 9500K, and an eff ciency of 39.6 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a blue-white color with a slight purple tint.
EXAMPLE XXIX A 400 watt envelope is filled with 4 mg Ce, 1.4 mg
A1, 48 mg Hgl 30 mg Hg, and 23 mm Ar. When operated at 400 watts and 3.00 amps, the lamp had a peak potential of 278 volts andangefficiengy of 5 8 lm/w. When a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 400 watts and 1.63 amps, the lamp had a peak Pot nti 02. .59 rvp t wyia stfis r s f 7 lm/W- The discharge in both cases was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 73 percent was attained.
EXAMPLE XXX Example XXIX is repeated except 4 mg Pr is substituted for the 4 mg Ce of Example XXIX. When operated at 400 watts and 2.93 amps, the lamp had a peak potential of 31 7 volts and an efficie ncy of 48 lm/w. When a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 408 watts and 1.8 amps, the lamp had a peak potential of 760 volts and an efficiency of 65 lm/w. Both lamps had a white discharge with a slight tint of blue. Without the thorium activated electrodes, a decrease in the peak operating potential of about 58 percent was attained.
EXAMPLE XXXI Example XXIX is repeated except 4 mg Nd is substituted for the 4 mg Ce. When operated at 400 watts and 3.19 amps, the lamp had a peak potential of 272 volts and an efficiency of 45 lm/w. When a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 400 watts and 1.74 amps, the lamp had a peak potential of 900 volts and an efficiency of 77 lm/w. In both cases, the discharge was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about percent was attained.
EXAMPLE XXXII Example XXIX is repeated except 4 mg Sm is substituted for the 4 mg Ce of Example XXIX. When operated at 40] watts and 2.95 amps, the lamp had a peak potential of 292 volts and an efficiency of 47 lm/w. When a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 402 watts and 2.38 amps, the lamp had a peak potential of 504 volts and an efficiency of 62 lm/w. In both cases, the discharge was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 41 percent was attained.
EXAMPLE XXXIII charge was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 67 percent was attained.
EXAMPLE XXXIV charge wa s blue-white. Without the thorium activated electrodes, a decrease in the peak operatingpotential of about 60 percent was attained.
EXAMPLE XXXV Example XXIX is repeated except 4 mg Tb iis substituted for the 4 mg Ce of Example XXIX. When operated at 403 watts and 3.1 1 amps, the lamp had a peak potential of 279 volts and an efficiency of 46 lm/w.
. The discharge was white with a pink-purple tint. When a similar envelope, having the same charge of materials but thorium activated tungsten electrodes .in place of the non-activated tungsten electrodes, was operated at 399 watts and 1.82 amps, the lamp had a peakpotential charge was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 62percent was attained.
EXAMPLE XXXVI Example XXIX is repeated except 4 mg Dy is substituted for the 4 mg Ce of Example XXIX. When operated at 400 watts and 3.19 amps, the lamp had a peak qtsn ial of .4 qt sa aas fis n ufl lm/W- The discharge was white with a pink-purple tint. When a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 397 watts and 1.76 amps, the lamp had a peak potential of 760 voltsand an efficiency of 69 lm/w. The discharge was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 67 percent was attained.
EXAMPLE XXXVII Example XXIX is repeated except 4 mg H0 is substi-' 402 watts and 1.97 amps, the lamp had a peak potential of 660 volts and an effic iency 9f 65 lmlw. Thedischarge was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 60 percent was attained.
EXAMPLE XXXVIII Example XXIX is repeated except 4 mg Er is substituted for the 4 mg Ce of Example XXIX. When operated at 400 watts and 2.96 amps, the lamp had a peak P t nt q 211fi99fi0 sffls qasy of 521W we The discharge was white with a blue-purple tint. When a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated, at 400 watts and 1.88 amps, the lamp had a peak potential of 780 volts and an efficiency of 64 lm/w. The discharge was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 63 percent was attained.
EXAMPLE XXXIX Example XXIX is repeated except 4 mg Tm is substituted for the 4 mg Ce of Example XXIX. Whenoperated at 400 watts and 3.16 amps, the lamp had a peak potential of 25 volts and an efliciency of 52 lm/w. T'H discharge was blue-white. When a similar envelope, having the same charge of materials but thorium activated electrodes in place of the non-activated of the non-activated tungsten electrodes, was operated at 400 watts and 2.08 amps, the lamp had a peak potential of 15 13 nd an ffi9l2f 1?. 19 2; Tbs is was also blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about percent was attained.
EXAMPLE XL Example XXIX is repeated except 4 mg Yb is substituted for the 4 mg Ce of Example XXIX. When operated at 403 watts and 2.97 amps, the lamp had a peak potential of 300 volts and an efficiency of 52 lrn/ w The discharge was blue-white. When a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the nonactivated tungsten electrodes, was operated at 401 watts and 2.31 amps, the lamp had a peak potential of 605 volts and 73 lm/w. The discharge was also blue: white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 50 percent was attained.
EXAMPLE XLI Example XXIX is repeated except 4 mg Lu is substituted for the 4 mg Ce of Example XXIX. When operated at 400 watts and 3.38 amps, the lamp had a peak,
potential of 239 volts and an efficiency of 43 lm/W.
The discharge was white with a blue-purple tint. When n n a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 402 watts and 2.04 amps, the lamp had a peak potential f 7 v s d an qiensiaf 7 lml Th2. lischarge was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 66 percent was attained.
EXAMPLE XLII EXAMPLE XL-III Example XXIX is repeated except 6.1 mg In is substiated at 400 watts and 2.79 amps, the lamp had a peak potential of 347 volts and an efficiency of 55 lm/w. The discharge was blue-white.
EXAMPLE XLIV Example XXIX was repeated except 2 mg Dy and 2 mg Lu are substituted for the 4 mg Ce of Example XXIX. When operated at 400 watts and 2.97 amps, the lamp had a peak potential of 290 volts and an efficiency of 54 lm/w. The discharge was white with a slight purple tint.
EXAMPLE XLV Example XLIV is repeated except 2 mg Gd is substituted for the 2 mg Lu of Example XLlV. When operated at 400 watts and 3.21 amps, the lamp had a peak potential of 248 volts and an efficiency of 44 lm/w. The discharge was white with a purple tint, but with good flesh tones.
EXAMPLE XLVl Example XLIV is repeated except a 400 watt S.P. envelope is used, 2 mg Tm is'substituted for the 2 mg Lu of Example XLlV, and 5 mg Nal and 2 mg Tll are additionally added. When operated at 401 watts and 3.87 amps, the lamp had a strike potential of 1700 volts, a peak potential of 210 volts, and an efficiency of 66 lm/w. The discharge was white with a redpurple tint.
EXAMPLE XLVll Example XLVl is repeated except 2 mg Pr is substituted for the 2 mg Tm of Example XLVI. When operated at 398 watts and 3.66 amps, the lamp had a strike potential of 1600 volts, a peak potential of 220 volts, and aiieffiEiency of 63 lm/wflhe discErge was white with a pink tint.
EXAMPLE XLVIlI EXAMPLE IL A 400 watt .P. envelope is filled with 6 mg Tm, 1.1 mg A1, 31 mg HgI ,5 mg Nal 3 mg Ce, and l mgTlI, 36 mg Hg and 23 torr Ar. When operated at 403 watts and 3.62 amps, the lamp had a strike potential of 1300 volts, a peak pgtentialof 192 volts, a color temperature of 6250K, and an efficiency of 95.2 lm/w. After an initial warm-up period of a fewseconds, the discharge assumed a greenish-white color.
EXAMPLE L A 400 8.1. envelope is filled with 8 mg Tm, 1.4 mg A1, 48 mg Hgl 5 mg Nal, 2 mg TH, 14 mg Hg, and 23 torr Ar. When operated at 400 watts and 3.25 amps, the lamp had a strike potential of 1700 volts, a peak p tential of 225 volts, a color temperature of about 5800 K,"'5i1d B efficiency if 103.5 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with a slight green tint.
EXAMPLE Ll A 400 watt envelope is filled with 0.75 mg Sc, 0.60 mg Al, 20 mg Hgl 48 mg Hg and 23 mm Ar. When operated at 400 watts and 2.93 amps, the lamp had a strike potential of 1200 volts, a peak potential of 280 volts, and an efficiency of 63 lm/w. The discharge was white with a blue-green tint. When a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 400 watts and 1.83 amps, the lamp had a strike potential @2000 volts, at peak potential of 720 volts, and an efficiency of 62 lm/w. The discharge was blue-white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 50 percent was attained.
EXAMPLE Lll Example L1 is repeated except 1.5 mg Y is substituted for the 0.75 mg Sc of Example Ll. When operated at 401 watts and 3.4 amps, the lamp had a strike potential of 1650 volts, a peak potential of 194 volts, and an efficiency of 42 lm /w. Th discharge w as white with a blue-purple tint. When a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 400 watts and 2.43 amps, the lamp had a strike potential of 1300 v 0 lts, a pealgpote htial of 400 volts and tin efficiency of 56 lm/w. The discharge was white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 50 percent was attained.
EXAMPLE Llll Example L1 is repeated except 2.4 mg La is substituted for the 0.75 mg So of Example Ll. When operated at 400 watts and 3.41 amps, the lamp had a strike potential of 1700 volts, a peak potential of volts, and an efficiency of 41 lm/w. When a similar envelope, having the same charge of materials but thorium activated tungsten electrodes in place of the non-activated tungsten electrodes, was operated at 400 watts and 2.91 amps, the lamp had a strike potentialof 1200 volts, a peak potential of 450 volts, and an efficiency of 61 lm/w. In both cases the discharge was blue white. Without the thorium activated electrodes, a decrease in the peak operating potential of about 60 percent was attained.
1n the following Examples, the molar ratios of the lanthanide element, the Group IIIA element, and iodine are l to 4 to 15, respectively.
EXAMPLE LIV A 400 watt envelope is filled with 4 mg Ce, 1.9 mg A1, 60.4 mg Hgl 25 mg Hg, and 23 torr Ar. When operated at 402 watts and2.77 amps, the lamp had a strike potential c af1650 volts, a peak potential of 318 volts, and an efiiciency 0f 44 lm/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with a slight blue-green tint.
EXAMPLE LV Example LIV is repeated except 4 mg Gd is substituted for the 4 mg Ce of Example LIV. When operated at 402 watts and 287 amps, the lamp had a strike potential of 1650 volts, a peak potential of 320 volts, and an efficiency of 42 lni/w. After an initial warm-up period of a few seconds, the discharge assumed a white color with a slight blue-purple tint.
EXAMPLE LVl Example LIV is repeated except 4 mg Tm is substituted for the 4 mg Ce of Example LIV. When operated at 400 watts and 2.98 amps, the lamp had a strike potential of 1500 volts, a peak potential of 297 volts, and an efficiency of 52 lmlw After an initial warm-up period of a few seconds, the discharge assumed a white color with a slight purple tint.
EXAMPLE LVll Example LlV is repeated except 4 mg Lu is substituted for the 4 mg Ce of Example LIV. When operated at 400 watts and 2.83 amps, the lamp had a strike potential of 1050 volts, a peak potential of 315 volts, and an efficiency of 45 l m/ w. After an initial warm-upperiod of a few seconds, the discharge assumed a white color with a slight pink-purple tint.
Unless otherwise indicated, the data given in these Examples are individual run test data, and not averages of a number of test runs. The individual run test data is considered, however, to be representative of the results which can be obtained when following the teachings of this invention.
In preparing the lamps of these Examples, conventional procedures, well known tothose skilled in this field, have been employed. It should be understood that the Examples given in this specification do not represent optimizations and, therefore, additional advantages, such as increased efficiencies, are expected to accrue when such optimizations are performed.
When Nal is added to the envelopetfor example to decrease the operating potential and/or to-adjust the spectral output), it can be added as the complex thereof with the iodide of the Group lllA metal (eg. All that is, it can be added as NaAll During lamp operation, an equilibrium exists between the volatile complex herein described and its dissociation compo nents, i.e., the metallic iodide (eg. Tml and the iodide of the Group IIIA element (eg. All When NaI is added as Nal, it forms a complex with All,, and alters the equilibrium that would otherwise be established in the operation of the device. This results in a decrease in the concentration of the volatile complex availale for volatilization. When Nal is added as Nal'All (i.e., NaAll however, the equilibrium which would normally be established is not disrupted since the NaA- does not tie up All; dissociated from the volatile complex.
While the present invention has been described with I reference to specific embodiments thereof, it will be understood by those skilled in this art that various changes may be made without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, apparatus, process or then present objective to the spirit of this invention without departing from its essential teachings.
What is claimed is:
I. An electric discharge device comprising a sealed light-transmissive envelope; a pair of unactivated electrodes spaced within said envelope and capable of being connected, at those portions thereof extending outside of said envelope, to means for applying an electrical potential thereto; and a fill within said sealed envelope, said fill including at least one volatile complex having the formula LnM I where Ln is a lanthanide element, M represents a Group llIlA element selected from the group consisting of boron, aluminum, gallium and indium, and x 3 to 4, said complex serving to activate said electrodes during operation of said discharge device whereby the need to provide electronemissive material activated electrodes is eliminated; said volatile complex being present in sufficient quantity to constitute the primary light-emitting component of the fill.
2. The discharge device of claim 1 wherein Ln is se lected from the group consisting of cerium, praseodymiurn, neodymium, samarium, europium, gadolinium,
terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
3. The discharge device of claim 1 wherein Ln is thulium.
4. The discharge device of claim 1 wherein Ln is dysprosium.
5. The discharge device of claim 1 wherein Ln is cerium.
6. The discharge device of claim 1 wherein M is aluminum.
7. The discharge device of claim 1 wherein Ln is selected from the group consisting of thulium, dysprosium, and cerium.
8. The discharge device of claim 1 wherein Ln is thulium and M is aluminum.
9. The discharge device of claim 1 wherein M is selected from the group consisting of gallium and indium.
10. The discharge device of claim 1 wherein said complex is present in said envelope in a quantity sufficient to provide 0.03 0.25 mg of the metallic element represented by the symbol Ln per cc. of envelope volume.
11. The discharge device of claim 1 wherein said fill further includes a small quantity of a noble gas.
12. The discharge device of claim 11 wherein said noble gas is argon.
13. The discharge device of claim 1 wherein said fill further includes a small quantity of mercury.
14. The discharge device of claim 1 wherein said mercury generates, during operation of said device, a pressure up to about 10 atmospheres.
15. The discharge device of claim 1 wherein said fill includes a small quantity of NaAllh.
16. The discharge device of claim 1 wherein said sealed envelope is positioned within an outer transparent envelope, said complex being sufficiently volatile during operation of said device that the need to provide a heating element in the space between said sealed and outer envelopes is eliminated.
17. The discharge device of claim 1 wherein essentially stoichiometric amounts of complex-forming materials are added to said envelope, whereby during op-' eration of said device said volatile complex is found in the absence of a substantial excess of a rare earth halide material.
18. An electric discharge device comprising asealed light-transmissive envelope; a pair of unactivated electrodes spaced within said sealed envelope, said electrodes being initially free of electron emissive material which would function to lower the operating potential of the device during operation; and a fill within said envelope, said fill including at least one volatile complex having the general formula LnM I where Ln represents a lanthanide element, M represents a Group lllA element selected from the group consisting of boron, aluminum, gallium, and indium, and x equals 3 to 4, said complex serving to activate said electrode during operation of said device whereby the need to initially provide electron-emissive material activated electrodes is eliminated, said volatile complex being present in sufficient quantity to constitute the primary lightemitting component of the fill.
19. The discharge device of claim 18 wherein M is aluminum.
20. The discharge device of claim 18 wherein M is selected from the group consisting of gallium and indium.
21. The discharge device of claim 18 wherein Ln is selected from the group consisting of thulium, dysprosium, and cerium.
22. The discharge device of claim 18 wherein Ln is ent envelope, said complex being sufficiently volatile during operation of said device that the need to provide a heating element in the space between said sealed and outer envelopes is eliminated.
25. The discharge device of claim 18 wherein essentially stoichiometric amounts of complex-forming materials are added to said envelope, whereby during operation of said device said volatile complex is found in the absence of a substantial excess of a rare earth halide material.
mg C l UNITED STATES PATENT OFFICE CERTIFICATE 0F CORRECTION lfacenr No. 3,771,009 'Dated November 6, 1973 Inventor) H. Graham Silver, Adam Heller, Phillip J Gardner andGary R. Argue i It: is certified that error appears in the above-identified patent and that saidLetters Patent are hereby corrected as shown below:
Column 1, line 15, 'a mercury" should be --the mercury".
Column 15, line 51, "Nal" should be --NaI-.
Column 18, 11m; 43, "claim 1" should be "claim 13".
Signed and sealed this 9th day or April 1971;,
5 (SEAL) Attest:
X EDWARD M.FI ETGHER,JR. f' CrMARSHALLDANN Attesting Officer Commissioner of Patents

Claims (24)

  1. 2. The discharge device of claim 1 wherein Ln is selected from the group consisting of cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  2. 3. The discharge device of claim 1 wherein Ln is thulium.
  3. 4. The discharge device of claim 1 wherein Ln is dysprosium.
  4. 5. The discharge device of claim 1 wherein Ln is cerium.
  5. 6. The discharge device of claim 1 wherein M is aluminum.
  6. 7. The discharge device of claim 1 wherein Ln is selected from the group consisting of thulium, dysprosium, and cerium.
  7. 8. The discharge device of claim 1 wherein Ln is thulium and M is aluminum.
  8. 9. The discharge device of claim 1 wherein M is selected from the group consisting of gallium and indium.
  9. 10. The discharge device of claim 1 wherein said complex is present in said envelope in a quantity sufficient to provide 0.03 - 0.25 mg of the metallic element represented by the symbol Ln per cc. of envelope volume.
  10. 11. The discharge device of claim 1 wherein said fill further includes a small quantity of a noble gas.
  11. 12. The discharge device of claim 11 wherein said noble gas is argon.
  12. 13. The discharge device of claim 1 wherein said fill further includes a small quantity of mercury.
  13. 14. The discharge device of claim 1 wherein said mercury generates, during operation of said device, a pressure up to about 10 atmospheres.
  14. 15. The discharge device of claim 1 wherein said fill includes a small quantity of NaA1I4.
  15. 16. The discharge device of claim 1 wherein said sealed envelope is positioned within an outer transparent envelope, said complex being sufficiently volatile during operation of said device that the need to provide a heating element in the space between said sealed and outer envelopes is eliminated.
  16. 17. The discharge device of claim 1 wherein essentially stoichiometric amounts of complex-forming materials are added to said envelope, whereby during operation of said device said volatile complex is found in the absence of a substantial excess of a rare earth halide material.
  17. 18. An electric discharge device comprising a sealed light-transmissive envelope; a pair of unactivated electrodes spaced within said sealed envelope, said electrodes being initially free of electron emissive material which would function to loweR the operating potential of the device during operation; and a fill within said envelope, said fill including at least one volatile complex having the general formula LnMxI3x 3, where Ln represents a lanthanide element, M represents a Group IIIA element selected from the group consisting of boron, aluminum, gallium, and indium, and x equals 3 to 4, said complex serving to activate said electrode during operation of said device whereby the need to initially provide electron-emissive material activated electrodes is eliminated, said volatile complex being present in sufficient quantity to constitute the primary light-emitting component of the fill.
  18. 19. The discharge device of claim 18 wherein M is aluminum.
  19. 20. The discharge device of claim 18 wherein M is selected from the group consisting of gallium and indium.
  20. 21. The discharge device of claim 18 wherein Ln is selected from the group consisting of thulium, dysprosium, and cerium.
  21. 22. The discharge device of claim 18 wherein Ln is thulium and M is aluminum.
  22. 23. The discharge device of claim 18 wherein said complex is present in said envelope in a quantity sufficient to provide 0.03 - 0.25 mg of said lanthanide element per cc. of envelope volume.
  23. 24. The discharge device of claim 18 wherein said sealed envelope is positioned within an outer transparent envelope, said complex being sufficiently volatile during operation of said device that the need to provide a heating element in the space between said sealed and outer envelopes is eliminated.
  24. 25. The discharge device of claim 18 wherein essentially stoichiometric amounts of complex-forming materials are added to said envelope, whereby during operation of said device said volatile complex is found in the absence of a substantial excess of a rare earth halide material.
US00212458A 1971-12-27 1971-12-27 Electrode discharge device with electrode-activating fill Expired - Lifetime US3771009A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US21245871A 1971-12-27 1971-12-27

Publications (1)

Publication Number Publication Date
US3771009A true US3771009A (en) 1973-11-06

Family

ID=22791107

Family Applications (1)

Application Number Title Priority Date Filing Date
US00212458A Expired - Lifetime US3771009A (en) 1971-12-27 1971-12-27 Electrode discharge device with electrode-activating fill

Country Status (1)

Country Link
US (1) US3771009A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2214968A1 (en) * 1973-01-23 1974-08-19 Thorn Electrical Ind Ltd
USRE30831E (en) * 1973-01-23 1981-12-22 Thorn Emi Limited Electric discharge devices
EP0762477A2 (en) * 1995-09-06 1997-03-12 Ushiodenki Kabushiki Kaisha Metal halide lamp
US5691601A (en) * 1993-08-16 1997-11-25 Patent-Treuhand-Gesellschaft F. Elektrische Gluehlampen Mbh Metal-halide discharge lamp for photooptical purposes
US20050186078A1 (en) * 2004-02-20 2005-08-25 Porter David H. Assembly including a fixture and self-aligning chain
US20060164016A1 (en) * 2005-01-21 2006-07-27 Rintamaki Joshua I Ceramic metal halide lamp
WO2006078632A1 (en) * 2005-01-21 2006-07-27 General Electric Company Ceramic metal halide lamp
EP1562222A3 (en) * 2003-12-12 2008-01-30 Matsushita Electric Industrial Co., Ltd. Metal halide lamp and lighting apparatus using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3234421A (en) * 1961-01-23 1966-02-08 Gen Electric Metallic halide electric discharge lamps
US3259777A (en) * 1961-05-09 1966-07-05 Gen Electric Metal halide vapor discharge lamp with near molten tip electrodes
US3319119A (en) * 1965-10-22 1967-05-09 Hewlett Packard Co Metal vapor spectral lamp with mercury and a metal halide at subatmospheric pressure
US3445719A (en) * 1967-05-31 1969-05-20 Duro Test Corp Metal vapor lamp with metal additive for improved color rendition and internal self-ballasting filament used to heat arc tube
US3452238A (en) * 1966-12-05 1969-06-24 Westinghouse Electric Corp Metal vapor discharge lamp
US3536947A (en) * 1967-03-23 1970-10-27 Tokyo Shibaura Electric Co High pressure discharge lamps
US3654506A (en) * 1969-08-08 1972-04-04 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh High pressure mercury vapor discharge lamp with metal halide additive

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3234421A (en) * 1961-01-23 1966-02-08 Gen Electric Metallic halide electric discharge lamps
US3259777A (en) * 1961-05-09 1966-07-05 Gen Electric Metal halide vapor discharge lamp with near molten tip electrodes
US3319119A (en) * 1965-10-22 1967-05-09 Hewlett Packard Co Metal vapor spectral lamp with mercury and a metal halide at subatmospheric pressure
US3452238A (en) * 1966-12-05 1969-06-24 Westinghouse Electric Corp Metal vapor discharge lamp
US3536947A (en) * 1967-03-23 1970-10-27 Tokyo Shibaura Electric Co High pressure discharge lamps
US3445719A (en) * 1967-05-31 1969-05-20 Duro Test Corp Metal vapor lamp with metal additive for improved color rendition and internal self-ballasting filament used to heat arc tube
US3654506A (en) * 1969-08-08 1972-04-04 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh High pressure mercury vapor discharge lamp with metal halide additive

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2214968A1 (en) * 1973-01-23 1974-08-19 Thorn Electrical Ind Ltd
US3867664A (en) * 1973-01-23 1975-02-18 Thorn Electrical Ind Ltd Electric discharge devices
USRE30831E (en) * 1973-01-23 1981-12-22 Thorn Emi Limited Electric discharge devices
US5691601A (en) * 1993-08-16 1997-11-25 Patent-Treuhand-Gesellschaft F. Elektrische Gluehlampen Mbh Metal-halide discharge lamp for photooptical purposes
EP0762477A2 (en) * 1995-09-06 1997-03-12 Ushiodenki Kabushiki Kaisha Metal halide lamp
EP0762477A3 (en) * 1995-09-06 1998-12-02 Ushiodenki Kabushiki Kaisha Metal halide lamp
EP1562222A3 (en) * 2003-12-12 2008-01-30 Matsushita Electric Industrial Co., Ltd. Metal halide lamp and lighting apparatus using the same
US20050186078A1 (en) * 2004-02-20 2005-08-25 Porter David H. Assembly including a fixture and self-aligning chain
US20060164016A1 (en) * 2005-01-21 2006-07-27 Rintamaki Joshua I Ceramic metal halide lamp
WO2006078632A1 (en) * 2005-01-21 2006-07-27 General Electric Company Ceramic metal halide lamp
US7268495B2 (en) 2005-01-21 2007-09-11 General Electric Company Ceramic metal halide lamp

Similar Documents

Publication Publication Date Title
US3334261A (en) High pressure discharge device having a fill including iodine mercury and at least one rare earth metal
JP5138606B2 (en) Ceramic metal halide lamp
US3979624A (en) High-efficiency discharge lamp which incorporates a small molar excess of alkali metal halide as compared to scandium halide
US3654506A (en) High pressure mercury vapor discharge lamp with metal halide additive
US2765416A (en) Vapor lamps utilizing chemical compounds
US3521110A (en) Mercury-metallic halide vapor lamp with regenerative cycle
US4020377A (en) High pressure mercury vapor discharge lamp
HU221394B1 (en) Lighting system and mercury-free metal halogenide lamp used in said system
US3781586A (en) Long lifetime mercury-metal halide discharge lamps
US3445719A (en) Metal vapor lamp with metal additive for improved color rendition and internal self-ballasting filament used to heat arc tube
US3586898A (en) Aluminum chloride discharge lamp
US3786297A (en) Discharge lamp which incorporates cerium and cesium halides and a high mercury loading
US3530327A (en) Metal halide discharge lamps with rare-earth metal oxide used as electrode emission material
US3771009A (en) Electrode discharge device with electrode-activating fill
US3452238A (en) Metal vapor discharge lamp
CA1048101A (en) Metal halide lamp
US3906274A (en) Electrode discharge device with electrode-activating fill
US3405303A (en) Arc discharge tube having an electrode which contains a light-emitting metal
US8482198B1 (en) High intensity discharge lamp with improved startability and performance
Waymouth Metal halide lamps
US3484640A (en) Metal halide vapor photochemical light sources
US3262012A (en) Electric discharge device having a thermostatically operated switch connected to a main electrode
US4229673A (en) Mercury metal-halide lamp including neodymium iodide, cesium and sodium iodide
US3521108A (en) Metallic vapor arc-lamp having high intensity sun-like emission
US3385645A (en) Method of dosing the arc tube of a mercury-additive lamp