US3763460A - Cable plug - Google Patents

Cable plug Download PDF

Info

Publication number
US3763460A
US3763460A US00183587A US3763460DA US3763460A US 3763460 A US3763460 A US 3763460A US 00183587 A US00183587 A US 00183587A US 3763460D A US3763460D A US 3763460DA US 3763460 A US3763460 A US 3763460A
Authority
US
United States
Prior art keywords
plug
cable
casing
plug casing
insert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00183587A
Inventor
R Hatschek
G Witzke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meggitt SA
Original Assignee
Vibro Meter SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vibro Meter SA filed Critical Vibro Meter SA
Application granted granted Critical
Publication of US3763460A publication Critical patent/US3763460A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/533Bases, cases made for use in extreme conditions, e.g. high temperature, radiation, vibration, corrosive environment, pressure

Definitions

  • a cable plug for electric lines in particular for use in measuring and monitoring systems with piezoelectric signal generators, comprising a plug casing having an insulation insert provided with bore holes, each bore hole containing a pre-stressed radially resilient twinsleeve, one end there-of receiving a contact pin provided at the end of the cable conductor, while a connection pin can be inserted into their other end.
  • the invention relates to a cable plug for the attachment or mutual connection of electric lines, in particular for measuring and monitoring systems with piezoelectric signal generators.
  • Cable plugs of this type are used in piezoelectric measuring and monitoring technology for connection of the measuring cables to the signal generators.
  • a plug casing which contains an insulating insert preferably consisting of ceramic material.
  • the insulating insert contains a bore hole for each cable conductor, in which there is a contact element associated with the conductor for resilient mounting of a connection pin.
  • One design is to a large extent conventional and possesses a flexible insulation which consists of plastics resistant to elevated temperatures, such as polytetrafluorethylene (Teflon). These cables can be employed up to a temperature of 300C. Basically different is the design of the so called stiff, minerally insulated cables in which steel conductors are embedded in an inorganic insulating material, generally magnesium oxide enclosed by a steel tube. These cables tolerate temperatures up to above l,000C. However, since the inorganic insulating material is hygroscopic, i.e.
  • the cable ends must be hermetically sealed, for the absorption of moisture would cause the insulating value of the cable to drop in an undesirable manner.
  • the cable plug is subject to special requirements, especially in respect of sealing, particularly if it is to be used in aeroplanes, since, owing to the varying flight altitudes, there arise pressure differences which make it easier for air moisture and impurities to penetrate.
  • piezoelectric accelerometers which, as is known, supply charged signals that have to be transmitted through a measuring cable to a more remotely located charge amplifier, it is in addition necessary, for both the connecting line and the cable plug to possess a high insulation value which is maintained even at high temperatures. Besides, the production of interference charges in the cable and in the plug must be avoided.
  • the cable plugs of the initially described design which have been used so far, satisfy these requirements only in part. It is true, that by the use of ceramics for I the insulation insert, a correspondingly high temperature resistance is achieved.
  • the design of the known plugs is relatively complicated. Bearing in mind the large variations in thermal expansion between the contact elements which are designed as metallic cylindrical bushes, the ceramic insulation insert and the plug casing, the insulation insert is loosely fitted within the casing, a Collar-type projection being provided for its retention and an annular spring located in an enlarged section of the casing being axially supported by the said projection. For the same reason, also the contact elements within the insulation insert are loosely arranged.
  • the insulation insert In order to enable the plug components to be assembled, the insulation insert must be constructed of several parts. A further difficulty consists in the fact that effective sealing of the cable end is in practice virtually impossible owing to the complicated design of the plug. It was further found that with the known plug design the production of interference charge can hardly be avoided.
  • the object of the invention to avoid these difficulties and to create a simple cable plug which is sufficiently temperature-resistant, enables secure hermetical sealing of the cable end, and avoids the production of interference charges.
  • the invention is based on the fact that the interference charges found with the known design are caused by so-called triboelectric effects, i.e. by frictions and changes in capacity owing to relative motions between the plug components.
  • triboelectric effects i.e. by frictions and changes in capacity owing to relative motions between the plug components.
  • this problem is solved by inserting as contact elements pre-stressed radially resilient twin-sleeves directly and without play into the bore holes of the insulation insert, one end of the said twin-sleeves receiving a contact pin provided at the conductor end while a connection pin can be inserted into their other end.
  • at least one prestressed, radially resilient spring sleeve is provided also between the insulation insert and the plug casing.
  • the elastic retention of the plug components enables even major variations in thermal expansion to be compensated.
  • cable assembly can be made simple since it is sufficient for insertion pins to be crimped or welded at the cable ends, the said insertion pins being introduced into the cable plug from the rear.
  • the insertion pins engage within the rear half of the radially resilient twin-sleeves and clamp them fast directly within the bore holes of the insulation insert, the pressure being relatively high.
  • the twinsleeves in the insulation insert are safely anchored and a good electrical contact is achieved without additional fastening means.
  • cylindrical contact bushes of the type used hitherto which contain resilient contact elements by way of inserts and must be separately anchored.
  • the plug design in accordance with the invention is also advantageous for connecting two cable ends.
  • twin-sleeves as contact elements for plug devices are as such already known from the Swiss patent No. 373.439. These consist of a tubular support element inside which there are needle-type contact springs which receive a contact pin. These twin-sleeves are, however, not resilient in the radial out'ward direction.
  • the known simple contact bushes they are rounded with an insulating sheath consisting of rubber, molded material or plastic, in order to protect them against contact, or they inserted into metallic contact bushes, which, in turn, are anchored within a plug.
  • special retaining devices are necessary for this purpose, and appropriate play must be provided for in order to compensate any variations in thermal expansion which may occur.
  • the casing can be designed in a compact manner with a relatively small diameter while maintaining the specified contact spacings.
  • the design embodies a union nut, this being normally provided for attachment of the plug to a signal generator, to design in accordance with a further characteristic of the invention the insulation insert as an integral cylindrical body with a substantially uniform outer diameter, while designing the plug casing where it adjoins the union nut with a smaller outer diameter than the inner diameter of the union nut, the union nut being so designed that it can be pushed back over the plug casing in order to mount or replace a sealing ring.
  • the cable plug has been designed in accordance with the invention, it is for the first time possible to achieve secure and at the same time simple sealing between the cable plug and the sig nal generator.
  • the drawing illustrates embodiments of the cable plug in accordance with the invention.
  • FIGS. 1 and 2 each show a specimen embodiment of the plug in axial section along the centre line
  • FIG. 3 shows a detail in side view and FIG. 4 shows a section along the line lV-IV in FIG. 3.
  • the cable plug consists of a substantially cylindrical plug casing 1, which for production reasons consists of two parts welded together and is provided with a union nut 2 for attachment of the cable plug to a signal generator which is to be connected.
  • a sealing ring 3 is mounted on plug casing 1 in order to provide the required sealing action, the said sealing ring being pressed by the union nut 2 against a collar of the casing and thus ensuring secure sealing of the cable plug. After pushing the union nut 2 back over casing l, the sealing ring 3 can be easily mounted and replaced.
  • an insulation insert 4 which consists of an integral cylindrical body produced from ceramic material and having two axial bore holes 5 and 6. In each of the bore holes 5 and 6 there is a twin-sleeve 7 which serves as a contact element.
  • FIGS. 3 and 4 show such a twin-sleeve 7.
  • This consists of a roughly hollow cylindrical bushing with three spaced annular sections 8, narrow spring laminations 9 curving radially inwards being provided between the said annular sections.
  • Twin-sleeve 7 is provided with a longitudinal slot 10 passing also through the annular sections 8, as a result of which the said twin-sleeve is radially resilient.
  • the twinsleeves 7 In the unstressed condition the twinsleeves 7 have a larger diameter than the bore holes 5 and 6 of insulation insert 4 and they are inserted into the latter in a prestressed condition so that the annular sections 8 are firmly pressed against the bore holes as can be seen from FIG. 1 and 2.
  • a contact pin 12 is inserted into the inner end of each twin-sleeve 7, the said contact pin being attached in an electrically conducting manner to one end of a conductor 13 of the cable 14 which is fitted within the plug.
  • the resilient laminations 9 of twin-sleeve 7 also ensure good electrical contact between the contact pin 12 and the twin-sleeve 7.
  • insertion of contact pin 12 causes the twin-sleeve 7 which is resilient in a radial, outward direction, to be pressed under relatively high pressure against the wall of bore hole 5 or 6 and thus to be securely fixed within insulation insert 4.
  • the front end of twin-sleeve 7 is meant to receive connection pins, e.g. the connection pins of a signal generator.
  • connection pins e.g. the connection pins of a signal generator.
  • the cable plug shown in FIG. 1 is connected to a flexible cable 14 designed in a conventional fashion.
  • the cable is mounted within the plug in a such known manner by means of a union nut 15 serving as a pressure screw and being screwed onto the plug casing 1, with the aid of a pressure ring 16 acting on an elastic element 17.
  • an earth connection ring 18 is provided, which presses the end of screen 19 of the cable in an electrically conducting manner against the plug casing 1.
  • Two union nuts 2 and 15 are provided with milled recesses 20 and 21 which are located opposite one another. In order to secure the union nuts 2, 15, the threads of which are handed in opposite directions, a spring engaging in the milled recesses 20 and 21 can be placed about plug casing l.
  • FIG. 2 The embodiment shown in FIG. 2 is intended for a stiff, minerally insulated cable having a steel sheath.
  • the steel sheath of cable 14 is brazed into a casing 22 which consists of several parts.
  • the two conductors 13 are taken out of casing 22 through tubular conduits 23 lined with insulating material whereby the ends of the said conductors are located in tubular contact pins 12.
  • FIG. 1 As shown in FIG.
  • a cable plug for attachment or mutual connection of electrical cable lines and adapted particularly for use in measuring and monitoring with piezoelectric signal generators comprising:
  • an insulative insert received within the plug casing opening of external dimensions slightly less than those of said casing opening, said insert including a bore hole for each cable conductor;
  • a generally cylindrical contact element having a longitudinal slit received in prestressed condition within each bore hole, snugly conforming to the bore hole walls, said element having first and sec- 0nd longitudinally spaced lamination means which are radially resilient, one end of the contact ele ment receiving a contact pin provided at the end of the cable conductor and the other contact element end for receiving a further pin.

Abstract

A cable plug for electric lines, in particular for use in measuring and monitoring systems with piezoelectric signal generators, comprising a plug casing having an insulation insert provided with bore holes, each bore hole containing a prestressed radially resilient twin-sleeve, one end there-of receiving a contact pin provided at the end of the cable conductor, while a connection pin can be inserted into their other end.

Description

nite States Patent [1 1 llllatschek et a1.
1 1 CABLE PLUG [75] Inventors: Rudoli A. Hatschek, Fribourg;
Gunther G. Witzke, Villarssur'Glane, both of Switzerland [73] Assignee: Vibro-Meter AG, Fribourg,
Switzerland [22] Filed: Sept. 24, 1971 [2]] Appl. No.: 183,587
[30] Foreign Application Priority Data Sept. 25, 1970 Austria 118702 152] 11.8. C1. 339/89 M, 339/93 C, 339/112 R,
[51] Int. Cl...ll10lr 13/54, HOlr 33/12,H01r 11/22 [58] Field of Search 339/89 R, 89 C, 89 M, 339/93, 203, 204, 205, 156, 59, 64 R, 64 M,
14 R, 14 L, 112, 258 T, 258 P, 258 R, 256 R,
217 R, 217 J, 217 S [56] References Cited UNITED STATES PATENTS 3,218,606 ll/1965 Schultz 339/256 R 2,935,549 5/1960 Woods 339/112 R 3,538,240 11/1970 Sherlock 339/205 2,968,020 1/1961 Barnhart... 339/89 M 1,975,885 10/1934 Wellman... 339/205 2,209,274 6/1940 Jaberg 339/93 R 2,907,976 10/1959 Damon 339/17 R 3,086,190 4/1963 Neidecker 339/205 Primary Examiner-Marvin A. Champion Assistant ExaminerWilliam F. Pate, 111 Attorney-George J. Netter 57 ABSTRACT A cable plug for electric lines, in particular for use in measuring and monitoring systems with piezoelectric signal generators, comprising a plug casing having an insulation insert provided with bore holes, each bore hole containing a pre-stressed radially resilient twinsleeve, one end there-of receiving a contact pin provided at the end of the cable conductor, while a connection pin can be inserted into their other end.
3 Claims, 4 Drawing Figures Patented Oct. 2, 1973 2 Sheets-Sheet 1 2 Sheets-Sheet 2 W GE CABLE PLUG The invention relates to a cable plug for the attachment or mutual connection of electric lines, in particular for measuring and monitoring systems with piezoelectric signal generators.
Cable plugs of this type are used in piezoelectric measuring and monitoring technology for connection of the measuring cables to the signal generators. As is well known, they are provided with a plug casing which contains an insulating insert preferably consisting of ceramic material. The insulating insert contains a bore hole for each cable conductor, in which there is a contact element associated with the conductor for resilient mounting of a connection pin. Recently monitoring of the vibrations produced by rotating machinery, by means of piezoelectric oscillators, has come to be an accepted method. By further development of the piezoelectric signal generators, in particular accelerometers, it has become possible to mount the signal generators even on relatively hot parts of machinery, particularly on turbine engines of aeroplanes. Since modern generators can be used without restriction even at tempera tures of more than 600C this did not produce any problems. On the other hand, difficulties are often encountered when transmitting the measuring signals from the generator to the appropriate electronic systems and devices, the cable connections at the generator end and the cable parts close to the generator being particularly critical.
Depending on the requirements in each given case, there are essentially two different designs of generator cables in use. One design is to a large extent conventional and possesses a flexible insulation which consists of plastics resistant to elevated temperatures, such as polytetrafluorethylene (Teflon). These cables can be employed up to a temperature of 300C. Basically different is the design of the so called stiff, minerally insulated cables in which steel conductors are embedded in an inorganic insulating material, generally magnesium oxide enclosed by a steel tube. These cables tolerate temperatures up to above l,000C. However, since the inorganic insulating material is hygroscopic, i.e. it is capable of absorbing moisture from the air, the cable ends must be hermetically sealed, for the absorption of moisture would cause the insulating value of the cable to drop in an undesirable manner. Hence, with such a cable, the cable plug is subject to special requirements, especially in respect of sealing, particularly if it is to be used in aeroplanes, since, owing to the varying flight altitudes, there arise pressure differences which make it easier for air moisture and impurities to penetrate.
If piezoelectric accelerometers are used, which, as is known, supply charged signals that have to be transmitted through a measuring cable to a more remotely located charge amplifier, it is in addition necessary, for both the connecting line and the cable plug to possess a high insulation value which is maintained even at high temperatures. Besides, the production of interference charges in the cable and in the plug must be avoided.
The cable plugs of the initially described design, which have been used so far, satisfy these requirements only in part. it is true, that by the use of ceramics for I the insulation insert, a correspondingly high temperature resistance is achieved. However, the design of the known plugs is relatively complicated. Bearing in mind the large variations in thermal expansion between the contact elements which are designed as metallic cylindrical bushes, the ceramic insulation insert and the plug casing, the insulation insert is loosely fitted within the casing, a Collar-type projection being provided for its retention and an annular spring located in an enlarged section of the casing being axially supported by the said projection. For the same reason, also the contact elements within the insulation insert are loosely arranged. In order to enable the plug components to be assembled, the insulation insert must be constructed of several parts. A further difficulty consists in the fact that effective sealing of the cable end is in practice virtually impossible owing to the complicated design of the plug. It was further found that with the known plug design the production of interference charge can hardly be avoided.
It is the object of the invention to avoid these difficulties and to create a simple cable plug which is sufficiently temperature-resistant, enables secure hermetical sealing of the cable end, and avoids the production of interference charges. In this respect, the invention is based on the fact that the interference charges found with the known design are caused by so-called triboelectric effects, i.e. by frictions and changes in capacity owing to relative motions between the plug components. Hence it is also an object of the invention to avoid, as far as possible, the use of plug components capable of moving in relation to one another.
With the cable plug in accordance with the invention this problem is solved by inserting as contact elements pre-stressed radially resilient twin-sleeves directly and without play into the bore holes of the insulation insert, one end of the said twin-sleeves receiving a contact pin provided at the conductor end while a connection pin can be inserted into their other end. Preferably, at least one prestressed, radially resilient spring sleeve is provided also between the insulation insert and the plug casing. These radially resilient intermediate components retain the contact element in the insulation insert and also the latter within the plug casing in a largely immovable manner, so that no relative motion causing tribo-electric effects can occur between the plug components during the measurement of vibrations. Nevertheless, the elastic retention of the plug components enables even major variations in thermal expansion to be compensated. In addition cable assembly can be made simple since it is sufficient for insertion pins to be crimped or welded at the cable ends, the said insertion pins being introduced into the cable plug from the rear. The insertion pins engage within the rear half of the radially resilient twin-sleeves and clamp them fast directly within the bore holes of the insulation insert, the pressure being relatively high. As a result, the twinsleeves in the insulation insert are safely anchored and a good electrical contact is achieved without additional fastening means. There is no need for cylindrical contact bushes of the type used hitherto, which contain resilient contact elements by way of inserts and must be separately anchored. Furthermore, the plug design in accordance with the invention is also advantageous for connecting two cable ends.
It is true, that twin-sleeves as contact elements for plug devices are as such already known from the Swiss patent No. 373.439. These consist of a tubular support element inside which there are needle-type contact springs which receive a contact pin. These twin-sleeves are, however, not resilient in the radial out'ward direction. Just as the known simple contact bushes they are rounded with an insulating sheath consisting of rubber, molded material or plastic, in order to protect them against contact, or they inserted into metallic contact bushes, which, in turn, are anchored within a plug. However, special retaining devices are necessary for this purpose, and appropriate play must be provided for in order to compensate any variations in thermal expansion which may occur.
On the other hand, with the cable plug design in accordance with the invention, whereby the twin-sleeves are radially resilient and are clamped fast directly within the insulation insert itself without intermediate metal bushings, no projections or shoulders are required in order to anchor the insulation insert within the plug casing. Hence, the casing can be designed in a compact manner with a relatively small diameter while maintaining the specified contact spacings. It is, therefore, possible, if the design embodies a union nut, this being normally provided for attachment of the plug to a signal generator, to design in accordance with a further characteristic of the invention the insulation insert as an integral cylindrical body with a substantially uniform outer diameter, while designing the plug casing where it adjoins the union nut with a smaller outer diameter than the inner diameter of the union nut, the union nut being so designed that it can be pushed back over the plug casing in order to mount or replace a sealing ring. Thus, provided that the cable plug has been designed in accordance with the invention, it is for the first time possible to achieve secure and at the same time simple sealing between the cable plug and the sig nal generator.
The drawing illustrates embodiments of the cable plug in accordance with the invention.
FIGS. 1 and 2 each show a specimen embodiment of the plug in axial section along the centre line,
FIG. 3 shows a detail in side view and FIG. 4 shows a section along the line lV-IV in FIG. 3.
In both embodiments the cable plug consists ofa substantially cylindrical plug casing 1, which for production reasons consists of two parts welded together and is provided with a union nut 2 for attachment of the cable plug to a signal generator which is to be connected. A sealing ring 3 is mounted on plug casing 1 in order to provide the required sealing action, the said sealing ring being pressed by the union nut 2 against a collar of the casing and thus ensuring secure sealing of the cable plug. After pushing the union nut 2 back over casing l, the sealing ring 3 can be easily mounted and replaced. Within the plug casing 1 there is an insulation insert 4 which consists of an integral cylindrical body produced from ceramic material and having two axial bore holes 5 and 6. In each of the bore holes 5 and 6 there is a twin-sleeve 7 which serves as a contact element.
FIGS. 3 and 4 show such a twin-sleeve 7. This consists of a roughly hollow cylindrical bushing with three spaced annular sections 8, narrow spring laminations 9 curving radially inwards being provided between the said annular sections. Twin-sleeve 7 is provided with a longitudinal slot 10 passing also through the annular sections 8, as a result of which the said twin-sleeve is radially resilient. In the unstressed condition the twinsleeves 7 have a larger diameter than the bore holes 5 and 6 of insulation insert 4 and they are inserted into the latter in a prestressed condition so that the annular sections 8 are firmly pressed against the bore holes as can be seen from FIG. 1 and 2. Hence they are retained securely and without play in the bore holes 5 and 6, and are yet capable, owing to their elasticity, to compensate, even with large changes of temperature, differences in thermal expansion with regard to insulation insert 4. Between the insulation insert 4 and plug casing 1 there is a resilient sleeve 11 designed in a similar manner as twin-sleeves 7, the said resilient sleeve being likewise provided with resilient laminations and a longitudinal slot so that it retains the insulation insert 4 securely within the plug casing and is also capable of compensating variations in thermal expansion.
A contact pin 12 is inserted into the inner end of each twin-sleeve 7, the said contact pin being attached in an electrically conducting manner to one end of a conductor 13 of the cable 14 which is fitted within the plug. The resilient laminations 9 of twin-sleeve 7 also ensure good electrical contact between the contact pin 12 and the twin-sleeve 7. At the same time, insertion of contact pin 12 causes the twin-sleeve 7 which is resilient in a radial, outward direction, to be pressed under relatively high pressure against the wall of bore hole 5 or 6 and thus to be securely fixed within insulation insert 4. The front end of twin-sleeve 7 is meant to receive connection pins, e.g. the connection pins of a signal generator. However, it is also possible to insert the contact pins of another cable into the front section of the twin-sleeves, so that the cable plug in accordance with the invention can also be used for mutual connection of electrical cable lines without any change in its basic design.
The cable plug shown in FIG. 1 is connected to a flexible cable 14 designed in a conventional fashion. The cable is mounted within the plug in a such known manner by means of a union nut 15 serving as a pressure screw and being screwed onto the plug casing 1, with the aid of a pressure ring 16 acting on an elastic element 17. In addition, an earth connection ring 18 is provided, which presses the end of screen 19 of the cable in an electrically conducting manner against the plug casing 1. Two union nuts 2 and 15 are provided with milled recesses 20 and 21 which are located opposite one another. In order to secure the union nuts 2, 15, the threads of which are handed in opposite directions, a spring engaging in the milled recesses 20 and 21 can be placed about plug casing l.
The embodiment shown in FIG. 2 is intended for a stiff, minerally insulated cable having a steel sheath. In order to achieve hermetic sealing, the steel sheath of cable 14 is brazed into a casing 22 which consists of several parts. The two conductors 13 are taken out of casing 22 through tubular conduits 23 lined with insulating material whereby the ends of the said conductors are located in tubular contact pins 12. After baking out and evacuation of casing 22 through the contact pins 12, which are still open, the cable is dried and highly insulated, whereupon the exposed terminations of the conductor ends are hermetically welded to the contact pins 12. As shown in FIG. 2 casing 22 which has thus been hermetically sealed is inserted into the plug casing 1, its rear end being welded to plug casing 1 by means of a peripheral welding seam 24. This causes the cable end to be hermetically sealed so that no foreign substances, which might reduce the insulation value of the mineral cable insulation, can enter into it. The contact pins 12 are located in the rear parts of the twin-sleeves 7, as in the embodiment shown in FIG. 1, so that good electrical contact is ensured by the resilient laminations 9. It is extremely simple to fit the cable plug to the cable end.
We claim:
1. A cable plug for attachment or mutual connection of electrical cable lines and adapted particularly for use in measuring and monitoring with piezoelectric signal generators, comprising:
a plug casing having an opening therethrough;
an insulative insert received within the plug casing opening of external dimensions slightly less than those of said casing opening, said insert including a bore hole for each cable conductor;
a prestressed, radially resilient sleeve received onto said insulative insert and resiliently contacting both said insert and the plug casing walls defining the plug casing; and
a generally cylindrical contact element having a longitudinal slit received in prestressed condition within each bore hole, snugly conforming to the bore hole walls, said element having first and sec- 0nd longitudinally spaced lamination means which are radially resilient, one end of the contact ele ment receiving a contact pin provided at the end of the cable conductor and the other contact element end for receiving a further pin.
2. A cable plug as in claim 1, in which said sleeve includes a generally cylindrical body member of spring metal having a longitudinal slit therein, and laminations at each end extending radially outwardly, the ends of which are received against shoulders formed in the plug casing opening walls.
3. A cable plug as claimed in claim 1, wherein a union nut is provided over the casing in order to attach the plug to a signal generator, the insulative insert being formed into an integral cylindrical body with a substantially uniform outer diameter and the plug casing in its section adjoining the union nut having an outer diameter which is smaller than the inner diameter of the union nut, whereby the union nut can be pushed back over the plug casing for mounting and replacing a sealing ring.

Claims (3)

1. A cable plug for attachment or mutual connection of electrical cable lines and adapted particularly for use in measuring and monitoring with piezoelectric signal generators, comprising: a plug casing having an opening therEthrough; an insulative insert received within the plug casing opening of external dimensions slightly less than those of said casing opening, said insert including a bore hole for each cable conductor; a prestressed, radially resilient sleeve received onto said insulative insert and resiliently contacting both said insert and the plug casing walls defining the plug casing; and a generally cylindrical contact element having a longitudinal slit received in prestressed condition within each bore hole, snugly conforming to the bore hole walls, said element having first and second longitudinally spaced lamination means which are radially resilient, one end of the contact element receiving a contact pin provided at the end of the cable conductor and the other contact element end for receiving a further pin.
2. A cable plug as in claim 1, in which said sleeve includes a generally cylindrical body member of spring metal having a longitudinal slit therein, and laminations at each end extending radially outwardly, the ends of which are received against shoulders formed in the plug casing opening walls.
3. A cable plug as claimed in claim 1, wherein a union nut is provided over the casing in order to attach the plug to a signal generator, the insulative insert being formed into an integral cylindrical body with a substantially uniform outer diameter and the plug casing in its section adjoining the union nut having an outer diameter which is smaller than the inner diameter of the union nut, whereby the union nut can be pushed back over the plug casing for mounting and replacing a sealing ring.
US00183587A 1970-09-25 1971-09-24 Cable plug Expired - Lifetime US3763460A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT870270A AT314008B (en) 1970-09-25 1970-09-25 Cable connector
US18358771A 1971-09-24 1971-09-24

Publications (1)

Publication Number Publication Date
US3763460A true US3763460A (en) 1973-10-02

Family

ID=25604951

Family Applications (1)

Application Number Title Priority Date Filing Date
US00183587A Expired - Lifetime US3763460A (en) 1970-09-25 1971-09-24 Cable plug

Country Status (6)

Country Link
US (1) US3763460A (en)
AT (1) AT314008B (en)
CH (1) CH528157A (en)
DE (1) DE2148163C3 (en)
FR (1) FR2108556A5 (en)
GB (1) GB1307504A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848957A (en) * 1974-01-28 1974-11-19 Bendix Corp Electrical connector insert retainer
US4208092A (en) * 1977-10-14 1980-06-17 Bunker Ramo Corporation Fiber optic multi-cable pair connector
US4221447A (en) * 1979-02-26 1980-09-09 International Telephone And Telegraph Corporation Electrical connector
US4304457A (en) * 1977-12-27 1981-12-08 Sloan Valve Company Electrical connector
US4310213A (en) * 1978-04-05 1982-01-12 Amp Incorporated Electrical connector kit
FR2514206A1 (en) * 1981-10-07 1983-04-08 Metanic Sa Heating element connector for pressuriser in nuclear reactor - uses insulating cradle with two channels to hold connectors during assembly and use, and to support element
EP0101117A2 (en) * 1982-07-21 1984-02-22 E.I. Du Pont De Nemours And Company Rib cage terminal
FR2533770A1 (en) * 1982-09-29 1984-03-30 Whittaker Corp ASSEMBLY WITH CONNECTOR AND CABLE SEALS HERMETICALLY AND HEAT-RESISTANT
US4545638A (en) * 1982-06-21 1985-10-08 E. I. Du Pont De Nemours And Company Rib cage terminal
US4666229A (en) * 1984-03-02 1987-05-19 Compagnie Francaise Del Isolants Strain relief device
US4705339A (en) * 1986-06-19 1987-11-10 Amp Incorporated Sealed plug for a printed circuit board receptacle
DE3720438A1 (en) * 1986-06-20 1987-12-23 Amp Inc CONNECTOR ARRANGEMENT WITH RECEIVING PART AND PLUG PART
WO1991004598A1 (en) * 1989-09-22 1991-04-04 E.I. Du Pont De Nemours And Company Slotted grounding ferrule
US5082462A (en) * 1988-12-08 1992-01-21 E. I. Du Pont De Nemours And Company Ribbed terminal having pin lead-in portion thereon
US6371791B1 (en) * 2001-03-12 2002-04-16 Cooper Technologies Filtered terminal block assembly
US20050239318A1 (en) * 2004-04-22 2005-10-27 Newton Robert L Jr Filtered terminal block assembly
US20070185420A1 (en) * 2006-02-03 2007-08-09 Nanma Manufacturing Co. Ltd. Massage apparatus with a controller device
US20070293076A1 (en) * 2006-06-03 2007-12-20 Stefan Fehling Electrical connector having plug and socket components
EP0961355B1 (en) * 1998-05-27 2008-05-14 Fci Electrical connector with a tubular contact formed from an array of v-shaped members
US20090269221A1 (en) * 2005-12-28 2009-10-29 Takehiro Hasegawa Electric compressor
FR2961355A1 (en) * 2010-06-09 2011-12-16 Mirion Technologies Ist France Connector for connecting mineral insulated cables in nuclear facility, has female connector part with curved surface arranged to contact with conical surface of male connector part to have sealing contact between connector parts
US20120115351A1 (en) * 2009-06-25 2012-05-10 Markus Bihrer Electrical plug connector
WO2012072737A1 (en) * 2010-12-03 2012-06-07 Rema Lipprandt Gmbh & Co. Kg Charging cable-side connector part of an electrical plug-in device of a vehicle
US20130109237A1 (en) * 2011-10-31 2013-05-02 Lear Corporation Electrical terminal and receptacle assembly
US20140357137A1 (en) * 2013-05-30 2014-12-04 K. S. Terminals Inc. Contact cage and female contact using same
US20150364880A1 (en) * 2013-03-01 2015-12-17 3M Innovative Properties Company Low-profile coaxial cable splice
US20160134028A1 (en) * 2013-05-31 2016-05-12 Fujikura Ltd. Terminal structure for covered electric wire
US9583933B1 (en) * 2015-12-17 2017-02-28 Itt Manufacturing Enterprises Llc Mineral insulated cable terminations
US20170279210A1 (en) * 2016-03-23 2017-09-28 Te Connectivity Germany Gmbh Power-Electric Contact Device; Exchangeable Power-Electric Contact Module As Well As Power-Electric Connector
US20180197644A1 (en) * 2016-05-16 2018-07-12 Teledyne Brown Engineering, Inc. Electrical penetrator assembly
US20200274305A1 (en) * 2019-02-23 2020-08-27 Acer Incorporated Plug connector
CN113948906A (en) * 2021-09-28 2022-01-18 中航光电科技股份有限公司 Large-current watertight connector and plug
CN113948906B (en) * 2021-09-28 2024-04-16 中航光电科技股份有限公司 Heavy-current watertight connector and plug

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA783792B (en) * 1977-07-26 1979-07-25 Marston Excelsior Ltd Electrical connector
GB2160371A (en) * 1984-06-12 1985-12-18 Coal Ind An electrical coupling assembly and coupling pin therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1975885A (en) * 1929-09-12 1934-10-09 Ford Motor Co Wire connecter
US2209274A (en) * 1938-11-05 1940-07-23 Howard A Jaberg Insulating bushing
US2907976A (en) * 1956-07-27 1959-10-06 Raytheon Co Electrical connectors and contacts therefor
US2935549A (en) * 1956-09-17 1960-05-03 Int Electronic Res Corp Tube shield liner
US2968020A (en) * 1958-02-12 1961-01-10 Bendix Corp Electrical connector
US3086190A (en) * 1958-05-27 1963-04-16 Neidecker Electrical connector
US3218606A (en) * 1964-01-20 1965-11-16 Lockheed Aircraft Corp Socket assembly for printed circuits
US3538240A (en) * 1968-08-12 1970-11-03 Raychem Corp Terminal device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1975885A (en) * 1929-09-12 1934-10-09 Ford Motor Co Wire connecter
US2209274A (en) * 1938-11-05 1940-07-23 Howard A Jaberg Insulating bushing
US2907976A (en) * 1956-07-27 1959-10-06 Raytheon Co Electrical connectors and contacts therefor
US2935549A (en) * 1956-09-17 1960-05-03 Int Electronic Res Corp Tube shield liner
US2968020A (en) * 1958-02-12 1961-01-10 Bendix Corp Electrical connector
US3086190A (en) * 1958-05-27 1963-04-16 Neidecker Electrical connector
US3218606A (en) * 1964-01-20 1965-11-16 Lockheed Aircraft Corp Socket assembly for printed circuits
US3538240A (en) * 1968-08-12 1970-11-03 Raychem Corp Terminal device

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848957A (en) * 1974-01-28 1974-11-19 Bendix Corp Electrical connector insert retainer
US4208092A (en) * 1977-10-14 1980-06-17 Bunker Ramo Corporation Fiber optic multi-cable pair connector
US4304457A (en) * 1977-12-27 1981-12-08 Sloan Valve Company Electrical connector
US4310213A (en) * 1978-04-05 1982-01-12 Amp Incorporated Electrical connector kit
US4221447A (en) * 1979-02-26 1980-09-09 International Telephone And Telegraph Corporation Electrical connector
FR2514206A1 (en) * 1981-10-07 1983-04-08 Metanic Sa Heating element connector for pressuriser in nuclear reactor - uses insulating cradle with two channels to hold connectors during assembly and use, and to support element
US4545638A (en) * 1982-06-21 1985-10-08 E. I. Du Pont De Nemours And Company Rib cage terminal
US4445747A (en) * 1982-07-21 1984-05-01 E. I. Du Pont De Nemours And Company Rib cage terminal
EP0101117A2 (en) * 1982-07-21 1984-02-22 E.I. Du Pont De Nemours And Company Rib cage terminal
EP0101117A3 (en) * 1982-07-21 1987-01-07 E.I. Du Pont De Nemours And Company Rib cage terminal
FR2533770A1 (en) * 1982-09-29 1984-03-30 Whittaker Corp ASSEMBLY WITH CONNECTOR AND CABLE SEALS HERMETICALLY AND HEAT-RESISTANT
US4666229A (en) * 1984-03-02 1987-05-19 Compagnie Francaise Del Isolants Strain relief device
US4705339A (en) * 1986-06-19 1987-11-10 Amp Incorporated Sealed plug for a printed circuit board receptacle
DE3720438A1 (en) * 1986-06-20 1987-12-23 Amp Inc CONNECTOR ARRANGEMENT WITH RECEIVING PART AND PLUG PART
US4767350A (en) * 1986-06-20 1988-08-30 Amp Incorporated Receptacle and plug assembly
DE3720438C2 (en) * 1986-06-20 2000-02-24 Amp Inc Connector arrangement with receiving part and plug part
US5082462A (en) * 1988-12-08 1992-01-21 E. I. Du Pont De Nemours And Company Ribbed terminal having pin lead-in portion thereon
WO1991004598A1 (en) * 1989-09-22 1991-04-04 E.I. Du Pont De Nemours And Company Slotted grounding ferrule
US5051543A (en) * 1989-09-22 1991-09-24 E. I. Du Pont De Nemours And Company Slotted grounding ferrule
EP0961355B1 (en) * 1998-05-27 2008-05-14 Fci Electrical connector with a tubular contact formed from an array of v-shaped members
US6371791B1 (en) * 2001-03-12 2002-04-16 Cooper Technologies Filtered terminal block assembly
US7097509B2 (en) 2004-04-22 2006-08-29 Cooper Technologies Company Filtered terminal block assembly
US20050239318A1 (en) * 2004-04-22 2005-10-27 Newton Robert L Jr Filtered terminal block assembly
US8231365B2 (en) * 2005-12-28 2012-07-31 Sanden Corporation Electric compressor
US20090269221A1 (en) * 2005-12-28 2009-10-29 Takehiro Hasegawa Electric compressor
EP1967732A4 (en) * 2005-12-28 2017-01-25 Sanden Holdings Corporation Electric compressor
US20070185420A1 (en) * 2006-02-03 2007-08-09 Nanma Manufacturing Co. Ltd. Massage apparatus with a controller device
US20070293076A1 (en) * 2006-06-03 2007-12-20 Stefan Fehling Electrical connector having plug and socket components
US7491081B2 (en) * 2006-06-03 2009-02-17 Weidmüller Interface GmbH & Co. KG Electrical connector having plug and socket components
US20120115351A1 (en) * 2009-06-25 2012-05-10 Markus Bihrer Electrical plug connector
US8632356B2 (en) * 2009-06-25 2014-01-21 Lapp Engineering & Co. Electrical plug connector
FR2961355A1 (en) * 2010-06-09 2011-12-16 Mirion Technologies Ist France Connector for connecting mineral insulated cables in nuclear facility, has female connector part with curved surface arranged to contact with conical surface of male connector part to have sealing contact between connector parts
WO2012072737A1 (en) * 2010-12-03 2012-06-07 Rema Lipprandt Gmbh & Co. Kg Charging cable-side connector part of an electrical plug-in device of a vehicle
US20130109237A1 (en) * 2011-10-31 2013-05-02 Lear Corporation Electrical terminal and receptacle assembly
US8678867B2 (en) * 2011-10-31 2014-03-25 Lear Corporation Electrical terminal and receptacle assembly
US20150364880A1 (en) * 2013-03-01 2015-12-17 3M Innovative Properties Company Low-profile coaxial cable splice
US20140357137A1 (en) * 2013-05-30 2014-12-04 K. S. Terminals Inc. Contact cage and female contact using same
US20160134028A1 (en) * 2013-05-31 2016-05-12 Fujikura Ltd. Terminal structure for covered electric wire
US9564690B2 (en) * 2013-05-31 2017-02-07 Fujikura Ltd. Terminal structure for covered electric wire
US9583933B1 (en) * 2015-12-17 2017-02-28 Itt Manufacturing Enterprises Llc Mineral insulated cable terminations
US20170279210A1 (en) * 2016-03-23 2017-09-28 Te Connectivity Germany Gmbh Power-Electric Contact Device; Exchangeable Power-Electric Contact Module As Well As Power-Electric Connector
US10256565B2 (en) * 2016-03-23 2019-04-09 Te Connectivity Germany Gmbh Power-electric contact device; exchangeable power-electric contact module as well as power-electric connector
US20180197644A1 (en) * 2016-05-16 2018-07-12 Teledyne Brown Engineering, Inc. Electrical penetrator assembly
US10388417B2 (en) * 2016-05-16 2019-08-20 Teledybe Brown Engineering, Inc. Electrical penetrator assembly
US20200274305A1 (en) * 2019-02-23 2020-08-27 Acer Incorporated Plug connector
US10879656B2 (en) * 2019-02-23 2020-12-29 Acer Incorporated Plug connector
CN113948906A (en) * 2021-09-28 2022-01-18 中航光电科技股份有限公司 Large-current watertight connector and plug
CN113948906B (en) * 2021-09-28 2024-04-16 中航光电科技股份有限公司 Heavy-current watertight connector and plug

Also Published As

Publication number Publication date
DE2148163C3 (en) 1974-06-27
CH528157A (en) 1972-09-15
GB1307504A (en) 1973-02-21
AT314008B (en) 1974-03-11
FR2108556A5 (en) 1972-05-19
DE2148163B2 (en) 1973-11-08
DE2148163A1 (en) 1972-03-30

Similar Documents

Publication Publication Date Title
US3763460A (en) Cable plug
US3509518A (en) High voltage cable connectors
US2563712A (en) Electrical connector having resilient inserts
US4326769A (en) Rotary coaxial assembly
US2563713A (en) Electrical connector having resilient inserts
GB1363247A (en) Capacitively graded pothead
US2860316A (en) High voltage pin socket connector
US3197730A (en) Pressure-tight connector
GB2040114A (en) High voltage electrical connector shield
US3753203A (en) Shielded high voltage connector
US2225728A (en) Separable electrical connector
US3315214A (en) Connector assembly
NO158275B (en) MOUNTING DEVICE FOR THE END OF A MIDDLE VOLTAGE OR HIGH VOLTAGE CABLE.
US3343122A (en) Junction device for electric cable of the coaxial type, more particularly for high-tension coaxial cable
US4173384A (en) Flexible co-axial connector for cable in-line electronics
US3308758A (en) Ignition device
US4186369A (en) Connector for terminating the end of a sheathed heating element
US2713670A (en) Electrical jack
US2759989A (en) Ignition apparatus
US3772545A (en) Cable connector assembly
US3364457A (en) Electrical adapter
US2913696A (en) Electrical apparatus
US2832941A (en) Electrical connector
US4527855A (en) Electrical plug connection for an electrical cable containing a traction relief
US4592616A (en) Connector for coaxial television cable