US3752664A - Metallic sound conductor or sound radiator - Google Patents

Metallic sound conductor or sound radiator Download PDF

Info

Publication number
US3752664A
US3752664A US00084308A US3752664DA US3752664A US 3752664 A US3752664 A US 3752664A US 00084308 A US00084308 A US 00084308A US 3752664D A US3752664D A US 3752664DA US 3752664 A US3752664 A US 3752664A
Authority
US
United States
Prior art keywords
sound
alloys
metallic
attenuation
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00084308A
Inventor
S Steinemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut Straumann AG
Original Assignee
Institut Straumann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Straumann AG filed Critical Institut Straumann AG
Application granted granted Critical
Publication of US3752664A publication Critical patent/US3752664A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/30Time-delay networks
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • T ypical values for three well-known materials are shown in Table I.
  • the present invention relates to a sound conductor and, more particularly to a metallic low-loss sound conductor or sound radiator.
  • an electric signal is transformed into a sound wave by piezoelectric, magnetostrictive or other transducers.
  • the sound wave propagates as an elastic longitudinal or shear wave through a sound transmitter which may be a rod, a band or a Wire. Subsequently another transducer re-transforms the sound wave into an electric signal of predetermined delay time.
  • Conventional sound transmitting media are glasses, mercury, aluminum alloys, nickel or temperature-compensating alloys such as Ni-span etc.
  • the characteristics of such materials must include low attenuation, homogeneity, the lowest possible temperature coefiicient of a wave Velocity, low propagation Velocity in order to permit a compact design, and possibly a high couplng factor for magnetostrictive excitation and detection. The totality of these requirements can be attained only to a limited extent.
  • Low-loss materials for sound transmitters are also required in ultrasonics, for the processing of hard materials, for material testing, for echo sounding devices and so on.
  • Sound transmitters for such purposes are at present made of anticorodal, brass, titanium alloys and so on.
  • quartz in contrast to metallic sound transmitters, quartz has an extremely low attenuation.
  • quartz cannot be fashioned into various shapes such as are often required; for delay lines quartz is conventionally used in the form of a rod or a polygon.
  • Metallic sound transmitters on the other hand, can be given any desired shape. Metals also have greater resistance to fatigue; this is an important consideration in sound conductors which must transrnt high interstices of sound. The advantages are offset, however, by the greater sound attenuation in rnetals.
  • an object of the present invention to overcome the drawbacks of prior art by providng a metallic sound transmitter which combines the desirable sound transmitting properties of amorphous quartz-that is, low attenuationwith malleability which permits any desired Shape of a sound conductor, and with a low temperature coefiicient of elasticity, that is of the wave Velocity.
  • Another object is to provide a metallic sound transmitter of low propagation Velocity which permits compact design.
  • a further object is to provide a metallic sound transmitter of great strength and stability.
  • an elastically isotropic sound transmitter which is made of one of a number of metal alloys.
  • the sound transmitter according to the invention is formed of several alloys whose electron concentrations correspond to an anisotropy coeflicient of 1. This implies that the sound wave propagates with equal Velocity in all directions and losses because of the randomly oriented grain structure in polycrystalline metals as obliterated.
  • FIG. 1 is a diagram which shows the attenuation a of sound as a function of the frequency
  • FIG. 2 is a diagram which shows the anisotropy factor A of a number of alloys as a function of the electron per atom ratio e/a;
  • Region (2)-between 1-10 kHz. Thermoelastic relaxation loss in polycrystalline substances of Zener effect. In a polycrystalline material the randomly oriented elastically anisotropic grains are homogenously compressed and dilated which results in different local temperatures and relaxation loss due to heat flow.
  • Region (3 )-moderate frequencies Relaxation phenomena due to dislocation motions and interactions between chemical and structural lattice defects; in general attenuation is low, except in ferromagnetic materials.
  • Regions (4), (5) and (6) Sound scattering and sound diffusion in polycrystalline material, due to the fact that in those substances the randomly orieted elastically anisotropic grains do not have identical sound impedance so that sound is scattered (like light) or diffused by reflection.
  • the attenuation depends on parameters like the average diameter of grains, on the frequency and on the elastic anisotropy coefficient.
  • region (7) which includes still higher frequencies there is hysteresis loss and thermoelastic relaxation; the latter vares as the second power of the frequency. Its absolute value is determined by the specific heat and thermal conductivity of the material.
  • the attenuation in the regions (2), (4), (5) and (6) is a function of the elastic anisotropy of the material.
  • C. Zener Elasticity and Anelasticity of Metals the University of Chicago Press, Chicago-London 1948; W. P. Mason: Physical Acoustics and the Properties of Solids, D. Van Nostrand Company, Princeton-Toronto-London-New York, 1958; R. T. Smith and R. W. B. Stephens: Effects of Anisotropy on Ultrasonic Propagation in Solids, edited Standford, Fearson and McG'onnagle Progress in Applied Materials Research, vol. 5, pp. 41-64, 1964, Heywood Book Temple Press Book London.
  • elastically isotropics metals are not known (tungsten, though elastically isotropic, has a high density and is moreover not suitable as a construction material).
  • the value Q CP is obtained through measurements of a single crystal (and under certain ass'umptions, of a polycrystalline substance) where CS and CP are the independent shear moduli.
  • FIG. 2 shows the results of systematic measurements of the anisotropy factor A as a function of the ratio of free electrons per atom e/ a (also called the electron concentration) of various alloys.
  • anisotropy can be represented by the ratio e/a uniformly, that is iudependently of the components, as a band contribution to the elasticity; thus the so-called rigid band model is valid for the anisotropy factor, provided that the band contribution is high which shows, for example, in a high magnetic susceptibility of more than 50-10 6 EME/mol or in a high specific heat at low temperatures.
  • a metallic sound conductor or sound radiator comprises an alloy in which the electron per atom ratio e/w lies between 4.4 and 5.2, preferably between 4.5 and 4.9. At least of the atoms, and advantageously up to of the atoms of the alloys which are contemplated, are selected from the elements of groups IV, V and VI of the transition metals. It is particularly advantageous to include an alloy in a single-phase state. Suitable components are thus Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W.
  • the following tabulation shows several alloys according to the present invention, together with their e/a values.
  • the percentage values always refer to atom percent.
  • FIG. 3 shows additional examples for ternary alloys.
  • the solid lines in the shaded areas, that is in the regions of the contemplated alloys, represent those alloys for which A 1.
  • Such elements as for example Al, Cu
  • the shaded area of FIG. 1 represents the attenuation values of the inventive elastically isotropic alloys which are V10 to JAOOO of the atte-nuation values of traditional anisotropic metals. Furthermore, the sound propagation Velocity in these alloys is lower, so that shorter lines can be used for any desired delay time.
  • sound conductors according to the present invention are preferably used in the form of cylinders or wires.
  • Exctation and detection of the acoustic oscillations is effected through piezoelectric or magnetostrictive transducers.
  • the isotropic alloys are used in the form of cylinders or horns.
  • the alloys are produced by smelting the component elements in an arc furnace or an electron beam furnace and subjecting them to traditional processing by forging, extruding rolling, drawing (either hot or cold) and heat treating. Unavoidable fiuctuations of the concentrations are relatvely insgnificant because the anisotropy constant A varies only slowly with the ratio e/a.
  • (d) it consists essentially of an alloy of transition metals, at least 70 atom percent of said transition lmetals being selected from the transition metals of Groups IV, V and VI of the Periodic Table, and
  • said alloy having an electron concentration (e/a) in the range of 4.4-5.2.

Abstract

A METALLIC SOUND TRANSMITTER OR SOUND RADIATOR COMBINES THE LOW ATTENUATION OF A POLYCRYSTALLINE MATERIAL WITH THE MALLEABILITY OF A METAL. THE ATTENUATION COEFFICIENT IS SEEN TO THE DETERMINED BY SOUND SCATTERING IN POLYCRYSTALLINE METALS AS A CONSEQUENCE OF ELASTIC ANISOTROPY WHICH IN TURN IS DETERMINED BY AN ELECTRONIC PROPERTY IN AN ALLOY, SO THAT A LOW COEFFICIENT CAN BE OBTAINED BY PROVIDING ALLOYS OF PREDETERMINED COMPOSITION WHICH HAVE THE APPROPRIATE ELECTRON PER ATOM RATIO.

Description

Aug' 14, 1973 s. sTl-:lNl-:MANN 3352564 METALLIC SOUND CONDUCTOR OR SOUND RADIATOR Filed OC'.. 27. 1970 Fig,1
dblcm I I 1 I I I I I I I vau'mm SAMUEL STE/NEMANN (n76 wam/Ewa TTORNEYS United iStates Patent O 3,752,664 METALLIC SOUND CONDUCTOR OR SOUND RADIATOR Samuel Steinemann, Liestal, Switzerland, assignor to Institut Dr. Ing. Reinhard Straumann AG, Waldemburg, Switzerland Filed Oct. 27, 1970, Ser. No. 84,308 Claims priority, application Switzerland, July 13, 1970, 10,571/70 Iut. Cl. C22c 1/00 U.S. Cl. 75-134 N 6 Claims ABSTRACT OF THE DISCLOSURE 3,75Z,664 Patented Aug. 14, 1973 ice In polycrystalline materials the propagation velocities of the longitudinal Waves and of the shear Waves (or transverse Waves) it is where E is the bulk modulus of elasticity, G is the shear modulus of elasticity and p the density. The attenuation a is represented .as a loss of energy over the propagation distance; it is related to the known quality factor Q of an oscillator through the relation where is the frequency and p the phase shift Constant in radians/cm.
T ypical values for three well-known materials are shown in Table I.
TABLE I Temperature v1. V1' coeficient aAttenuation Material (m/s) (m/s) (degree-1) (dh/cm.
SiOzamorph 6-103 3. 8'103 l-lO-5 ltransvegrsal r)nHz.).
- ongit. m z.. Nl 4'8'103 3 ma 15'10 5 6.10-1 (transverse 2 mHz Ni-span C 4 5-103 Adjustable 1.5'10-1 (longit. 2 mHz.).
FIELD OF INVENTION The present invention relates to a sound conductor and, more particularly to a metallic low-loss sound conductor or sound radiator.
BACKGROUND OF THE INVENTION In delay lines which are of great importance for telecommunication, data processing, Computers, measuring devices, and the like, an electric signal is transformed into a sound wave by piezoelectric, magnetostrictive or other transducers. The sound wave propagates as an elastic longitudinal or shear wave through a sound transmitter which may be a rod, a band or a Wire. Subsequently another transducer re-transforms the sound wave into an electric signal of predetermined delay time. Conventional sound transmitting media are glasses, mercury, aluminum alloys, nickel or temperature-compensating alloys such as Ni-span etc. The characteristics of such materials must include low attenuation, homogeneity, the lowest possible temperature coefiicient of a wave Velocity, low propagation Velocity in order to permit a compact design, and possibly a high couplng factor for magnetostrictive excitation and detection. The totality of these requirements can be attained only to a limited extent.
Low-loss materials for sound transmitters are also required in ultrasonics, for the processing of hard materials, for material testing, for echo sounding devices and so on. Sound transmitters for such purposes are at present made of anticorodal, brass, titanium alloys and so on.
It is seen from Table I that, in contrast to metallic sound transmitters, quartz has an extremely low attenuation. However, quartz cannot be fashioned into various shapes such as are often required; for delay lines quartz is conventionally used in the form of a rod or a polygon. Metallic sound transmitters, on the other hand, can be given any desired shape. Metals also have greater resistance to fatigue; this is an important consideration in sound conductors which must transrnt high interstices of sound. The advantages are offset, however, by the greater sound attenuation in rnetals.
It is, therefore, an object of the present invention to overcome the drawbacks of prior art by providng a metallic sound transmitter which combines the desirable sound transmitting properties of amorphous quartz-that is, low attenuationwith malleability which permits any desired Shape of a sound conductor, and with a low temperature coefiicient of elasticity, that is of the wave Velocity.
Another object is to provide a metallic sound transmitter of low propagation Velocity which permits compact design.
A further object is to provide a metallic sound transmitter of great strength and stability.
SUMMARY OF THE INVENTION The objects and others which will become apparent hereinafter are attained, in accordance With the present invention, by an elastically isotropic sound transmitter which is made of one of a number of metal alloys.
The attenuation of sound is minimum in elastic isotropic substances such as amorphous (amorphous=isotropie) quartz, but metals which always occur in crystalline form are, with very rare exceptions, anisotropic. It has been found that in certain alloys the anisotropy coefficient of the metallic components is related to the electron concentration, that is to the ratio of free electrons to atoms in the alloys. The sound transmitter according to the invention is formed of several alloys whose electron concentrations correspond to an anisotropy coeflicient of 1. This implies that the sound wave propagates with equal Velocity in all directions and losses because of the randomly oriented grain structure in polycrystalline metals as obliterated.
BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features and advantages of the present invention will become more readily available from the following description, reference being made to the accompanying drawing in which FIG. 1 is a diagram which shows the attenuation a of sound as a function of the frequency FIG. 2 is a diagram which shows the anisotropy factor A of a number of alloys as a function of the electron per atom ratio e/a; and
FIG. 3 includes four diagrams showing curves corresponding to A=1 for various alloys.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Over a wide range the attenuation of sound in solids is a function of the frequency and some of the losses are related to the elastic anisotropy of the material. FIG. 1 shows the relation between frequency and attenuation for aluminum (solid eurve) and a Fe 30 Ni alloy (dashed curve). The grain diameter of either material is D=0.6 mm. The data were obtained for longitudinal sound Waves, but the attenuations for transverse Waves are in the same order.
The following phenomena are typical for the different frequency regions:
Region (1)-That is roughly below 1 kHz.: Relaxation phenomena of interstitial atoms in solution, dislocation motions, low attenuation.
Region (2)-between 1-10 kHz.: Thermoelastic relaxation loss in polycrystalline substances of Zener effect. In a polycrystalline material the randomly oriented elastically anisotropic grains are homogenously compressed and dilated which results in different local temperatures and relaxation loss due to heat flow.
Region (3 )-moderate frequencies: Relaxation phenomena due to dislocation motions and interactions between chemical and structural lattice defects; in general attenuation is low, except in ferromagnetic materials.
Regions (4), (5) and (6): Sound scattering and sound diffusion in polycrystalline material, due to the fact that in those substances the randomly orieted elastically anisotropic grains do not have identical sound impedance so that sound is scattered (like light) or diffused by reflection. The effects are distinct when the wave length )t=v/ is of the same order of magnitude as the means diameter of the crystal, respectively of the grain (4) is carried the Rayleigh region, (5) the intermediate region, and (6) the diffusion region. In the three regions the attenuation depends on parameters like the average diameter of grains, on the frequency and on the elastic anisotropy coefficient.
In region (7) which includes still higher frequencies there is hysteresis loss and thermoelastic relaxation; the latter vares as the second power of the frequency. Its absolute value is determined by the specific heat and thermal conductivity of the material.
The rapid increase of the attenuation in the regions (4) and (5) limits the potential use of metal for delay lines. The larger the individual grains of a polycrystalline substance, the greater the attenuation in these frequency ranges. Although the technology of cold working and special heat treatments can produce grains of very small size, the effective limit for delay lines remains at approximately 2 mHz. which is unsatisfactory insofar as higher frequencies would increase the volume of information amenable for such devices.
The attenuation in the regions (2), (4), (5) and (6) is a function of the elastic anisotropy of the material. (For a theory of the relation see C. Zener Elasticity and Anelasticity of Metals, the University of Chicago Press, Chicago-London 1948; W. P. Mason: Physical Acoustics and the Properties of Solids, D. Van Nostrand Company, Princeton-Toronto-London-New York, 1958; R. T. Smith and R. W. B. Stephens: Effects of Anisotropy on Ultrasonic Propagation in Solids, edited Standford, Fearson and McG'onnagle Progress in Applied Materials Research, vol. 5, pp. 41-64, 1964, Heywood Book Temple Press Book London.
As described heretofore, elastically isotropics metals are not known (tungsten, though elastically isotropic, has a high density and is moreover not suitable as a construction material). Aluminum, as shown in FIG. 1, has an attenuation which increases with ncreasing frequency and an anisotropy coeflicient A=1.23; for the Fe 30 Ni alloy of FIG. 1 (and for Ni-span) A=3.08. The value Q CP is obtained through measurements of a single crystal (and under certain ass'umptions, of a polycrystalline substance) where CS and CP are the independent shear moduli. The equation A=1 implies that the sound Waves propagate equally in all drections, so that there is a smooth transition between the boundaries of grains of different orientation. In other words, the impedance of the grain boundaries vanishes.
It has been found that in transtion metals and in certain regions of the alloys of these metals one of the two independent shear moduli, namely CS, can be substantially reduced by the free metal electrons. Normally A is between 2 and 10 but the contribution of the band structure of the metal to CS lowers A to l, or even less, for certain ranges of the electron per atom ratio. The description in terms of electrons is a physical reality in view of the nature of the phenomena.
FIG. 2 shows the results of systematic measurements of the anisotropy factor A as a function of the ratio of free electrons per atom e/ a (also called the electron concentration) of various alloys.
The ratio is A= for CS=C44 and C'P=%(Cn'"012) and is determined for an alloy by multiplying the concentration in atom percent V, by the number of outer electrons (group number in the -Periodic Ssystem) V1 for each of the components, and summing the products. It appears that anisotropy can be represented by the ratio e/a uniformly, that is iudependently of the components, as a band contribution to the elasticity; thus the so-called rigid band model is valid for the anisotropy factor, provided that the band contribution is high which shows, for example, in a high magnetic susceptibility of more than 50-10 6 EME/mol or in a high specific heat at low temperatures.
A metallic sound conductor or sound radiator, according to the present invention, comprises an alloy in which the electron per atom ratio e/w lies between 4.4 and 5.2, preferably between 4.5 and 4.9. At least of the atoms, and advantageously up to of the atoms of the alloys which are contemplated, are selected from the elements of groups IV, V and VI of the transition metals. It is particularly advantageous to include an alloy in a single-phase state. Suitable components are thus Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W.
The following tabulation shows several alloys according to the present invention, together with their e/a values. The percentage values always refer to atom percent. The anisotropy factor A=1 for the alloys corresponds to isotropic alloys with proportionally low attenuation.
(a) e/a==4.78: Percent Ti 22 (b) e/a=4.6:
Zr 40 (c) e/a=4.65:
Ti 35 (d) e/a=4.78:
Cr 39 (e) e/a=4.88:
Mo 44 (f) e/a=4.62:
Ti (g) e/a=4.7:
Ti 30 (h) e/a=4.8:
Ta i 10 Ti 20 (i) e/a=4.6:
Zr 40 (k) e/a=4.65:
Ti 10 (l) e/a=5.00:
Ta 40 (m) e/a=4.8:
W 40 (n) e/a==5.1:
Mo 10 (o) e/a=4.7
Ti 30 (p) e/a=4.78:
Mn 26 (q) e/a.=4.8:
Fe 20 (r) e/a==4.84:
FIG. 3 shows additional examples for ternary alloys. The solid lines in the shaded areas, that is in the regions of the contemplated alloys, represent those alloys for which A=1.
The Examples (p) and (q) in the above tabulation include components selected from elements which are outside of the groups IV, V and V=I, and Example (r) even includes a non-transition element. Such elements (as for example Al, Cu) increase the mechanical strength but apparently suppress the band contribution to the moduli of elasticity, so that their concentration is to be less than 10%.
The shaded area of FIG. 1 represents the attenuation values of the inventive elastically isotropic alloys which are V10 to JAOOO of the atte-nuation values of traditional anisotropic metals. Furthermore, the sound propagation Velocity in these alloys is lower, so that shorter lines can be used for any desired delay time.
Since the compressions and dilations of a polycrystalline structure are uniformly distributed throughout the elastically isotropic material, its fatigue resistance has an Optimum value. In anisotropic metals, on the other hand, ditferential stressing of the grains results in stress peaks which in turn destroy the crystal lattices by local cracks.
In delay lines, sound conductors according to the present invention are preferably used in the form of cylinders or wires. Exctation and detection of the acoustic oscillations is effected through piezoelectric or magnetostrictive transducers.
In ultrasaonic devices for the processing of hard materials, for material testing or for sonars, the isotropic alloys are used in the form of cylinders or horns.
The alloys are produced by smelting the component elements in an arc furnace or an electron beam furnace and subjecting them to traditional processing by forging, extruding rolling, drawing (either hot or cold) and heat treating. Unavoidable fiuctuations of the concentrations are relatvely insgnificant because the anisotropy constant A varies only slowly with the ratio e/a.
Several of the alloys (for example V-Ti, Nb-V-Ti) exist only in the ;fi-phase subject to certain conditions. Others exhibit the -phase only at elevated temperatures but decompose for a multiphase structure at temperatures below 500-800 C. (for example Nb-Zr, Nb-V-Zr, Ti- Cr). It is thus possible to produce materials of very high strength (by annealing, quenching and precipitation heat treatment) without substantially impairing the attenuaton properties because the dmensions of the precipitations are in the submicroscopic range.
What is claimed is:
1. A metallic sound conudctor made fromv an alloy, said sound conductor having each of the following characteristics:
(a) it has an oblong shape;
(b) it is malleable;
(c) it is elastically isotropic;
(d) it consists essentially of an alloy of transition metals, at least 70 atom percent of said transition lmetals being selected from the transition metals of Groups IV, V and VI of the Periodic Table, and
(e) said alloy having an electron concentration (e/a) in the range of 4.4-5.2.
2. The metallic sound conductor as defined in claim 1,
wherein said ratio e/a is in the range 4.5-4.9.
3. The metallic sound conductor as defined in claim 1, wherein said alloy comprises at least 99 atom percent of elements selected from the transition metals of Groups IV, V and VI of the Periodic Table.
4. The metallic sound conductor as defined in claim 1, wherein said alloy further comprises an amount of nontransition metals, said amount being at most 10 atom percent.
7 8 5. The metallic sound conductor as defined in claim 3,416,917 12/ 1968 De Sorbo 75-134 V X 1, wherein said alloy comprises up to 30 atom percent 3,582,324 6/1971 Kunert 75-134 S of elements selected from the transition elements of Groups VII and V=III of the yPeriodic Table. FOREIGN PATENTS 6. The metallc sound condu'ctor as defined in claim 1, 5 599,180 5/1960 Canada 75-134 V wherein said alloy is in single phase condition.
L. DEWAYNE RUTLEDGE, Primary Examiner References Cifed J. E. LEGRU, Assistant Examiner UNITED sTATEs PATENTs 0 U.s. c1. X.R.
1 3,298,777 1/1967 Brixner 75-134 S X 3,547,713 12/1970 Steinemann et al. 148-115 75-134 V, 174, 175.5
US00084308A 1970-07-13 1970-10-27 Metallic sound conductor or sound radiator Expired - Lifetime US3752664A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1057170A CH526346A (en) 1970-07-13 1970-07-13 Metallic sound conductor or sound emitter

Publications (1)

Publication Number Publication Date
US3752664A true US3752664A (en) 1973-08-14

Family

ID=4364614

Family Applications (1)

Application Number Title Priority Date Filing Date
US00084308A Expired - Lifetime US3752664A (en) 1970-07-13 1970-10-27 Metallic sound conductor or sound radiator

Country Status (5)

Country Link
US (1) US3752664A (en)
CH (1) CH526346A (en)
DE (1) DE2134924C3 (en)
FR (1) FR2101600A5 (en)
GB (1) GB1345812A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509933A (en) * 1989-12-21 1996-04-23 Smith & Nephew Richards, Inc. Medical implants of hot worked, high strength, biocompatible, low modulus titanium alloys
US5562730A (en) * 1989-12-21 1996-10-08 Smith & Nephew Richards, Inc. Total artificial heart device of enhanced hemocompatibility
US5573401A (en) * 1989-12-21 1996-11-12 Smith & Nephew Richards, Inc. Biocompatible, low modulus dental devices
US5674280A (en) * 1989-12-21 1997-10-07 Smith & Nephew, Inc. Valvular annuloplasty rings of a biocompatible low elastic modulus titanium-niobium-zirconium alloy
US5683442A (en) * 1989-12-21 1997-11-04 Smith & Nephew, Inc. Cardiovascular implants of enhanced biocompatibility
US5820707A (en) * 1995-03-17 1998-10-13 Teledyne Industries, Inc. Composite article, alloy and method
US5868879A (en) * 1994-03-17 1999-02-09 Teledyne Industries, Inc. Composite article, alloy and method
US5871595A (en) * 1994-10-14 1999-02-16 Osteonics Corp. Low modulus biocompatible titanium base alloys for medical devices
US5954724A (en) * 1997-03-27 1999-09-21 Davidson; James A. Titanium molybdenum hafnium alloys for medical implants and devices
US20150260686A1 (en) * 2014-03-14 2015-09-17 Fbs, Inc. System and method for testing shell and tube heat exchangers for defects

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2117068C1 (en) * 1995-07-12 1998-08-10 Сергей Герасимович Федотов Method for production of highly damping alloys

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713947A (en) * 1989-12-21 1998-02-03 Smith & Nephew, Inc. Cardiovascular implants of enhanced biocompatibility
US5573401A (en) * 1989-12-21 1996-11-12 Smith & Nephew Richards, Inc. Biocompatible, low modulus dental devices
US5716400A (en) * 1989-12-21 1998-02-10 Smith & Nephew, Inc. Cardiovascular implants of enhanced biocompatibility
US5782910A (en) * 1989-12-21 1998-07-21 Smith & Nephew, Inc. Cardiovascular implants of enhanced biocompatibility
US5676632A (en) * 1989-12-21 1997-10-14 Smith & Nephew Richards, Inc. Ventricular assist devices of enhanced hemocompatibility
US5683442A (en) * 1989-12-21 1997-11-04 Smith & Nephew, Inc. Cardiovascular implants of enhanced biocompatibility
US5685306A (en) * 1989-12-21 1997-11-11 Smith & Nephew, Inc. Flexible, biocompatible, metal alloy catheter
US5690670A (en) * 1989-12-21 1997-11-25 Davidson; James A. Stents of enhanced biocompatibility and hemocompatibility
US5509933A (en) * 1989-12-21 1996-04-23 Smith & Nephew Richards, Inc. Medical implants of hot worked, high strength, biocompatible, low modulus titanium alloys
US5562730A (en) * 1989-12-21 1996-10-08 Smith & Nephew Richards, Inc. Total artificial heart device of enhanced hemocompatibility
US5674280A (en) * 1989-12-21 1997-10-07 Smith & Nephew, Inc. Valvular annuloplasty rings of a biocompatible low elastic modulus titanium-niobium-zirconium alloy
US5868879A (en) * 1994-03-17 1999-02-09 Teledyne Industries, Inc. Composite article, alloy and method
US5871595A (en) * 1994-10-14 1999-02-16 Osteonics Corp. Low modulus biocompatible titanium base alloys for medical devices
US5820707A (en) * 1995-03-17 1998-10-13 Teledyne Industries, Inc. Composite article, alloy and method
US5954724A (en) * 1997-03-27 1999-09-21 Davidson; James A. Titanium molybdenum hafnium alloys for medical implants and devices
US6200685B1 (en) 1997-03-27 2001-03-13 James A. Davidson Titanium molybdenum hafnium alloy
US20150260686A1 (en) * 2014-03-14 2015-09-17 Fbs, Inc. System and method for testing shell and tube heat exchangers for defects
US9671373B2 (en) * 2014-03-14 2017-06-06 Koch Heat Transfer Company, Lp System and method for testing shell and tube heat exchangers for defects

Also Published As

Publication number Publication date
DE2134924A1 (en) 1972-01-20
FR2101600A5 (en) 1972-03-31
GB1345812A (en) 1974-02-06
DE2134924B2 (en) 1974-08-01
CH526346A (en) 1972-08-15
DE2134924C3 (en) 1975-03-27

Similar Documents

Publication Publication Date Title
Papadakis Revised Grain‐Scattering Formulas and Tables
US3752664A (en) Metallic sound conductor or sound radiator
Remy et al. Twinning and strain-induced fcc→ hcp transformation on the mechanical properties of Co Ni Cr Mo alloys
Bolef et al. Anomalies in the elastic constants and thermal expansion of chromium single crystals
Niblett et al. Dislocation damping in metals
Pandey et al. Ultrasonics: A technique of material characterization
Wegel et al. Internal dissipation in solids for small cyclic strains
Mondal et al. A study on precipitation characteristics induced strength variation by nonlinear ultrasonic parameter
Levy et al. Ultrasonic attenuation in magnetic single crystals
US3773570A (en) Construction element having strongly negative temperature coefficients of elasticity moduli
Shigemi et al. Some experimental studies of fatigue slip bands and persistent slip bands during fatigue process of low-carbon steel
Shepard et al. Single crystalline elastic constants of lead-thallium alloys
Ledbetter Manganese contributions to the elastic constants of face centred cubic Fe-Cr-Ni stainless steel
Papadakis Elastic wave velocities in various alloy strips
MacDonald et al. Fatigue mechanism in titanium at ultrasonic frequency
Booker et al. Velocity Dispersion of the Lowest‐Order Longitudinal Mode in Finite Rods of Circular Cross Section
Schaller et al. Mechanical Spectroscopy
US3117862A (en) Alloys for electromechanical devices and precision instruments
Zuev et al. Phenomenology of wave processes in a localized plastic flow
Nicholson et al. Effects of anneal upon transmission loss and mode group velocity in polycrystalline metal wires
Potter Damping capacity of metals
Lenkkeri et al. An investigation of elastic moduli of alpha copper-aluminium alloys
Kaczkowski Influence of thermal and mechanical treatment on internal friction, modulus of elasticity and its temperature stability in NiSPAN C type alloy
JPS6059050A (en) Permanently elastic alloy strengthened by dispersion
Hu et al. SH waves in a functionally graded nano copper layered wafer