US3750749A - Swivel control head and method of control - Google Patents

Swivel control head and method of control Download PDF

Info

Publication number
US3750749A
US3750749A US3750749DA US3750749A US 3750749 A US3750749 A US 3750749A US 3750749D A US3750749D A US 3750749DA US 3750749 A US3750749 A US 3750749A
Authority
US
United States
Prior art keywords
valve
swivel
sleeve
pressure
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
R Giroux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Co
Original Assignee
Halliburton Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Co filed Critical Halliburton Co
Application granted granted Critical
Publication of US3750749A publication Critical patent/US3750749A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/02Valve arrangements for boreholes or wells in well heads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/8807Articulated or swinging flow conduit

Definitions

  • ABSTRACT A method and apparatus for providing flow control at a wellhead, characterized by the: integration of a remotely operated control valve with a swivel assembly.
  • the mode of operation and structure of the control valve are such as to enable the valve to be opened in response to the imposition of a biasing force and enable a valve to be maintained open in response to the imposition of a relatively lower biasing force.
  • the valve may be opened and closed in response to the operation of a remote control mechanism or alternately may be opened and/or closed in response to the application of pump pressure to a conduit communicating with an interior passage of the swivel assembly.
  • FIGI SHEET 1 If 2 INVENTOR RICHARD LEE GIROUX ATTORNEYS GENERAL BACKGROUND OF THE INVENTION a surface facility.
  • the interior of the swivel unit provides fluid communication between the interior of the conduit string and the conduit means extending from the swivel body to the surface facility.
  • a testing string is rotatably supported relative to the body of a swivel assembly which is located at the wellhead.
  • the passage through the swivel assembly is opened to permit well fluid to flow upwardly from a formation, through the conduit or testing string, and then through the various communicating passage means of the swivel assembly to a surface facility which receives the formation fluid during the testing operations.
  • conduit strings associated with swivel assemblies havebeen involved, a need has persisted for an improved control mechanism which would be reliable and accessible, not involve excessive structural and/or operational complexity, not complicate normal: operations, and not provide structural encumbrances in the working area of a wellhead.
  • the present invention involves the provisions of a remote control safety valve, embodied as part of a swivel unit.
  • This safety valve rapidly and reliably responds, when actuated, and the overall unit allows rotation of a conduit string extending from the swivel control unit and into the well.
  • a further object of the invention is to provide a valve mechanism, as heretofore noted, which may be opened in response to the generation of pump pressure at the wellhead so as to permit the valve to be forced to an open position and enable fluid to pass through the swivel assembly, or a conduit means, and into another portion of a well conduit string.
  • Another object of the invention is to provide a valve mechanism of the type heretofore noted which may be opened in response to the imposition of relatively low' pressure actuating fluid and be held open by the continued application of even lower pressure actuating-fluid.
  • a passage means is provided in the swivel means which extends generally longitudinally of the swivel means and is disposed in fluid communication with the interior of the conduit string.
  • Body means of the swivel means is arranged at the wellhead so as to permit rotation of the conduit string.
  • Branch conduit means in the body means is operable to communicate with the longi tudinally extending passage means of the swivel means.
  • a valve means carried by the swivel means is operable to control fluid flow between at least a portion of the longitudinally extending passage means and at least a portion of the branch passage means. This valve means is maintained operable to control flow between the general longitudinally extending passage means and the branch passage means while the conduit string is stationary relative to well conduit means and while the conduit string is undergoing rotational movement relative to the well conduit means.
  • a valve biasing means is operable in response to the opening of the valve means to cause the pressure of fluid in the longitudinally extending passage means of the swivel means to exert a valve opening biasing force on the valve means, so long as the valve means remains in an open position.
  • a valve isolating means remains operable to substantially prevent the pressure of fluid in the generally longitudinally extending passage means from exerting a valve opening biasing force on the valve means when the valve means is disposed in a closed position.
  • a third, independently significant method aspect of the invention involves the utilization of a pressure responsive surface means which is operable in response to an increase of pressure in the branch conduit means to exert a valve opening force on the valve means.
  • a preferred embodiment of the invention intended to accomplish at least some of the foregoing objects, includes a swivel control unit engaged with a conduit string extending up from a well casing.
  • the swivel control unit utilizes both the pressure of the well fluid and the pressure of an externally applied actuating fluid to control the actuation of a valve contained therein.
  • the swivel control unit includes a generally cylindrical swivel body which may be generally secured against rotation and a generally tubular body or mandrel threadedly engaged with the conduit string and extending through and disposed in coaxial relationship with the swivel body.
  • the tubular body or mandrel is rotatable along with the conduit string, relative to the swivel body. This relative rotation, as well as the axial movement of the control unit and conduit string assembly,
  • annular, axially extending chamber Between the mandrel and swivel body is an annular, axially extending chamber. This chamber communicates with an exit port means in the swivel body as well as with the discharge port means and the pressure port means.
  • valve Supportably received within the chamber are the valve and a spring. This spring exerts a pressure tending to bias the valve toward a closed position. In the closed position, the valve is adapted to interrupt the flow of well fluid from the discharge port means through the chamber, to the exit port means.
  • valve is retained in its closed position by the spring and by the fluid pressure in the central bore communicated through the pressure port means and acting against one end of the valve.
  • actuating fluid is delivered through an inlet port in the swivel body, from a remote source, into a chamber portion communicating with another end of the valve.
  • the actuating fluid exerts a pressure against this other end of the valve, acting in a direction opposite to the aforesaid communicated pressure of the well fluid and the spring pressure.
  • valve Upon application of the actuating fluid pressure the valve will open and establish a flow of well fluid from the discharge port means, through a portion of the chamber, and out the exit port means. This flow gives rise to a discharge pressure which is exerted on the same end of the valve as that upon which the actuating fluid pressure is exerted.
  • the pressures exerted by the well fluid on the different ends of the open valve are such that the open valve tends to become pressure balanced.
  • the pressure of the actuating fluid may be reduced, when the valve is open, to a value sufficient to overcome only the spring pressure. If, for any reason, the actuating fluid pressure is reduced or removed, or the pressure balance condition is disturbed, the valve will tend to close.
  • FIG. 3 is an enlarged, fragmentary, vertical crosssectional view illustrating the inlet-port of the swivel body, shown in FIG. 1, through which actuating fluid is delivered to the second annular axially extending variable volume chamber portion;
  • FIG. 4 provides a somewhat further enlarged view of a portion of FIG. 2 illustrating the valve in its closed position
  • FIG. 5 provides another somewhat further enlarged view of a portion of FIG. 2, illustrating the valve in its open position, while under the influence of full actuating fluid pressure.
  • Exemplary of well testing strings with which such an assembly may be incorporated are testing strings or well tool assemblies featured on pages 140-160 of the t Halliburton Sales and Service Catalog (1968), available from Halliburton Services, Duncan, Okla.
  • the swivel assembly mandrel and/or the testing string would be supported by wellhead support means while the swivel assembly body would be connected with stationary well fluid receiving means located at or near the wellhead.
  • the general purpose of this arrangement is to provide manipulative control over the testing string, while also providing control over the flow of formation fluid upwardly through the testing string and through the swivel assembly to the well fluid receiving means.
  • FIG. 1 schematically illustrates the swivel control unit 2 in a wellhead installation.
  • the swivel unit 2 is threadedly connected to a well conduit ortesting string 8, either directly or through an adaptor 10.
  • the adaptor may include a manual plug valve 12.
  • actuating fluid conduit 14 Extending outwardly from a generally cylindrical swivel body 16 of the control unit 2 is an actuating fluid conduit 14.
  • the conduit 14 is indicated as extending to a remote control source (not shown), from which opening and closing of a safety valve 82 is controlled, .in a manner to be described hereinafter.
  • aswivelmandrel l8,journalled within swivel body 16 is connected at its lower end with conduit string 8 via valve assembly 12 and adaptor 10.
  • the upper end of mandrel 18 is connected with a threaded adaptor 64.
  • Adaptor 64 may, in turn, be threadably connected with a handling or support head 4 as generally and schematically shown in FIG. 1.
  • This support head 4 may include a portion 6 which would be supported by conventional elevators associated with wellhead hoisting and lowering gear;
  • Exemplary of a support head which might be employed is a rig elevator supported, bail assembly normally used to support an LT control head, available from Halliburton Services, Duncan, Okla.
  • the swivel control unit 2 is shown to include the generally cylindrical swivel body 16, a generally tubular body or mandrel 18, and the adaptor 10.
  • the generally tubular body 18 extends through, is journalled within, and is coaxial with the generally cylindrical body 16.
  • Relative rotation of the swivel body 16 and the tubular mandrel 18 is achieved by the rotation of the conduit string 8 which rotates the tubular mandrel l8.
  • the swivel body 16 is held relatively stationary by virtue of its connection to conduit means extending to a stationary, well fluid receiving site, not shown.
  • the swivel body 16 includes: an upper section 20 from which a pair of bosses 22 and 24'radially extend; a cylindrical skirt 26, which extends axially from the upper section 20; and a swivel nut 28, which is engageable with the open end of the skirt 26.
  • the boss 24 includes an internally threaded socket 36 into which a nipple 38 is threadedly engaged.
  • This nipple connects to conduit means leading to the well fluid receiving means.
  • the nipple 38 has a bore 42 which is coaxial with an exit port 44 of the swivelbody Outlet conduit or nipple 38 may beconnected with a manifold control head assembly, not shown.
  • This assembly may comprise components peripherally encircling swivel body means 16, with the control head assembly being connected througl'rconduit means to the stationary well fluid receiving means in the vicinity .of the wellhead.
  • a control head which may be employed for this purpose comprises an L-T 20 control head described on page 143 of the 1968 Halliburton Sales apd Service Catalog, available from IHalliburton Services, Duncan, Okla.
  • the support of this control head may be facilitated by a control head supporting socket 30 formed in boss 22.
  • Such rotational mnaipulations may be effected, for example, by drivingly engaging a portion of the conduit string 8 with a rotary table at the wellhead, possibly providing vertical support for the conduit string with rotary table slips, and operating the rotary table to effect rotation of the conduit string 8.
  • full or partial vertical support may be provided by the adaptor 4 and elevators, with rotation being imparted to the conduit string 8 by manual manipulation of tongs or wrenches.
  • ro tation of string 8 may be effected with all of the weight of the testing string being supported within the well cas-
  • the skirt 26 includes, in addition to a threaded portion at its open lower end for receiving in threaded engagement therewith the swivel nut 28, four indicator slots 29 through which the position of the valve 82 can be observed, as described hereinafter.
  • the tubular body 18 defines a central bore 46 through which a well fluid flows.
  • the shoulder 48 seats a thrust bearing 52 and an annular sealing ring 54.
  • the bearing 52 fits within a cavity 56 defined by the tubular body 18 and shoulder 48 along with the swivel nut 28.
  • the sealing ring 54 is provided to confine bearing lubricant within the cavity 56.
  • the skirt 50 receives therein an adaptor in threaded engagement therewith.
  • the adaptor 10 has a skirt section 58 which is internally threaded for receiving the conduit string 8 in threaded engagement therewith.
  • the adaptor 10 defines a central bore 60 therethrough which is coaxial with the central bore 46 of the tubular body 18.
  • the central bore 60 forms a continuation of the central bore 46 for the flow therethrough of the well fluid.
  • the adaptor 10 also includes a plug valve 12 which can be actuated by the rotation of handle 62.
  • the valve 12 provides, therefore, a means for manually controlling the flow of well fluid through the central bore 60 and into the central bore 46.
  • valve 12 may comprise a LOTORC plug valve available form I-Ialliburton Services, Duncan, Okla., and described on pages 68-69 of the 1968 Halliburton Sales and Service Catalog.
  • a plug 66 is threadedly engaged within the top part of the tubular body 18. This plug 66 prevents outward axial flow of the well fluid from the central bore 46.
  • the top part of the tubular body 18 may also threadedly engage the flange portion 70 of a tubular wear sleeve 68.
  • the tubular sleeve 68 if used, extends through the swivel body 16 to a shoulder 72 which borders the cavity 56.
  • the tubular sleeve 68 and the boss section define an annular cavity 74 within which a thrust bearing 76 is located.
  • An annular sealing ring 78 is provided to confine the bearing lubricant within the cavity 74.
  • the swivel body 16 and the mandrel l8 define therebetween an annular axially extending chamber 80.
  • a valve 82 Within the chamber 80 a valve 82, a compression type coil spring 84 and a valve positioning sleeve 86 are located. Both the positioning sleeve 86 and the spring 84 rest against a surface 88 of the swivel nut 28.
  • the upper end of sleeve 86 provides a stop operable to engage valve 82, when it moves down, and determines the open valve position.
  • the valve 82 comprises a piston including an annular head portion 90 and two annular axially extending sleeve portions 92 and 94, directed oppositely away from the head portion 90.
  • the annular axially extending chamber 80 provides three annular, axially extending, variable volume chamber portions.
  • the first chamber portion 96 is defined by the positioning sleeve 86, the head portion 90, the axially extending sleeve portion 92 and the tubular sleeve 68.
  • the second chamber portion 98 is defined by the head portion 90, the axially extending sleeve portion 94 and the swivel body 16.
  • the third chamber portion 100 is defined by the axially extending sleeve portion 94, the tubular sleeve 68 and the swivel body 16.
  • the tubular body 18 is provided with one or a plurality of equally spaced pressure ports 102 and one or a plurality of equally spaced discharge ports 104.
  • the tuhular sleeve 68 is provided with openings 106 and 108 which are radially aligned with the pressure ports 102 and the discharge ports 104, respectively.
  • pin means 110 may intersect certain of the aligned openings 102 and 106 of the sleeve 68 and the body of mandrel 18 so as to maintain the ports or openings 102 and 106 in radial alignment.
  • sleeve 68 in essence, comprises a wear bushing and thus may be considered as a mere external portion of mandrel 18.
  • a mandrel wear surface may be provided by means other than the separate wear sleeve 68.
  • aceramic coating on the exterior of the mandrel 18 might be employed.
  • the third chamber portion 100 establishes a passage between the discharge ports 104 and the exit port 44 through which the well fluid flows when the valve 82 is open.
  • the actuating fluid which, for example, may be nitrogen, is directed from a remote source in the vicinity of the wellhead through the conduit 14.
  • This conduit is threadably engageable with an inlet port 112 of the swivel body 16.
  • Port 112 communicates with an annular chamber 114.
  • the annular chamber 114 leads the actuating fluid into a second chamber portion 98, to thereby enable the fluid to exert pressure against the upper side of the head portion 90.
  • the first chamber portion 96 fills with well fluid which is bled from the central bore 46 through the pressure ports 102 and the aligned holes 106.
  • the pressure of the fluid in the central bore 46 is communicated to the lower side b of the head portion 90 of the valve 82. The pressure exerted thereby biases the valve in a closed position and augments the valve closing bias of spring means 84.
  • an operator located at a remote source causes an "acutating fluid (possibly nitrogen) to be delivered through the conduit 14, inlet port 112 and annular passage 1 14 into the second chamber portion 98 (FIG. 3).
  • the actuating fluid exerts a pressure against the upper side 90a of the head portion 90 of the valve member 82.
  • the actuating fluid pressure required to open valve 82 need only be a fraction of the pressure communicated from passage 46 to cavity 96. That is, the actuating pressure acting on large surface 90a need only exert a force on piston 82 sumcient to overcome the force exerted by the communicated pressure acting on small surface 90b and the spring pressure, to thereby cause the valve 82 to open and assume the position as shown approximately in FIG. 5.
  • the well fluid With the valve 82 open, the well fluid establishes a flow through the exit ports 104 and their aligned openings 108 through the passage defined by the chamber portion 100 andout the exit port 44. During this out ward flow, the well fluid fills the chamber portion 100, As a result, the pressure of the discharging fluid is exerted against surface 94a of the outwardly extending sleeve portion 94 of the valve 82.
  • the communicated pressure and the discharging pressure now pressure balance the valve 82 in the open position since area 94a is equal to area 95b.
  • the actuating fluid pressure may be reduced to a point sufficient only to balance the biasing force exerted by the spring 84. The result is a balanced valve held in the open position with relatively low pressure actuating fluid.
  • valve arrangement can be pumped open by applying a pressure through the exit port 44 into the third chamber portion 100 (FIG. 4) against the outwardly extending sleeve portion 94.
  • a pressure through the exit port 44 into the third chamber portion 100 (FIG. 4) against the outwardly extending sleeve portion 94.
  • valve 82 would automatically close, due to a reduction in pressure in chamber portion 98.
  • conduit or control head means connected with passage, 42 should rupture or break away from the swivel assembly 2, a flow of well fluid from passage 46, through the open conduit means 38 into the atmosphere, would tend .toproduce auto- .matic valve closing action even if some spring force balancing, actuating fluid pressure should exist in cavity98.
  • Valve means 82 is carried by swivel means 2 and is operable to prevent fluid flow between at least a portion of the passage means 46 and at least a portion of the passage means 42. Valve means 82 remains operable to effect this flow control while the conduit string 8 is stationary relative to the well casing, as 'well as while the string 8 is undergoing either rotational and/or longitudinal movement relative to the well casing.
  • the remote actuating means provided by conduit means 14, passages 112 and 114, and chamber 98 is operable to effect selective actuation of the valve means 82 from a location remote from the swivel means 2 and the testing string 8.
  • valve means 82 is continuously biased to a closed position by spring means 84 so as to provide a fail-safe mode of operation.
  • spring means 84 would ensure automatic closing of the valve means 82.
  • This plug valve means 12 is interposed between the swivel body means 16 and the conduit string 8. i
  • valve sleeve portion 94 when disposed in the FIG. 5 open valve position provides a valve biasing means operable to cause the pressure of fluid in the passage means 46 to exert a valve opening biasing force on the valve means 82, tending to provide a pressure balancing phenomena acting on the open valve means.
  • pressure balancing i.e., equal pressure of fluid in passage means 46 acting on opposite axial ends of the valve means 82
  • the condition of valve means 82 will be determined by whether or not the pressure'in actuating chamber 98 is sufficient to balance or overcome the valve closing, biasing influence of spring means. 1 i
  • valve isolating means i.e., provide a seal between the extremity 94a of valve means 82 and the pressure of fluid in passage means 46.
  • This mode of operation of the valve isolating means 68 will tend to substantially prevent the pressure of fluid in the passage means 46 from exerting a valve opening biasing force on the valve means 82, so long as the valve means 82 remains closed.
  • the pressure of fluid in passage means 46 will augment the valve closing bias of spring means 84 so long as the valve means 82 remains closed.
  • the pressure in branch conduit means 42 may be raised. This raising of pressure will exert a substantial valve opening biasing force on the pressure responsive surface means 94a carried by the valve means 82. The force acting on surface means 940 will exert a valve opening force on the valve means and cause the valve means to move to an open position.
  • valve means 82 When the valve means 82 has moved to an open position, it will tend to stabilize in an atleast partially open condition so as to permit a substantially continuous injection of fluid into the conduit string 8.
  • valve means 82 acts either alone or augmented by the differential piston area phenomena resulting from the fact that the reaction surface 90a of FIG. 3 (exposed to nitrogen) exceeds the area of reaction surface 90b (exposed to pressure of fluid in passage 46), enables the valve means 82 to be maintained in an open condition with relatively low pressure nitrogen.
  • the differential area phenomena i.e., the fact that the area of reaction surface 90a exceeds the area of reaction surface 90b, serves to enable relatively intermediate, but still low, pressure nitrogen to effect the initial opening of the valve means 82.
  • valve means 82 may be open, the nitrogen pressure may be reduced and still hold the valve means open because of the previously discussed pressure balance phenomena resulting from the exposure of each axial end of the valve means 86 to the pressure of fluid in central passage 46.
  • a principal advantage resides in the provision of a swivel assembly including a simple but reliable control valve mechanism which may be operated from a remote location and which is possessed of fail-safe characteristics.
  • Another principal advantage of the invention relates to the manner in which the pressure balancing phenomena, in the open condition of the swivel valve means, enables the valve means to be maintained in an open condition with relatively low pressure actuating fluid.
  • Another significant advantage of the invention entails the manner in which the pressure of fluid in branch conduit means 42 may be substantially increased so as to cause the valve'means 8 2 to open and enable fluid to be forced downwardly through the testing or conduit string.
  • the differential area aspects of the valve enable it to be initially opened with relatively low pressure in the actuating fluid.
  • the longitudinal passage 46 is characterized by a substantially unobstructed, relatively large internal diameter which enables large flow volumes to be safely and effectively handled.
  • This remote operating mechanism is such as to permit a variety of liquid or gaseous actuating fluids to be employed.
  • the load supporting swivel mandrel and the thrust bearing arrangement incorporated in the swivel mechanism enable heavy string loads to be supported and ensure easy swivel rotation, concurrent with the provision of prolonged operating life and minimum maintenance requirements.
  • the slot arrangement in the periphery of the swivel body enable an operator to determine positively the condition of the safety valve.
  • the overall arrangement is such as to virtually eliminate externally protruding parts which would impede operations or be vulnerable to damage.
  • the overall structure of the swivel assembly is such as to enable it to be safely utilized with relatively high well pressures.
  • the three separate pressurizing zones operable to act on the valve means provide predictable and selectively variable control criteria.
  • the changes of volume of these zones is such as to enable the valve piston sleeve 94 to be operable to produce the pressure balancing phenomena under controlled conditions, after the inertia problems associated with intiating valve movement have been overcome.
  • control unit is particularly useful in connection with sour gas well operations
  • remote control safety valve feature makes it particularly suitable for offshore operations.
  • offshore vessels float up and down because of wave motion and in such cases the control head is normally secured high in the rig. Manual operation of the control head is hazardous under these circumstances; however, the remote control feature of the present invention would eliminate this difficulty.
  • improved resistance to hydrogen sulfide induced embrittlement may be provided by heating treating components so as to reduce their hardness.
  • swivel means operable to be connected with a well conduit string and be supported above well conduit means
  • passage means extending generally longitudinally of said swivel means and operable to be disposed in fluid communication with the interior of said conduit string;
  • branch passage means contained in said body means and operable to communicate with said generally longitudinally extending passage means; a tubular valve sleeve carried by said swivel means and operable to prevent fluid flow between at least a portion of said generally longitudinally extending passage means and at least a portion of said brnach passage means;
  • valve sleeve being operable to control flow'between said generally longitudinally extending passage means and said branch passage means while said conduit string is stationary relative to said well conduit means, and while said conduit string is undergoing rotational movement relative to said well conduit means.
  • An apparatus as described in claim 1 further comprising:
  • remote actuating means operable to selectively actuate said valve sleeve in said swivel means from a location remote from said swivel means and said conduit string;
  • a manually operable plug valve interposed between said body means of said swivel means and said conduit string and manually operable to control flow between said conduit string and said generally longitudinally extending passage.
  • valve biasing means operable in response to opening of said valve sleeve to cause the pressure of fluid in said generally longitudinally extending passage means to exert a valve opening biasing force on said valve sleeve so long as said valve sleeve remains in an open position;
  • valve isolating means operable to substantially prevent the pressure of fluid in said generally longitudinally extending passage means from exerting a valve opening biasing force on said valve sleeve when said valve means sleeve is disposed in a closed position.
  • An apparatus as described in claim 2 further com-' prising:
  • valve sleeve pressure responsive surface means carried by said valve sleeve and operable, in response to an increase of pressure in said branch conduit means, to exert a valve opening force on said valve sleeve and cause said valve sleeve to move to an open position.
  • a swivel control unit for controlling the flow of well fluid from a wellhead comprising: I
  • said generally tubular body including a central bore through which wellfluid is ducted to the wellhead and discharge port means through which said well fluid I is 'removed from said central bore outwardly from said tubular body;
  • said swivel body including exit port means through which said well fluid passes;
  • passage means connecting said discharge port means with said exit port means
  • a tubular valve sleeve supported by said swivel body and said tubular body and adapted to control the flow of said well fluid through said passage means from said discharge port means to said exit port means;
  • the swivel control unit of claim 4 further comprisa spring supported by said swivel body;
  • annular, axially extending chamber including said passage means and defined between said generally tubular body and said swivel body, within which chamber said spring and said valve sleeve are supported;
  • said generally tubular body including pressure port means; and t a portion of 'said'well fluid being operable to pass through s aid"pressure port means and into said chamber, to thereby communicate to said valve sleeve the pressure of the fluid flow in said central bore, so that said thus communicated pressure and the pressure exerted by said spring act against said valve sleeve tending to close said valve means sleeve and thereby interrupt the flow of well fluid through said passage means from said discharge port means to said exit port.
  • valve sleeve comprises a pistonincluding an annular head portion and two annular, axially extending, sleeve portions directed oppositely away from said head portion.
  • said chamber further includes a first annular, axially extending variable volume chamber portion of said annular, axially extending chamber, into which said portion of said well fluid passes from said pressure port means;
  • said first variable volume chamber portion telescopingly receives one endof one of said piston sleeve portions.
  • said chamber includes a second, annular, axially extending variable volume chamber portion into which an actuating fluid is passed;
  • said actuating fluid is operable to exert a pressure against said piston head portion in a direction opposite to the pressure exerted by said portion of said well fluid and said spring, to thereby open said valve sleeve and establish the flow of well fluid through said passage means from said discharge port means to said exit port means.
  • the pressure exerted on said .piston head by said actuating fluid is less than the pressure exerted on said one endof said one piston sleeve portion by said portion of said well fluid.
  • said passage means comprises a third, annular, axially extending variable volume chamberportion of said annular axially extending chamber
  • the pressure of well fluid in said third chamber portion exerts a pressure against the other end of said one piston sleeve portion in a direction opposite to the direction of pressure exerted by said portion of said well fluid and said spring on said piston, to thereby tend to balance said piston against the pressure exerted by said portion of said well fluid.
  • the volume of said first annular axially extending variable volume chamber is at a maximum and the volumes of said second and third annular axially extending variable volume chambers are at a minimum when said valve sleeve is closed;
  • the volume of said first annular axially extending variable volume chamber is at a minimum and the volumes of said second and third annular axially extending variable volume chambers are at a maximum when said valve sleeve is open.
  • Well pressure and flow control apparatus for selectively conducting fluid flow into or out of a well while continuously allowing simultaneous rotary movement or vertical manipulations, or both, of the well conduit while flowing said well fluids, comprising:
  • inner tubular body means adapted to be connected into a conduit string
  • an outer flow control sleeve telescopingly encircling said inner body means and adapted to allow said inner body means to rotate relatively unhindered therein;
  • said flow control sleeve having an internally expanded lower portion arranged to form a valve chamber between said lower portion and said inner body means;
  • annular cap means attached to the bottom of said expanded portion of said flow control sleeve and arranged to encircle said inner body means and form the lower end of said valve chamber;
  • tubular valve sleeve means located slidably in said valve chamber and having an upper skirt, a lower skirt and a plurality of differential pressure areas thereon;
  • valve chamber adapted to work against said valve sleeve means and bias said valve sleeve means into a closed position
  • well port means in said tubular body communicating from the inner bore of said tubular body through the wall thereof;
  • control pressure port means through the wall of said flow control sleeve and adapted to communicate with said valve chamber;
  • said upper skirt on said valve sleeve means being arranged to move between said tubular body means and said flow control sleeve so that in an upper position of said valve sleeve means said skirt passes between said port means and said flow passage means thereby blocking flow therethrough, and in a lower position said skirt is moved out from between said port means and said flow passage means thereby allowing fluid communication therebetween.
  • the apparatus of claim 13 further comprising manually controlled valve means securedly attached to the lower end of said tubular body means and having a central bore therethrough in axial alignment with the inner bore of said tubular body means.
  • the apparatus of claim 13 further comprising cylindrical wear sleeve means securedly attached exteriorly to said inner tubular body means between said body means and said flow control sleeve; thrust bearing means between said tubular body means and said annular cap means arranged to reduce rotational friction therebetweeen; and limit stop means in said valve chamber arranged to limit downward movement of said valve sleeve means.
  • said plurality of differential pressure areas numbers three, with the first said differential pressure area being arranged for receiving fluid communicating through said flow passage means, the second said differential pressure area being arranged to receive actuating fluid through said control pressure port means, and the third said differential pressure area being arranged to receive fluid from said inner bore of said tubular body means; with said first and second areas arranged to provide forces tending to bias said valve means into said lower position and said third area arranged to provide a force tending to bias said valve sleeve means into said upper position.
  • first area is substantially equal to said third area and said second area is substantially larger than said third area, with said first area arranged to be exposed only to said flow passage means when said valve sleeve means is in said upper position, and further arranged to be exposed to said well port means and said flow passage means when said valve sleeve means is in said lower position.
  • An apparatus for use in connection with well operations comprising:
  • control means operable to be connected with a well conduit string; passage means extending generally centrally and longitudinally of said control means and operable to be disposed in longitudinal alignment and fluid communication with the. interior of said conduit string; valve means carried by'said control means, generally encircling said generally longitudinally extending passage means, and operable to control fluid flow communicating with at least a portion of said; generally longitudinally extending passage means; means continuously urging said valve means to a closed position;
  • Patent No. 5,750,749 +2- remote actuating means operable to selectively actuate said valve means to one of a closed and an open position
  • valve biasing means operable, in responseto the positioning of said valve means in one of said positions, to cause the pressure of fluid in said generally longitudinally extending passage means to exert a valve opening biasing force on said valve means so long as said valve means remains in said one position; and valve isolatinggineans operable to substantially prevent the pressure of fluid in said generally longitudinally extending passage means from exerting a valve opening biasing force on said valve means when said valve means is disposed in the other c said positions Signed and sealed this 22nd day of January 1974.

Abstract

A method and apparatus for providing flow control at a wellhead, characterized by the integration of a remotely operated control valve with a swivel assembly. The mode of operation and structure of the control valve are such as to enable the valve to be opened in response to the imposition of a biasing force and enable a valve to be maintained open in response to the imposition of a relatively lower biasing force. The valve may be opened and closed in response to the operation of a remote control mechanism or alternately may be opened and/or closed in response to the application of pump pressure to a conduit communicating with an interior passage of the swivel assembly.

Description

United States Patent 1191 1111 3,750,749
Giroux [4511 Aug. 7, 1973 [54] SWIVEL CONTROL HEAD AND METHOD 3,075,589 1/1963 Grable et al. 175/71 Inventor:
Assignee:
Filed:
Appl. No.:
[1.8. CI 166/95, 137/615, 166/224 R,
175/218, 285/190 Int. Cl ..E2 lb 33/00, F161 5/00, Field of Search 166/75, 97, 95; 175/216, 72, 218, 71, 214; 251/25, 60; 137/615 285/190 References Cited UNITED STATES PATENTS 10/1902 Prellwitz 175/214 l/l904 Chase 175/218 7/1965 Knox 166/224 11/1929 Kohlen... 175/218 Koch 285/190 Primary Examiner.lames A. Leppink Artorney- Michael J. Caddell and Thomas R. Weaver [57] ABSTRACT A method and apparatus for providing flow control at a wellhead, characterized by the: integration of a remotely operated control valve with a swivel assembly.
The mode of operation and structure of the control valve are such as to enable the valve to be opened in response to the imposition of a biasing force and enable a valve to be maintained open in response to the imposition of a relatively lower biasing force.
The valve may be opened and closed in response to the operation of a remote control mechanism or alternately may be opened and/or closed in response to the application of pump pressure to a conduit communicating with an interior passage of the swivel assembly.
17 Claims, 5 Drawing Figures 76 i 1; 36 104 i d W f r i as 2a as PAIENIEB M38 7 ma FIGI SHEET 1 If 2 INVENTOR RICHARD LEE GIROUX ATTORNEYS GENERAL BACKGROUND OF THE INVENTION a surface facility. A conduit string, rotatably supported 1 relative to the body of the swivel unit, extends into the well conduit means or casing. The interior of the swivel unit provides fluid communication between the interior of the conduit string and the conduit means extending from the swivel body to the surface facility.
During many well operations it becomes highly desir able to be able to control the flow of fluid either into or out of the conduit string.
However, because of the relatively rotatable nature of the swivel components, and the rotatable and longitudinally movable nature of the conduit string, substantialcomplications are presented with respect to the provision of an accessible, reliable, control mechanism.
The control over flow through a conduit string, where a swivel assembly is employed, often becomes significant in connection with well testing operations.
In many well testing operations, a testing string is rotatably supported relative to the body of a swivel assembly which is located at the wellhead.
In conducting testing operations with an assembly of this nature the passage through the swivel assembly is opened to permit well fluid to flow upwardly from a formation, through the conduit or testing string, and then through the various communicating passage means of the swivel assembly to a surface facility which receives the formation fluid during the testing operations.
In the event that noxious or excessively high pressure fluids should pass upwardly through the conduit string during such a testing operation it may be highly desirable to be able to safely and reliably terminate such a flow of well fluids, especially when uncontrollable, and prevent such well fluids from passing through the swivel assembly and to the surface facility.
A variety of proposals have been set forth in the past inv connection with the control over the flow of fluid during such testing operations. Both manual and remotely operable control valve concepts have been proposed. a
However, such concepts have often been characterized by a degree of inaccessibility of operating components or by a degree of structural and operational complexity.
Accordingly, where conduit strings associated with swivel assemblies havebeen involved, a need has persisted for an improved control mechanism which would be reliable and accessible, not involve excessive structural and/or operational complexity, not complicate normal: operations, and not provide structural encumbrances in the working area of a wellhead.
In particular, during the testing of oil and gas wells, a dangerous condition sometimes develops at the wellheadas a result of the presence of high pressure hydrooil and gas wells, sometimes contains hydrogen sulfide.
When the hydrogen sulfide laden natural gas, or sour gas as it is sometimes known, reaches the wellhead, a dangerous condition may be created if for some reason the gas is allowed to escape. This is so not only because of the high pressure involved, but also because hydrogen sulfide is a highly flammable gas which can deaden the sense of smell and which is dangerously poisonous.
It thus may become necessary, in order to protect property and insure the safety of working personnel, to devise means for cutting off the well flow when the presence of the hydrogen sulfide gas is detected.
In particular, it would be desirable to provide a re mote control valve to cut off the well flow when the hydrogen sulfide gas is detected.
. OBJECTS AND SUMMARY OF THE INVENTION The present invention involves the provisions of a remote control safety valve, embodied as part of a swivel unit. This safety valve rapidly and reliably responds, when actuated, and the overall unit allows rotation of a conduit string extending from the swivel control unit and into the well.
It is a particular object of the invention to provide a swivel control unit for a wellhead including a safety valve in which the safety valve is controlled froma point remote from the wellhead.
A further object of the invention is to provide a valve mechanism, as heretofore noted, which may be opened in response to the generation of pump pressure at the wellhead so as to permit the valve to be forced to an open position and enable fluid to pass through the swivel assembly, or a conduit means, and into another portion of a well conduit string.
Another object of the invention is to provide a valve mechanism of the type heretofore noted which may be opened in response to the imposition of relatively low' pressure actuating fluid and be held open by the continued application of even lower pressure actuating-fluid.
Itis another object of the invention to provide a swivel control unit for a wellhead including a safety valve in which the well fluidis utilized totend' to pressure balance the valve inan open position.
It is still another object of the invention to provide a swivel control unit for a wellhead including a safety valve in which an actuating fluid is utilized to open the safety valve and position the safety valvesso that it may be pressure balanced by the well fluid.
It is a related object of theinvention toprovide a method of controlling the flowof well fluid from a wellhead from a remote area.
It is another related object of the invention to provid a method of balancing a valve at a wellhead in an open position, utilizing the well fluid and anexternally ap-, plied acutating fluid.
In accomplishing at least some of the foregoing objectives, there is presented through this invention a method of performing well operations wherein swivel means is connected with a well conduit string. The swivel means is supported above well conduit means.
I This arrangement permits the conduit string to undergo gen sulfide gas. Natural gas, which is produced in both longitudinal as well as rotary movement relative to the well conduit means. a
A passage means is provided in the swivel means which extends generally longitudinally of the swivel means and is disposed in fluid communication with the interior of the conduit string. Body means of the swivel means is arranged at the wellhead so as to permit rotation of the conduit string. Branch conduit means in the body means is operable to communicate with the longi tudinally extending passage means of the swivel means.
A valve means carried by the swivel means is operable to control fluid flow between at least a portion of the longitudinally extending passage means and at least a portion of the branch passage means. This valve means is maintained operable to control flow between the general longitudinally extending passage means and the branch passage means while the conduit string is stationary relative to well conduit means and while the conduit string is undergoing rotational movement relative to the well conduit means.
An independently significant method aspect of the invention, in the context of the foregoing basic method, entails the remote actuation of the valve means. In this additional method aspect of the invention, a valve biasing means is operable in response to the opening of the valve means to cause the pressure of fluid in the longitudinally extending passage means of the swivel means to exert a valve opening biasing force on the valve means, so long as the valve means remains in an open position. Additionally, a valve isolating means remains operable to substantially prevent the pressure of fluid in the generally longitudinally extending passage means from exerting a valve opening biasing force on the valve means when the valve means is disposed in a closed position.
A third, independently significant method aspect of the invention involves the utilization of a pressure responsive surface means which is operable in response to an increase of pressure in the branch conduit means to exert a valve opening force on the valve means.
Other independently significant facets of the invention relate to the aforesaid valve mechanism itself and its mode of operation and to synergistically interacting combinations of apparatus elements or means which cooperate to perform the method steps heretofore set forth.
A preferred embodiment of the invention, intended to accomplish at least some of the foregoing objects, includes a swivel control unit engaged with a conduit string extending up from a well casing. The swivel control unit utilizes both the pressure of the well fluid and the pressure of an externally applied actuating fluid to control the actuation of a valve contained therein.
The swivel control unit includes a generally cylindrical swivel body which may be generally secured against rotation and a generally tubular body or mandrel threadedly engaged with the conduit string and extending through and disposed in coaxial relationship with the swivel body. The tubular body or mandrel is rotatable along with the conduit string, relative to the swivel body. This relative rotation, as well as the axial movement of the control unit and conduit string assembly,
permits the setting and releasing and actuation of well fluid is directed for communicating the pressure of the fluid in the central bore to one end of a valve so as to bias the valve to a closed position.
Between the mandrel and swivel body is an annular, axially extending chamber. This chamber communicates with an exit port means in the swivel body as well as with the discharge port means and the pressure port means.
Supportably received within the chamber are the valve and a spring. This spring exerts a pressure tending to bias the valve toward a closed position. In the closed position, the valve is adapted to interrupt the flow of well fluid from the discharge port means through the chamber, to the exit port means.
The valve is retained in its closed position by the spring and by the fluid pressure in the central bore communicated through the pressure port means and acting against one end of the valve. To open the valve, actuating fluid is delivered through an inlet port in the swivel body, from a remote source, into a chamber portion communicating with another end of the valve. The actuating fluid exerts a pressure against this other end of the valve, acting in a direction opposite to the aforesaid communicated pressure of the well fluid and the spring pressure.
Upon application of the actuating fluid pressure the valve will open and establish a flow of well fluid from the discharge port means, through a portion of the chamber, and out the exit port means. This flow gives rise to a discharge pressure which is exerted on the same end of the valve as that upon which the actuating fluid pressure is exerted.
The pressures exerted by the well fluid on the different ends of the open valve are such that the open valve tends to become pressure balanced. Thus, the pressure of the actuating fluid may be reduced, when the valve is open, to a value sufficient to overcome only the spring pressure. If, for any reason, the actuating fluid pressure is reduced or removed, or the pressure balance condition is disturbed, the valve will tend to close.
BRIEF DESCRIPTION OF THE DRAWINGS structural details of the swivel control unit of the present invention;
FIG. 3 is an enlarged, fragmentary, vertical crosssectional view illustrating the inlet-port of the swivel body, shown in FIG. 1, through which actuating fluid is delivered to the second annular axially extending variable volume chamber portion;
FIG. 4 provides a somewhat further enlarged view of a portion of FIG. 2 illustrating the valve in its closed position; and
FIG. 5 provides another somewhat further enlarged view of a portion of FIG. 2, illustrating the valve in its open position, while under the influence of full actuating fluid pressure.
7 DESCRIPTION OF THE PREFERRED EMBODIMENT In describing a preferred embodiment of the invention reference will be made to a swivel assembly intended to be associated with and support a well testing string. 1
Exemplary of well testing strings with which such an assembly may be incorporated are testing strings or well tool assemblies featured on pages 140-160 of the t Halliburton Sales and Service Catalog (1968), available from Halliburton Services, Duncan, Okla.
In arrangements of this nature, the swivel assembly mandrel and/or the testing string would be supported by wellhead support means while the swivel assembly body would be connected with stationary well fluid receiving means located at or near the wellhead.
The general purpose of this arrangement is to provide manipulative control over the testing string, while also providing control over the flow of formation fluid upwardly through the testing string and through the swivel assembly to the well fluid receiving means.
While the invention will be described in this general context, it will be recognized that its utility is of a broader nature and that the concepts may be employed, for example, during operations where fluid is being injected into a well.
Overall Structure Referring now more particularly to the drawings in which like numerals are used to indicate like parts throughout the various views thereof, FIG. 1 schematically illustrates the swivel control unit 2 in a wellhead installation.
At its lower end, the swivel unit 2 is threadedly connected to a well conduit ortesting string 8, either directly or through an adaptor 10. The adaptor may include a manual plug valve 12.
Extending outwardly from a generally cylindrical swivel body 16 of the control unit 2 is an actuating fluid conduit 14. The conduit 14 is indicated as extending to a remote control source (not shown), from which opening and closing of a safety valve 82 is controlled, .in a manner to be described hereinafter.
As shown in FIGS. land 2, aswivelmandrel l8,journalled within swivel body 16, is connected at its lower end with conduit string 8 via valve assembly 12 and adaptor 10. The upper end of mandrel 18 is connected with a threaded adaptor 64.
Adaptor 64 may, in turn, be threadably connected with a handling or support head 4 as generally and schematically shown in FIG. 1. This support head 4 may include a portion 6 which would be supported by conventional elevators associated with wellhead hoisting and lowering gear;
Exemplary of a support head which might be employed is a rig elevator supported, bail assembly normally used to support an LT control head, available from Halliburton Services, Duncan, Okla. A swivel and handlingsubassembly shownon page 63 of the 1968 Halliburton Sales and Service Catalog and available from Halliburton Services, Duncan, Okla, might also be employed for this purpose.
With the general swivel arrangement heretofore described, the entire axial load of the testing string 8 is carried by the support head means 4 and mandrel 18. In this manner, the axial weight of the testing string 8 is not transmitted to the swivel body means 16 or its associated bearing means. Thus, the swivel means 2 will permit rotary movement of the swivel mandrel l8 and test string 8 relative to the swivel body 16, regardless of the axial load or weight imposed on swivel mandrel Swivel Structure Referring now to FIGS. 2-5, the swivel control unit 2 is shown to include the generally cylindrical swivel body 16, a generally tubular body or mandrel 18, and the adaptor 10. The generally tubular body 18 extends through, is journalled within, and is coaxial with the generally cylindrical body 16.
Relative rotation of the swivel body 16 and the tubular mandrel 18 is achieved by the rotation of the conduit string 8 which rotates the tubular mandrel l8. During this rotation, the swivel body 16 is held relatively stationary by virtue of its connection to conduit means extending to a stationary, well fluid receiving site, not shown.
The swivel body 16 includes: an upper section 20 from which a pair of bosses 22 and 24'radially extend; a cylindrical skirt 26, which extends axially from the upper section 20; and a swivel nut 28, which is engageable with the open end of the skirt 26.
The boss 24 includes an internally threaded socket 36 into which a nipple 38 is threadedly engaged. This nipple connects to conduit means leading to the well fluid receiving means. The nipple 38 has a bore 42 which is coaxial with an exit port 44 of the swivelbody Outlet conduit or nipple 38 may beconnected with a manifold control head assembly, not shown. This assembly may comprise components peripherally encircling swivel body means 16, with the control head assembly being connected througl'rconduit means to the stationary well fluid receiving means in the vicinity .of the wellhead. A control head which may be employed for this purpose comprises an L-T 20 control head described on page 143 of the 1968 Halliburton Sales apd Service Catalog, available from IHalliburton Services, Duncan, Okla. The support of this control head may be facilitated by a control head supporting socket 30 formed in boss 22. h
In this arrangement, the conduit connection between i the well fluid receiving site and conduit means 38,. or
its associated control head, will tend to preventrotation of swivel body 16 and its associated components even though the conduit string 8 and swivel mandrel 18 are being rotated to efl'ect certain operational manipulations of the testing string 8.
Such rotational mnaipulations may be effected, for example, by drivingly engaging a portion of the conduit string 8 with a rotary table at the wellhead, possibly providing vertical support for the conduit string with rotary table slips, and operating the rotary table to effect rotation of the conduit string 8.
Alternatively, full or partial vertical support may be provided by the adaptor 4 and elevators, with rotation being imparted to the conduit string 8 by manual manipulation of tongs or wrenches. In some. instances, ro tation of string 8 may be effected with all of the weight of the testing string being supported within the well cas- The skirt 26 includes, in addition to a threaded portion at its open lower end for receiving in threaded engagement therewith the swivel nut 28, four indicator slots 29 through which the position of the valve 82 can be observed, as described hereinafter.
The tubular body 18 defines a central bore 46 through which a well fluid flows.
As the tubular body 18 emerges from the lower end of the swivel body 16, it flares out to form a shoulder 48 and a skirt section 50 extending therefrom. The shoulder 48 seats a thrust bearing 52 and an annular sealing ring 54. The bearing 52 fits within a cavity 56 defined by the tubular body 18 and shoulder 48 along with the swivel nut 28. The sealing ring 54 is provided to confine bearing lubricant within the cavity 56.
The skirt 50 receives therein an adaptor in threaded engagement therewith. The adaptor 10 has a skirt section 58 which is internally threaded for receiving the conduit string 8 in threaded engagement therewith. The adaptor 10 defines a central bore 60 therethrough which is coaxial with the central bore 46 of the tubular body 18. The central bore 60 forms a continuation of the central bore 46 for the flow therethrough of the well fluid.
The adaptor 10 also includes a plug valve 12 which can be actuated by the rotation of handle 62. The valve 12 provides, therefore, a means for manually controlling the flow of well fluid through the central bore 60 and into the central bore 46. Desirably, valve 12 may comprise a LOTORC plug valve available form I-Ialliburton Services, Duncan, Okla., and described on pages 68-69 of the 1968 Halliburton Sales and Service Catalog.
A plug 66 is threadedly engaged within the top part of the tubular body 18. This plug 66 prevents outward axial flow of the well fluid from the central bore 46.
The top part of the tubular body 18 may also threadedly engage the flange portion 70 of a tubular wear sleeve 68. The tubular sleeve 68, if used, extends through the swivel body 16 to a shoulder 72 which borders the cavity 56. The tubular sleeve 68 and the boss section define an annular cavity 74 within which a thrust bearing 76 is located. An annular sealing ring 78 is provided to confine the bearing lubricant within the cavity 74.
Safety Valve The swivel body 16 and the mandrel l8 define therebetween an annular axially extending chamber 80. Within the chamber 80 a valve 82, a compression type coil spring 84 and a valve positioning sleeve 86 are located. Both the positioning sleeve 86 and the spring 84 rest against a surface 88 of the swivel nut 28. The upper end of sleeve 86 provides a stop operable to engage valve 82, when it moves down, and determines the open valve position.
The valve 82 comprises a piston including an annular head portion 90 and two annular axially extending sleeve portions 92 and 94, directed oppositely away from the head portion 90.
The annular axially extending chamber 80 provides three annular, axially extending, variable volume chamber portions.
The first chamber portion 96 is defined by the positioning sleeve 86, the head portion 90, the axially extending sleeve portion 92 and the tubular sleeve 68. The second chamber portion 98 is defined by the head portion 90, the axially extending sleeve portion 94 and the swivel body 16. The third chamber portion 100 is defined by the axially extending sleeve portion 94, the tubular sleeve 68 and the swivel body 16.
The tubular body 18 is provided with one or a plurality of equally spaced pressure ports 102 and one or a plurality of equally spaced discharge ports 104. The tuhular sleeve 68 is provided with openings 106 and 108 which are radially aligned with the pressure ports 102 and the discharge ports 104, respectively.
In order to ensure that the openings 106 of the wear bushing remain aligned with the mandrel openings 102, pin means 110, shown in FIG. 2, may intersect certain of the aligned openings 102 and 106 of the sleeve 68 and the body of mandrel 18 so as to maintain the ports or openings 102 and 106 in radial alignment.
As will be recognized, sleeve 68, in essence, comprises a wear bushing and thus may be considered as a mere external portion of mandrel 18. Thus, a mandrel wear surface may be provided by means other than the separate wear sleeve 68. For example, aceramic coating on the exterior of the mandrel 18 might be employed.
The third chamber portion 100 establishes a passage between the discharge ports 104 and the exit port 44 through which the well fluid flows when the valve 82 is open.
The actuating fluid which, for example, may be nitrogen, is directed from a remote source in the vicinity of the wellhead through the conduit 14. This conduit is threadably engageable with an inlet port 112 of the swivel body 16. Port 112 communicates with an annular chamber 114. The annular chamber 114 leads the actuating fluid into a second chamber portion 98, to thereby enable the fluid to exert pressure against the upper side of the head portion 90.
Mode of Operation The mode of operation will be described with reference to FIGS. 3-5.
With the valve 82 closed (FIGS. 3 and 4), and well fluid present in central bore 46, the first chamber portion 96 fills with well fluid which is bled from the central bore 46 through the pressure ports 102 and the aligned holes 106. Thus, the pressure of the fluid in the central bore 46 is communicated to the lower side b of the head portion 90 of the valve 82. The pressure exerted thereby biases the valve in a closed position and augments the valve closing bias of spring means 84.
To open the valve, and thereby establish the outward flow of the well fluid from the central bore 46, an operator located at a remote source causes an "acutating fluid (possibly nitrogen) to be delivered through the conduit 14, inlet port 112 and annular passage 1 14 into the second chamber portion 98 (FIG. 3). The actuating fluid exerts a pressure against the upper side 90a of the head portion 90 of the valve member 82.
Because of the relative dimensions of the surface areas 90a and 90b of the head portion 90 (area 90a being significantly larger) being acted upon by the communicated pressure and the actuating pressure, the actuating fluid pressure required to open valve 82 need only be a fraction of the pressure communicated from passage 46 to cavity 96. That is, the actuating pressure acting on large surface 90a need only exert a force on piston 82 sumcient to overcome the force exerted by the communicated pressure acting on small surface 90b and the spring pressure, to thereby cause the valve 82 to open and assume the position as shown approximately in FIG. 5.
With the valve 82 open, the well fluid establishes a flow through the exit ports 104 and their aligned openings 108 through the passage defined by the chamber portion 100 andout the exit port 44. During this out ward flow, the well fluid fills the chamber portion 100, As a result, the pressure of the discharging fluid is exerted against surface 94a of the outwardly extending sleeve portion 94 of the valve 82.
The communicated pressure and the discharging pressure now pressure balance the valve 82 in the open position since area 94a is equal to area 95b. When the I open position of the valve is achieved, which the operator can determine by looking through the indicator slots 29 to sight the relative location of the sleeve portion 92, the actuating fluid pressure may be reduced to a point sufficient only to balance the biasing force exerted by the spring 84. The result is a balanced valve held in the open position with relatively low pressure actuating fluid.
. An additional operative feature of the valve arrangement is that it can be pumped open by applying a pressure through the exit port 44 into the third chamber portion 100 (FIG. 4) against the outwardly extending sleeve portion 94. When sufficient pressure is applied to area 94a, as permitted by clearance zone 100a shown in FIG. 4, to overcome the communicated pressure exerted against the lower end 90b of the piston head portion 90 in the first chamber portion 96, in addition to the spring biasing force, valve opening will occur. This will allow fluids to be forced back down the well for well killing operations.
Should the pressure in conduit 14 fail, the valve 82 would automatically close, due to a reduction in pressure in chamber portion 98. i
It is also believed that if the conduit or control head means connected with passage, 42 should rupture or break away from the swivel assembly 2, a flow of well fluid from passage 46, through the open conduit means 38 into the atmosphere, would tend .toproduce auto- .matic valve closing action even if some spring force balancing, actuating fluid pressure should exist in cavity98.
It is believed that the closingphenomena would tend to occur as a result of a reduction in pressure in well fluid in passage 42 which would result from the flow of such fluid through the pressure drop inducing orifice means as defined by exit port 104. Once such a closing of the valve means 82 occurred, the pressure balancing valve end 94 would be isolated from the pressure of fluid in. passage 46 such that the valve 82 would tend to stay closed.
Overall Summary of Principal Method and Apparatus Aspects 42 of the swivel body means 16 is operable to communicate with the longitudinally extending swivel passage means 46 under the control of valve means 82.
Valve means 82 is carried by swivel means 2 and is operable to prevent fluid flow between at least a portion of the passage means 46 and at least a portion of the passage means 42. Valve means 82 remains operable to effect this flow control while the conduit string 8 is stationary relative to the well casing, as 'well as while the string 8 is undergoing either rotational and/or longitudinal movement relative to the well casing.
The remote actuating means provided by conduit means 14, passages 112 and 114, and chamber 98 is operable to effect selective actuation of the valve means 82 from a location remote from the swivel means 2 and the testing string 8.
The existence of this remote actuating means not withstanding, the valve means 82 is continuously biased to a closed position by spring means 84 so as to provide a fail-safe mode of operation. In other words, should the pressure of actuating fluid transmitted through conduit means 14 fail, the spring 84 would ensure automatic closing of the valve means 82.
Additional manual control is provided by the manually operable plug valve means 12. This plug valve means 12 is interposed between the swivel body means 16 and the conduit string 8. i
The valve sleeve portion 94, when disposed in the FIG. 5 open valve position provides a valve biasing means operable to cause the pressure of fluid in the passage means 46 to exert a valve opening biasing force on the valve means 82, tending to provide a pressure balancing phenomena acting on the open valve means. With the existence of such pressure balancing, i.e., equal pressure of fluid in passage means 46 acting on opposite axial ends of the valve means 82, the condition of valve means 82 will be determined by whether or not the pressure'in actuating chamber 98 is sufficient to balance or overcome the valve closing, biasing influence of spring means. 1 i
Whilethe valve means is disposed in the closed disposition illustrated in FIGL4, the sleeve means 68 is disposed in substantially telescoping engagement with portion 94 of valve means 82 so as to function as valve isolating means, i.e., provide a seal between the extremity 94a of valve means 82 and the pressure of fluid in passage means 46. This mode of operation of the valve isolating means 68 will tend to substantially prevent the pressure of fluid in the passage means 46 from exerting a valve opening biasing force on the valve means 82, so long as the valve means 82 remains closed. As a result, the pressure of fluid in passage means 46 will augment the valve closing bias of spring means 84 so long as the valve means 82 remains closed. 9 Should operations require the injection of fluid into the well, for example, in order to kill a well, the pressure in branch conduit means 42 may be raised. This raising of pressure will exert a substantial valve opening biasing force on the pressure responsive surface means 94a carried by the valve means 82. The force acting on surface means 940 will exert a valve opening force on the valve means and cause the valve means to move to an open position.
Under these circumstances, once the valve means 82 has moved to an open position, it will tend to stabilize in an atleast partially open condition so as to permit a substantially continuous injection of fluid into the conduit string 8.
The pressure balancing tendency relating to the open condition of valve means 82, acting either alone or augmented by the differential piston area phenomena resulting from the fact that the reaction surface 90a of FIG. 3 (exposed to nitrogen) exceeds the area of reaction surface 90b (exposed to pressure of fluid in passage 46), enables the valve means 82 to be maintained in an open condition with relatively low pressure nitrogen. The differential area phenomena, i.e., the fact that the area of reaction surface 90a exceeds the area of reaction surface 90b, serves to enable relatively intermediate, but still low, pressure nitrogen to effect the initial opening of the valve means 82.
Of course, once the valve means 82 is open, the nitrogen pressure may be reduced and still hold the valve means open because of the previously discussed pressure balance phenomena resulting from the exposure of each axial end of the valve means 86 to the pressure of fluid in central passage 46.
SUMMARY OF ADVANTAGES AND SCOPE OF THE INVENTION In describing method and apparatus aspects of the invention, certain advantages have been made apparent.
A principal advantage resides in the provision of a swivel assembly including a simple but reliable control valve mechanism which may be operated from a remote location and which is possessed of fail-safe characteristics.
Another principal advantage of the invention relates to the manner in which the pressure balancing phenomena, in the open condition of the swivel valve means, enables the valve means to be maintained in an open condition with relatively low pressure actuating fluid.
Another significant advantage of the invention entails the manner in which the pressure of fluid in branch conduit means 42 may be substantially increased so as to cause the valve'means 8 2 to open and enable fluid to be forced downwardly through the testing or conduit string.
The differential area aspects of the valve enable it to be initially opened with relatively low pressure in the actuating fluid.
Other significant advantages also result from the structure and operational characteristics heretofore noted.
The longitudinal passage 46 is characterized by a substantially unobstructed, relatively large internal diameter which enables large flow volumes to be safely and effectively handled.
The nature of this remote operating mechanism is such as to permit a variety of liquid or gaseous actuating fluids to be employed.
The load supporting swivel mandrel and the thrust bearing arrangement incorporated in the swivel mechanism enable heavy string loads to be supported and ensure easy swivel rotation, concurrent with the provision of prolonged operating life and minimum maintenance requirements.
The utilization of the remotely actuated safety valve and the manually controlled plug valve enhance the safety aspects of the tool in providing alternately operable control techniques.
The slot arrangement in the periphery of the swivel body enable an operator to determine positively the condition of the safety valve.
The overall arrangement is such as to virtually eliminate externally protruding parts which would impede operations or be vulnerable to damage.
The overall structure of the swivel assembly is such as to enable it to be safely utilized with relatively high well pressures.
The three separate pressurizing zones operable to act on the valve means provide predictable and selectively variable control criteria. The changes of volume of these zones is such as to enable the valve piston sleeve 94 to be operable to produce the pressure balancing phenomena under controlled conditions, after the inertia problems associated with intiating valve movement have been overcome.
Although the control unit is particularly useful in connection with sour gas well operations, the remote control safety valve feature makes it particularly suitable for offshore operations. In general, offshore vessels float up and down because of wave motion and in such cases the control head is normally secured high in the rig. Manual operation of the control head is hazardous under these circumstances; however, the remote control feature of the present invention would eliminate this difficulty.
When the invention is to be utilized in connection with well fluids having a hydrogen sulfide content, improved resistance to hydrogen sulfide induced embrittlement may be provided by heating treating components so as to reduce their hardness.
Although the invention has been described in connection with one preferred and illustrated embodiment, it will be appreciated by those skilled in the art that additions, modifications, substitutions and deletions not specifically described may be made without departing from the spirit and scope of the invention as defined in the appended claims. What is claimed is: 1. An apparatus for use in connection with well operations, said apparatus comprising:
swivel means operable to be connected with a well conduit string and be supported above well conduit means;
passage means extending generally longitudinally of said swivel means and operable to be disposed in fluid communication with the interior of said conduit string; I
body means included in said swivel means and operable to permit rotation of said conduit string relative to said body means;
branch passage means contained in said body means and operable to communicate with said generally longitudinally extending passage means; a tubular valve sleeve carried by said swivel means and operable to prevent fluid flow between at least a portion of said generally longitudinally extending passage means and at least a portion of said brnach passage means;
said valve sleeve being operable to control flow'between said generally longitudinally extending passage means and said branch passage means while said conduit string is stationary relative to said well conduit means, and while said conduit string is undergoing rotational movement relative to said well conduit means.
2. An apparatus as described in claim 1 further comprising:
resilient biasing means continuously urging said valve sleeve to a closed position;
remote actuating means operable to selectively actuate said valve sleeve in said swivel means from a location remote from said swivel means and said conduit string; 1
a manually operable plug valve interposed between said body means of said swivel means and said conduit string and manually operable to control flow between said conduit string and said generally longitudinally extending passage. means;
valve biasing means operable in response to opening of said valve sleeve to cause the pressure of fluid in said generally longitudinally extending passage means to exert a valve opening biasing force on said valve sleeve so long as said valve sleeve remains in an open position; and
valve isolating means operable to substantially prevent the pressure of fluid in said generally longitudinally extending passage means from exerting a valve opening biasing force on said valve sleeve when said valve means sleeve is disposed in a closed position.
3. An apparatus as described in claim 2 further com-' prising:
pressure responsive surface means carried by said valve sleeve and operable, in response to an increase of pressure in said branch conduit means, to exert a valve opening force on said valve sleeve and cause said valve sleeve to move to an open position.
4. A swivel control unit for controlling the flow of well fluid from a wellhead comprising: I
a generally cylindrical swivel body;
' a rotatable, generally tubular body, extending through said swivel body in generally coaxial relationship therewith;
said generally tubular body including a central bore through which wellfluid is ducted to the wellhead and discharge port means through which said well fluid I is 'removed from said central bore outwardly from said tubular body;
means to secure said swivel body against rotation;
said swivel body including exit port means through which said well fluid passes;
passage means connecting said discharge port means with said exit port means;
a tubular valve sleeve supported by said swivel body and said tubular body and adapted to control the flow of said well fluid through said passage means from said discharge port means to said exit port means; and
a manual valve operable to control the flow of well fluid through said central bore to said discharge port means. I
5. The swivel control unit of claim 4, further comprisa spring supported by said swivel body; and
an annular, axially extending chamber including said passage means and defined between said generally tubular body and said swivel body, within which chamber said spring and said valve sleeve are supported;
said generally tubular body including pressure port means; and t a portion of 'said'well fluid being operable to pass through s aid"pressure port means and into said chamber, to thereby communicate to said valve sleeve the pressure of the fluid flow in said central bore, so that said thus communicated pressure and the pressure exerted by said spring act against said valve sleeve tending to close said valve means sleeve and thereby interrupt the flow of well fluid through said passage means from said discharge port means to said exit port.
6. The swivel control unitof claim 5, wherein:
said valve sleeve comprises a pistonincluding an annular head portion and two annular, axially extending, sleeve portions directed oppositely away from said head portion.
7. The swivel control unit of claim 6, wherein:
said chamber further includes a first annular, axially extending variable volume chamber portion of said annular, axially extending chamber, into which said portion of said well fluid passes from said pressure port means;
said first variable volume chamber portion telescopingly receives one endof one of said piston sleeve portions.
8. The swivel control unit of, claim 7, wherein:
said chamber includes a second, annular, axially extending variable volume chamber portion into which an actuating fluid is passed; and
said actuating fluid is operable to exert a pressure against said piston head portion in a direction opposite to the pressure exerted by said portion of said well fluid and said spring, to thereby open said valve sleeve and establish the flow of well fluid through said passage means from said discharge port means to said exit port means.
9. The swivel control unit of claim 8, wherein:
the pressure exerted on said .piston head by said actuating fluid is less than the pressure exerted on said one endof said one piston sleeve portion by said portion of said well fluid.
10. The swivel control unitof claim 7, wherein:
said passage means comprises a third, annular, axially extending variable volume chamberportion of said annular axially extending chamber; and
the pressure of well fluid in said third chamber portion exerts a pressure against the other end of said one piston sleeve portion in a direction opposite to the direction of pressure exerted by said portion of said well fluid and said spring on said piston, to thereby tend to balance said piston against the pressure exerted by said portion of said well fluid.
11. The swivel control unit of claim 10, further including:
means disposed on said swivel body to indicate the opening and closing of said valve sleeve.
12. The swivel control of claim 10, wherein:
the volume of said first annular axially extending variable volume chamber is at a maximum and the volumes of said second and third annular axially extending variable volume chambers are at a minimum when said valve sleeve is closed; and
the volume of said first annular axially extending variable volume chamber is at a minimum and the volumes of said second and third annular axially extending variable volume chambers are at a maximum when said valve sleeve is open.
13. Well pressure and flow control apparatus for selectively conducting fluid flow into or out of a well while continuously allowing simultaneous rotary movement or vertical manipulations, or both, of the well conduit while flowing said well fluids, comprising:
inner tubular body means adapted to be connected into a conduit string;
an outer flow control sleeve telescopingly encircling said inner body means and adapted to allow said inner body means to rotate relatively unhindered therein;
said flow control sleeve having an internally expanded lower portion arranged to form a valve chamber between said lower portion and said inner body means;
annular cap means attached to the bottom of said expanded portion of said flow control sleeve and arranged to encircle said inner body means and form the lower end of said valve chamber;
tubular valve sleeve means located slidably in said valve chamber and having an upper skirt, a lower skirt and a plurality of differential pressure areas thereon;
spring means within said valve chamber adapted to work against said valve sleeve means and bias said valve sleeve means into a closed position;
well port means in said tubular body communicating from the inner bore of said tubular body through the wall thereof;
flow passage means through the wall of said flow control sleeve arranged to communicate with said well port means;
control pressure port means through the wall of said flow control sleeve and adapted to communicate with said valve chamber; and
said upper skirt on said valve sleeve means being arranged to move between said tubular body means and said flow control sleeve so that in an upper position of said valve sleeve means said skirt passes between said port means and said flow passage means thereby blocking flow therethrough, and in a lower position said skirt is moved out from between said port means and said flow passage means thereby allowing fluid communication therebetween.
14. The apparatus of claim 13 further comprising manually controlled valve means securedly attached to the lower end of said tubular body means and having a central bore therethrough in axial alignment with the inner bore of said tubular body means.
15. The apparatus of claim 13 further comprising cylindrical wear sleeve means securedly attached exteriorly to said inner tubular body means between said body means and said flow control sleeve; thrust bearing means between said tubular body means and said annular cap means arranged to reduce rotational friction therebetweeen; and limit stop means in said valve chamber arranged to limit downward movement of said valve sleeve means.
16. The apparatus of claim 13 wherein said plurality of differential pressure areas numbers three, with the first said differential pressure area being arranged for receiving fluid communicating through said flow passage means, the second said differential pressure area being arranged to receive actuating fluid through said control pressure port means, and the third said differential pressure area being arranged to receive fluid from said inner bore of said tubular body means; with said first and second areas arranged to provide forces tending to bias said valve means into said lower position and said third area arranged to provide a force tending to bias said valve sleeve means into said upper position.
17. The apparatus of claim 16 wherein said first area is substantially equal to said third area and said second area is substantially larger than said third area, with said first area arranged to be exposed only to said flow passage means when said valve sleeve means is in said upper position, and further arranged to be exposed to said well port means and said flow passage means when said valve sleeve means is in said lower position.
nmrrtn srarns rartmr ormeE CERTiFiCA iE @i" CQRRECTION Patent No 9 750 a 749 Dated gu 7 9 1 7 In ent r( RICHARD LEE GIROUX It is certified that error appears in the aboveidentified patent and that said Letters Patent are hereby corrected as shown below:
Column 6 line 53 "mnaipulations" should read M manipulations .1 Column 7, line 28, LOTORC" should read LO TORC Column 8,, line 19 aceramic" should read a ceramic t Column 9 line 13, "95b" should read 90b Column 12, line 31 "heating should read:
- heat a? line 59, "brnach" should read branch. Column 13, line 24 "means" should be deleted. Column 14,
line 9 "means" should be deleted; line 59, between "control"'" and "of", insert unit On the cover sheet below the "Abstract", "17 Claims S'Drawing Figures" should read 18 Claims, 5 Drawing Figures 0 Column 16, add the following claim:
18. An apparatus for use in connection with well operations, said apparatus comprising:
control means operable to be connected with a well conduit string; passage means extending generally centrally and longitudinally of said control means and operable to be disposed in longitudinal alignment and fluid communication with the. interior of said conduit string; valve means carried by'said control means, generally encircling said generally longitudinally extending passage means, and operable to control fluid flow communicating with at least a portion of said; generally longitudinally extending passage means; means continuously urging said valve means to a closed position; I
Patent No. 5,750,749 +2- remote actuating means operable to selectively actuate said valve means to one of a closed and an open position;
valve biasing means operable, in responseto the positioning of said valve means in one of said positions, to cause the pressure of fluid in said generally longitudinally extending passage means to exert a valve opening biasing force on said valve means so long as said valve means remains in said one position; and valve isolatinggineans operable to substantially prevent the pressure of fluid in said generally longitudinally extending passage means from exerting a valve opening biasing force on said valve means when said valve means is disposed in the other c said positions Signed and sealed this 22nd day of January 1974.
(SEAL) Attest:
EDWARD M.FLETCHER,J R. RENE D. TEGTMEYER w p Attesting Officer Acting Commissioner of Paten1

Claims (17)

1. An apparatus for use in connection with well operations, said apparatus comprising: swivel means operable to be connected with a well conduit string and be supported above well conduit means; passage means extending generally longitudinally of said swivel means and operable to be disposed in fluid communication with the interior of said conduit string; body means included in said swivel means and operable to permit rotation of said conduit string relative to said body meaNs; branch passage means contained in said body means and operable to communicate with said generally longitudinally extending passage means; a tubular valve sleeve carried by said swivel means and operable to prevent fluid flow between at least a portion of said generally longitudinally extending passage means and at least a portion of said brnach passage means; said valve sleeve being operable to control flow between said generally longitudinally extending passage means and said branch passage means while said conduit string is stationary relative to said well conduit means, and while said conduit string is undergoing rotational movement relative to said well conduit means.
2. An apparatus as described in claim 1 further comprising: resilient biasing means continuously urging said valve sleeve to a closed position; remote actuating means operable to selectively actuate said valve sleeve in said swivel means from a location remote from said swivel means and said conduit string; a manually operable plug valve interposed between said body means of said swivel means and said conduit string and manually operable to control flow between said conduit string and said generally longitudinally extending passage means; valve biasing means operable in response to opening of said valve sleeve to cause the pressure of fluid in said generally longitudinally extending passage means to exert a valve opening biasing force on said valve sleeve so long as said valve sleeve remains in an open position; and valve isolating means operable to substantially prevent the pressure of fluid in said generally longitudinally extending passage means from exerting a valve opening biasing force on said valve sleeve when said valve means sleeve is disposed in a closed position.
3. An apparatus as described in claim 2 further comprising: pressure responsive surface means carried by said valve sleeve and operable, in response to an increase of pressure in said branch conduit means, to exert a valve opening force on said valve sleeve and cause said valve sleeve to move to an open position.
4. A swivel control unit for controlling the flow of well fluid from a wellhead comprising: a generally cylindrical swivel body; a rotatable, generally tubular body, extending through said swivel body in generally coaxial relationship therewith; said generally tubular body including a central bore through which well fluid is conducted to the wellhead and discharge port means through which said well fluid is removed from said central bore outwardly from said tubular body; means to secure said swivel body against rotation; said swivel body including exit port means through which said well fluid passes; passage means connecting said discharge port means with said exit port means; a tubular valve sleeve supported by said swivel body and said tubular body and adapted to control the flow of said well fluid through said passage means from said discharge port means to said exit port means; and a manual valve operable to control the flow of well fluid through said central bore to said discharge port means.
5. The swivel control unit of claim 4, further comprising: a spring supported by said swivel body; and an annular, axially extending chamber including said passage means and defined between said generally tubular body and said swivel body, within which chamber said spring and said valve sleeve are supported; said generally tubular body including pressure port means; and a portion of said well fluid being operable to pass through said pressure port means and into said chamber, to thereby communicate to said valve sleeve the pressure of the fluid flow in said central bore, so that said thus communicated pressure and the pressure exerted by said spring act against said valve sleeve tending to close said valve means sleeve and thereby interrupt the flow of well fluid through said passage means from said Discharge port means to said exit port.
6. The swivel control unit of claim 5, wherein: said valve sleeve comprises a piston including an annular head portion and two annular, axially extending, sleeve portions directed oppositely away from said head portion.
7. The swivel control unit of claim 6, wherein: said chamber further includes a first annular, axially extending variable volume chamber portion of said annular, axially extending chamber, into which said portion of said well fluid passes from said pressure port means; said first variable volume chamber portion telescopingly receives one end of one of said piston sleeve portions.
8. The swivel control unit of claim 7, wherein: said chamber includes a second, annular, axially extending variable volume chamber portion into which an actuating fluid is passed; and said actuating fluid is operable to exert a pressure against said piston head portion in a direction opposite to the pressure exerted by said portion of said well fluid and said spring, to thereby open said valve sleeve and establish the flow of well fluid through said passage means from said discharge port means to said exit port means.
9. The swivel control unit of claim 8, wherein: the pressure exerted on said piston head by said actuating fluid is less than the pressure exerted on said one end of said one piston sleeve portion by said portion of said well fluid.
10. The swivel control unit of claim 7, wherein: said passage means comprises a third, annular, axially extending variable volume chamber portion of said annular axially extending chamber; and the pressure of well fluid in said third chamber portion exerts a pressure against the other end of said one piston sleeve portion in a direction opposite to the direction of pressure exerted by said portion of said well fluid and said spring on said piston, to thereby tend to balance said piston against the pressure exerted by said portion of said well fluid.
11. The swivel control unit of claim 10, further including: means disposed on said swivel body to indicate the opening and closing of said valve sleeve.
12. The swivel control of claim 10, wherein: the volume of said first annular axially extending variable volume chamber is at a maximum and the volumes of said second and third annular axially extending variable volume chambers are at a minimum when said valve sleeve is closed; and the volume of said first annular axially extending variable volume chamber is at a minimum and the volumes of said second and third annular axially extending variable volume chambers are at a maximum when said valve sleeve is open.
13. Well pressure and flow control apparatus for selectively conducting fluid flow into or out of a well while continuously allowing simultaneous rotary movement or vertical manipulations, or both, of the well conduit while flowing said well fluids, comprising: inner tubular body means adapted to be connected into a conduit string; an outer flow control sleeve telescopingly encircling said inner body means and adapted to allow said inner body means to rotate relatively unhindered therein; said flow control sleeve having an internally expanded lower portion arranged to form a valve chamber between said lower portion and said inner body means; annular cap means attached to the bottom of said expanded portion of said flow control sleeve and arranged to encircle said inner body means and form the lower end of said valve chamber; tubular valve sleeve means located slidably in said valve chamber and having an upper skirt, a lower skirt and a plurality of differential pressure areas thereon; spring means within said valve chamber adapted to work against said valve sleeve means and bias said valve sleeve means into a closed position; well port means in said tubular body communicating from the inner bore of said tubular body through the wall thereof; flow passage means through the wall of said flow control sleeve arranged to communicate with said well port means; control pressure port means through the wall of said flow control sleeve and adapted to communicate with said valve chamber; and said upper skirt on said valve sleeve means being arranged to move between said tubular body means and said flow control sleeve so that in an upper position of said valve sleeve means said skirt passes between said port means and said flow passage means thereby blocking flow therethrough, and in a lower position said skirt is moved out from between said port means and said flow passage means thereby allowing fluid communication therebetween.
14. The apparatus of claim 13 further comprising manually controlled valve means securedly attached to the lower end of said tubular body means and having a central bore therethrough in axial alignment with the inner bore of said tubular body means.
15. The apparatus of claim 13 further comprising cylindrical wear sleeve means securedly attached exteriorly to said inner tubular body means between said body means and said flow control sleeve; thrust bearing means between said tubular body means and said annular cap means arranged to reduce rotational friction therebetweeen; and limit stop means in said valve chamber arranged to limit downward movement of said valve sleeve means.
16. The apparatus of claim 13 wherein said plurality of differential pressure areas numbers three, with the first said differential pressure area being arranged for receiving fluid communicating through said flow passage means, the second said differential pressure area being arranged to receive actuating fluid through said control pressure port means, and the third said differential pressure area being arranged to receive fluid from said inner bore of said tubular body means; with said first and second areas arranged to provide forces tending to bias said valve means into said lower position and said third area arranged to provide a force tending to bias said valve sleeve means into said upper position.
17. The apparatus of claim 16 wherein said first area is substantially equal to said third area and said second area is substantially larger than said third area, with said first area arranged to be exposed only to said flow passage means when said valve sleeve means is in said upper position, and further arranged to be exposed to said well port means and said flow passage means when said valve sleeve means is in said lower position.
US3750749D 1971-04-19 1971-04-19 Swivel control head and method of control Expired - Lifetime US3750749A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13521971A 1971-04-19 1971-04-19

Publications (1)

Publication Number Publication Date
US3750749A true US3750749A (en) 1973-08-07

Family

ID=22467085

Family Applications (1)

Application Number Title Priority Date Filing Date
US3750749D Expired - Lifetime US3750749A (en) 1971-04-19 1971-04-19 Swivel control head and method of control

Country Status (1)

Country Link
US (1) US3750749A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850250A (en) * 1972-09-11 1974-11-26 Halliburton Co Wellbore circulating valve
US3930540A (en) * 1972-09-11 1976-01-06 Halliburton Company Wellbore circulating valve
US3941348A (en) * 1972-06-29 1976-03-02 Hydril Company Safety valve
US4257484A (en) * 1980-03-10 1981-03-24 Whitley Oran D Pressure differential circulating valve
US4266620A (en) * 1980-02-11 1981-05-12 Wolgamott John E High pressure fluid apparatus
US4352394A (en) * 1980-08-01 1982-10-05 Trw Inc. Cable-suspended well pumping systems
US4722389A (en) * 1986-08-06 1988-02-02 Texas Iron Works, Inc. Well bore servicing arrangement
US4779688A (en) * 1986-07-23 1988-10-25 Baugh Benton F Mud saver valve
US4832126A (en) * 1984-01-10 1989-05-23 Hydril Company Diverter system and blowout preventer
US4848457A (en) * 1989-05-03 1989-07-18 Vetco Gray Inc. Annulus sliding sleeve valve
US4854383A (en) * 1988-09-27 1989-08-08 Texas Iron Works, Inc. Manifold arrangement for use with a top drive power unit
WO1998009052A1 (en) * 1996-08-27 1998-03-05 Den Norske Stats Oljeselskap A.S Swivel
WO1998009050A1 (en) * 1996-08-27 1998-03-05 Den Norske Stats Oljeselskap A.S Subsea well
US5865374A (en) * 1996-11-29 1999-02-02 Barta; Terrance G. Rotary spray apparatus
US6491108B1 (en) 2000-06-30 2002-12-10 Bj Services Company Drillable bridge plug
US6578633B2 (en) 2000-06-30 2003-06-17 Bj Services Company Drillable bridge plug
US20040045723A1 (en) * 2000-06-30 2004-03-11 Bj Services Company Drillable bridge plug
KR100493347B1 (en) * 1996-08-27 2005-06-07 스타토일 에이에스에이 Subsea module
EP1540131A2 (en) * 2002-09-09 2005-06-15 Kip M. Robichaux "top drive swivel apparatus and method"
US20050256589A1 (en) * 2004-04-23 2005-11-17 Slemker Tracy C Lanyard suspension system for a prosthetic limb
US20050257936A1 (en) * 2004-05-07 2005-11-24 Bj Services Company Gravity valve for a downhole tool
US20060131023A1 (en) * 2004-12-16 2006-06-22 Jacklin Shawn A Apparatus and method for cleaning out sand from an underbalanced hydrocarbon producing well
US20070102165A1 (en) * 2005-11-10 2007-05-10 Bj Services Company Self centralizing non-rotational slip and cone system for downhole tools
US20070119600A1 (en) * 2000-06-30 2007-05-31 Gabriel Slup Drillable bridge plug
US7281582B2 (en) 2002-09-09 2007-10-16 Mako Rentals, Inc. Double swivel apparatus and method
US20070251578A1 (en) * 2006-04-28 2007-11-01 Oil State Energy Services, Inc. Quick-change wear sleeve for a high-pressure fluid conduit
US20070272403A1 (en) * 2006-05-24 2007-11-29 Robichaux Kip M Seal configuration for top drive swivel apparatus and method
US20100279561A1 (en) * 2007-10-22 2010-11-04 Bluewater Energy Services B.V. Fluid transfer assembly
US20110100471A1 (en) * 2009-10-30 2011-05-05 Hydril Usa Manufacturing Llc Drill String Valve and Method
US20110155379A1 (en) * 2007-07-27 2011-06-30 Bailey Thomas F Rotating continuous flow sub
US8196650B1 (en) 2008-12-15 2012-06-12 Mako Rentals, Inc. Combination swivel and ball dropper
WO2013009274A3 (en) * 2011-07-08 2014-03-20 Fmc Technologies, Inc. Manifold trailer with multiple articulating arm assemblies
US8726994B2 (en) 2002-09-09 2014-05-20 Mako Rentals, Inc. Double swivel apparatus and method
US8851116B1 (en) * 2013-06-04 2014-10-07 Eli Zhadanov Water supplying extension arm
AU2014203078B2 (en) * 2010-01-06 2016-05-19 Weatherford Technology Holdings, Llc Rotating continuous flow sub

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US710922A (en) * 1902-01-07 1902-10-07 Ingersoll Sergeant Drill Co Rock-drilling machine.
US749718A (en) * 1904-01-19 Prospecting instrument
US1736922A (en) * 1927-02-11 1929-11-26 Kohlen Josef Flushing device for rock drills
US3024030A (en) * 1959-04-27 1962-03-06 Universal Engineering Company Coolant transfer and seal assembly having relatively rotating parts
US3075589A (en) * 1958-08-18 1963-01-29 Gas Drilling Services Co Dual passage drilling stem having selfcontained valve means
US3193016A (en) * 1962-04-30 1965-07-06 Hydril Co Reverse flow tubing valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US749718A (en) * 1904-01-19 Prospecting instrument
US710922A (en) * 1902-01-07 1902-10-07 Ingersoll Sergeant Drill Co Rock-drilling machine.
US1736922A (en) * 1927-02-11 1929-11-26 Kohlen Josef Flushing device for rock drills
US3075589A (en) * 1958-08-18 1963-01-29 Gas Drilling Services Co Dual passage drilling stem having selfcontained valve means
US3024030A (en) * 1959-04-27 1962-03-06 Universal Engineering Company Coolant transfer and seal assembly having relatively rotating parts
US3193016A (en) * 1962-04-30 1965-07-06 Hydril Co Reverse flow tubing valve

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941348A (en) * 1972-06-29 1976-03-02 Hydril Company Safety valve
US3930540A (en) * 1972-09-11 1976-01-06 Halliburton Company Wellbore circulating valve
US3850250A (en) * 1972-09-11 1974-11-26 Halliburton Co Wellbore circulating valve
US4266620A (en) * 1980-02-11 1981-05-12 Wolgamott John E High pressure fluid apparatus
US4257484A (en) * 1980-03-10 1981-03-24 Whitley Oran D Pressure differential circulating valve
US4352394A (en) * 1980-08-01 1982-10-05 Trw Inc. Cable-suspended well pumping systems
US4832126A (en) * 1984-01-10 1989-05-23 Hydril Company Diverter system and blowout preventer
US4899837A (en) * 1986-07-23 1990-02-13 Citizens Bank Mud saver valve
US4779688A (en) * 1986-07-23 1988-10-25 Baugh Benton F Mud saver valve
US4722389A (en) * 1986-08-06 1988-02-02 Texas Iron Works, Inc. Well bore servicing arrangement
GB2193518A (en) * 1986-08-06 1988-02-10 Texas Iron Works Well bore servicing arrangement and method
GB2193518B (en) * 1986-08-06 1990-05-23 Texas Iron Works Well bore servicing arrangement and method
US4854383A (en) * 1988-09-27 1989-08-08 Texas Iron Works, Inc. Manifold arrangement for use with a top drive power unit
US4848457A (en) * 1989-05-03 1989-07-18 Vetco Gray Inc. Annulus sliding sleeve valve
US6209650B1 (en) 1996-08-27 2001-04-03 Den Norske Stats Oljeselskap As Subsea well
WO1998009050A1 (en) * 1996-08-27 1998-03-05 Den Norske Stats Oljeselskap A.S Subsea well
AU727817B2 (en) * 1996-08-27 2000-12-21 Statoil Petroleum As Swivel
AU727815B2 (en) * 1996-08-27 2000-12-21 Statoil Petroleum As Subsea well
WO1998009052A1 (en) * 1996-08-27 1998-03-05 Den Norske Stats Oljeselskap A.S Swivel
US6223825B1 (en) 1996-08-27 2001-05-01 Den Norske Stats Oljeselskap A.S Swivel
CN1082603C (en) * 1996-08-27 2002-04-10 挪威国家石油公司 Swivel
KR100493346B1 (en) * 1996-08-27 2005-06-02 스타토일 에이에스에이 Swivel
KR100495021B1 (en) * 1996-08-27 2005-06-14 스타토일 에이에스에이 Subsea well
KR100493347B1 (en) * 1996-08-27 2005-06-07 스타토일 에이에스에이 Subsea module
US5865374A (en) * 1996-11-29 1999-02-02 Barta; Terrance G. Rotary spray apparatus
US6708770B2 (en) 2000-06-30 2004-03-23 Bj Services Company Drillable bridge plug
US20070119600A1 (en) * 2000-06-30 2007-05-31 Gabriel Slup Drillable bridge plug
US7600572B2 (en) 2000-06-30 2009-10-13 Bj Services Company Drillable bridge plug
US20040045723A1 (en) * 2000-06-30 2004-03-11 Bj Services Company Drillable bridge plug
US6578633B2 (en) 2000-06-30 2003-06-17 Bj Services Company Drillable bridge plug
US6708768B2 (en) 2000-06-30 2004-03-23 Bj Services Company Drillable bridge plug
US6491108B1 (en) 2000-06-30 2002-12-10 Bj Services Company Drillable bridge plug
US7255178B2 (en) 2000-06-30 2007-08-14 Bj Services Company Drillable bridge plug
US8201627B2 (en) 2002-09-09 2012-06-19 Mako Rentals, Inc. Double swivel apparatus and method
US8408302B2 (en) 2002-09-09 2013-04-02 Mako Rentals, Inc. Double swivel apparatus and method
US20060289154A1 (en) * 2002-09-09 2006-12-28 Robichaux Kip M Top drive swivel apparatus and method
EP1870558A3 (en) * 2002-09-09 2009-06-24 Tomahawk Wellhead & Services, Inc. Top drive swivel apparatus and method
US8726994B2 (en) 2002-09-09 2014-05-20 Mako Rentals, Inc. Double swivel apparatus and method
EP1540131A4 (en) * 2002-09-09 2006-04-26 Kip M Robichaux "top drive swivel apparatus and method"
US7249632B2 (en) 2002-09-09 2007-07-31 Mako Rentals, Inc. Top drive swivel apparatus and method
US20090223666A1 (en) * 2002-09-09 2009-09-10 Mako Rentals, Inc. Top drive swivel apparatus and method
US7281582B2 (en) 2002-09-09 2007-10-16 Mako Rentals, Inc. Double swivel apparatus and method
US9567810B2 (en) 2002-09-09 2017-02-14 Mako Rentals, Inc. Double swivel apparatus and method
US7510007B2 (en) 2002-09-09 2009-03-31 Mako Rentals, Inc. Double swivel apparatus and method
EP1540131A2 (en) * 2002-09-09 2005-06-15 Kip M. Robichaux "top drive swivel apparatus and method"
EP1870558A2 (en) * 2002-09-09 2007-12-26 Tomahawk Wellhead & Services, Inc. Top drive swivel apparatus and method
US8047290B1 (en) 2002-09-09 2011-11-01 Mako Rentals, Inc. Double swivel apparatus and method
US20080179058A1 (en) * 2002-09-09 2008-07-31 Robichaux Kip M Top drive swivel apparatus and method
US7845408B2 (en) 2002-09-09 2010-12-07 Mako Rentals, Inc. Top drive swivel apparatus and method
US7500518B2 (en) 2002-09-09 2009-03-10 Mako Rentals, Inc. Top drive swivel apparatus and method
US20050256589A1 (en) * 2004-04-23 2005-11-17 Slemker Tracy C Lanyard suspension system for a prosthetic limb
US20050257936A1 (en) * 2004-05-07 2005-11-24 Bj Services Company Gravity valve for a downhole tool
US7163066B2 (en) 2004-05-07 2007-01-16 Bj Services Company Gravity valve for a downhole tool
US7299866B2 (en) 2004-12-16 2007-11-27 Shawn Arthur Jacklin Apparatus and method for cleaning out sand from an underbalanced hydrocarbon producing well
US20060131023A1 (en) * 2004-12-16 2006-06-22 Jacklin Shawn A Apparatus and method for cleaning out sand from an underbalanced hydrocarbon producing well
US7475736B2 (en) 2005-11-10 2009-01-13 Bj Services Company Self centralizing non-rotational slip and cone system for downhole tools
US20070102165A1 (en) * 2005-11-10 2007-05-10 Bj Services Company Self centralizing non-rotational slip and cone system for downhole tools
US8528585B2 (en) * 2006-04-28 2013-09-10 Oil States Energy Services, L.L.C. Quick-change wear sleeve for a high-pressure fluid conduit
US20070251578A1 (en) * 2006-04-28 2007-11-01 Oil State Energy Services, Inc. Quick-change wear sleeve for a high-pressure fluid conduit
US8776875B2 (en) 2006-05-24 2014-07-15 Mako Rentals, Inc. Seal configuration for top drive swivel apparatus and method
US8528631B2 (en) 2006-05-24 2013-09-10 Mako Rentals, Inc. Seal configuration for top drive swivel apparatus and method
US7913760B2 (en) 2006-05-24 2011-03-29 Mako Rentals, Inc. Seal configuration for top drive swivel apparatus and method
US7681646B2 (en) 2006-05-24 2010-03-23 Mako Rentals, Inc. Seal configuration for top drive swivel apparatus and method
US20100288484A1 (en) * 2006-05-24 2010-11-18 Mako Rentals, Inc. Seal configuration for top drive swivel apparatus and method
US20080041578A1 (en) * 2006-05-24 2008-02-21 Robichaux Kip M Seal configuration for top drive swivel apparatus and method
US8146663B2 (en) 2006-05-24 2012-04-03 Mako Rentals, Inc. Seal configuration for top drive swivel apparatus and method
US20100218936A1 (en) * 2006-05-24 2010-09-02 Mako Rentals, Inc. Seal configuration for top drive swivel apparatus and method
US20070272403A1 (en) * 2006-05-24 2007-11-29 Robichaux Kip M Seal configuration for top drive swivel apparatus and method
US8297348B2 (en) 2006-05-24 2012-10-30 Mako Rentals, Inc. Seal configuration for top drive swivel apparatus and method
US7533720B2 (en) 2006-05-24 2009-05-19 Mako Rentals, Inc. Seal configuration for top drive swivel apparatus and method
US7798209B1 (en) 2006-05-24 2010-09-21 Mako Rentals, Inc. Seal configuration for top drive swivel apparatus and method
US20110155379A1 (en) * 2007-07-27 2011-06-30 Bailey Thomas F Rotating continuous flow sub
US8627890B2 (en) * 2007-07-27 2014-01-14 Weatherford/Lamb, Inc. Rotating continuous flow sub
US20100279561A1 (en) * 2007-10-22 2010-11-04 Bluewater Energy Services B.V. Fluid transfer assembly
US9045199B2 (en) * 2007-10-22 2015-06-02 Bluewater Energy Services B.V. Fluid transfer assembly
US8590611B2 (en) 2008-12-15 2013-11-26 Mako Rentals, Inc. Combination swivel and ball dropper
US8356661B1 (en) 2008-12-15 2013-01-22 Mako Rentals, Inc. Combination swivel and ball dropper
US8893773B2 (en) 2008-12-15 2014-11-25 Mako Rentals, Inc. Combination swivel and ball dropper
US8196650B1 (en) 2008-12-15 2012-06-12 Mako Rentals, Inc. Combination swivel and ball dropper
US8539975B2 (en) * 2009-10-30 2013-09-24 Hydril Usa Manufacturing, Llc Drill string valve and method
US20110100471A1 (en) * 2009-10-30 2011-05-05 Hydril Usa Manufacturing Llc Drill String Valve and Method
EP2757228A1 (en) * 2010-01-06 2014-07-23 Weatherford/Lamb Inc. Rotating continuous flow sub
AU2011203647B2 (en) * 2010-01-06 2014-12-04 Weatherford Technology Holdings, Llc Rotating continuous flow sub
AU2014203078B2 (en) * 2010-01-06 2016-05-19 Weatherford Technology Holdings, Llc Rotating continuous flow sub
US9416599B2 (en) 2010-01-06 2016-08-16 Weatherford Technology Holdings, Llc Rotating continuous flow sub
WO2013009274A3 (en) * 2011-07-08 2014-03-20 Fmc Technologies, Inc. Manifold trailer with multiple articulating arm assemblies
US9004104B2 (en) 2011-07-08 2015-04-14 Fmc Technologies, Inc. Manifold trailer with multiple articulating arm assemblies
US8851116B1 (en) * 2013-06-04 2014-10-07 Eli Zhadanov Water supplying extension arm

Similar Documents

Publication Publication Date Title
US3750749A (en) Swivel control head and method of control
US4340088A (en) Pressure balanced safety valve for wells and flow lines
US3698426A (en) Mud saver valve and method
US3378224A (en) Well tools
US2601654A (en) Automatic choke control
US3941348A (en) Safety valve
US3035808A (en) Pressure responsive valve
US4452311A (en) Equalizing means for well tools
US4331315A (en) Actuatable safety valve for wells and flowlines
US4368871A (en) Lubricator valve apparatus
US4333526A (en) Annulus valve
US2894715A (en) Valve
US4832126A (en) Diverter system and blowout preventer
CA1053574A (en) Method and apparatus for a subsea master valve
US4197879A (en) Lubricator valve apparatus
US2785755A (en) Storm choke for oil wells
US4128108A (en) Mud retaining valve
US4562888A (en) Tubing head adapter and valve
US3805894A (en) Swivel control head and method of control
US3814181A (en) Ambient pressure responsive safety valve
US1709949A (en) Automatic seal-control blow-out preventer
NO176774B (en) Control valve for use in well testing
US3065794A (en) Retrievable well flow control valve
US3092135A (en) Full opening safety valve for pipe strings
US2634754A (en) Pilot controlled fluid pressure operated valve