US3749247A - Addition of oxidation inhibitor to lubricating oil - Google Patents

Addition of oxidation inhibitor to lubricating oil Download PDF

Info

Publication number
US3749247A
US3749247A US00073789A US3749247DA US3749247A US 3749247 A US3749247 A US 3749247A US 00073789 A US00073789 A US 00073789A US 3749247D A US3749247D A US 3749247DA US 3749247 A US3749247 A US 3749247A
Authority
US
United States
Prior art keywords
oil
additive
container
temperature
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00073789A
Inventor
R Rohde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phillips Petroleum Co
Original Assignee
Phillips Petroleum Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phillips Petroleum Co filed Critical Phillips Petroleum Co
Application granted granted Critical
Publication of US3749247A publication Critical patent/US3749247A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D37/00Processes of filtration
    • B01D37/02Precoating the filter medium; Addition of filter aids to the liquid being filtered
    • B01D37/025Precoating the filter medium; Addition of filter aids to the liquid being filtered additives incorporated in the filter
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M175/00Working-up used lubricants to recover useful products ; Cleaning
    • C10M175/0091Treatment of oils in a continuous lubricating circuit (e.g. motor oil system)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/10Lubricating systems characterised by the provision therein of lubricant venting or purifying means, e.g. of filters
    • F01M2001/1007Lubricating systems characterised by the provision therein of lubricant venting or purifying means, e.g. of filters characterised by the purification means combined with other functions
    • F01M2001/1014Lubricating systems characterised by the provision therein of lubricant venting or purifying means, e.g. of filters characterised by the purification means combined with other functions comprising supply of additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • a polypropylene capsule containing zinc dialkyldithiophosphate is described.
  • Other container materials and other polyolefin e.g., polyethylene and copolymers of monoolefins such as ethylene-propylene copolymers can be used.
  • the container or capsule is found to release increasing quantities of additive as the oil temperature surrounding the same increases, with container rupture at extreme operating conditions of temperature to release remaining additives to further protect the oil under such conditions.
  • This invention relates to the addition of oxidation inhibitor (antioxidant) or other additive to a lubricating oil as in a working engine. It also relates to protection of an oil as in a working engine at elevated temperature against oxidation or other deterioration. Further, the invention relates to gradually adding or dosing an inhibitor into a substance such as an oil under elevated temperature conditions as can prevail in a working engine.
  • the invention provides a container containing an additive to be added to an oil, the container walls being of a material selected to permit the additive to permeate therethrough into the oil to which the inhibitor is to be added.
  • the invention provides such a container the walls of which are responsive to increase in temperature to permit increased permeation therethrough of an oil additive.
  • a capsule container or bottle which, in effect, encloses a predetermined or measured amount of an oxidation inhibitor, for example, zinc dialkyldithiophosphate. It has occurred to me that the capsule can be inserted into a standard oil filter, where it will be washed by the oil passing through the same. Still further, a now preferred capsule or bottle is one made from a polypropylene. Further, I have found the permeation of the zinc dialkyldithiophosphate through the capsule varies with the temperature of the oil passing through the filter with permeation being greatest at highest temperatures and, therefore, when most needed.
  • an oxidation inhibitor for example, zinc dialkyldithiophosphate
  • An object'of this invention is to provide for addition of inhibitor to lubricating oil.
  • a further object of the invention is to provide for the gradual addition of an oil additive such as an oxidation inhibitor to an oil.
  • an oil additive such as an oxidation inhibitor to an oil.
  • object still of the invention is to provide for a sudden release of the inhibitor into an oil when said oil reaches a temperature ordinarily encountered under extremely severe operating conditions.
  • a further object still is to provide a container containing an oxidation inhibitor of gradually releasing inhibitor therefrom at elevated temperature.
  • an object of the invention is to provide for such a container containing an additive which the container will release in toto under extremely severe operating temperature.
  • an oil additive such as an oxidation inhibitor is capsulated or bottled in a container, at least a portion of the wall of which is made of a material which permits oil to permeate therethrough at an elevated temperature, for example, a temperature reached by oil in an engine under operating conditions.
  • a polyolefin e.g., polyethylene, polypropylene, ethylene-propylene copolymer, container containing an oil additive.
  • an oil filter and/or oil cooling mechanism containing a capsule containing an inhibitor as herein described.
  • the shape, size, wall thickness, and other physical factors affecting the desired degree or rate of permeation and, in the extreme case, the rupture of the container can be determined by mere routine testing under actual operation conditions of temperature of the oil to be inhibited.
  • the nature of the plastic, polymer, or copolymer can also be varied and can be determined by mere routine testing.
  • the shape and size of the plastic oil additive container is such that it occupies a space extant in present engine oil filters, such as those commonly in use on motor vehicles. This will have the advantage of reducing the amount of oil needed to fill the unit without significantly reducing its ability to filter.
  • This feature of the invention namely the combination the filter element and the plastic oil additive container, is particularly advantageous when using heavy duty or high detergency oils where the filter functions mainly to arrest the solids which are not carried by the oil.
  • the choice of polymer, the wall thickness of the polymeric container, the size and location of the container, the amount and concentration of the oil additive within the container, and other such variables will be such as to provide little or no permeation at engine oil temperatures up to about 200F., moderate permeation at 2 00-250F., substantial permeation at 250-300F., and still greater permeation and/or rupture of the walls of the container at 300325F.
  • oil additives such as antioxidants, for which there is a greater need as crankcase temperatures increase.
  • the wall thickness of the plastic container will generally be in the range of 5-50, preferably 20-35, mils.
  • the plastic container in the general form of a relatively long narrow tube of a size and shape to conveniently fit into the generally triangular voids which exist between the pleats or folds on the inlet side of a typical filter element.
  • One or more such containers can be used in one or more of such spaces.
  • the plastic container can be a tube about l-4 inches long and %l inch in diameter.
  • the plastic container of oil additive can be utilized in still other locations within the crankcase or within the oil circulation line separate from the oil filter. Any lo cation at which the plastic container can be contacted with at least a portion of the lubricating oil at a temperature which is representative of the temperature of the bulk of the lubricating oil. In such a location, the plastic containers can be replaced at suitable intervals.
  • the process of the invention is applicable for use in engine oil lubricating systems using any suitable lubricating oil compositions and any suitable viscosity grades such as the conventional SAE 10 to SAE 50 grades.
  • antioxidants such as zinc dialkyldithiophosphates
  • other polyolefin-permeable oil additives can also be used.
  • the oil additives in the plastic container should be the same or similar to those already in the oil.
  • a number of additives including the zinc dialkyldithiophosphates have essentially universal compatibility and utility in all lubricating oil formulations.
  • the permeable oil additives can be present in the plastic container either diluted or undiluted with a carrier oil. If the additive is already in the liquid form it can be used in that state but dilution with at least a minor quantity of a suitable hydrocarbon liquid, preferably a lubricating oil, is preferred in order to speed diffusion of the additive through the walls of the plastic container. Any lubricating oil or lubricating oil fraction is suitable as a diluent. The lighter lubricating oils will promote permeation to a greater degree than heavier fractions. Thus, diluents can be present in amounts in the range of -50 parts diluent per part additive, by weight.
  • the polymers from which the plastic containers can be fabricated can be any through which liquid oil additives or their solutions can slowly diffuse and which do not melt or significantly soften at temperatures below the operating temperature range of a given lubricating oil in a crankcase.
  • hydrocarbon polymers are operable and polymers and copolymers of l-olefins are very satisfactory.
  • Polystyrene can be permeated by suitable oil additives but its relatively low melting point restricts its use to relatively low temperature lubricating oil systems or to systems where rupture of the oil additive container and a sudden release of ad ditive is desired at an intermediate temperature.
  • Polyethylene is in this same general class in that it is permeable but relatively low melting.
  • the preferred hydro carbon polymers are polypropylene and copolymers of propylene with minor amounts of l-olefin comonomers having up to about eight carbon atoms per molecule.
  • the amount of oil additive within the plastic container can vary over a wide range and will depend upon the nature of the additive and the amount of oil in the lubricating oil reservoir. Frequently, the amount of supplemental additive, such as an antioxidant, in the plastic container will be in the range of from about 0.5 to about times the amount of the same additive present in the oil at the initial charging or formulating. As an example, a new lubricating oil can contain about 0.74 weight per cent of a zinc dialkyldithiophosphate additive or about 0.068 lb. of the additive per gallon.
  • a typical amount of the zinc additive in the plastic container can be about 0.068 lb. for each gallon of oil in the crankcase.
  • FIG. 1 is a correlation of weight per cent additive v. hours of run showing the effect of temperature upon the permeation of additive through walls of a container according to the invention.
  • FIG. 2 shows the effect of concentrations and amounts of additive on permeation rate.
  • FIG. 3 is a diagrammatic showing of the flow of oil from an engine to a container of additive and back again to the engine.
  • FIGS. 4 and 5 are elevation and plan cross-sectional views of a filter vessel containing a container according to the invention.
  • 1 is an engine from which oil passes by 3 to vessel 5 wherein is contained a container of additive according to the invention.
  • the oil at operating temperature causes additive to be released.
  • the additive is picked up by the oil and is returned therewith by 7 to engine 1.
  • FIGS. 4 and 5, 9 is the shell of an oil filter material containing vessel termed hereinafter oil filter.
  • Oil entering at 3 passes downwardly into the oil filter and emanates therefrom by 7.
  • the oil In passing through the oil filter, the oil must pass through the folds of filter element 11.
  • containers of additive According to the invention, there are disposed as shown at 13 containers of additive according to the invention.
  • the oil passing through the filter raises the temperature of container 13 to operating temperature and receives from 13 the desired amount of additive. Obviously, at different times, different portions of oil will be passing in contact with containers 13.
  • the additive which is soluble in the oil will be distributed throughout the entire body of the oil as it moves about being pumped through various parts of engine and, of course, through the oil filter.
  • EXAMPLE I The permeation of an oil solution of a commonly used oil antioxidant additive through the walls of a propylene-ethylene copolymer container, which was submerged in a lubricating oil, was carried out at several different temperatures.
  • the antioxidant additive was a commercial zinc dialkyldithiophosphate, hereinafter referred to simply as L-l395.
  • L-l395. This commercially available (Lubrizol Corporation, Cleveland, Ohio) additive contains a mixture of isobutyl and amyl alkyl groups, has a specific gravity of about 1.18, and typically contains about 9.5 per cent P, 20.0 per cent S, and 10.6 per cent Zn, by weight.
  • the commercial material also normally contains a minor amount of diluent or carrier oil. For simplicity, the presence of this carrier oil was neglected in the computations which follow.
  • the polymeric container through which the oil additive was permeated was a l-ounce capacity bottle of a commercial propylene-ethylene copolymer resin (Nalgene, Catalog No. 2006, Nalge Company, Rochester, N.Y.).
  • the predominantly propylene polymer contained from about 2 to about 5 weight per cent ethylene and had a melting point of about 327F.
  • the bottle fashioned from this resin had an average wall thickness of about 30 mils.
  • each plastic bottle was placed 1 g of L- l 395 and 9 g of a lO-stock lubricating oil.
  • the lO-stock lubricating oil was a lubricating fraction of a highly refined ity was about 100 SUS at 100F.
  • the bottles were then capped and submerged in a beaker containing 150 g of 10-stock oil.
  • the bottles were submerged in the oil either by the weight of a steel ball placed inside the bottle or by fastening the cap of the bottle to the beaker cover.
  • the L-l 395' additive in its liquid but relatively undiluted commercial form, was also found to permeate sati'sfactorily but at a somewhat slower rate.
  • Bottle contains 5 g. Bottle contains 2 g. additive and 5 g. 10- additive and 18 g. 10- stock and is immersed stock and is immersed in 150 g. iii-stock in 150 g. of IO-stoek Permeated Icrmeated b additive, additive, llours percent Hours percent Sample No. l 0 0 0 O 23. 5 0. 510 23 0. 450 72 1. 200 71 0. 890 97. 5 1. 430 07. 5 l. 000
  • ity bottle also having a wall thickness of about 30 mils, and prepared from a homopolymer of propylene having a melting point of about 340F.
  • Table 3 shows that the container of propylene homopolymer is also satisfactory for oil additive diffusion according to the process of the present invention and it also shows that larger containers areas effective as small containers for this use.
  • the run at the relatively extreme temperature of 295F. also illustrates the feature of the invention in which a sudden re- EXAMPLE 4 The satisfactory diffusion of still other commonly used oil additives through the wall of a plastic container according to the process of this invention was also demonstrated.
  • a commercial sulfonate oil additive A (Bryton-T Sulfonate, a sodium sulfonate) was tested in the manner of Example 1 and using the copolymer bottle of Example 1. Twenty grams of a 40 weight per cent solution of the oil additive A in 10- stock oil was placed in the bottle.
  • oil additive B (Paranox-64, a mixture of barium phenate and calcium sulfonate) was tested in the same propylene-ethylene copolymer bottle and in the same manner.
  • an ashless dispersant (Lubrizol 934) was also demonstrated as being suitable for use in the present invention.
  • This additive is believed to be a mixture of 10 per cent of a material which is a mixture of a polyisobutenyl succinimide and succinamide derived from polybutenyl succinic anhydride and alkenyl polyamines, and 90 per cent of a polyisobutenyl succinic ester.
  • the polyisobutenyl groups are derived from a polyisobutylene having a molecular weight in the range of 700-1500 (aver-' age of 1,000).
  • a 10 g quantity of a 40 weight per cent solution of oil additive C in l-stock oil wascharged into the 1- ounce copolymer bottle and also submerged at 250F. in a beaker containing 100 g of -stock oil.
  • FIG. 1 shows the effect of temperature upon the permeation of the zinc dialkyldithiophosphate through the walls of the polypropylene container and the ethylene-propylene copolymer container.
  • the curves are graphical representations of the data in Tables 1 and 3.
  • Curve 4 shows that essentially no permeation is observed at F.
  • Curve 5 shows increased permeation through the copolymerat 200F.
  • Curves 6A and 6C show still more permeation through the copolymer at 250F.
  • Curve 6B shows the relatively high rate of permeation at 250F. through the propylene homopolymer container as well.
  • Curve 7 shows the still more rapid rate of permeation through the homopolymer at 295F.
  • FIG. 2 of the drawing the effect of various concentrations and amounts of the zinc additive in the copolymer containers on the permeation rate is shown.
  • the curves are the graphical representations of data in Tables 1 and 2.
  • Curves 1A and 1B show the permeation rate of 10 g of a 50 weight per cent solution of the zinc additive.
  • Curves 2A and 2B show the permeation rate of 20 g of a 10 weight per cent solution, while curves 3A and 3B show the permeation rate of 10 g of a 10 weight per cent solution.
  • An oil filter for an oil-lubricated combustion engine in which an oil is circulated comprising a filter vessel body, containing a filter element shaped to provide voids within said vessel, and at least one container in at least one of said voids said container made of a polymer which is oil permeable at an elevated temperature of the order of that reached by an engine oil when it is operating in an engine and containing an oil additive and being permeable to said additive when said container is immersed in oil to be protected and is at the operating temperature of the oil to be protected at that temperature.

Abstract

Addition of oxidation inhibitor (antioxidant) or other additive to lubricating oil as in a working engine is effected by placing into the oil a container, e.g., a polyolefin container or capsule, for example, a polypropylene capsule containing said additive which permeates through the container wall into the oil gradually. A polypropylene capsule containing zinc dialkyldithiophosphate is described. Other container materials and other polyolefin, e.g., polyethylene and copolymers of monoolefins such as ethylene-propylene copolymers can be used. The container or capsule is found to release increasing quantities of additive as the oil temperature surrounding the same increases, with container rupture at extreme operating conditions of temperature to release remaining additives to further protect the oil under such conditions.

Description

United States Patent 1 Rohde [4 1 July 31,1973
[54] ADDITION OF OXIDATION INHIBITOR TO LUBRICA'IING OIL [75] Inventor: Raymond Rohde, Bartlesville, Okla.
' [73] Assignee: Phillips Petroleum Company 221 Filed: Sept. 21,1970 21 Appl.No.:73,789
[52] US. Cl 210/205, 210/501, 210/502 [51] Int. Cl 001d 27/00 [58] Field of Search 210/149, 198, 205, 210/206, 501, 502
[56] Relerences Cited UNITED STATES PATENTS 2,262,529 11/194-1 Fairlie et al.;..'...;....'. 210/501 X 2,785,805 3/1957 Hough 210/501 X 2,846,057 8/1958 Polin 210/198 R Primary Examiner-John Adee Attorney-Young and Quigg [57] ABSTRACT Addition of oxidation inhibitor (antioxidant) or other additive to lubricating oil as in a working engine is effected by placing into the oil a container, e.g., a polyolefin container or capsule, for example, a polypropylene capsule containing said additive which permeates through the container wall into the oil gradually. A polypropylene capsule containing zinc dialkyldithiophosphate is described. Other container materials and other polyolefin, e.g., polyethylene and copolymers of monoolefins such as ethylene-propylene copolymers can be used. The container or capsule is found to release increasing quantities of additive as the oil temperature surrounding the same increases, with container rupture at extreme operating conditions of temperature to release remaining additives to further protect the oil under such conditions.
1 Claim, 5 Drawing Figures PATENIED M31 I975 3. 749 247 sum 1 or 3 HOURS INVENTOR. RAYMOND ROHDE ATTORNEYS PATENIED JUL 3 1 I975 sum 2 OF 3 5 4. 1 o o 0 3273 wzzmmoxuoitn 02E is HOURS FIG. 2
INVENTOR. RAYMOND ROHDE A TTORNE Y5 ADDITION OF OXIDATION INHIBITOR T LUBRICATING OIL This invention relates to the addition of oxidation inhibitor (antioxidant) or other additive to a lubricating oil as in a working engine. It also relates to protection of an oil as in a working engine at elevated temperature against oxidation or other deterioration. Further, the invention relates to gradually adding or dosing an inhibitor into a substance such as an oil under elevated temperature conditions as can prevail in a working engine.
According to a concept of the invention, it provides a container containing an additive to be added to an oil, the container walls being of a material selected to permit the additive to permeate therethrough into the oil to which the inhibitor is to be added. In another of its concepts, the invention provides such a container the walls of which are responsive to increase in temperature to permit increased permeation therethrough of an oil additive.
It has been found that at elevated crankcase temperatures, particularly in cases of severe high temperature engine operation such as in the high speed towing of house or boat trailers, an oil thicknening problem, even to the extent of oil gelling, arises. It has been found that after a number of hours of severe engine operation even with a high quality detergent type oil, the oil viscosity begins to increase rather rapidly. It has further been found that this extreme rate of viscosity increase coincides with depletion of oxidation inhibitor which, in turn, permits increased oxidation of the oil. lndeed, in one severe test during which a charge of oxidation inhibitor was added to the oil periodically, a rapid increase in viscosity could be avoided.
l have now conceived that the periodic addition of additive can be dispensed with if there is placed into the lubricating oil in the engine a capsule container or bottle" which, in effect, encloses a predetermined or measured amount of an oxidation inhibitor, for example, zinc dialkyldithiophosphate. It has occurred to me that the capsule can be inserted into a standard oil filter, where it will be washed by the oil passing through the same. Still further, a now preferred capsule or bottle is one made from a polypropylene. Further, I have found the permeation of the zinc dialkyldithiophosphate through the capsule varies with the temperature of the oil passing through the filter with permeation being greatest at highest temperatures and, therefore, when most needed.
An object'of this invention is to provide for addition of inhibitor to lubricating oil. A further object of the invention is to provide for the gradual addition of an oil additive such as an oxidation inhibitor to an oil. Still further, it is an object of this invention to provide in an operating engine the addition of an inhibitor such as an oxidation inhibitor to the oil wherein which oil is at an elevated temperature. It is a still further object of the invention to provide for increased addition of inhibitor to oil as the temperature of the oil increases. A further.
object still of the invention is to provide for a sudden release of the inhibitor into an oil when said oil reaches a temperature ordinarily encountered under extremely severe operating conditions. A further object still is to provide a container containing an oxidation inhibitor of gradually releasing inhibitor therefrom at elevated temperature. Further still, an object of the invention is to provide for such a container containing an additive which the container will release in toto under extremely severe operating temperature.
Other aspects, concepts, objects and several advantages of the invention are apparent from a study of this disclosure, the drawings and the appended claims.
or other oil additive, the container having the property According to the present invention, an oil additive such as an oxidation inhibitor is capsulated or bottled in a container, at least a portion of the wall of which is made of a material which permits oil to permeate therethrough at an elevated temperature, for example, a temperature reached by oil in an engine under operating conditions.
Further, according to the invention, there is provided. a polyolefin, e.g., polyethylene, polypropylene, ethylene-propylene copolymer, container containing an oil additive.
Still further, according to the invention, there is provided in an operating engine a container containing an additive as herein described.
Further, still according to the invention, there is provided an oil filter and/or oil cooling mechanism containing a capsule containing an inhibitor as herein described.
The shape, size, wall thickness, and other physical factors affecting the desired degree or rate of permeation and, in the extreme case, the rupture of the container can be determined by mere routine testing under actual operation conditions of temperature of the oil to be inhibited.
The nature of the plastic, polymer, or copolymer can also be varied and can be determined by mere routine testing.
In a preferred embodiment, the shape and size of the plastic oil additive container is such that it occupies a space extant in present engine oil filters, such as those commonly in use on motor vehicles. This will have the advantage of reducing the amount of oil needed to fill the unit without significantly reducing its ability to filter. This feature of the invention, namely the combination the filter element and the plastic oil additive container, is particularly advantageous when using heavy duty or high detergency oils where the filter functions mainly to arrest the solids which are not carried by the oil.
Generally speaking, the choice of polymer, the wall thickness of the polymeric container, the size and location of the container, the amount and concentration of the oil additive within the container, and other such variables will be such as to provide little or no permeation at engine oil temperatures up to about 200F., moderate permeation at 2 00-250F., substantial permeation at 250-300F., and still greater permeation and/or rupture of the walls of the container at 300325F. Such a schedule is particularly applicable for oil additives, such as antioxidants, for which there is a greater need as crankcase temperatures increase.
The wall thickness of the plastic container, depending upon the specific application and result desired, will generally be in the range of 5-50, preferably 20-35, mils. in a typical oil filter, the plastic container can be in the general form of a relatively long narrow tube of a size and shape to conveniently fit into the generally triangular voids which exist between the pleats or folds on the inlet side of a typical filter element. One or more such containers can be used in one or more of such spaces. As an example, the plastic container can be a tube about l-4 inches long and %l inch in diameter.
The plastic container of oil additive can be utilized in still other locations within the crankcase or within the oil circulation line separate from the oil filter. Any lo cation at which the plastic container can be contacted with at least a portion of the lubricating oil at a temperature which is representative of the temperature of the bulk of the lubricating oil. In such a location, the plastic containers can be replaced at suitable intervals.
The process of the invention is applicable for use in engine oil lubricating systems using any suitable lubricating oil compositions and any suitable viscosity grades such as the conventional SAE 10 to SAE 50 grades.
In addition to antioxidants, such as zinc dialkyldithiophosphates, other polyolefin-permeable oil additives can also be used. Preferably, to insure compatibility, the oil additives in the plastic container should be the same or similar to those already in the oil. However, a number of additives including the zinc dialkyldithiophosphates, have essentially universal compatibility and utility in all lubricating oil formulations.
The permeable oil additives can be present in the plastic container either diluted or undiluted with a carrier oil. If the additive is already in the liquid form it can be used in that state but dilution with at least a minor quantity of a suitable hydrocarbon liquid, preferably a lubricating oil, is preferred in order to speed diffusion of the additive through the walls of the plastic container. Any lubricating oil or lubricating oil fraction is suitable as a diluent. The lighter lubricating oils will promote permeation to a greater degree than heavier fractions. Thus, diluents can be present in amounts in the range of -50 parts diluent per part additive, by weight.
The polymers from which the plastic containers can be fabricated can be any through which liquid oil additives or their solutions can slowly diffuse and which do not melt or significantly soften at temperatures below the operating temperature range of a given lubricating oil in a crankcase. Generally speaking, hydrocarbon polymers are operable and polymers and copolymers of l-olefins are very satisfactory. Polystyrene can be permeated by suitable oil additives but its relatively low melting point restricts its use to relatively low temperature lubricating oil systems or to systems where rupture of the oil additive container and a sudden release of ad ditive is desired at an intermediate temperature. Polyethylene is in this same general class in that it is permeable but relatively low melting. The preferred hydro carbon polymers are polypropylene and copolymers of propylene with minor amounts of l-olefin comonomers having up to about eight carbon atoms per molecule.
The amount of oil additive within the plastic container can vary over a wide range and will depend upon the nature of the additive and the amount of oil in the lubricating oil reservoir. Frequently, the amount of supplemental additive, such as an antioxidant, in the plastic container will be in the range of from about 0.5 to about times the amount of the same additive present in the oil at the initial charging or formulating. As an example, a new lubricating oil can contain about 0.74 weight per cent of a zinc dialkyldithiophosphate additive or about 0.068 lb. of the additive per gallon.
Hence, a typical amount of the zinc additive in the plastic container can be about 0.068 lb. for each gallon of oil in the crankcase.
In the drawings, FIG. 1 is a correlation of weight per cent additive v. hours of run showing the effect of temperature upon the permeation of additive through walls of a container according to the invention. FIG. 2 shows the effect of concentrations and amounts of additive on permeation rate. FIG. 3 is a diagrammatic showing of the flow of oil from an engine to a container of additive and back again to the engine. FIGS. 4 and 5 are elevation and plan cross-sectional views of a filter vessel containing a container according to the invention.
Referring now to FIG. 3 of the drawing, 1 is an engine from which oil passes by 3 to vessel 5 wherein is contained a container of additive according to the invention. The oil at operating temperature causes additive to be released. The additive is picked up by the oil and is returned therewith by 7 to engine 1.
Referring now to FIGS. 4 and 5, 9 is the shell of an oil filter material containing vessel termed hereinafter oil filter. Oil entering at 3 passes downwardly into the oil filter and emanates therefrom by 7. In passing through the oil filter, the oil must pass through the folds of filter element 11. According to the invention, there are disposed as shown at 13 containers of additive according to the invention. The oil passing through the filter raises the temperature of container 13 to operating temperature and receives from 13 the desired amount of additive. Obviously, at different times, different portions of oil will be passing in contact with containers 13. In any event, the additive which is soluble in the oil will be distributed throughout the entire body of the oil as it moves about being pumped through various parts of engine and, of course, through the oil filter.
EXAMPLE I The permeation of an oil solution of a commonly used oil antioxidant additive through the walls of a propylene-ethylene copolymer container, which was submerged in a lubricating oil, was carried out at several different temperatures. The antioxidant additive was a commercial zinc dialkyldithiophosphate, hereinafter referred to simply as L-l395. This commercially available (Lubrizol Corporation, Cleveland, Ohio) additive contains a mixture of isobutyl and amyl alkyl groups, has a specific gravity of about 1.18, and typically contains about 9.5 per cent P, 20.0 per cent S, and 10.6 per cent Zn, by weight. The commercial material also normally contains a minor amount of diluent or carrier oil. For simplicity, the presence of this carrier oil was neglected in the computations which follow.
The polymeric container through which the oil additive was permeated was a l-ounce capacity bottle of a commercial propylene-ethylene copolymer resin (Nalgene, Catalog No. 2006, Nalge Company, Rochester, N.Y.). The predominantly propylene polymer contained from about 2 to about 5 weight per cent ethylene and had a melting point of about 327F. The bottle fashioned from this resin had an average wall thickness of about 30 mils.
Into each plastic bottle was placed 1 g of L- l 395 and 9 g of a lO-stock lubricating oil. The lO-stock lubricating oil was a lubricating fraction of a highly refined ity was about 100 SUS at 100F. The bottles were then capped and submerged in a beaker containing 150 g of 10-stock oil. The bottles were submerged in the oil either by the weight of a steel ball placed inside the bottle or by fastening the cap of the bottle to the beaker cover.
Using duplicate samples, the beakers containing the oil and the plastic bottles with the oil additive contained therein, were stored at different temperatures. Periodically, the oil in the beaker, but outside the plastic container, was analyzed for the additive content. Results of these tests are shown in Table 1.
In the Table 1, it is seen that in the runs carried out at 75F. there was no diffusion of the oil additive from its plastic container into the bulk of the oil. Thus, at a temperature which is below the normal operating temperature of an engine, there would be no movement of the additive from its container.
The data in Table 2 shows that the amount of oil additive, such as the L-l395, which permeates through the wall of a given container can be increased by either increasing the concentration of the additive inside the container or by increasing the amount of additive inside the container, or both. This demonstrates the effectiveness of still another variable which can be utilized to control the addition rate of a given additive into a body of lubricating oil according to the process of this invention.
The L-l 395' additive, in its liquid but relatively undiluted commercial form, was also found to permeate sati'sfactorily but at a somewhat slower rate.
EXAMPLE 3 Table 1 [Permeation of L-1395 through propylene-ethylene copolymerbottle into engine oil at various temperatures] Runs at75 F. Runs at 200 F. Runs at 250 F. Runs at 295 F.
, Fermented Perrneated a Permeated Pcrmeated h additive, additive, additive, additive, Hours percent Hours percent Hours percent Hours percent;
Sample No. 1. I 0 0 0 0 0 O 0 0 )6 0 72 0. 100 23 0. 090' 5 0. 10 216 0 108 0. 130 71 0. 230 12 0. 64 216 0. 160 97. 5 0. 290 23 0. 91
Sample N o. L 0 0 0 0 t) 0 0 i 0 168 0 48 0. 050 0, 150 5 0. 0) 254 0 JG 0. 090 47 0. 200 12 O. 77 360 0 192 0. 126' 98 0. 445 23 0. 91 240 0,160
in terms of the concentration of the additive found in the oil outside the container. Maximum concentration would beabout 0.6 weight percent.
In. runs at 200F;, 250F., and 295F., on the other was demonstrated. The container was a 250 ml capachand, the data indicate that there was substantial diffusion of the additive into the bulk of the oil and the rate of diffusion increased with the temperature. Thus, the movement of additive out of its container and into the bulk of the oil would be directly proportional with the severity of operation and, hence, proportional with the need.
EXAMPLE 2 Several additional runs were carried out in essentially the same manner as described in Example 1 to show the effect of increasing the concentration of the oil additive in the plastic bottle and the effect of increasing. the quantity of the oil additive in the plastic bottle. These results are shown in Table 2.
TABLE? Premcation oi L-1395 at 250 F. Through Propylene-Ethylene Copelymer at Different Concentrations Bottle contains 5 g. Bottle contains 2 g. additive and 5 g. 10- additive and 18 g. 10- stock and is immersed stock and is immersed in 150 g. iii-stock in 150 g. of IO-stoek Permeated Icrmeated b additive, additive, llours percent Hours percent Sample No. l 0 0 0 O 23. 5 0. 510 23 0. 450 72 1. 200 71 0. 890 97. 5 1. 430 07. 5 l. 000
Sample No. 2 0 0 0 0 25 0. 495 26 0, 405 4 0. 801 47 0. 685 97. 5 1.130 73 0. 815 98 0. 050
in terms of concentration of additive found in oil outside bottle. Maximum concentration would be about 3 weight percent.
' Maximum concentration would be about 1.3 percent.
ity bottle also having a wall thickness of about 30 mils, and prepared from a homopolymer of propylene having a melting point of about 340F.
Runs at 250F. and 295F. were carried out. into the bottle of each run was placed 60 grams of a 10 weight per cent solution of L-l395 in lO-stock oil. The bottle was then submerged by means of a steel ball within the bottle in another vessel containing 900 grams of the 10- stock oil. The vessels were then placed in storage at different temperatures and periodically the oil outside the plastic bottle was analyzed for L-1395 contact. The results of these tests are shown in Table 3.
TABLE 3 Permeation of L-l395 Through Propylene l-lomopolymer Bottle into Engine Oil Run at 250F. Run at 295F.
Permeated Permeated Hours Additive,% Hurs Additive,% 0 0 0 0 24 0.095 3.5 0.075 48 0.190 9 0.l 72 0.275 15 Ruptured 98 0.375
(a) in terms of concentration of additive found in the oil outside the plastic container. Maximum concentration would be about 0.6 weight per cent.
The data in Table 3 shows that the container of propylene homopolymer is also satisfactory for oil additive diffusion according to the process of the present invention and it also shows that larger containers areas effective as small containers for this use. The run at the relatively extreme temperature of 295F. also illustrates the feature of the invention in which a sudden re- EXAMPLE 4 The satisfactory diffusion of still other commonly used oil additives through the wall of a plastic container according to the process of this invention was also demonstrated. In one run, a commercial sulfonate oil additive A (Bryton-T Sulfonate, a sodium sulfonate) was tested in the manner of Example 1 and using the copolymer bottle of Example 1. Twenty grams of a 40 weight per cent solution of the oil additive A in 10- stock oil was placed in the bottle.
Similarly, oil additive B (Paranox-64, a mixture of barium phenate and calcium sulfonate) was tested in the same propylene-ethylene copolymer bottle and in the same manner.
Still another commonly used oil additive, an ashless dispersant (Lubrizol 934) was also demonstrated as being suitable for use in the present invention. This additive is believed to be a mixture of 10 per cent of a material which is a mixture of a polyisobutenyl succinimide and succinamide derived from polybutenyl succinic anhydride and alkenyl polyamines, and 90 per cent of a polyisobutenyl succinic ester. The polyisobutenyl groups are derived from a polyisobutylene having a molecular weight in the range of 700-1500 (aver-' age of 1,000).
A 10 g quantity of a 40 weight per cent solution of oil additive C in l-stock oil wascharged into the 1- ounce copolymer bottle and also submerged at 250F. in a beaker containing 100 g of -stock oil.
The results of these tests are shown in Table 4.
The data in Table 4 shows that three other commonly used additives are also operable according to the pres- TABLE 4 Permeation oi Various Oil Additives at 295 F. Through Propylene- Ethyiene Copolymer into Engine Oil n in terms of concentration oi additive found in oil outside bottle. Maximum concentration would be about 7 weight percent.
Maximum concentration about 3.5 percent.
ent invention. It is seen that not all additives diffuse through a given polymer container at the same rate. However, not all oil additives are required in the same amounts within a given motor oil formulation and, with the number of variables available to control the release of each additive at the desired rate, it can be possible to replenish, on a continuous basis, each individual oil additive as it is consumed and while the engine is in operation.
in the drawing, FIG. 1 shows the effect of temperature upon the permeation of the zinc dialkyldithiophosphate through the walls of the polypropylene container and the ethylene-propylene copolymer container. The curves are graphical representations of the data in Tables 1 and 3. Curve 4 shows that essentially no permeation is observed at F. Curve 5 shows increased permeation through the copolymerat 200F. Curves 6A and 6C show still more permeation through the copolymer at 250F. Curve 6B shows the relatively high rate of permeation at 250F. through the propylene homopolymer container as well. Curve 7 shows the still more rapid rate of permeation through the homopolymer at 295F.
In FIG. 2 of the drawing, the effect of various concentrations and amounts of the zinc additive in the copolymer containers on the permeation rate is shown. The curves are the graphical representations of data in Tables 1 and 2. Curves 1A and 1B show the permeation rate of 10 g of a 50 weight per cent solution of the zinc additive. Curves 2A and 2B show the permeation rate of 20 g of a 10 weight per cent solution, while curves 3A and 3B show the permeation rate of 10 g of a 10 weight per cent solution.
Reasonable variation and modification are possible within the scope of the foregoing disclosure and the appended claims, the essence of which is that an additive is added to an oil, for example, an engine oil, during operation by encapsulating or enclosing the additive into a container capsule or bottle" and permitting the container, capsule, or bottle" to be washed by the oil at its operating temperature, thus, obtaining by permeation from within the container the additive into the oil desired to be protected.
I claim:
1. An oil filter for an oil-lubricated combustion engine in which an oil is circulated comprising a filter vessel body, containing a filter element shaped to provide voids within said vessel, and at least one container in at least one of said voids said container made of a polymer which is oil permeable at an elevated temperature of the order of that reached by an engine oil when it is operating in an engine and containing an oil additive and being permeable to said additive when said container is immersed in oil to be protected and is at the operating temperature of the oil to be protected at that temperature.
US00073789A 1970-09-21 1970-09-21 Addition of oxidation inhibitor to lubricating oil Expired - Lifetime US3749247A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7378970A 1970-09-21 1970-09-21

Publications (1)

Publication Number Publication Date
US3749247A true US3749247A (en) 1973-07-31

Family

ID=22115809

Family Applications (2)

Application Number Title Priority Date Filing Date
US00073789A Expired - Lifetime US3749247A (en) 1970-09-21 1970-09-21 Addition of oxidation inhibitor to lubricating oil
US05/361,372 Expired - Lifetime US4066559A (en) 1970-09-21 1973-05-17 Container for oil-additive release

Family Applications After (1)

Application Number Title Priority Date Filing Date
US05/361,372 Expired - Lifetime US4066559A (en) 1970-09-21 1973-05-17 Container for oil-additive release

Country Status (1)

Country Link
US (2) US3749247A (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014794A (en) * 1974-03-11 1977-03-29 E. I. Du Pont De Nemours And Company Oil filter adapter
US4075097A (en) * 1975-04-01 1978-02-21 Monroe Auto Equipment Company Oil filter with oil improving dissolving body
US4144166A (en) * 1977-03-24 1979-03-13 Atlantic Richfield Company Compositions, apparatus and methods useful for releasing solid lubricating oil additive
US4265748A (en) * 1980-01-11 1981-05-05 Tecnocar S P A Lubricant filter for internal combustion engines
US5042617A (en) * 1989-09-07 1991-08-27 Exxon Research & Engineering Company Method of reducing the presence of sludge in lubricating oils
WO1994000677A1 (en) * 1992-06-30 1994-01-06 Mezhotraslevoe Nauchno-Proizvodstvennoe Obyedinenie 'ekologia' Device providing for tribochemical regime in lubrication system of mechanism
WO1994015077A1 (en) * 1992-12-28 1994-07-07 Mezhotraslevoie Nauchno-Proizvodstvennoie Obiedineniie 'ekologia' Device for creating a tribochemical regime in a lubrication system for a mechanical device
US5478463A (en) * 1989-09-07 1995-12-26 Exxon Chemical Patents Inc. Method of reducing sludge and varnish precursors in lubricating oils
US5507942A (en) * 1994-02-22 1996-04-16 Davco Manufacturing L.L.C. Fuel filter assembly
WO1996020368A1 (en) * 1994-12-26 1996-07-04 Genvol Corp. Esteblishment Device for establishing a tribochemical operating mode in a mechanism lubrication system
US5591330A (en) * 1994-05-25 1997-01-07 T/F Purifiner, Inc. Oil filter containing an oil soluble thermoplastic additive material therein
US5753116A (en) * 1995-10-28 1998-05-19 Ing. Walter Hengst Gmbh & Co. Coolant filter
EP0889115A2 (en) * 1997-07-03 1999-01-07 Toyota Jidosha Kabushiki Kaisha An engine oil deterioration preventing agent and device
US6238554B1 (en) 1999-06-16 2001-05-29 Fleetguard, Inc. Fuel filter including slow release additive
DE10029539A1 (en) * 2000-06-15 2001-12-20 Mann & Hummel Filter Filters with a ring-shaped filter medium
US6505597B2 (en) * 2001-05-30 2003-01-14 Honeywell International Inc. Cleansing oil filter containing quick-release liquid antioxidant/additive solution, and method of using same to convert an engine from petroleum-based oil to botanically-based oil
WO2003018163A1 (en) * 2001-08-24 2003-03-06 Dober Chemical Corporation Controlled release of additives in fluid systems
US20030111396A1 (en) * 2001-03-07 2003-06-19 Smith Paul B. Fluid filter with pressure relief valve
US20030122104A1 (en) * 2001-02-12 2003-07-03 Dober Chemical Corporation Liquid replacement systems
US20040014614A1 (en) * 2002-07-16 2004-01-22 Burrington James D. Slow release lubricant additives gel
US20040091654A1 (en) * 2001-08-24 2004-05-13 Fleetguard, Inc. Controlled release of additives in cooling systems
US6827750B2 (en) 2001-08-24 2004-12-07 Dober Chemical Corp Controlled release additives in fuel systems
US6835218B1 (en) 2001-08-24 2004-12-28 Dober Chemical Corp. Fuel additive compositions
US20040266631A1 (en) * 2003-06-25 2004-12-30 The Lubrizol Corporation Gels that reduce soot and/or emissions from engines
US6860241B2 (en) 1999-06-16 2005-03-01 Dober Chemical Corp. Fuel filter including slow release additive
US20050137097A1 (en) * 2002-07-16 2005-06-23 The Lubrizol Corporation Controlled release of additive gel(s) for functional fluids
US20050194301A1 (en) * 2004-03-05 2005-09-08 Hacker John R. Liquid filter assembly for use with treatment agent; and, methods
US7001531B2 (en) 2001-08-24 2006-02-21 Dober Chemical Corp. Sustained release coolant additive composition
US20070235378A1 (en) * 2004-03-05 2007-10-11 Donaldson Corporation Company, Inc. Top Load Liquid Filter Assembly for Use with Treatment Agent; and, Methods
BE1017381A3 (en) * 2006-12-06 2008-07-01 Atlas Copco Airpower Nv Protecting compressor oil against oxidation, by contacting oil with antioxidants immobilized on substrate
US20080188386A1 (en) * 2007-02-05 2008-08-07 The Lubrizol Corporation Low Ash Controlled Release Gels
US20080296234A1 (en) * 2001-08-24 2008-12-04 Dober Chemical Corporation Controlled release of microbiocides
US20090064646A1 (en) * 2004-08-06 2009-03-12 Donaldson Company, Inc. Air filter arrangement; assembly; and methods
US20090139915A1 (en) * 2000-07-25 2009-06-04 Davco Technology, Llc Fluid Filter with Pressure Relief Valve and Bypass Valve
US20090151311A1 (en) * 2005-01-13 2009-06-18 Donaldson Company, Inc. Air filter cartridge and air cleaner assembly
US7625419B2 (en) 2006-05-10 2009-12-01 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US20090294379A1 (en) * 2008-05-27 2009-12-03 Dober Chemical Corporation Controlled release of additive compositions
US20090301968A1 (en) * 2008-05-27 2009-12-10 Dober Chemical Corporation Devices and methods for controlled release of additive compositions
US20090304868A1 (en) * 2008-05-27 2009-12-10 Dober Chemical Corporation Controlled release cooling additive composition
US20100219112A1 (en) * 2006-08-28 2010-09-02 Gerwin Weston H Additive dispersing filter and method of making
US7883638B2 (en) 2008-05-27 2011-02-08 Dober Chemical Corporation Controlled release cooling additive compositions
US20110048857A1 (en) * 2009-09-01 2011-03-03 Caterpillar Inc. Lubrication system
US20110062061A1 (en) * 2009-09-17 2011-03-17 Davco Technology, Llc Filter Assembly with Modular Relief Valve Interface
US8034145B2 (en) 2004-06-14 2011-10-11 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US8425772B2 (en) 2006-12-12 2013-04-23 Cummins Filtration Ip, Inc. Filtration device with releasable additive
US8496723B2 (en) 2005-01-13 2013-07-30 Donaldson Company, Inc. Air filter arrangement
US8702995B2 (en) 2008-05-27 2014-04-22 Dober Chemical Corp. Controlled release of microbiocides
DE102013000337A1 (en) 2013-01-11 2014-07-17 Mann + Hummel Gmbh filter device
US9320997B2 (en) 2013-06-28 2016-04-26 Donaldson Company, Inc. Air filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US9555370B2 (en) 2007-09-07 2017-01-31 Donaldson Company, Inc. Air filter assembly; components thereof; and, methods
US9623351B2 (en) 2009-04-09 2017-04-18 Cummins Filtration Ip, Inc. Filtration sealing system
US10434454B2 (en) 2011-06-30 2019-10-08 Donaldson Company, Inc. Filter cartridge
US11020698B2 (en) 2015-12-11 2021-06-01 Cummins Filtration Ip, Inc. Filter with variable cross-section axial seal
US11110382B2 (en) 2014-12-27 2021-09-07 Donaldson Company, Inc. Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US11141687B2 (en) 2016-05-02 2021-10-12 Cummins Filtration Ip, Inc. Filter with interlocking housing interface
US11167234B2 (en) 2016-03-18 2021-11-09 Cummins Filtration Ip, Inc. Interlocked stable filter assembly
US11198082B2 (en) 2017-08-31 2021-12-14 Donaldson Company, Inc. Filter cartridges; air cleaner assemblies; housings; features; components; and methods
US11235275B2 (en) 2017-03-16 2022-02-01 Cummins Filtration Ip, Inc. Filtration sealing system
US11298640B2 (en) 2017-01-25 2022-04-12 Cummins Filtration Ip, Inc. Expandable threaded adaptor for threadless shell
US11724220B2 (en) 2017-02-21 2023-08-15 Cummins Filtration Ip, Inc. Undulated interlocking housing-endplate interface geometry
US11772026B2 (en) 2014-09-15 2023-10-03 Donaldson Company, Inc. Filter cartridges; air cleaner assemblies; housings; features; components; and, methods

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248725A (en) * 1978-03-23 1981-02-03 Chevron Research Company Dispersants having antioxidant activity and lubricating compositions containing them
US4639255A (en) * 1980-01-15 1987-01-27 Phillips Petroleum Company Solid form additives and method of forming same
US4943352A (en) * 1987-06-15 1990-07-24 Purifiner Manufacturing Company Oil reclamation device
JPH0699702B2 (en) * 1989-01-26 1994-12-07 住友電装株式会社 Automotive wire harness wiring connector filling grease composition
US5322596A (en) * 1992-12-30 1994-06-21 Premo Lubrication Technologies, Inc. Apparatus for removing solid and volatile contaminants from liquids
US5630956A (en) * 1995-06-20 1997-05-20 Certified Technologies Corporation Oil filtering and refining device
US5718258A (en) * 1996-10-22 1998-02-17 T/F Purifiner, Inc. Releasing additives into engine oil
US6023961A (en) * 1998-04-02 2000-02-15 Reliance Electric Industrial Company Micro-viscosity sensor and lubrication analysis system employing the same
US6938585B2 (en) * 2002-10-23 2005-09-06 General Motors Corporation Automatic additive replenishment system for IC engine lubricating oil
US7124729B2 (en) * 2003-02-14 2006-10-24 General Motors Corporation Additive-containing, dissolvable coating on engine part that contacts oil
US20050061734A1 (en) * 2003-09-22 2005-03-24 Alltrista Zinc Products, L.P. Anti-corrosive engine oil system components
US20050065042A1 (en) * 2003-09-22 2005-03-24 Alltrista Zinc Products, L.P., An Indiana Limited Partnership Anti-corrosive engine oil system components
US7000655B2 (en) 2004-01-09 2006-02-21 The Lubrizol Corporation Fluid additive delivery systems
DE102004001983B4 (en) * 2004-01-13 2009-02-12 Mann + Hummel Gmbh additive filters
US8016125B2 (en) * 2005-05-20 2011-09-13 Lutek, Llc Materials, filters, and systems for immobilizing combustion by-products and controlling lubricant viscosity
US20070049505A1 (en) * 2005-08-24 2007-03-01 Baker Mark R Controlled release of additive gel(s) for functional fluids
EP1880751A1 (en) * 2006-06-21 2008-01-23 Castrol Limited Apparatus and method for adding additives to engine lubricant
US20090101561A1 (en) 2007-10-19 2009-04-23 The Lubrizol Corporation Filter Cap Additive Delivery System
US20090291865A1 (en) 2008-05-23 2009-11-26 Brennan Brent L Controlled release of additives in gas turbine lubricating compositions
EP2393907A1 (en) 2009-02-09 2011-12-14 The Lubrizol Corporation Method for improved performance of a functional fluid
US20100210487A1 (en) 2009-02-16 2010-08-19 Chemtura Coproration Fatty sorbitan ester based friction modifiers
CA2769723A1 (en) 2009-08-04 2011-02-10 The Lubrizol Corporation Compositions with fast and slow release components
KR101544255B1 (en) * 2009-09-14 2015-08-12 더 팀켄 컴퍼니 Apparatus and method for controlled release of lubricant additives in bearing and gear assemblies
WO2017146896A1 (en) 2016-02-26 2017-08-31 Exxonmobil Research And Engineering Company Lubricant compositions containing controlled release additives
SG11201805790TA (en) 2016-02-26 2018-09-27 Exxonmobil Res & Eng Co Lubricant compositions containing controlled release additives
CN109207244B (en) * 2017-06-30 2021-10-26 北京市建筑工程研究院有限责任公司 Water-based release agent for concrete prefabricated part

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2262529A (en) * 1938-07-15 1941-11-11 Sinclair Refining Co Lubrication
US2785805A (en) * 1953-06-12 1957-03-19 Wix Corp Oil filters
US2846057A (en) * 1954-02-09 1958-08-05 Polin Herbert Spencer Devices for dosage control

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2969331A (en) * 1958-06-04 1961-01-24 Ncr Co Process of making dual-walled oil containing capsules
NL125130C (en) * 1958-06-04
NL6605917A (en) * 1965-04-30 1966-10-31
US3460972A (en) * 1965-09-29 1969-08-12 Battelle Development Corp Liquid encapsulation
US3669637A (en) * 1970-05-08 1972-06-13 Inst Gas Technology Odorant replacement in gas streams

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2262529A (en) * 1938-07-15 1941-11-11 Sinclair Refining Co Lubrication
US2785805A (en) * 1953-06-12 1957-03-19 Wix Corp Oil filters
US2846057A (en) * 1954-02-09 1958-08-05 Polin Herbert Spencer Devices for dosage control

Cited By (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014794A (en) * 1974-03-11 1977-03-29 E. I. Du Pont De Nemours And Company Oil filter adapter
US4075097A (en) * 1975-04-01 1978-02-21 Monroe Auto Equipment Company Oil filter with oil improving dissolving body
US4075098A (en) * 1975-04-01 1978-02-21 Monroe Auto Equipment Company Masking elements for dissolving oil improving body in an oil filter
US4144166A (en) * 1977-03-24 1979-03-13 Atlantic Richfield Company Compositions, apparatus and methods useful for releasing solid lubricating oil additive
US4265748A (en) * 1980-01-11 1981-05-05 Tecnocar S P A Lubricant filter for internal combustion engines
DE3019141A1 (en) * 1980-01-11 1981-07-16 Tecnocar S.p.A., 10095 Grugliasco, Torino OIL FILTERS FOR COMBUSTION ENGINES
FR2473622A1 (en) * 1980-01-11 1981-07-17 Tecnocar Spa LUBRICANT FILTER FOR INTERNAL COMBUSTION ENGINES
US5478463A (en) * 1989-09-07 1995-12-26 Exxon Chemical Patents Inc. Method of reducing sludge and varnish precursors in lubricating oils
US5042617A (en) * 1989-09-07 1991-08-27 Exxon Research & Engineering Company Method of reducing the presence of sludge in lubricating oils
WO1994000677A1 (en) * 1992-06-30 1994-01-06 Mezhotraslevoe Nauchno-Proizvodstvennoe Obyedinenie 'ekologia' Device providing for tribochemical regime in lubrication system of mechanism
US5527452A (en) * 1992-06-30 1996-06-18 Metzhotraslevoe Nauchno-Proizvodstvennoe Obedinenie Ekologiya Device for providing tribochemical mode of operation in a lubrication system for a mechanism
WO1994015077A1 (en) * 1992-12-28 1994-07-07 Mezhotraslevoie Nauchno-Proizvodstvennoie Obiedineniie 'ekologia' Device for creating a tribochemical regime in a lubrication system for a mechanical device
US5520800A (en) * 1992-12-28 1996-05-28 Zakrytoye Aktsionernoye Obshchestvo "Troiler-Korporatsiya" Device to provide a tribochemical mode of operation in a lubrication system for a mechanism
US5507942A (en) * 1994-02-22 1996-04-16 Davco Manufacturing L.L.C. Fuel filter assembly
USRE37165E1 (en) * 1994-02-22 2001-05-08 Davco Manufacturing L.L.C. Fuel filter assembly
US5766449A (en) * 1994-02-22 1998-06-16 Davco Manufacturing L.L.C. Fuel filter assembly
US5591330A (en) * 1994-05-25 1997-01-07 T/F Purifiner, Inc. Oil filter containing an oil soluble thermoplastic additive material therein
WO1996020368A1 (en) * 1994-12-26 1996-07-04 Genvol Corp. Esteblishment Device for establishing a tribochemical operating mode in a mechanism lubrication system
US5753116A (en) * 1995-10-28 1998-05-19 Ing. Walter Hengst Gmbh & Co. Coolant filter
EP0889115A3 (en) * 1997-07-03 2000-01-19 Toyota Jidosha Kabushiki Kaisha An engine oil deterioration preventing agent and device
EP0889115A2 (en) * 1997-07-03 1999-01-07 Toyota Jidosha Kabushiki Kaisha An engine oil deterioration preventing agent and device
US6238554B1 (en) 1999-06-16 2001-05-29 Fleetguard, Inc. Fuel filter including slow release additive
US6860241B2 (en) 1999-06-16 2005-03-01 Dober Chemical Corp. Fuel filter including slow release additive
DE10029539B4 (en) * 2000-06-15 2012-12-13 Mann + Hummel Gmbh Filter with a ring-shaped filter medium
US20020038780A1 (en) * 2000-06-15 2002-04-04 Guenter Jokschas Filter with an annularly constructed filter medium
DE10029539A1 (en) * 2000-06-15 2001-12-20 Mann & Hummel Filter Filters with a ring-shaped filter medium
US6852217B2 (en) * 2000-06-15 2005-02-08 Filterwerk Mann & Hummel Gmbh Filter with an annularly constructed filter medium
US9079129B2 (en) 2000-07-25 2015-07-14 Davco Technology, Llc Filter cartridge with divider
US20110017658A1 (en) * 2000-07-25 2011-01-27 Davco Technology, Llc Filter Cartridge with Pressure Relief Valve
US7854837B2 (en) 2000-07-25 2010-12-21 Davco Technology, Llc Filter cartridge with pressure relief valve
US20090139915A1 (en) * 2000-07-25 2009-06-04 Davco Technology, Llc Fluid Filter with Pressure Relief Valve and Bypass Valve
US20090065411A1 (en) * 2000-07-25 2009-03-12 Davco Technology, Llc Filter Cartridge with Pressure Relief Valve
US20030122104A1 (en) * 2001-02-12 2003-07-03 Dober Chemical Corporation Liquid replacement systems
US6841065B2 (en) 2001-03-07 2005-01-11 Davco Manufacturing, L.L.C. Fluid filter with pressure relief valve
US20030111396A1 (en) * 2001-03-07 2003-06-19 Smith Paul B. Fluid filter with pressure relief valve
US6505597B2 (en) * 2001-05-30 2003-01-14 Honeywell International Inc. Cleansing oil filter containing quick-release liquid antioxidant/additive solution, and method of using same to convert an engine from petroleum-based oil to botanically-based oil
AU2002323231B2 (en) * 2001-08-24 2008-01-31 Cummins Filtration Inc. Controlled release of additives in fluid systems
US6827750B2 (en) 2001-08-24 2004-12-07 Dober Chemical Corp Controlled release additives in fuel systems
US7591279B2 (en) 2001-08-24 2009-09-22 Cummins Filtration Ip Inc. Controlled release of additives in fluid systems
US7581558B2 (en) 2001-08-24 2009-09-01 Cummins Filtration Ip Inc. Controlled release of additives in fluid systems
US8109287B2 (en) 2001-08-24 2012-02-07 Cummins Filtration Ip, Inc. Controlled release of additives in fluid systems
US7001531B2 (en) 2001-08-24 2006-02-21 Dober Chemical Corp. Sustained release coolant additive composition
GB2394431B (en) * 2001-08-24 2006-02-22 Dober Chemical Corp Controlled release of additives in fluid systems
US6835218B1 (en) 2001-08-24 2004-12-28 Dober Chemical Corp. Fuel additive compositions
US20070000831A1 (en) * 2001-08-24 2007-01-04 Fleetguard, Inc. Controlled release of additives in cooling systems
GB2394431A (en) * 2001-08-24 2004-04-28 Dober Chemical Corp Controlled release of additives in fluid systems
WO2003018163A1 (en) * 2001-08-24 2003-03-06 Dober Chemical Corporation Controlled release of additives in fluid systems
US7938277B2 (en) 2001-08-24 2011-05-10 Dober Chemical Corporation Controlled release of microbiocides
US20040091654A1 (en) * 2001-08-24 2004-05-13 Fleetguard, Inc. Controlled release of additives in cooling systems
US20080296234A1 (en) * 2001-08-24 2008-12-04 Dober Chemical Corporation Controlled release of microbiocides
US8076273B2 (en) 2002-07-16 2011-12-13 The Lubrizol Corportion Slow release lubricant additives gel
US7417012B2 (en) 2002-07-16 2008-08-26 The Lubrizol Corporation Slow release lubricant additives gel
US20080257803A1 (en) * 2002-07-16 2008-10-23 The Lubrizol Corporation Slow Release Lubricant Additives Gel
US20100317553A1 (en) * 2002-07-16 2010-12-16 Burrington James D Slow Release Lubricant Additives Gel
US20050085399A1 (en) * 2002-07-16 2005-04-21 Burrington James D. Slow release lubricant additives gel
US6843916B2 (en) 2002-07-16 2005-01-18 The Lubrizol Corporation Slow release lubricant additives gel
US8299000B2 (en) 2002-07-16 2012-10-30 The Lubrizol Corporation Slow release lubricant additives gel
US20040014614A1 (en) * 2002-07-16 2004-01-22 Burrington James D. Slow release lubricant additives gel
US20050137097A1 (en) * 2002-07-16 2005-06-23 The Lubrizol Corporation Controlled release of additive gel(s) for functional fluids
US7799745B2 (en) 2002-07-16 2010-09-21 The Lubrizol Corporation Slow release lubricant additives gel
US7384896B2 (en) 2002-07-16 2008-06-10 The Lubrizol Corporation Controlled release of additive gel(s) for functional fluids
US7534747B2 (en) 2003-06-25 2009-05-19 The Lubrizol Corporation Gels that reduce soot and/or emissions from engines
US20040266631A1 (en) * 2003-06-25 2004-12-30 The Lubrizol Corporation Gels that reduce soot and/or emissions from engines
US7160451B2 (en) 2004-03-05 2007-01-09 Donaldson Company, Inc. Liquid filter assembly for use with treatment agent and methods
US20070235378A1 (en) * 2004-03-05 2007-10-11 Donaldson Corporation Company, Inc. Top Load Liquid Filter Assembly for Use with Treatment Agent; and, Methods
US20050194301A1 (en) * 2004-03-05 2005-09-08 Hacker John R. Liquid filter assembly for use with treatment agent; and, methods
US20060065584A1 (en) * 2004-03-05 2006-03-30 Donaldson Company, Inc. Liquid filter assembly for use with treatment agent and methods
US7238285B2 (en) 2004-03-05 2007-07-03 Donaldson Company, Inc. Liquid filter assembly for use with treatment agent; and, methods
US8034145B2 (en) 2004-06-14 2011-10-11 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US11291943B2 (en) 2004-06-14 2022-04-05 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US10603618B2 (en) 2004-06-14 2020-03-31 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US8480779B2 (en) * 2004-06-14 2013-07-09 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US9937455B2 (en) 2004-06-14 2018-04-10 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US9120047B2 (en) 2004-06-14 2015-09-01 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US11207632B2 (en) 2004-08-06 2021-12-28 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US20090064646A1 (en) * 2004-08-06 2009-03-12 Donaldson Company, Inc. Air filter arrangement; assembly; and methods
US8906128B2 (en) 2004-08-06 2014-12-09 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US11759744B2 (en) 2004-08-06 2023-09-19 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US10556201B2 (en) 2004-08-06 2020-02-11 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US9795911B2 (en) 2004-08-06 2017-10-24 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US8277532B2 (en) 2004-08-06 2012-10-02 Donaldson Company, Inc. Air filter arrangement; assembly; and methods
US8496723B2 (en) 2005-01-13 2013-07-30 Donaldson Company, Inc. Air filter arrangement
US20090151311A1 (en) * 2005-01-13 2009-06-18 Donaldson Company, Inc. Air filter cartridge and air cleaner assembly
US10315144B2 (en) 2005-01-13 2019-06-11 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US10421034B2 (en) 2005-01-13 2019-09-24 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US9527023B2 (en) 2005-01-13 2016-12-27 Donaldson Comapny, Inc. Air filter arrangement; assembly; and, methods
US9180399B2 (en) 2005-01-13 2015-11-10 Donaldson Company, Inc. Air filter arrangement
US8292983B2 (en) 2005-01-13 2012-10-23 Donaldson Company, Inc. Air filter cartridge and air cleaner assembly
US11951429B2 (en) 2005-01-13 2024-04-09 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US11826689B2 (en) 2005-01-13 2023-11-28 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US10864475B2 (en) 2005-01-13 2020-12-15 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US8636820B2 (en) 2005-01-13 2014-01-28 Donaldson Company, Inc. Air filter arrangement
US11020699B2 (en) 2005-01-13 2021-06-01 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US8709119B2 (en) 2005-01-13 2014-04-29 Donaldson Company, Inc. Air filter cartridge and air cleaner assembly
US10065145B2 (en) 2005-01-13 2018-09-04 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US7625419B2 (en) 2006-05-10 2009-12-01 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US8062399B2 (en) 2006-05-10 2011-11-22 Donaldson Company, Inc. Air filter arrangement; assembly; and, methods
US8328897B2 (en) 2006-05-10 2012-12-11 Donaldson Company, Inc. Air cleaner arrangement; assembly; and, methods
US20100219112A1 (en) * 2006-08-28 2010-09-02 Gerwin Weston H Additive dispersing filter and method of making
US8388838B2 (en) * 2006-08-28 2013-03-05 Fram Group Ip Llc Additive dispersing filter and method of making
BE1017381A3 (en) * 2006-12-06 2008-07-01 Atlas Copco Airpower Nv Protecting compressor oil against oxidation, by contacting oil with antioxidants immobilized on substrate
US8425772B2 (en) 2006-12-12 2013-04-23 Cummins Filtration Ip, Inc. Filtration device with releasable additive
US20080188386A1 (en) * 2007-02-05 2008-08-07 The Lubrizol Corporation Low Ash Controlled Release Gels
US8022021B2 (en) 2007-02-05 2011-09-20 The Lubrizol Corporation Low ash controlled release gels
US10422306B2 (en) 2007-09-07 2019-09-24 Donaldson Company, Inc. Air filter assembly; components thereof; and, methods
US9555370B2 (en) 2007-09-07 2017-01-31 Donaldson Company, Inc. Air filter assembly; components thereof; and, methods
US7883638B2 (en) 2008-05-27 2011-02-08 Dober Chemical Corporation Controlled release cooling additive compositions
US20090294379A1 (en) * 2008-05-27 2009-12-03 Dober Chemical Corporation Controlled release of additive compositions
US20090301968A1 (en) * 2008-05-27 2009-12-10 Dober Chemical Corporation Devices and methods for controlled release of additive compositions
US8702995B2 (en) 2008-05-27 2014-04-22 Dober Chemical Corp. Controlled release of microbiocides
US20090304868A1 (en) * 2008-05-27 2009-12-10 Dober Chemical Corporation Controlled release cooling additive composition
US8591747B2 (en) 2008-05-27 2013-11-26 Dober Chemical Corp. Devices and methods for controlled release of additive compositions
US11833459B2 (en) 2009-04-09 2023-12-05 Cummins Filtration Ip, Inc. Filtration sealing system
US9623351B2 (en) 2009-04-09 2017-04-18 Cummins Filtration Ip, Inc. Filtration sealing system
US10112138B2 (en) 2009-04-09 2018-10-30 Cummins Filtration Ip, Inc. Filtration sealing system
US9782708B2 (en) 2009-04-09 2017-10-10 Cummins Filtration Ip, Inc. Filtration sealing system
US20110048857A1 (en) * 2009-09-01 2011-03-03 Caterpillar Inc. Lubrication system
US9586163B2 (en) 2009-09-17 2017-03-07 Davco Technology, Llc Filter assembly with modular relief valve interface
US8574430B2 (en) 2009-09-17 2013-11-05 Davco Technology, Llc Filter assembly with modular relief valve interface
US20110062061A1 (en) * 2009-09-17 2011-03-17 Davco Technology, Llc Filter Assembly with Modular Relief Valve Interface
US10434454B2 (en) 2011-06-30 2019-10-08 Donaldson Company, Inc. Filter cartridge
DE102013000337A1 (en) 2013-01-11 2014-07-17 Mann + Hummel Gmbh filter device
US20150343340A1 (en) * 2013-01-11 2015-12-03 Mann+Hummel Gmbh Filter Device
WO2014108260A1 (en) * 2013-01-11 2014-07-17 Mann+Hummel Gmbh Filter device
US10058800B2 (en) * 2013-01-11 2018-08-28 Mann+Hummel Gmbh Filter device
US11298643B2 (en) 2013-06-28 2022-04-12 Donaldson Company, Inc. Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US11752460B2 (en) 2013-06-28 2023-09-12 Donaldson Company, Inc. Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US10046260B2 (en) 2013-06-28 2018-08-14 Donaldson Company, Inc. Air filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US9320997B2 (en) 2013-06-28 2016-04-26 Donaldson Company, Inc. Air filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US10610816B2 (en) 2013-06-28 2020-04-07 Donaldson Company, Inc. Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US11772026B2 (en) 2014-09-15 2023-10-03 Donaldson Company, Inc. Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US11110382B2 (en) 2014-12-27 2021-09-07 Donaldson Company, Inc. Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US11020698B2 (en) 2015-12-11 2021-06-01 Cummins Filtration Ip, Inc. Filter with variable cross-section axial seal
US11813559B2 (en) 2016-03-18 2023-11-14 Cummins Filtration Ip, Inc. Interlocked stable filter assembly
US11167234B2 (en) 2016-03-18 2021-11-09 Cummins Filtration Ip, Inc. Interlocked stable filter assembly
US11660560B2 (en) 2016-05-02 2023-05-30 Cummins Filtration Ip, Inc. Filter with interlocking housing interface
US11141687B2 (en) 2016-05-02 2021-10-12 Cummins Filtration Ip, Inc. Filter with interlocking housing interface
US11298640B2 (en) 2017-01-25 2022-04-12 Cummins Filtration Ip, Inc. Expandable threaded adaptor for threadless shell
US11724220B2 (en) 2017-02-21 2023-08-15 Cummins Filtration Ip, Inc. Undulated interlocking housing-endplate interface geometry
US11235275B2 (en) 2017-03-16 2022-02-01 Cummins Filtration Ip, Inc. Filtration sealing system
US11801466B2 (en) 2017-08-31 2023-10-31 Donaldson Company, Inc. Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US11198082B2 (en) 2017-08-31 2021-12-14 Donaldson Company, Inc. Filter cartridges; air cleaner assemblies; housings; features; components; and methods

Also Published As

Publication number Publication date
US4066559A (en) 1978-01-03

Similar Documents

Publication Publication Date Title
US3749247A (en) Addition of oxidation inhibitor to lubricating oil
US7581558B2 (en) Controlled release of additives in fluid systems
US3336223A (en) Method and means for maintaining an effective concentration of additives in oil
US4014794A (en) Oil filter adapter
US3884932A (en) Reaction product of alkyl or alkenyl succinic anhydrides with benzotriazole or methyl benzotriazole
AU2002323231A1 (en) Controlled release of additives in fluid systems
US3640872A (en) Automatic transmission fluid
BR0312711B1 (en) Lubricating additive gel and process for feeding one or more lubricating oil additives into a fluid
US9493724B2 (en) Delivery of substantially insoluble additives to functional fluids
US2862885A (en) Foam inhibition in hydrocarbon oils
US4115343A (en) Homogeneous dispersions of diorganopolysiloxane compositions in mineral oils
US2770530A (en) Method of oil testing and composition therefor
NO140677B (en) HYDRAULIC LIQUID MIXTURE, ESPECIALLY FOR USE IN AIRCRAFT
US5169564A (en) Thermooxidatively stable compositions
US2694682A (en) Oil composition of improved oxidative stability
US3554945A (en) Lubricating compositions containing alkylated polyhydroxy aromatic compounds
US3361667A (en) Lubricating compositions
US3236771A (en) Anti-chatter gear lubrication
JPH04500233A (en) α-olefin polymer
US3898168A (en) Prevention of magnesium carbonate precipitation by water from crankcase oil containing high base magnesium sulfonate
US3538003A (en) Brake fluids
US3696049A (en) Corrosion inhibiting composition and use thereof
US2550981A (en) Method of inhibiting fogs in hydrocarbon products
US3388068A (en) Nonsquawking automatic transmission fluids
US2823183A (en) Air filter oil