US3745726A - Floor joint cover assembly - Google Patents

Floor joint cover assembly Download PDF

Info

Publication number
US3745726A
US3745726A US00198602A US3745726DA US3745726A US 3745726 A US3745726 A US 3745726A US 00198602 A US00198602 A US 00198602A US 3745726D A US3745726D A US 3745726DA US 3745726 A US3745726 A US 3745726A
Authority
US
United States
Prior art keywords
post
assembly
joint
biasing means
bight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00198602A
Inventor
W Thom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARCHITECTURAL ART Mfg Inc
Original Assignee
ARCHITECTURAL ART Mfg Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARCHITECTURAL ART Mfg Inc filed Critical ARCHITECTURAL ART Mfg Inc
Application granted granted Critical
Publication of US3745726A publication Critical patent/US3745726A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • E04B1/68Sealings of joints, e.g. expansion joints
    • E04B1/6803Joint covers
    • E04B1/6804Joint covers specially adapted for floor parts

Definitions

  • ABSTRACT A cover assembly for a floor joint utilizes the combina tion of a bowed leaf spring spanning the joint and a coiled compression spring extending vertically in the joint to maintain an essentially stable holding bias on the cover plate of the assembly during relative shifting of the floor members of the joint caused by normal thermal effects on the members.
  • the leaf spring is designed to break upon excessive movement of the floor members such as by earthquakes, thus releasing the cover plate before the latter can be permanently damaged.
  • This invention relates to an improved cover assembly for expansion joints, particularly floor joints.
  • the cover plate of a floor joint cover assembly is exposed to constant daily traffic over the floor. Accordingly, it is extremely important that the plate be held tightly against the floor over the joint so that the plate does not present a hazard to the moving traffic. Moreover, a tight seal is important in preventing moisture and refuse from entering the joint.
  • the relatively thin aluminum cover plate could become deformed during expansion of the floor members because of an excessive buildup of holding bias through the rigid connection between the plate and leaf spring, thereby necessitating replacement or repair of the damaged plate, both of which were undesirable from an economical standpoint.
  • the holding bias on the cover plate was directly reduced by a proportionate amount, thereby loosening the plate and increasing the chances of accidents and moisture accumulation.
  • a floorjoint assembly having opposed carrier sections supporting a cover plate thereover which is held in position by the yieldable interaction of a leaf spring spanning the joint and a coil spring extending vertically in the joint, such interaction resulting in the maintenance of an essentially stable holding bias on the plate over the normal range of thermally caused expansion and contraction of the structural floor members of the joint.
  • Another important object of the invention is the provision of a leaf spring as aforesaid which is designed to break along lines of bend thereof upon excessive relative shifting of the floor members, such as during an earthquake, before the cover plate can be structurally damaged, thereby releasing the plate.
  • a further important object of the present invention is to provide a cover assembly as aforesaid having a vertical stabilizing post which passes through the leaf spring and permits canting of the latter relative to the post during irregular, four-way shifting of the floor members.
  • Still another important object of the instant invention is the provision of means for precluding rotation of the post when the latter is'connected to the cover plate during installation of the assembly.
  • FIG. 1 is a perspective, cross-sectional view of a floor joint installation utilizing a cover assembly constructed in accordance with the principles of the present invention
  • FIG. 2 is a fragmentary, top plan view of the installation of FIG. 1 on a reduced scale, portions of the cover plate thereof being broken away to reveal components of the assembly therebelow;
  • FIG. 3 is a vertical, cross-sectional view of an installation utilizing a second embodiment of the present invention especially adapted for installations having joints smaller that that shown in FIG. 1;
  • FIG. 4 is a vertical cross-sectional view of the installation of FIG. 3 illustrating the canting action of the assembly during four-way shifting of the floor members;
  • FIG. 5 is an enlarged elevational view of components of the first embodiment illustrating the relationship of the components in both the normal and unstressed condition thereof;
  • FIG. 6 is a top plan view of the components of FIG.
  • FIG. 7 is a view similar to FIG. 5 of components of the second embodiment'of the invention.
  • FIG. 8 is a top plan view of the components of FIG. 7 similar to FIG. 6.
  • a pair of solid structural members 10 are shown which comprise, for example, sections of the floor ofa building.
  • the members 10 are illustrated as being constructed from cementitious material, although it is to be understood that the principles of the present invention are not limited to structural members of this particular construction.
  • Members 10 are spaced apart to present an open joint 12 therebetween, and each has an elongated, right angle carrier section 14 of the cover assembly integral therewith covering portions of the interior wall of the member 10 and the top margin of the latter.
  • Sections 14 are identical in configuration and may be conveniently constructed of an extrudable material such as aluminum or the like, such that the somewhat irregular projections and channels on each section 14 may be easily formed.
  • Sections 14 are preferably embedded in the respective floor members 10 during construction of the latter, and a cavity 16 on each section 14 between the vertical wall 18 and horizontal shelf 20 thereof extends longitudinally of section 14 to capture a number of longitudinally spaced nuts 22 for corresponding anchor bolts 24 embedded deeply within the corresponding floor member 10.
  • a pair of opposed grooves 26 in the walls 18 on opposite sides of joint 12 extend longitudinally of the latter for supporting an optional, downwardly looped, conventional drip strip (not shown) within joint 12.
  • Each shelf 20 is disposed a short distance below the upper surface of the corresponding floor member 10 and is provided with a short, upstanding hook-shaped wall 28.
  • a pair of vinyl or rubber sealing strips 30 are disposed on respective shelves 20 interlocked with walls 28 and flush with the top surface of members 10.
  • the cover assembly also includes a flat, elongated cover plate 32 of extruded aluminum or other suitable material which overlies joint 12 and has a pair of downwardly extending ribs 34 along opposite side margins thereof which are received within upwardly opening channels 36 in the sealing strips 30.
  • the recessed nature of shelves 20 permit plate 32 to lie flush with the upper surfaces of the sealing strips 30, walls 28 and groove members 10.
  • a series of bowed, generally U- shaped, resilient leaf springs 38 of spring steel are disposed below plate 32 within joint 12 at approximately 18 inch intervals, and each cooperates with a coil compression spring 40 to exert holding bias on plate 32 through a post 42 during relative shifting of the floor members 10.
  • Spring 38 has a pair of legs 44 interconnected by a bight 46 which, as shown clearly in FIG.
  • legs 44 are capable of flexing toward and away from each other in response to inwardly directed pressure applied to the outside of the legs 44.
  • Legs 44 converge as the bight 46 is approached and lie against opposed, sloping upper faces 48 of walls 18 when installed with the upper inturned tips 50 of legs 44 bearing against the underside of an overhanging portion of each shelf 20.
  • a pair of upturned stiffening flanges 52 on opposite longitudinal sides of the bight 46 prevent the latter from flexing during movement of the legs 44 toward or away from one another.
  • the rigid, rectangular or hexagonal post 42 for each set of springs 38 and 40 presents a plurality of flat sides 54 and has its upper interior end threaded to receive a flathead bolt 56 projecting through the cover plate 32, whereby to firmly secure the post 42 to the plate 32.
  • Post 42 passes through a polygonal opening 58 in bight 46 having the same number of sides as post 42 to preclude rotation of the latter relative to spring 38, yet permit linear movement of bight 46 along post 42.
  • the coil spring 40 is carried by the lower portion of post 42 extending beyond bight 46 and is trapped between a lower washer 60 affixed to post 42 and the un derside of bight 46.
  • An upper washer 62 affixed to post 42 above bight 46 limits the travel of bight 46 in an upward direction along post 42.
  • FIGS. 3, 4, 7 and 8 The installation shown in FIGS. 3, 4, 7 and 8 is identical to that previously described, except in certain respects which adapt the second embodiment for joints which are narrower than joint 12 of FIG. 1. Accordingly, components of the installation in FIGS. 3, 4, 7 and 8 are identified by the same numerals used for the first embodiment with the addition of the letter a.
  • cover plate 32a is correspondingly narrower
  • post 42a is shorter than post 42
  • springs 38a and 40a are smaller.
  • spring 38a has legs 44a and bight 46a which are rectilinear in configuration as opposed to the arcuate configuration of legs 44 and bight 46. In other structural and operational respects the two installations are identical.
  • each leaf spring thereof Prior to installation of the cover assembly, each leaf spring thereof is in its unstressed condition as illustrated by the widely extended legs 44 of spring 38 in FIG. 5.
  • the legs 44 are forced to flex toward one anothera sufficient extent to allow spring 38 to be snapped in place as tips 50 pass over the overhanging portion of the shelves into disposition therebeneath.
  • the bolt 56 for each post 42 is threaded into the latter, causing the post 42 to be drawn upwardly toward plate 32 against the biasing action of springs 38 and 40. Rotation of post 42 is prevented at this time because of the flat-sided configuration of post 42 and the similar configuration of opening 58.
  • the members 10 are likely to move in a combination of several different directions as illustrated in FIG. 4 wherein members 10 are shifted in both horizontal and vertical planes relative to one another.
  • This four-way shifting of members 10 has presented certain problems in the past because of the inability of spring-retaining structure within the joint to function properly under such distorted conditions.
  • the spring 38a the enlarged dimensions of opening 58a with respect to post 42a, permit spring 38a to cant relative to post 42a, thus relieving shear stress between post 42a, bolt 56a and cover plate 32a.
  • the inclined faces 48a facilitate such canting of the spring 38a at this time, and the springs 38a and 40a interact to maintain essentially stable holding bias on plate 320.
  • both embodiments of the springs 38 are tempered to a predetermined degree of brittleness suf flcient to cause the legs 44 to break along the lines of weakness presented by the bending junction of legs 44 with bight 46 prior to a point at which excessive bias could be applied to plate 32. Once breakage has occurred, the plate 32 is released and can be easily salvaged when the quake has subsided. Since the spring 38 is relatively inexpensive compared to the plate 32, this breakability feature affords a distinct economic advan' tage.
  • leaf spring 38 is yieldably movable along post 42 instead of being rigidly affixed thereto, assures that substantially less energy buildup or release thereof occurs than would otherwise be the case. Accordingly, over the normal range of relative shifting of members 10, the holding bias on plate 32 is maintained in an essentially stable condition.
  • first yieldable biasing means disposed in spanning relationship within the joint having a pair of resilient legs on opposite sides of the joint and a shiftable portion between said legs, said first biasing means being responsive to relative shifting of said members toward and away from one another to flex said legs and move said shiftable portion toward and away from said cover, to thereby vary the biasing energy of said first biasing means
  • second yieldable biasing means within said joint disposed for operation by said shiftable portion of said first biasing means during movement thereof, said second biasing means being coupled with said cover for biasing the latter toward the joint, and said first and second biasing means interacting with one another during relative shifting of said members to dissipate biasing energy otherwise accumulating in said first biasing means, thereby stabilizing the bias applied to said cover.
  • said first biasing means includes a generally U-shaped, resilient component presenting a pair of legs bendable toward and away from one another from opposite sides of the joint in response to corresponding shifting of said members and a bight interconnecting said legs, and wherein is provided a rigid post on said cover, projecting into said joint through-said bight, said post being shiftably received by said bight for movement of the latter along the post in response to bending of said legs.
  • said second biasing means includes a coil compression spring surrounding said post.

Abstract

A cover assembly for a floor joint utilizes the combination of a bowed leaf spring spanning the joint and a coiled compression spring extending vertically in the joint to maintain an essentially stable holding bias on the cover plate of the assembly during relative shifting of the floor members of the joint caused by normal thermal effects on the members. The leaf spring is designed to break upon excessive movement of the floor members such as by earthquakes, thus releasing the cover plate before the latter can be permanently damaged.

Description

United States Patent [191 Thom FLOOR JOINT COVER ASSEMBLY [75] Inventor: Wenzel W. Thom, Wichita, Kans.
[73] Assignee: Architectural Art Mfg., Inc.,
Wichita, Kans.
[22] Filed: Nov. 15, 1971 [21] Appl. No.: 198,602
[52] U.S. CI 52/98, 52/395, 52/466, 52/573, 94/18 [51] Int. Cl E04f 15/14 [58] Field of Search 52/395, 396, 393, 52/401, 573, 466, 463,459, 98, 461, 167; 94/18; 14/16 [56] References Cited UNITED STATES PATENTS 3,394,639 7/1968 Viehmann 52/395 X 3,372,521 3/1968 Thom [111 3,745,726 [451 July 17,1973
5/1970 Morgan 52/393 X 6/1972 Thom 52/573 X Primary Examiner-Price C. Faw, Jr. Attorney-Schmidt, Johnson, Hovey & Williams [57] ABSTRACT A cover assembly for a floor joint utilizes the combina tion of a bowed leaf spring spanning the joint and a coiled compression spring extending vertically in the joint to maintain an essentially stable holding bias on the cover plate of the assembly during relative shifting of the floor members of the joint caused by normal thermal effects on the members. The leaf spring is designed to break upon excessive movement of the floor members such as by earthquakes, thus releasing the cover plate before the latter can be permanently damaged.
I 12 Claims, 8 Drawing Figures PATENIEDJUL 1 1 7 3'. 745.126
sum 1 or 2 INVENTOR.
WeflZel W Th am if; 3 WWMM eys PATENTEDJUL 1 "(I975 3745'726 sum 2 or 2 46a Fig.8.
a 35 a 54 Q INVENTOR.
wenzel W Thom This invention relates to an improved cover assembly for expansion joints, particularly floor joints.
The cover plate of a floor joint cover assembly is exposed to constant daily traffic over the floor. Accordingly, it is extremely important that the plate be held tightly against the floor over the joint so that the plate does not present a hazard to the moving traffic. Moreover, a tight seal is important in preventing moisture and refuse from entering the joint.
Such a seal is difficult to maintain during relative shifting of the floor members which define the joint, especially when the shifting occurs in irregular combinations of directions, commonly referred to as four-way shifting. In the past many attempts have been made to provide cover assemblies which perform in the desired manner, yet most have resulted in assemblies which were less than satisfactory. For example, one concept was to use a yieldable leaf spring within the joint which extended across the latter and was rigidly connected to the overlying cover plate. In theory, the spring was to provide a yieldable holding bias on the cover plate, even during expansion and contraction of the floor member. In practice, the relatively thin aluminum cover plate could become deformed during expansion of the floor members because of an excessive buildup of holding bias through the rigid connection between the plate and leaf spring, thereby necessitating replacement or repair of the damaged plate, both of which were undesirable from an economical standpoint. Similarly, upon contraction of the members to widen the joint, the holding bias on the cover plate was directly reduced by a proportionate amount, thereby loosening the plate and increasing the chances of accidents and moisture accumulation.
An additional problem inherent in prior assemblies was their lack of safeguards for major shifting of the floor members such as encountered during earthquakes as opposedto normal thermal expansion and contraction. Because of the structural design of previous assemblies and the positive manner in which the cover plates thereof were held in overlying relationship to the joints, damage to the cover plates was almost certain to occur during such large-scale tremors, necessitating costly replacement of the cover plate and other components of the assembly as well. I
In view of the above problems, it is an important object of the present invention to provide a floorjoint assembly having opposed carrier sections supporting a cover plate thereover which is held in position by the yieldable interaction of a leaf spring spanning the joint and a coil spring extending vertically in the joint, such interaction resulting in the maintenance of an essentially stable holding bias on the plate over the normal range of thermally caused expansion and contraction of the structural floor members of the joint.
Another important object of the invention is the provision of a leaf spring as aforesaid which is designed to break along lines of bend thereof upon excessive relative shifting of the floor members, such as during an earthquake, before the cover plate can be structurally damaged, thereby releasing the plate.
A further important object of the present invention is to provide a cover assembly as aforesaid having a vertical stabilizing post which passes through the leaf spring and permits canting of the latter relative to the post during irregular, four-way shifting of the floor members.
Still another important object of the instant invention is the provision of means for precluding rotation of the post when the latter is'connected to the cover plate during installation of the assembly.
In the drawings:
FIG. 1 is a perspective, cross-sectional view of a floor joint installation utilizing a cover assembly constructed in accordance with the principles of the present invention;
FIG. 2 is a fragmentary, top plan view of the installation of FIG. 1 on a reduced scale, portions of the cover plate thereof being broken away to reveal components of the assembly therebelow;
FIG. 3 is a vertical, cross-sectional view of an installation utilizing a second embodiment of the present invention especially adapted for installations having joints smaller that that shown in FIG. 1;
FIG. 4 is a vertical cross-sectional view of the installation of FIG. 3 illustrating the canting action of the assembly during four-way shifting of the floor members;
FIG. 5 is an enlarged elevational view of components of the first embodiment illustrating the relationship of the components in both the normal and unstressed condition thereof;
FIG. 6 is a top plan view of the components of FIG.
FIG. 7 is a view similar to FIG. 5 of components of the second embodiment'of the invention; and
FIG. 8 is a top plan view of the components of FIG. 7 similar to FIG. 6.
Referring initially to FIG. 1, a pair of solid structural members 10 are shown which comprise, for example, sections of the floor ofa building. The members 10 are illustrated as being constructed from cementitious material, although it is to be understood that the principles of the present invention are not limited to structural members of this particular construction. Members 10 are spaced apart to present an open joint 12 therebetween, and each has an elongated, right angle carrier section 14 of the cover assembly integral therewith covering portions of the interior wall of the member 10 and the top margin of the latter. Sections 14 are identical in configuration and may be conveniently constructed of an extrudable material such as aluminum or the like, such that the somewhat irregular projections and channels on each section 14 may be easily formed.
Sections 14 are preferably embedded in the respective floor members 10 during construction of the latter, and a cavity 16 on each section 14 between the vertical wall 18 and horizontal shelf 20 thereof extends longitudinally of section 14 to capture a number of longitudinally spaced nuts 22 for corresponding anchor bolts 24 embedded deeply within the corresponding floor member 10. A pair of opposed grooves 26 in the walls 18 on opposite sides of joint 12 extend longitudinally of the latter for supporting an optional, downwardly looped, conventional drip strip (not shown) within joint 12. Each shelf 20 is disposed a short distance below the upper surface of the corresponding floor member 10 and is provided with a short, upstanding hook-shaped wall 28. A pair of vinyl or rubber sealing strips 30 are disposed on respective shelves 20 interlocked with walls 28 and flush with the top surface of members 10.
The cover assembly also includes a flat, elongated cover plate 32 of extruded aluminum or other suitable material which overlies joint 12 and has a pair of downwardly extending ribs 34 along opposite side margins thereof which are received within upwardly opening channels 36 in the sealing strips 30. The recessed nature of shelves 20 permit plate 32 to lie flush with the upper surfaces of the sealing strips 30, walls 28 and groove members 10. A series of bowed, generally U- shaped, resilient leaf springs 38 of spring steel are disposed below plate 32 within joint 12 at approximately 18 inch intervals, and each cooperates with a coil compression spring 40 to exert holding bias on plate 32 through a post 42 during relative shifting of the floor members 10. Spring 38 has a pair of legs 44 interconnected by a bight 46 which, as shown clearly in FIG. 5, are capable of flexing toward and away from each other in response to inwardly directed pressure applied to the outside of the legs 44. Legs 44 converge as the bight 46 is approached and lie against opposed, sloping upper faces 48 of walls 18 when installed with the upper inturned tips 50 of legs 44 bearing against the underside of an overhanging portion of each shelf 20. A pair of upturned stiffening flanges 52 on opposite longitudinal sides of the bight 46 prevent the latter from flexing during movement of the legs 44 toward or away from one another.
The rigid, rectangular or hexagonal post 42 for each set of springs 38 and 40 presents a plurality of flat sides 54 and has its upper interior end threaded to receive a flathead bolt 56 projecting through the cover plate 32, whereby to firmly secure the post 42 to the plate 32. Post 42 passes through a polygonal opening 58 in bight 46 having the same number of sides as post 42 to preclude rotation of the latter relative to spring 38, yet permit linear movement of bight 46 along post 42.
The coil spring 40 is carried by the lower portion of post 42 extending beyond bight 46 and is trapped between a lower washer 60 affixed to post 42 and the un derside of bight 46. An upper washer 62 affixed to post 42 above bight 46 limits the travel of bight 46 in an upward direction along post 42.
The installation shown in FIGS. 3, 4, 7 and 8 is identical to that previously described, except in certain respects which adapt the second embodiment for joints which are narrower than joint 12 of FIG. 1. Accordingly, components of the installation in FIGS. 3, 4, 7 and 8 are identified by the same numerals used for the first embodiment with the addition of the letter a. In view of the fact that the joint 12a is narrower than joint 12, cover plate 32a is correspondingly narrower, post 42a is shorter than post 42, and springs 38a and 40a are smaller. Further, spring 38a has legs 44a and bight 46a which are rectilinear in configuration as opposed to the arcuate configuration of legs 44 and bight 46. In other structural and operational respects the two installations are identical.
Prior to installation of the cover assembly, each leaf spring thereof is in its unstressed condition as illustrated by the widely extended legs 44 of spring 38 in FIG. 5. However, when the apparatus of FIG. is placed within the joint 12, the legs 44 are forced to flex toward one anothera sufficient extent to allow spring 38 to be snapped in place as tips 50 pass over the overhanging portion of the shelves into disposition therebeneath. After the cover plate 32 has been placed over joint 12 with ribs 34 inserted into the channels 36 of sealing strips 30, the bolt 56 for each post 42 is threaded into the latter, causing the post 42 to be drawn upwardly toward plate 32 against the biasing action of springs 38 and 40. Rotation of post 42 is prevented at this time because of the flat-sided configuration of post 42 and the similar configuration of opening 58. Once tightening of bolt 56 is completed, the assembly assumes the normal, stressed condition illustrated in FIG. 1 and in phantom in FIG. 5.
Under the effects of normal thermally caused expansion and contraction, the floor members 10 move relatively toward or away from one another within a total range of approximately three-eighths inches. In the event that such movement is simply-toward one another in linear fashion to constrict joint 12, legs 44 flex inwardly toward one another to urge bight 46 downwardly further into joint 12. If post 42 were rigidly secured to spring 38, it is apparent that such action would cause a buildup of biasing energy in spring 38 directly proportional to the movement of members 10, such buildup, in turn, being transmitted directly to plate 32. Without release of the progressively accumulating energy, it is likely that plate 32 could be permanently deformed, necessitating repair or replacement. However, since bight 46 is movable along post 42, such buildup is prevented from occurring as the springs 38 and 40 interact to establish an equilibrium point. The resultant force transmitted to post 42 and hence plate 32, is substantially less than that which would otherwise be applied to plate 32 if spring 38 and post 42 were directly joined. Accordingly, over the normal displacement range of three-eighths inches, the holding bias on plate 32 is maintained in an essentially stable condition such that damage to plate 32 is prevented.
Similarly, in the event that foor members 10 shift away from each other to expand joint 12, the legs 44 are allowed to flex outwardly from their normal flexed condition of FIG. 1, tending to move bight 46 upwardly toward plate 32. Once again, if post 42 and spring 38 were rigidly interconnected, such outward movement of legs 44 would substantially reduce the holding bias on plate 32. However, due to the shiftability of spring 38 along post 42 and its interaction with spring 40, the bias actually released is substantially less than would otherwise take place, and essentially stable force is applied against plate 32.
In many situations, the members 10 are likely to move in a combination of several different directions as illustrated in FIG. 4 wherein members 10 are shifted in both horizontal and vertical planes relative to one another. This four-way shifting of members 10 has presented certain problems in the past because of the inability of spring-retaining structure within the joint to function properly under such distorted conditions. However, as illustrated by the spring 38a, the enlarged dimensions of opening 58a with respect to post 42a, permit spring 38a to cant relative to post 42a, thus relieving shear stress between post 42a, bolt 56a and cover plate 32a. Moreover, the inclined faces 48a facilitate such canting of the spring 38a at this time, and the springs 38a and 40a interact to maintain essentially stable holding bias on plate 320.
While the leaf spring 38 cooperates with spring 40 to maintain stable, yieldable biasing pressure against plate 32, it also provides a means for releasing plate 32 under earthquake conditions before plate 32 can be damaged. To this end, both embodiments of the springs 38 are tempered to a predetermined degree of brittleness suf flcient to cause the legs 44 to break along the lines of weakness presented by the bending junction of legs 44 with bight 46 prior to a point at which excessive bias could be applied to plate 32. Once breakage has occurred, the plate 32 is released and can be easily salvaged when the quake has subsided. Since the spring 38 is relatively inexpensive compared to the plate 32, this breakability feature affords a distinct economic advan' tage.
It is to be understood that various combinations of spring strengths could be used to reach the desired interaction of springs 38 and 40 during shifting of members l0. Regardless of which combination is chosen as best suited for the situation at hand, the fact that leaf spring 38 is yieldably movable along post 42 instead of being rigidly affixed thereto, assures that substantially less energy buildup or release thereof occurs than would otherwise be the case. Accordingly, over the normal range of relative shifting of members 10, the holding bias on plate 32 is maintained in an essentially stable condition.
Having thus described the invention, what is claimed as new and desired to be secured by Letters Patent is:
1. A cover assembly for a joint defined by a pair of spaced-apart, relatively shiftable structural members, said assembly comprising:
a plate-like cover;
means supporting said cover in overlying relationship to said joint;
first yieldable biasing means disposed in spanning relationship within the joint having a pair of resilient legs on opposite sides of the joint and a shiftable portion between said legs, said first biasing means being responsive to relative shifting of said members toward and away from one another to flex said legs and move said shiftable portion toward and away from said cover, to thereby vary the biasing energy of said first biasing means,
second yieldable biasing means within said joint disposed for operation by said shiftable portion of said first biasing means during movement thereof, said second biasing means being coupled with said cover for biasing the latter toward the joint, and said first and second biasing means interacting with one another during relative shifting of said members to dissipate biasing energy otherwise accumulating in said first biasing means, thereby stabilizing the bias applied to said cover.
2. The assembly as claimed in claim 1, wherein is provided an elongated, rigid element on the cover projecting into said joint and supporting said second biasing means, said shiftable portion shifting relative to said element during movement toward and away from said cover to relax and'compress said second biasing means.
3. The assembly as claimed in claim 2, wherein said portion of the first biasing means is provided with an opening receiving said element for movement of the portion therealong, said opening being enlarged with respect to said element a sufficient extent to permit canting of said first biasing means relative to the element.
4. The assembly as claimed in claim 2, wherein said portion of the first biasing means is provided with an opening receiving said element, said element and said portion being provided with mutually interengageable means for precluding rotation of said element within said opening.
5. The assembly as claimed in claim 4, wherein said element has a plurality of flat sides, said opening corresponding in configuration to the element.
6. The assembly as claimed in claim 1, wherein said first biasing means includes a generally U-shaped, resilient component presenting a pair of legs bendable toward and away from one another from opposite sides of the joint in response to corresponding shifting of said members and a bight interconnecting said legs, and wherein is provided a rigid post on said cover, projecting into said joint through-said bight, said post being shiftably received by said bight for movement of the latter along the post in response to bending of said legs.
7. The assembly as claimed in claim 6, wherein is provided an abutment on said post below said bight, said second biasing means being interposed between said abutment and said bight.
8. The assembly as claimed in claim 7, wherein said second biasing means includes a coil compression spring surrounding said post.
9. The assembly as claimed in claim 6, wherein is provided an opening in said bight for the post, said opening being enlarged with respect to said post a sufficient extent to permit canting of said component relative to the post.
10. The assembly as claimed in claim 6, wherein said post has a plurality of flat sides, and wherein is provided an opening in said bight for the post conforming in configuration to said post whereby to preclude relative rotation between the component and the post.
11. The assembly as claimed in claim 6, wherein is provided an elongated flange integral with said bight and projecting outwardly therefrom, said flange extending generally in the direction of bending movement of said legs to preclude corresponding bending of said bight to a sufficient extent to prevent binding of the bight on the post during movement of the bight therealong.
12. The assembly as claimed in claim 6, wherein said component is constructed of material capable of breaking along the lines of bend of said legs upon excessive relative shifting of said members, thereby releasing said cover.

Claims (12)

1. A cover assembly for a joint defined by a pair of spacedapart, relatively shiftable structural members, said assembly comprising: a plate-like cover; means supporting said cover in overlying relationship to said joint; first yieldable biasing means disposed in spanning relationship within the joint having a pair of resilient legs on opposite sides of the joint and a shiftable portion between said legs, said first biasing means being responsive to relative shifting of said members toward and away from one another to flex said legs and move said shiftable portion toward and away from said cover, to thereby vary the biasing energy of said first biasing means, second yieldable biasing means within said joint disposed for operation by said shiftable portion of said first biasing means during movement thereof, said second biasing means being coupled with said cover for biasing the latter toward the joint, and said first and second biasing means interacting with one another during relative shifting of said members to dissipate biasing energy otherwise accumulating in said first biasing means, thereby stabilizing the bias applied to said cover.
2. The assembly as claimed in claim 1, wherein is provided an elongated, rigid element on the cover projecting into said joint and supporting said second biasing means, said shiftable portion shifting relative to said element during movement toward and away from said cover to relax and compress said second biasing means.
3. The assembly as claimed in claim 2, wherein said portion of the first biasing means is provided with an opening receiving said element for movement of the portion therealong, said opening being enlarged with respect to said element a sufficient extent to permit canting of said first biasing means relative to the element.
4. The assembly as claimed in claim 2, wherein said portion of the first biasing means is provided with an opening receiving said element, said element and said portion being provided with mutually interengageable means for precluding rotation of said element within said opening.
5. The assembly as claimed in claim 4, wherein said element has a plurality of flat sides, said opening corresponding in configuration to the element.
6. The assembly as claimed in claim 1, wherein said first biasing means includes a generally U-shaped, resilient component presenting a pair of legs bendable toward and away from one another from opposite sides of the joint in response to corresponding shifting of said members and a bight interconnecting said legs, and wherein is provided a rigid post on said cover, projecting into said joint through said bight, said post being shiftably received by said bight for movement of the latter along the post in response to bending of said legs.
7. The assembly as claimed in claim 6, wherein is provided an abutment on said post below said bight, said second biasing means being interposed between said abutment and said bight.
8. The assembly as claimed in claim 7, wherein said second biasing means includes a coil compression spring surrounding said post.
9. The assembly as claimed in claim 6, wherein is provided an opening in said bight for the post, said opening being enlarged with respect to said post a sufficient extent to permit canting of said component relative to the post.
10. The assembly as claimed in claim 6, wherein said post has a plurality of flat sides, and wherein is provided an opening in said bight for the post conforming in configuration to said post whereby to preclude relative rotation between the component and the post.
11. The assembly as claimed in claim 6, wherein is provided an elongated flange integral with said bight and projeCting outwardly therefrom, said flange extending generally in the direction of bending movement of said legs to preclude corresponding bending of said bight to a sufficient extent to prevent binding of the bight on the post during movement of the bight therealong.
12. The assembly as claimed in claim 6, wherein said component is constructed of material capable of breaking along the lines of bend of said legs upon excessive relative shifting of said members, thereby releasing said cover.
US00198602A 1971-11-15 1971-11-15 Floor joint cover assembly Expired - Lifetime US3745726A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US19860271A 1971-11-15 1971-11-15

Publications (1)

Publication Number Publication Date
US3745726A true US3745726A (en) 1973-07-17

Family

ID=22734046

Family Applications (1)

Application Number Title Priority Date Filing Date
US00198602A Expired - Lifetime US3745726A (en) 1971-11-15 1971-11-15 Floor joint cover assembly

Country Status (1)

Country Link
US (1) US3745726A (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4015302A (en) * 1974-05-10 1977-04-05 Secretary Of State For Environment In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Expansion joints
US4024689A (en) * 1975-07-18 1977-05-24 Pierre Alexandre Georges Louis Sectional joint and slab from cast material
US4589242A (en) * 1983-05-19 1986-05-20 Z-Tech Enterprises Inc. Joining element
US4967527A (en) * 1985-09-23 1990-11-06 Metalines, Inc. Expansion joint fire barrier systems
US4999962A (en) * 1985-09-23 1991-03-19 Metalines, Inc. Expansion joint fire barrier systems
US5020294A (en) * 1990-05-07 1991-06-04 Duda Robert W Expansion joint for covered panels
US5078529A (en) * 1991-02-19 1992-01-07 Construction Specialties, Inc. Seismic expansion joint cover
US5092094A (en) * 1990-05-07 1992-03-03 Duda Robert W Hingeable expansion joint for covered panels
US5140797A (en) * 1985-09-23 1992-08-25 Balco, Inc. Expansion joint fire barrier systems
US5263293A (en) * 1985-09-23 1993-11-23 Balco, Inc. Expansion joint fire barrier systems
US6108990A (en) * 1998-05-15 2000-08-29 Klamer; Steven M. Connector for building panels
WO2000077313A2 (en) * 1999-06-16 2000-12-21 Construction Specialties, Inc. Expansion joint cover with modular center plate
WO2001098599A1 (en) * 2000-06-19 2001-12-27 Seamus Michael Devlin Movement joint
US20030159389A1 (en) * 1997-04-25 2003-08-28 Sven Kornfalt Floor strip
US6751918B2 (en) 2000-08-30 2004-06-22 Constuction Research & Technology Gmbh Cover assembly for structural members
US20040206038A1 (en) * 2001-11-08 2004-10-21 Oliver Stanchfield Smooth flooring transitions
US20040258907A1 (en) * 1994-10-24 2004-12-23 Pergo (Europe) Ab Process for the production of a floor strip
US6860074B2 (en) 2001-11-08 2005-03-01 Pergo (Europe) Ab Transition molding
EP1516963A1 (en) * 2003-09-19 2005-03-23 Siplast-Icopal An expansion joint, and an elastically yielding member for use in an expansion joint
US20050144881A1 (en) * 2003-12-18 2005-07-07 Pergo (Europe) Ab Molding and flooring material
US20050217193A1 (en) * 1994-10-24 2005-10-06 Pergo (Europe) Ab Floor strip
US20060075706A1 (en) * 2001-08-01 2006-04-13 Russell Boxall System of protecting the edges and construction joints of cast in place concrete slabs
US7080491B1 (en) 1999-06-16 2006-07-25 E.M.E.H. Inc. Expansion joint cover with modular center
US20060201093A1 (en) * 2001-11-08 2006-09-14 Pergo (Europe) Ab Transition molding and installation methods therefor
US7131242B2 (en) 1995-03-07 2006-11-07 Pergo (Europe) Ab Flooring panel or wall panel and use thereof
US20080127590A1 (en) * 2006-11-22 2008-06-05 James Derrigan Cover assembly for structural members
US20080168729A1 (en) * 2006-10-18 2008-07-17 Pfleiderer Schweiz Ag Transitions having disparate surfaces
US20090145069A1 (en) * 2006-03-16 2009-06-11 Patrick Ronald Eve Joint Gap
US20100242393A1 (en) * 2009-03-27 2010-09-30 Sven Kornfalt Joint cover assembly and kit comprising this joint cover assembly as well as installation method thereof
US7877956B2 (en) 1999-07-05 2011-02-01 Pergo AG Floor element with guiding means
US20120144768A1 (en) * 2010-10-08 2012-06-14 Pergo AG Cover assembly
US8544233B2 (en) 2000-03-31 2013-10-01 Pergo (Europe) Ab Building panels
US8615952B2 (en) 2010-01-15 2013-12-31 Pergo (Europe) Ab Set of panels comprising retaining profiles with a separate clip and method for inserting the clip
US8627631B2 (en) 2000-06-20 2014-01-14 Flooring Industries Limited, Sarl Floor covering
US8661762B2 (en) 1995-03-07 2014-03-04 Pergo (Europe) Ab Flooring panel or wall panel and use thereof
US8857113B2 (en) * 2012-09-28 2014-10-14 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Locking apparatus
US8954188B2 (en) 2011-09-09 2015-02-10 Symbotic, LLC Storage and retrieval system case unit detection
US8959860B2 (en) 2011-01-12 2015-02-24 Construction Research & Technology Gmbh Expansion joint cover assembly for structural members
US8978334B2 (en) 2010-05-10 2015-03-17 Pergo (Europe) Ab Set of panels
US9008884B2 (en) 2010-12-15 2015-04-14 Symbotic Llc Bot position sensing
US20150113745A1 (en) * 2011-10-27 2015-04-30 Versaflex, Inc. Waterproof expansion joint
US9322162B2 (en) 1998-02-04 2016-04-26 Pergo (Europe) Ab Guiding means at a joint
US9409709B2 (en) 2013-03-13 2016-08-09 Symbotic, LLC Automated storage and retrieval system structure
US9464443B2 (en) 1998-10-06 2016-10-11 Pergo (Europe) Ab Flooring material comprising flooring elements which are assembled by means of separate flooring elements
US9528262B2 (en) 2008-11-20 2016-12-27 Emseal Joint Systems Ltd. Fire and water resistant expansion joint system
US9631362B2 (en) 2008-11-20 2017-04-25 Emseal Joint Systems Ltd. Precompressed water and/or fire resistant tunnel expansion joint systems, and transitions
US9637915B1 (en) 2008-11-20 2017-05-02 Emseal Joint Systems Ltd. Factory fabricated precompressed water and/or fire resistant expansion joint system transition
US9670666B1 (en) 2008-11-20 2017-06-06 Emseal Joint Sytstems Ltd. Fire and water resistant expansion joint system
US9689158B1 (en) 2009-03-24 2017-06-27 Emseal Joint Systems Ltd. Fire and water resistant expansion and seismic joint system
US9689157B1 (en) 2009-03-24 2017-06-27 Emseal Joint Systems Ltd. Fire and water resistant expansion and seismic joint system
US9739050B1 (en) 2011-10-14 2017-08-22 Emseal Joint Systems Ltd. Flexible expansion joint seal system
US20180112363A1 (en) * 2016-10-20 2018-04-26 Watson Bowman Acme Corporation Cover assembly for structural members
US9963872B2 (en) 2012-11-16 2018-05-08 Emseal Joint Systems LTD Expansion joint system
US10053857B1 (en) * 2017-10-26 2018-08-21 Inpro Corporation Expansion joint cover plate with retained spring biasing
US10077551B2 (en) 2015-10-05 2018-09-18 Illinois Tool Works Inc. Joint edge assembly and method for forming joint in offset position
US10119281B2 (en) 2016-05-09 2018-11-06 Illinois Tool Works Inc. Joint edge assembly and formwork for forming a joint, and method for forming a joint
US10316661B2 (en) 2008-11-20 2019-06-11 Emseal Joint Systems, Ltd. Water and/or fire resistant tunnel expansion joint systems
US20200131787A1 (en) * 2018-10-29 2020-04-30 Kwan Sik PARK Device for covering gap between temporary work platforms
US10851542B2 (en) 2008-11-20 2020-12-01 Emseal Joint Systems Ltd. Fire and water resistant, integrated wall and roof expansion joint seal system
CN113006297A (en) * 2021-03-08 2021-06-22 中建二局第三建筑工程有限公司 Maintenance-free floor deformation load-bearing device and construction method thereof
WO2021173087A1 (en) * 2020-02-25 2021-09-02 Dakrot Danismanlik Ltd Articulated loose-fit type bridge expansion joint mechanism
US11180995B2 (en) 2008-11-20 2021-11-23 Emseal Joint Systems, Ltd. Water and/or fire resistant tunnel expansion joint systems
US20210381174A1 (en) * 2016-03-07 2021-12-09 Schul International Co., Llc Durable joint seal system with flexibly attached cover plate and rib

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3372521A (en) * 1965-06-02 1968-03-12 Jones Cecil D Floor joint cover assembly
US3394639A (en) * 1966-05-24 1968-07-30 Specialties Const Expansion joint
US3511001A (en) * 1968-03-14 1970-05-12 William R Morgan Jr Resilient leveling means for floors
US3670470A (en) * 1970-12-18 1972-06-20 Architectural Art Mfg Roof joint cover assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3372521A (en) * 1965-06-02 1968-03-12 Jones Cecil D Floor joint cover assembly
US3394639A (en) * 1966-05-24 1968-07-30 Specialties Const Expansion joint
US3511001A (en) * 1968-03-14 1970-05-12 William R Morgan Jr Resilient leveling means for floors
US3670470A (en) * 1970-12-18 1972-06-20 Architectural Art Mfg Roof joint cover assembly

Cited By (148)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4015302A (en) * 1974-05-10 1977-04-05 Secretary Of State For Environment In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Expansion joints
US4024689A (en) * 1975-07-18 1977-05-24 Pierre Alexandre Georges Louis Sectional joint and slab from cast material
US4589242A (en) * 1983-05-19 1986-05-20 Z-Tech Enterprises Inc. Joining element
US5263293A (en) * 1985-09-23 1993-11-23 Balco, Inc. Expansion joint fire barrier systems
US4967527A (en) * 1985-09-23 1990-11-06 Metalines, Inc. Expansion joint fire barrier systems
US4999962A (en) * 1985-09-23 1991-03-19 Metalines, Inc. Expansion joint fire barrier systems
US5140797A (en) * 1985-09-23 1992-08-25 Balco, Inc. Expansion joint fire barrier systems
US5020294A (en) * 1990-05-07 1991-06-04 Duda Robert W Expansion joint for covered panels
US5092094A (en) * 1990-05-07 1992-03-03 Duda Robert W Hingeable expansion joint for covered panels
AU638617B2 (en) * 1991-02-19 1993-07-01 Construction Specialties, Inc. Seismic expansion joint cover
EP0499854A1 (en) * 1991-02-19 1992-08-26 Construction Specialties, Inc. Seismic expansion joint cover
US5078529A (en) * 1991-02-19 1992-01-07 Construction Specialties, Inc. Seismic expansion joint cover
US20050003149A1 (en) * 1994-10-24 2005-01-06 Pergo (Europe) Ab Floor strip
US8448399B2 (en) 1994-10-24 2013-05-28 Pergo (Europe) Ab Floor strip
US7640705B2 (en) 1994-10-24 2010-01-05 Pergo (Europe) Ab Floor strip
US7820287B2 (en) 1994-10-24 2010-10-26 Pergo AG Process for the production of a floor strip
US20060174556A1 (en) * 1994-10-24 2006-08-10 Pergo (Europe) Ab Floor strip
US7150134B2 (en) 1994-10-24 2006-12-19 Pergo (Europe) Ab Floor strip
US7065931B2 (en) 1994-10-24 2006-06-27 Pergo (Europe) Ab Floor strip
US20050217193A1 (en) * 1994-10-24 2005-10-06 Pergo (Europe) Ab Floor strip
US20040258907A1 (en) * 1994-10-24 2004-12-23 Pergo (Europe) Ab Process for the production of a floor strip
US7131242B2 (en) 1995-03-07 2006-11-07 Pergo (Europe) Ab Flooring panel or wall panel and use thereof
US8875465B2 (en) 1995-03-07 2014-11-04 Pergo (Europe) Ab Flooring panel or wall panel and use thereof
US8661762B2 (en) 1995-03-07 2014-03-04 Pergo (Europe) Ab Flooring panel or wall panel and use thereof
US9032685B2 (en) 1995-03-07 2015-05-19 Pergo (Europe) Ab Flooring panel or wall panel and use thereof
US8402709B2 (en) 1995-03-07 2013-03-26 Pergo (Europe) Ab Flooring panel or wall panel and use thereof
US20030159389A1 (en) * 1997-04-25 2003-08-28 Sven Kornfalt Floor strip
US6898911B2 (en) 1997-04-25 2005-05-31 Pergo (Europe) Ab Floor strip
US9322162B2 (en) 1998-02-04 2016-04-26 Pergo (Europe) Ab Guiding means at a joint
US6108990A (en) * 1998-05-15 2000-08-29 Klamer; Steven M. Connector for building panels
US9464443B2 (en) 1998-10-06 2016-10-11 Pergo (Europe) Ab Flooring material comprising flooring elements which are assembled by means of separate flooring elements
US7080491B1 (en) 1999-06-16 2006-07-25 E.M.E.H. Inc. Expansion joint cover with modular center
WO2000077313A3 (en) * 1999-06-16 2001-08-09 Specialties Const Expansion joint cover with modular center plate
WO2000077313A2 (en) * 1999-06-16 2000-12-21 Construction Specialties, Inc. Expansion joint cover with modular center plate
US7877956B2 (en) 1999-07-05 2011-02-01 Pergo AG Floor element with guiding means
US8578675B2 (en) 2000-03-31 2013-11-12 Pergo (Europe) Ab Process for sealing of a joint
US10626619B2 (en) 2000-03-31 2020-04-21 Unilin Nordic Ab Flooring material
US9260869B2 (en) 2000-03-31 2016-02-16 Pergo (Europe) Ab Building panels
US9255414B2 (en) 2000-03-31 2016-02-09 Pergo (Europe) Ab Building panels
US9316006B2 (en) 2000-03-31 2016-04-19 Pergo (Europe) Ab Building panels
US10156078B2 (en) 2000-03-31 2018-12-18 Pergo (Europe) Ab Building panels
US10233653B2 (en) 2000-03-31 2019-03-19 Pergo (Europe) Ab Flooring material
US9534397B2 (en) 2000-03-31 2017-01-03 Pergo (Europe) Ab Flooring material
US9611656B2 (en) 2000-03-31 2017-04-04 Pergo (Europe) Ab Building panels
US9677285B2 (en) 2000-03-31 2017-06-13 Pergo (Europe) Ab Building panels
US8544233B2 (en) 2000-03-31 2013-10-01 Pergo (Europe) Ab Building panels
WO2001098599A1 (en) * 2000-06-19 2001-12-27 Seamus Michael Devlin Movement joint
US9068356B2 (en) 2000-06-20 2015-06-30 Flooring Industries Limited, Sarl Floor covering
US9624676B2 (en) 2000-06-20 2017-04-18 Flooring Industries Limited, Sarl Floor covering
US8904729B2 (en) 2000-06-20 2014-12-09 Flooring Industries Limited, Sarl Floor covering
US10125498B2 (en) 2000-06-20 2018-11-13 Flooring Industries Limited, Sarl Floor covering
US9482013B2 (en) 2000-06-20 2016-11-01 Flooring Industries Limited, Sarl Floor covering
US9334657B2 (en) 2000-06-20 2016-05-10 Flooring Industries Limted, Sarl Floor covering
US9234356B2 (en) 2000-06-20 2016-01-12 Flooring Industries Limited, Sarl Floor covering
US9376823B1 (en) 2000-06-20 2016-06-28 Flooring Industries Limited, Sarl Floor covering
US9394699B1 (en) 2000-06-20 2016-07-19 Flooring Industries Limited, Sarl Floor covering
US9388586B1 (en) 2000-06-20 2016-07-12 Flooring Industries Limited, Sarl Floor covering
US8793958B2 (en) 2000-06-20 2014-08-05 Flooring Industries Limited, Sarl Floor covering
US10407920B2 (en) 2000-06-20 2019-09-10 Flooring Industries Limited, Sarl Floor covering
US9856657B2 (en) 2000-06-20 2018-01-02 Flooring Industries Limited, Sarl Floor covering
US9388585B1 (en) 2000-06-20 2016-07-12 Flooring Industries Limited, Sarl Floor covering
US8627631B2 (en) 2000-06-20 2014-01-14 Flooring Industries Limited, Sarl Floor covering
US8631625B2 (en) 2000-06-20 2014-01-21 Flooring Industries Limited, Sarl Floor covering
US6751918B2 (en) 2000-08-30 2004-06-22 Constuction Research & Technology Gmbh Cover assembly for structural members
US7143560B2 (en) 2000-08-30 2006-12-05 Construction Research & Technology Gmbh Cover assembly for structural members
US20040154255A1 (en) * 2000-08-30 2004-08-12 Construction Research & Technology Gmbh Cover assembly for structural members
US8302359B2 (en) * 2001-08-01 2012-11-06 Russell Boxall System of protecting the edges and construction joints of cast in place concrete slabs
US20060075706A1 (en) * 2001-08-01 2006-04-13 Russell Boxall System of protecting the edges and construction joints of cast in place concrete slabs
US20040206038A1 (en) * 2001-11-08 2004-10-21 Oliver Stanchfield Smooth flooring transitions
US8327595B2 (en) 2001-11-08 2012-12-11 Pergo (Europe) Ab Transition molding
US6860074B2 (en) 2001-11-08 2005-03-01 Pergo (Europe) Ab Transition molding
US7559177B2 (en) 2001-11-08 2009-07-14 Pergo (Europe) Ab Smooth flooring transitions
US20060196135A2 (en) * 2001-11-08 2006-09-07 Pergo (Europe) Ab Transition molding
US8793954B2 (en) 2001-11-08 2014-08-05 Pergo (Europe) Ab Transition molding
US7207143B2 (en) 2001-11-08 2007-04-24 Pergo (Europe) Ab Transition molding and installation methods therefor
US7640706B2 (en) 2001-11-08 2010-01-05 Pergo (Europe) Ab Transition molding
US20060201093A1 (en) * 2001-11-08 2006-09-14 Pergo (Europe) Ab Transition molding and installation methods therefor
US20070193172A1 (en) * 2001-11-08 2007-08-23 Pergo (Europe) Ab Transition molding
US20050150182A1 (en) * 2001-11-08 2005-07-14 Pergo (Europe) Ab Transition molding
EP1516963A1 (en) * 2003-09-19 2005-03-23 Siplast-Icopal An expansion joint, and an elastically yielding member for use in an expansion joint
US20050144881A1 (en) * 2003-12-18 2005-07-07 Pergo (Europe) Ab Molding and flooring material
US7735283B2 (en) 2005-05-23 2010-06-15 Pergo AG Transition molding and installation methods therefor
US8539731B2 (en) 2005-05-23 2013-09-24 Pergo (Europe) Ab Transition molding and installation methods therefor
US20070245662A1 (en) * 2005-05-23 2007-10-25 Pergo (Europe) Ab Transition molding and installation methods therefor
US20090145069A1 (en) * 2006-03-16 2009-06-11 Patrick Ronald Eve Joint Gap
US8484919B2 (en) 2006-10-18 2013-07-16 Pergo (Europe) Ab Transitions having disparate surfaces
US20080168729A1 (en) * 2006-10-18 2008-07-17 Pfleiderer Schweiz Ag Transitions having disparate surfaces
US20080127590A1 (en) * 2006-11-22 2008-06-05 James Derrigan Cover assembly for structural members
US8887463B2 (en) * 2006-11-22 2014-11-18 Construction Research & Technology Gmbh Cover assembly for structural members
US10934704B2 (en) 2008-11-20 2021-03-02 Emseal Joint Systems Ltd. Fire and/or water resistant expansion joint system
US10519651B2 (en) 2008-11-20 2019-12-31 Emseal Joint Systems Ltd. Fire resistant tunnel expansion joint systems
US10179993B2 (en) 2008-11-20 2019-01-15 Emseal Joint Systems, Ltd. Water and/or fire resistant expansion joint system
US10934702B2 (en) 2008-11-20 2021-03-02 Emseal Joint Systems Ltd. Fire and water resistant expansion joint system
US10316661B2 (en) 2008-11-20 2019-06-11 Emseal Joint Systems, Ltd. Water and/or fire resistant tunnel expansion joint systems
US10941562B2 (en) 2008-11-20 2021-03-09 Emseal Joint Systems Ltd. Fire and water resistant expansion joint system
US11180995B2 (en) 2008-11-20 2021-11-23 Emseal Joint Systems, Ltd. Water and/or fire resistant tunnel expansion joint systems
US9644368B1 (en) 2008-11-20 2017-05-09 Emseal Joint Systems Ltd. Fire and water resistant expansion joint system
US9528262B2 (en) 2008-11-20 2016-12-27 Emseal Joint Systems Ltd. Fire and water resistant expansion joint system
US10851542B2 (en) 2008-11-20 2020-12-01 Emseal Joint Systems Ltd. Fire and water resistant, integrated wall and roof expansion joint seal system
US10794056B2 (en) 2008-11-20 2020-10-06 Emseal Joint Systems Ltd. Water and/or fire resistant expansion joint system
US11459748B2 (en) 2008-11-20 2022-10-04 Emseal Joint Systems, Ltd. Fire resistant expansion joint systems
US9670666B1 (en) 2008-11-20 2017-06-06 Emseal Joint Sytstems Ltd. Fire and water resistant expansion joint system
US9631362B2 (en) 2008-11-20 2017-04-25 Emseal Joint Systems Ltd. Precompressed water and/or fire resistant tunnel expansion joint systems, and transitions
US9637915B1 (en) 2008-11-20 2017-05-02 Emseal Joint Systems Ltd. Factory fabricated precompressed water and/or fire resistant expansion joint system transition
US9689158B1 (en) 2009-03-24 2017-06-27 Emseal Joint Systems Ltd. Fire and water resistant expansion and seismic joint system
US9689157B1 (en) 2009-03-24 2017-06-27 Emseal Joint Systems Ltd. Fire and water resistant expansion and seismic joint system
US10787806B2 (en) 2009-03-24 2020-09-29 Emseal Joint Systems Ltd. Fire and/or water resistant expansion and seismic joint system
US10787805B2 (en) 2009-03-24 2020-09-29 Emseal Joint Systems Ltd. Fire and/or water resistant expansion and seismic joint system
US8528285B2 (en) 2009-03-27 2013-09-10 Pergo (Europe) Ab Joint cover assembly and kit comprising this joint cover assembly as well as installation method thereof
US20100242393A1 (en) * 2009-03-27 2010-09-30 Sven Kornfalt Joint cover assembly and kit comprising this joint cover assembly as well as installation method thereof
US8631623B2 (en) 2010-01-15 2014-01-21 Pergo (Europe) Ab Set of panels comprising retaining profiles with a separate clip and method for inserting the clip
US8615952B2 (en) 2010-01-15 2013-12-31 Pergo (Europe) Ab Set of panels comprising retaining profiles with a separate clip and method for inserting the clip
US9464444B2 (en) 2010-01-15 2016-10-11 Pergo (Europe) Ab Set of panels comprising retaining profiles with a separate clip and method for inserting the clip
US9115500B2 (en) 2010-01-15 2015-08-25 Pergo (Europe) Ab Set of panels comprising retaining profiles with a separate clip and method for inserting the clip
US9593491B2 (en) 2010-05-10 2017-03-14 Pergo (Europe) Ab Set of panels
US8978334B2 (en) 2010-05-10 2015-03-17 Pergo (Europe) Ab Set of panels
US20120144768A1 (en) * 2010-10-08 2012-06-14 Pergo AG Cover assembly
US9008884B2 (en) 2010-12-15 2015-04-14 Symbotic Llc Bot position sensing
US11884487B2 (en) 2010-12-15 2024-01-30 Symbotic Llc Autonomous transport vehicle with position determining system and method therefor
US10053286B2 (en) 2010-12-15 2018-08-21 Symbotic, LLC Bot position sensing
US9309050B2 (en) 2010-12-15 2016-04-12 Symbotic, LLC Bot position sensing
US11279557B2 (en) 2010-12-15 2022-03-22 Symbotic Llc Bot position sensing
US10221014B2 (en) 2010-12-15 2019-03-05 Symbotic, LLC Bot position sensing
US8959860B2 (en) 2011-01-12 2015-02-24 Construction Research & Technology Gmbh Expansion joint cover assembly for structural members
US9242800B2 (en) 2011-09-09 2016-01-26 Symbotic, LLC Storage and retrieval system case unit detection
US8954188B2 (en) 2011-09-09 2015-02-10 Symbotic, LLC Storage and retrieval system case unit detection
US9517885B2 (en) 2011-09-09 2016-12-13 Symbotic Llc Storage and retrieval system case unit detection
US9776794B2 (en) 2011-09-09 2017-10-03 Symbotic, LLC Storage and retrieval system case unit detection
US9739050B1 (en) 2011-10-14 2017-08-22 Emseal Joint Systems Ltd. Flexible expansion joint seal system
US20150113745A1 (en) * 2011-10-27 2015-04-30 Versaflex, Inc. Waterproof expansion joint
US9234321B2 (en) * 2011-10-27 2016-01-12 Versaflex, Inc. Waterproof expansion joint
US9995010B2 (en) * 2011-10-27 2018-06-12 Versaflex, Inc. Waterproof expansion joint
US8857113B2 (en) * 2012-09-28 2014-10-14 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Locking apparatus
US9963872B2 (en) 2012-11-16 2018-05-08 Emseal Joint Systems LTD Expansion joint system
US10544582B2 (en) 2012-11-16 2020-01-28 Emseal Joint Systems Ltd. Expansion joint system
US10196207B2 (en) 2013-03-13 2019-02-05 Symbotic, LLC Automated storage and retrieval system structure
US9409709B2 (en) 2013-03-13 2016-08-09 Symbotic, LLC Automated storage and retrieval system structure
US10385567B2 (en) 2015-10-05 2019-08-20 Illinois Tool Works Inc. Joint edge assembly and method for forming joint in offset position
US10077551B2 (en) 2015-10-05 2018-09-18 Illinois Tool Works Inc. Joint edge assembly and method for forming joint in offset position
US20210381174A1 (en) * 2016-03-07 2021-12-09 Schul International Co., Llc Durable joint seal system with flexibly attached cover plate and rib
US11499273B2 (en) * 2016-03-07 2022-11-15 Schul International Co., Llc Durable joint seal system with flexibly attached cover plate and rib
US10119281B2 (en) 2016-05-09 2018-11-06 Illinois Tool Works Inc. Joint edge assembly and formwork for forming a joint, and method for forming a joint
US20180112363A1 (en) * 2016-10-20 2018-04-26 Watson Bowman Acme Corporation Cover assembly for structural members
US10767320B2 (en) * 2016-10-20 2020-09-08 Watson Bowman Acme Corporation Cover assembly for structural members
US10053857B1 (en) * 2017-10-26 2018-08-21 Inpro Corporation Expansion joint cover plate with retained spring biasing
US20200131787A1 (en) * 2018-10-29 2020-04-30 Kwan Sik PARK Device for covering gap between temporary work platforms
WO2021173087A1 (en) * 2020-02-25 2021-09-02 Dakrot Danismanlik Ltd Articulated loose-fit type bridge expansion joint mechanism
CN113006297A (en) * 2021-03-08 2021-06-22 中建二局第三建筑工程有限公司 Maintenance-free floor deformation load-bearing device and construction method thereof

Similar Documents

Publication Publication Date Title
US3745726A (en) Floor joint cover assembly
US3394639A (en) Expansion joint
US5078529A (en) Seismic expansion joint cover
US3234702A (en) Anchoring system for the installation of slabs on vertical and overhead surfaces
US3447430A (en) Expansion joint cover
US4815247A (en) Compression seal with integral surface cover plate
US9181715B2 (en) Clip device for attaching structural member to a supporting structure
US3919820A (en) Wall structure and device for sealing thereof
US5189853A (en) Edge sealing devices for building structures
US4111584A (en) Expansion joints seal assembly
US3667182A (en) Building structures
EP0105015B1 (en) Improved standing seam metal floating roof assembly
DE20015534U1 (en) Clamp tab
EP0225430A2 (en) Non-penetrating mechanical fastener for roofing membrane and method of applying same
US2769212A (en) Weather plate
US5123225A (en) Panel, clip and method of mounting panel
US4649689A (en) Insulation fastener system
US2382456A (en) Wall or ceiling covering
US3864886A (en) Cover assembly for structural joints
US4506479A (en) Roof or wall covering and mounting member for a gutter bracket
US4473982A (en) Device for laying and stretching waterproof covering sheets
US3296762A (en) Roof expansion joint
US3803790A (en) Building panel structure
US3646716A (en) Weather seal for building structures
GB2078837A (en) Glazing bars