US3745280A - Pressure-operated electrical high voltage circuit breaker - Google Patents

Pressure-operated electrical high voltage circuit breaker Download PDF

Info

Publication number
US3745280A
US3745280A US00207293A US3745280DA US3745280A US 3745280 A US3745280 A US 3745280A US 00207293 A US00207293 A US 00207293A US 3745280D A US3745280D A US 3745280DA US 3745280 A US3745280 A US 3745280A
Authority
US
United States
Prior art keywords
circuit breaker
receiving vessel
valve
cylinder
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00207293A
Inventor
R Pratsch
H Beier
K Diskar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Application granted granted Critical
Publication of US3745280A publication Critical patent/US3745280A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/28Power arrangements internal to the switch for operating the driving mechanism
    • H01H33/30Power arrangements internal to the switch for operating the driving mechanism using fluid actuator
    • H01H33/34Power arrangements internal to the switch for operating the driving mechanism using fluid actuator hydraulic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/008Pedestal mounted switch gear combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/022Details particular to three-phase circuit breakers

Definitions

  • ABSTRACT A receiving vessel for displaced hydraulic fluid is positioned at the cylinder of the drive mechanism of an electrical circuit breaker having a hydraulic drive.
  • the receiving vessel is connected via a valve to the hydraulic system which includes a storage unit and a low pressure vessel.
  • the connection is provided via a single pipeline between the receiving vessel and the hydraulic system.
  • the valve connects the pipeline with either the receiving vessel or the cylinder, depending upon the pressure.
  • the circuit breaker is especially suitable for high voltage, high capacity operation.
  • the present invention relates to an electrical circuit breaker. More particularly, the invention relates to an electrical circuit breaker with a hydraulic drive.
  • German Published Patent Application No. 1,286,610 discloses an electrical circuit breaker having a hydraulic drive mechanism which includes a cylinder at high voltage potential.
  • a receiving vessel for displaced hydraulic fluid is provided at the cylinder. If there is a switching action or motion, the receiving vessel is connected to the cylinder via a control valve which is also at high voltage potential, so that hydraulic fluid may escape from the cylinder into the receiving vessel.
  • the same valve also controls the connection to a hydraulic system at ground potential.
  • the hydraulic system includes a storage unit, accumulator or storage tank and a low pressure vessel. Two pipelines are required for this connection.
  • a high pressure pipeline leads from the storage unit to the control valve at high voltage potential and from there to the cylinder.
  • a low pressure pipeline connects the receiving vessel, via the control valve, to a pump which has to fill up the storage unit.
  • the oil or fluid displaced from the cylinder may be conducted away without an appreciable increase in pressure, so that the switching process is not impeded.
  • This advantage is provided, however, at considerable cost.
  • the known control valve is a complicated multiplex valve and must be provided at high voltage potential. For this reason, two hydraulic lines must be run through the electrically highly stressed region between the high voltage and ground potential.
  • An object of the invention is to provide an electrical circuit breaker which overcomes the disadvantages of known circuit breakers of similar type.
  • Another object of the invention is to provide an electrical circuit breaker having a hydraulic drive, which circuit breaker is of considerably simple structure.
  • Another object of the invention is to provide an electrical circuit breaker for rapid breaking without delay by displaced fluid.
  • Still another object of the invention is to provide an electrical circuit breaker of simple structure which functions with efficiency, effectiveness and reliability.
  • Yet another object of the invention is to provide an electrical circuit breaker having a hydraulic drive and a receiving vessel for displaced hydraulic fluid positioned at the cylinder of the hydraulic drive, to provide rapid breaking which is not delayed by the displaced fluid.
  • a receiving vessel is connected via a valve to the hydraulic system of a circuit breaker.
  • the hydraulic system includes a storage unit and a low pressure vessel.
  • a single pipeline is provided between the storage unit and the hydraulic system and is connected to either the receiving vessel or the cylinder, depending on the pressure in the pipeline.
  • the valve provided at the receiving vessel is a hydraulic switch which establishes a connection to either the cylinder or the receiving vessel, depending upon the pressure condition in the pipeline.
  • the pressure condition in the pipeline depends upon whether or not the end of the pipeline away from the receiving vessel is connected to the storage unit via a control valve.
  • the control valve may be provided at ground potential, even if the cylinder is at high voltage potential, so that it is easy to operate, install and maintain.
  • a check valve may be connected in series with the pump in order to prevent loading of the pump during the operating stroke of the drive.
  • the constantly acting disconnecting force may be a spring force or the force of a constantly acting pressure medium which is maintained hydraulically in the one breaker position. If the drive is reversed by lowering the pressure, the cylinder is connected to the receiving vessel. The constantly acting force then forces the hydraulic fluid in the cylinder into the receiving vessel.
  • the unimpeded discharge of the hydraulic fluid displaced by the drive mechanism is particularly advantageous for electrical circuit breakers of several phases.
  • Each phase may have a cylinder, a valve and a receiving vessel.
  • the single pipeline of each phase is connected to the single storage unit of the circuit breaker via a control valve common to all phases. In this manner, all the phases have the same switching time for each stroke, regardless of the length of the pipeline between the cylinder and the storage unit so that, for example, the desired synchronism of the phases is provided without special adjustment in the important switching off operation.
  • FIG. 1 is a schematic diagram, partly in section, of a three phase embodiment of the electrical circuit breaker of the present invention having a hydraulic drive;
  • FIG. 2 is a sectional view, on an enlarged scale, of the receiving vessel of the hydraulic drive of the circuit breaker of FIG. 1.
  • the electrical circuit breaker illustrated in FIG. I operates at kilovolts.
  • a circuit breaker 1 comprises three equal phase columns 2, 3 and 4. Each of the columns 2, 3 and 4 is identical to the others, so that only the column 2 will be described in detail.
  • a breaker chamber 6 is supported by a standoff insulator 5 on the first phase column 2.
  • the breaker chamber 6 has a fixed contact element 7 and a movable contact pin 8 therein.
  • the movable contact pin 8 is afflxed to an actuator plunger or drive piston 9 which is provided in a cylinder 10 of a lower breaker part 11 of the column 2.
  • a receiving vessel 12 is connected to the cylinder 10.
  • the pressure fluid of the hydraulic drive is supplied by a storage unit, accumulator or storage tank 14.
  • the storage unit 14 is connected to the hydraulically parallel-connected drives of the individual phases via a common control valve 15.
  • a pump 16 is connected in series with a check valve 17 and the series combination is shunted across the control valve 15.
  • a single pipeline 21 extends from the drive of the first phase column 2 to the control valve 15.
  • a single pipeline 22 extends from the drive of the second phase column 3 to the control valve 15.
  • a single pipeline 23 extends from the drive of the third phase column 4 to the control valve 15.
  • a pressure-dependent valve 25, which is shown in detail in FIG. 2, is provided in each of the pipelines 21, 22 and 23.
  • a movable valve member 26 is provided in the valve 25. The movable valve member 26 is movable under the action of a spring 27 to normally occupy a position in a cylinder 28 shown in FIG. 2.
  • a valve seat 31 leading into the receiving vessel 12 is open or free. There is therefore a connection to a bore, aperture or duct 32 which opens into the cylinder 28, and, via a bore, aperture or duct 33, in the valve element 26 opening into the pipeline 21.
  • the receiving vessel 12 is thereby normally connected to the pipeline 21.
  • the pump 16 may thus draw hydraulic fluid from the receiving vessel 12 and force it into the storage unit 14 when the pressure in said storage unit drops.
  • the control valve 15 is opened. This causes the pressure medium or fluid which is under the pressure of the storage unit 14 to flow into the valve 25. When the fluid flows into the valve 25, it forces the movable valve element 26 upward, and said movable valve element closes off the valve seat 31. Simultaneously, the pressure medium or fluid flows through a duct, bore or aperture 35 and forces a spring-loaded valve head or cone 36 away from the opening of said duct, bore or aperture. This opens a path for the fluid to flow past the valve element 26 into a pipeline 37. The cylinder for the drive piston or plunger 9 of the circuitbreaker is connected to the pipeline 37. The circuit breaker is then closed and a disconnecting spring 38 (FIG. 1) is placed under tension.
  • the plunger or piston 9 In order to open the circuit breaker, the plunger or piston 9 is relieved of pressure by closing the valve 15. The disconnecting spring 38 then drives the contact pin 8 downward with the plunger or piston 9. The hydraulic fluid is thereby displaced. The displaced fluid flows into the receiving vessel 12, which is positioned directly at the drive mechanism of the circuit breaker. Due to the short connection paths between the plunger or piston 9 and the receiving vessel 12 the displaced fluid is but I of small volume. Thus, due to the displacement of the fluid, there can be no appreciable flow losses which can interfere with the switching process. The delay caused by the displacement of the hydraulic fluid is negligible and, primarily, equal in all the phases of the circuit breaker, regardless of how far the actuating cylinder is positioned from the common storage unit 14.
  • the hydraulic drive is provided in the lower part of the circuit breaker.
  • the circuit breaker of the invention having a single pipeline between the actuating cylinder and the hydraulic storage unit may also be utilized in circuit breakers in which the hydraulic pipeline leads through the stand-off insulator 5 to parts of the drive mechanism at high voltage.
  • An electrical high voltage, high capacity circuit breaker having a hydraulic drive including a cylinder, a receiving vessel for displaced hydraulic fluid positioned at the cylinder, a hydraulic system including a storage unit, a valve, and connecting means connecting the receiving vessel to the hydraulic system via the valve, said circuit breaker comprising a single pipeline between the receiving vessel and the hydraulic system, the valve connecting the single pipeline to one of the receiving vessel and the cylinder in dependence upon the pressure in the pipeline.
  • An electrical circuit breaker as claimed in claim 2 further comprising a pump, a check valve and means connecting the pump and check valve in series and in shunt with the control valve.
  • An electrical high voltage, high capacity circuit breaker having a hydraulic system including a storage unit and having a plurality of phases, each phase having a hydraulic drive including a cylinder, a receiving vessel for displaced hydraulic fluid positioned at the cylinder, a valve, and connecting means connecting the receiving vessel to the hydraulic system via the valve, each phase of said circuit breaker comprising a single pipeline between the receiving vessel of the phase and the' hydraulic system, the valve connecting the single pipeline to one of the receiving vessel and the cylinder of the phase in dependence upon the pressure in the pipeline. 7

Abstract

A receiving vessel for displaced hydraulic fluid is positioned at the cylinder of the drive mechanism of an electrical circuit breaker having a hydraulic drive. The receiving vessel is connected via a valve to the hydraulic system which includes a storage unit and a low pressure vessel. The connection is provided via a single pipeline between the receiving vessel and the hydraulic system. The valve connects the pipeline with either the receiving vessel or the cylinder, depending upon the pressure. The circuit breaker is especially suitable for high voltage, high capacity operation.

Description

United States Patent [1 1 Priitsch et al.
[1 1 3,745,280 [451- July 10,1973
[ PRESSURE-OPERATEDv ELECTRICAL HIGH VOLTAGE CIRCUIT BREAKER [75] Inventors: Rudolf Priitsch; Helmut Beier; Klaus Diskar, all of Berlin, Germany [73] Assignee: Siemens Aktiengesellschait, Berlin and Munich, Germany [22] Filed: Dec. 13, 1971 [21] Appl. No.: 207,293
[30] Foreign Application Priority Data Dec. 18, 1970 Germany P 20 64 798.7
[52] [1.8. CI. 200/82 B, 200/148 E [51] Int. Cl. HOIh 35/38 [58] Field of Search 137/624.1l; 200/82 R, 82 B, 148 E [56] References Cited UNITED STATES PATENTS 2,748,226 5/1956 MacNeill 200/148 E FOREIGN PATENTS OR APPLICATIONS Primary ExaminerRobe11 K. Schaefer Assistant ExaminerGerald P. Tolin Alt0rney- Arthur E. Wilfond, Herbert L. Lerner et al.
[57] ABSTRACT A receiving vessel for displaced hydraulic fluid is positioned at the cylinder of the drive mechanism of an electrical circuit breaker having a hydraulic drive. The receiving vessel is connected via a valve to the hydraulic system which includes a storage unit and a low pressure vessel. The connection is provided via a single pipeline between the receiving vessel and the hydraulic system. The valve connects the pipeline with either the receiving vessel or the cylinder, depending upon the pressure. The circuit breaker is especially suitable for high voltage, high capacity operation.
7 Claims, 2 Drawing Figures PRESSURE-OPERATED ELECTRICAL HIGH VOLTAGE CIRCUIT BREAKER The present invention relates to an electrical circuit breaker. More particularly, the invention relates to an electrical circuit breaker with a hydraulic drive.
German Published Patent Application No. 1,286,610 discloses an electrical circuit breaker having a hydraulic drive mechanism which includes a cylinder at high voltage potential. A receiving vessel for displaced hydraulic fluid is provided at the cylinder. If there is a switching action or motion, the receiving vessel is connected to the cylinder via a control valve which is also at high voltage potential, so that hydraulic fluid may escape from the cylinder into the receiving vessel. The same valve also controls the connection to a hydraulic system at ground potential. The hydraulic system includes a storage unit, accumulator or storage tank and a low pressure vessel. Two pipelines are required for this connection. A high pressure pipeline leads from the storage unit to the control valve at high voltage potential and from there to the cylinder. A low pressure pipeline connects the receiving vessel, via the control valve, to a pump which has to fill up the storage unit.
In the known circuit breaker, the oil or fluid displaced from the cylinder may be conducted away without an appreciable increase in pressure, so that the switching process is not impeded. This advantage is provided, however, at considerable cost. The known control valve is a complicated multiplex valve and must be provided at high voltage potential. For this reason, two hydraulic lines must be run through the electrically highly stressed region between the high voltage and ground potential.
An object of the invention is to provide an electrical circuit breaker which overcomes the disadvantages of known circuit breakers of similar type.
Another object of the invention is to provide an electrical circuit breaker having a hydraulic drive, which circuit breaker is of considerably simple structure.-
Another object of the invention is to provide an electrical circuit breaker for rapid breaking without delay by displaced fluid.
Still another object of the invention is to provide an electrical circuit breaker of simple structure which functions with efficiency, effectiveness and reliability.
Yet another object of the invention is to provide an electrical circuit breaker having a hydraulic drive and a receiving vessel for displaced hydraulic fluid positioned at the cylinder of the hydraulic drive, to provide rapid breaking which is not delayed by the displaced fluid.
In accordance with the present invention, a receiving vessel is connected via a valve to the hydraulic system of a circuit breaker. The hydraulic system includes a storage unit and a low pressure vessel. A single pipeline is provided between the storage unit and the hydraulic system and is connected to either the receiving vessel or the cylinder, depending on the pressure in the pipeline.
In the electrical circuit breaker of the invention, the valve provided at the receiving vessel is a hydraulic switch which establishes a connection to either the cylinder or the receiving vessel, depending upon the pressure condition in the pipeline. The pressure condition in the pipeline depends upon whether or not the end of the pipeline away from the receiving vessel is connected to the storage unit via a control valve. For this reason, the control valve may be provided at ground potential, even if the cylinder is at high voltage potential, so that it is easy to operate, install and maintain. Most important, however, is the fact that a single pipeline is sufficient between the storage unit and the cylinder, which may be at high voltage potential, and the receiving vessel.
It may be of advantage to bridge the control valve by a pump. This permits the receiving vessel to be emptied as soon as it is connected to the hydraulic system when the pressure in the pipeline is zero. A check valve may be connected in series with the pump in order to prevent loading of the pump during the operating stroke of the drive.
It is of advantage to design the circuit breaker of the invention in such a way that a constantly acting disconnecting force may be released by connecting the cylinder to the receiving vessel, which is controlled by the valve. The constantly acting disconnecting force may be a spring force or the force of a constantly acting pressure medium which is maintained hydraulically in the one breaker position. If the drive is reversed by lowering the pressure, the cylinder is connected to the receiving vessel. The constantly acting force then forces the hydraulic fluid in the cylinder into the receiving vessel.
The unimpeded discharge of the hydraulic fluid displaced by the drive mechanism is particularly advantageous for electrical circuit breakers of several phases. Each phase may have a cylinder, a valve and a receiving vessel. The single pipeline of each phase is connected to the single storage unit of the circuit breaker via a control valve common to all phases. In this manner, all the phases have the same switching time for each stroke, regardless of the length of the pipeline between the cylinder and the storage unit so that, for example, the desired synchronism of the phases is provided without special adjustment in the important switching off operation.
In order that the invention may be readily carried into effect, it will now be described with reference to the accompanying drawing, wherein:
FIG. 1 is a schematic diagram, partly in section, of a three phase embodiment of the electrical circuit breaker of the present invention having a hydraulic drive; and
FIG. 2 is a sectional view, on an enlarged scale, of the receiving vessel of the hydraulic drive of the circuit breaker of FIG. 1.
In the FIGS., the same components are identified by the same reference numerals.
The electrical circuit breaker illustrated in FIG. I operates at kilovolts.
In FIG. 1, a circuit breaker 1 comprises three equal phase columns 2, 3 and 4. Each of the columns 2, 3 and 4 is identical to the others, so that only the column 2 will be described in detail. A breaker chamber 6 is supported by a standoff insulator 5 on the first phase column 2. The breaker chamber 6 has a fixed contact element 7 and a movable contact pin 8 therein. The movable contact pin 8 is afflxed to an actuator plunger or drive piston 9 which is provided in a cylinder 10 of a lower breaker part 11 of the column 2. A receiving vessel 12 is connected to the cylinder 10.
The pressure fluid of the hydraulic drive is supplied by a storage unit, accumulator or storage tank 14. The storage unit 14 is connected to the hydraulically parallel-connected drives of the individual phases via a common control valve 15. A pump 16 is connected in series with a check valve 17 and the series combination is shunted across the control valve 15.
A single pipeline 21 extends from the drive of the first phase column 2 to the control valve 15. A single pipeline 22 extends from the drive of the second phase column 3 to the control valve 15. A single pipeline 23 extends from the drive of the third phase column 4 to the control valve 15. A pressure-dependent valve 25, which is shown in detail in FIG. 2, is provided in each of the pipelines 21, 22 and 23. A movable valve member 26 is provided in the valve 25. The movable valve member 26 is movable under the action of a spring 27 to normally occupy a position in a cylinder 28 shown in FIG. 2.
In the position of the valve member 26 shown in FIG. 2, a valve seat 31 leading into the receiving vessel 12 is open or free. There is therefore a connection to a bore, aperture or duct 32 which opens into the cylinder 28, and, via a bore, aperture or duct 33, in the valve element 26 opening into the pipeline 21. The receiving vessel 12 is thereby normally connected to the pipeline 21. The pump 16 may thus draw hydraulic fluid from the receiving vessel 12 and force it into the storage unit 14 when the pressure in said storage unit drops.
If the circuit breaker is to close, the control valve 15 is opened. This causes the pressure medium or fluid which is under the pressure of the storage unit 14 to flow into the valve 25. When the fluid flows into the valve 25, it forces the movable valve element 26 upward, and said movable valve element closes off the valve seat 31. Simultaneously, the pressure medium or fluid flows through a duct, bore or aperture 35 and forces a spring-loaded valve head or cone 36 away from the opening of said duct, bore or aperture. This opens a path for the fluid to flow past the valve element 26 into a pipeline 37. The cylinder for the drive piston or plunger 9 of the circuitbreaker is connected to the pipeline 37. The circuit breaker is then closed and a disconnecting spring 38 (FIG. 1) is placed under tension.
In order to open the circuit breaker, the plunger or piston 9 is relieved of pressure by closing the valve 15. The disconnecting spring 38 then drives the contact pin 8 downward with the plunger or piston 9. The hydraulic fluid is thereby displaced. The displaced fluid flows into the receiving vessel 12, which is positioned directly at the drive mechanism of the circuit breaker. Due to the short connection paths between the plunger or piston 9 and the receiving vessel 12 the displaced fluid is but I of small volume. Thus, due to the displacement of the fluid, there can be no appreciable flow losses which can interfere with the switching process. The delay caused by the displacement of the hydraulic fluid is negligible and, primarily, equal in all the phases of the circuit breaker, regardless of how far the actuating cylinder is positioned from the common storage unit 14.
In the disclosed embodiment, the hydraulic drive is provided in the lower part of the circuit breaker. However, the circuit breaker of the invention having a single pipeline between the actuating cylinder and the hydraulic storage unit may also be utilized in circuit breakers in which the hydraulic pipeline leads through the stand-off insulator 5 to parts of the drive mechanism at high voltage.
While the invention has been described my means of a specific example and in a specific embodiment, it should not be limited thereto, for obvious modifications will occur to those skilled in the art without departing from the spirit and scope of the invention.
We claim:
1. An electrical high voltage, high capacity circuit breaker having a hydraulic drive including a cylinder, a receiving vessel for displaced hydraulic fluid positioned at the cylinder, a hydraulic system including a storage unit, a valve, and connecting means connecting the receiving vessel to the hydraulic system via the valve, said circuit breaker comprising a single pipeline between the receiving vessel and the hydraulic system, the valve connecting the single pipeline to one of the receiving vessel and the cylinder in dependence upon the pressure in the pipeline.
2. An electrical circuit breaker as claimed in claim 1, further comprising a control valve and means connecting the end of the pipeline away from the receiving vessel to the storage unit via the control valve.
3. An electrical circuit breaker as claimed in claim 2, further comprising a pump and means connecting the pump in shunt with the control valve.
4. An electrical circuit breaker as claimed in claim 2, further comprising a pump, a check valve and means connecting the pump and check valve in series and in shunt with the control valve.
5. An electrical circuit breaker as claimed in claim 2, wherein the control valve releases a constantly acting disconnecting force by connecting the cylinder to the receiving vessel.
6. An electrical high voltage, high capacity circuit breaker having a hydraulic system including a storage unit and having a plurality of phases, each phase having a hydraulic drive including a cylinder, a receiving vessel for displaced hydraulic fluid positioned at the cylinder, a valve, and connecting means connecting the receiving vessel to the hydraulic system via the valve, each phase of said circuit breaker comprising a single pipeline between the receiving vessel of the phase and the' hydraulic system, the valve connecting the single pipeline to one of the receiving vessel and the cylinder of the phase in dependence upon the pressure in the pipeline. 7
7. An electrical circuit breaker as claimed in claim 6, further comprising a control valve and means connecting the pipeline of each phase to the storage unit of the hydraulic system via the control valve.

Claims (7)

1. An electrical high voltage, high capacity circuit breaker having a hydraulic drive including a cylinder, a receiving vessel for displaced hydraulic fluid positioned at the cylinder, a hydraulic system including a storage unit, a valve, and connecting means connecting the receiving vessel to the hydraulic system via the valve, said circuit breaker comprising a single pipeline between the receiving vessel and the hydraulic system, the valve connecting the single pipeline to one of the receiving vessel and the cylinder in dependence upon the pressure in the pipeline.
2. An electrical circuit breaker as claimed in claim 1, further comprising a control valve and means connecting the end of the pipeline away from the receiving vessel to the storage unit via the control valve.
3. An electrical circuit breaker as claimed in claim 2, further comprising a pump and means connecting the pump in shunt with the control valve.
4. An electrical circuit breaker as claimed in claim 2, further comprising a pump, a check valve and means connecting the pump and check valve in series and in shunt with the control valve.
5. An electrical circuit breaker as claimed in claim 2, wherein the control valve releases a constantly acting disconnecting force by connecting the cylinder to the receiving vessel.
6. An electrical high voltage, high capacity circuit breaker having a hydraulic system including a storage unit and having a plurality of phases, each phase having a hydraulic drive including a cylinder, a receiving vessel for displaced hydraulic fluid positioned at the cylinder, a valve, and connecting means connecting the receiving vessel to the hydraulic system via the valve, each phase of said circuit breaker comprising a single pipeline between the receiving vessel of the phase and the hydraulic system, the valve connecting the single pipeline to one of the receiving vessel and the cylinder of the phase in dependence upon the pressure in the pipeline.
7. An electrical circuit breaker as claimed in claim 6, further comprising a control valve and means connecting the pipeline of each phase to the storage unit of the hydraulic system via the control valve.
US00207293A 1970-12-18 1971-12-13 Pressure-operated electrical high voltage circuit breaker Expired - Lifetime US3745280A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19702064798 DE2064798B2 (en) 1970-12-18 1970-12-18 HYDRAULIC DRIVE FOR AN ELECTRIC SWITCH

Publications (1)

Publication Number Publication Date
US3745280A true US3745280A (en) 1973-07-10

Family

ID=5792775

Family Applications (1)

Application Number Title Priority Date Filing Date
US00207293A Expired - Lifetime US3745280A (en) 1970-12-18 1971-12-13 Pressure-operated electrical high voltage circuit breaker

Country Status (7)

Country Link
US (1) US3745280A (en)
JP (1) JPS5211421B1 (en)
CH (1) CH523590A (en)
DE (1) DE2064798B2 (en)
DK (1) DK142519C (en)
NL (1) NL7115537A (en)
NO (1) NO138820C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187339A (en) * 1990-06-26 1993-02-16 Merlin Gerin Gas insulated high-voltage circuit breaker with pneumatic operating mechanism

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2838219A1 (en) * 1978-08-30 1980-03-13 Siemens Ag Hydraulic drive for HV power circuit breaker - has piston in cylinder operated by pressure medium controlled by piston-like valve
DE3833484A1 (en) * 1988-10-01 1990-04-05 Asea Brown Boveri Drive device for an electrical switching apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2748226A (en) * 1953-02-26 1956-05-29 Westinghouse Electric Corp Compressed-gas circuit interrupter
DE1004699B (en) * 1955-09-21 1957-03-21 Voigt & Haeffner Ag Compressed air switch with multiple interruptions per pole
DE1121166B (en) * 1957-01-21 1962-01-04 Licentia Gmbh Compressed air control for electrical switches
DE1286610B (en) * 1964-08-07 1969-01-09 Oerlikon Maschf Hydraulic switch drive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2748226A (en) * 1953-02-26 1956-05-29 Westinghouse Electric Corp Compressed-gas circuit interrupter
DE1004699B (en) * 1955-09-21 1957-03-21 Voigt & Haeffner Ag Compressed air switch with multiple interruptions per pole
DE1121166B (en) * 1957-01-21 1962-01-04 Licentia Gmbh Compressed air control for electrical switches
DE1286610B (en) * 1964-08-07 1969-01-09 Oerlikon Maschf Hydraulic switch drive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187339A (en) * 1990-06-26 1993-02-16 Merlin Gerin Gas insulated high-voltage circuit breaker with pneumatic operating mechanism

Also Published As

Publication number Publication date
NO138820B (en) 1978-08-07
CH523590A (en) 1972-05-31
DK142519B (en) 1980-11-10
DK142519C (en) 1981-07-06
NO138820C (en) 1978-11-15
NL7115537A (en) 1972-06-20
JPS5211421B1 (en) 1977-03-31
DE2064798B2 (en) 1976-11-18
DE2064798A1 (en) 1972-06-29

Similar Documents

Publication Publication Date Title
US2459600A (en) Compressed gas circuit interrupter
US2290320A (en) Circuit breaker mechanism
US2783338A (en) Operating mechanism for a fluid-blast circuit breaker
US3745280A (en) Pressure-operated electrical high voltage circuit breaker
US3560682A (en) Vacuum interrupter with shunting main contact structure and series disconnecting contact structure
US1805082A (en) Counting relay
US2909633A (en) High tension oil switch
US7652221B2 (en) Contact drive arrangement
US2835763A (en) Repeating polyphase circuit interrupter
US2452477A (en) Circuit interrupter
US3110783A (en) Hydraulically operated circuit breaker
US2500777A (en) Control arrangement for fluid operated circuit breakers
US3721798A (en) Pressure gas switch
US4788390A (en) Shunt capacitor switch with an impedance insertion element
US2420888A (en) Oil circuit interrupter
US3082358A (en) Electro-magnetic control device
US3893374A (en) Circuit breaker operating device
US2235074A (en) Circuit interrupter
US3345487A (en) Hydraulically operated circuit breaker
US2231708A (en) Circuit breaker
US3073931A (en) Compressed-gas circuit interrupter
US3492922A (en) Hydraulically operated circuit breaker with tandem piston construction
US3043933A (en) Polyphase circuit interrupters
US3660625A (en) Synchronous-type circuit breaker having two independently-operable mechanisms
US2631190A (en) Circuit breaker latch mechanism