US3744722A - Nebulizer - Google Patents

Nebulizer Download PDF

Info

Publication number
US3744722A
US3744722A US00102327A US3744722DA US3744722A US 3744722 A US3744722 A US 3744722A US 00102327 A US00102327 A US 00102327A US 3744722D A US3744722D A US 3744722DA US 3744722 A US3744722 A US 3744722A
Authority
US
United States
Prior art keywords
housing
jet
inlet
aerosol
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00102327A
Inventor
H Burns
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cavitron Corp
Original Assignee
Cavitron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cavitron Corp filed Critical Cavitron Corp
Application granted granted Critical
Publication of US3744722A publication Critical patent/US3744722A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/06Sprayers or atomisers specially adapted for therapeutic purposes of the injector type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/65Vaporizers

Definitions

  • ABSTRACT A nebulizer for the generation of an aerosol having three major components mounted within a housing for containing a liquid and directing the resultant aerosol. The three componentsare designed for ease in assembly and disassembly for cleaning. The gas and liquid are uniformly mixed prior to depositing the liquid onto and spreading the liquid over a target surface for the final atomization.
  • This invention relates to a new and improved nebulizer, also called an atomizer or a vaporizer, used to atomize or generate an aerosol of a liquid-like medication.
  • the medication is usually administered by inhalation to a patient affected with some disorder, such as emphysema or asthma. It may consist of a single liquid, a mixture of liquids, or solid compounds dissolved in a liquid, all possibilities of which will hereinafter be called the liquid.
  • the size of the aerosol or suspended particles be within a certain size distribution in order for the particles to reach their intended destination.
  • the most useful size distribution should be between 0.5 to 5.0 microns. Particles larger than 5.0 microns are usually too heavy to ever reach their intended destination and particles smaller than 0.5 microns are too stable and when inhaled will probably never be deposited at their intended destination but will be discharged during exhalation.
  • Efficiency of performance of a nebulizer is generally expressed as the quantity of useful aerosol produced per unit quantity of gas consumed.
  • nebulizers are constructed such that a gas is introduced into a chamber in the direction of some type of targetv arrangement.
  • the gas Prior to reaching the target arrangement, the gas passes over or through an aspirating means which includes a capillary tube, one end of which is submerged in a reservoir of a liquid.
  • an aspirating means which includes a capillary tube, one end of which is submerged in a reservoir of a liquid.
  • the liquid is drawn up the tube, usually by the Bernoulli principle, it is propelled against the target arrangement to be fractured into aerosol particles.
  • the particle size distribution will depend upon how the gas and liquid mix and the location of the target arrangement relative to flow of the gas-liquid mixture.
  • the invention of this application operates on the theory that due to the uniformity of mixing and flow distribution of the gas and liquid, the latter is uniformly deposited on the target arrangement. Due to the velocity of the gas-liquid mixture, the deposited liquid is then spread over the surface of the target. Since the surface area increases in the direction of movement of the spreading liquid, the liquid becomes increasingly thinner until its surface tension forces it to atomize into aerosol particles and leave the target arrangement.
  • the principal object of this invention is to provide a nebulizer such that the quality of aerosol produced is generally uniform within a relatively narrow size range useful for medical purposes and other applications where a stable aerosol is desired.
  • Another object of this invention is to provide a nebulizer that has a high efficiency in the quantity of aerosol produced.
  • a still further object of the invention is to provide an efficient nebulizer having a design which is economical to manufacture but still very reliable in performance.
  • Another object of the invention is to provide an effi cient nebulizer having a design in which the critical components are easily assembled, disassembled, cleaned, inspected, and/or replaced.
  • One component to be called a power jet piece, includes a gas inlet passage for connection to a source of pressurized gas and a primary orifice.
  • Another component to be called a cap piece, includes an inlet passage for connection to the liquid medication, a secondary orifice, and a recessed cavity on the exit side of the secondary orifice, the cavity having a rim-like surface.
  • the power jet piece and cap piece are assembled having a loose press fit, so that the orifices are in alignment with each other and a chamber is formed between the exit plane of the primary orifice and the entrance plane of the secondary orifice.
  • the chamber connects with the liquid inlet passage of the cap piece.
  • the third component to be called a target piece, is slidably mounted on the exit plane side of the cap piece and has a target which is alignedwith the two orifices and in close proximity to the rim-like surface of the cap pieces recessed cavity.
  • a restrictive gap is formed between the target piece and the rim-like surface, so that the liquid flowing from the secondary orifice through the recessed cavity is deposited onto the target surface in a uniform manner.
  • FIG. l illustrates an overall view, partially in cross section, of the nebulizer assembly
  • FIG. 2 illustrates the three assembled components of the aerosol generating subassembly, partially in cross section
  • FIG. 3 is a cross-sectional view taken along the line 3--3 of FIG. l.
  • FIG. 4 is a view taken along the line 2-2 of FIG. l, with the target piece being disassembled from the cap piece.
  • the nebulizer is constructed of three major subassemblies; a housing l, a reservoir 2, and an aerosol generating subassembly.
  • the aerosol generating subassembly is composed of three major components: a power jet piece 3, a cap piece 4, and a target piece S.
  • a dip tube 6, which is shown as a separate part but need not necessarily be, may be considered part of the aerosol generating assembly.
  • an inlet fitting 7 couples the aerosol generating subassembly to a compressed gas supply tube 8.
  • lt is preferable that many of these components be made, at least in part, of a molded material that is somewhat resiliently deformable, such asmolded plastic. ln the following description and discussion two digit numbers will be usedl for details and special features with the first digit identifying the appropriate singular component being described.
  • the housing l has an outlet opening ll, which is connected to another type of device such as a face mask, a respirator, a vapor tent, or an atmospheric control chamber, etc., which is designed to use the aerosol created by the nebulizer.
  • the housing l is coupled to the reservoir 2 by way of a sealing groove 13 and a skirt section 14.
  • the housing 1 has an inlet aperture l in its side wall for accepting the aerosol generating subassembly and a planar surface 16 for accurate alignment of the aerosol generating subassembly.
  • the housing enclosure 18 must be of sufficient volume to allow the useful aerosol of the desired size to pass to the outlet opening 11 without excessive interference from the larger particles which fall back into the reservoir 2.
  • the reservoir 2 is a generally symmetrical cylindrically shaped container having a particularly thin wall collar and bead 2l at its upper surface that can be snapped into the sealing groove 13 of the housing 1 to prevent a leakage of gas or liquid and obviate the need for any type of gasket.
  • Size and shape of the reservoir is independent of the aerosol generating function. However, for certain uses it may be convenient for the overall size of the reservoir to be such as to allow significant graduations 23 to indicate the level of the liquid in the reservoir.
  • a typical inhalation therapy treatment may require measurements of as little as a 3 milliliters or less and less than 0.5 milliliters of a particular cornponent.
  • the graduations 23 preclude the need to use another device to measure, such as a graduated syringe.
  • the power jet piece 3 is a symmetrical, cylindrically shaped component having three different size sections along its length.
  • the inlet section 31 has an internal tapered section 32, which mates with the inlet fitting 7,' and a thin wall which is expanded radially against the housing inlet aperture (see FIG. 1) when the tapered inlet fitting 7 is inserted into the power jet piece 3.
  • This expansion of the inlet section 3l of the power jet piece 3 against the walls of the housing inlet aperture l5 results in a simple, gasketless, leak tight seal, for the gas to pass through the housing wall, even though there is a free sliding fit for assembly and disassembly of the components.
  • the outlet end of the power jet piece 3 has a reduced diameter stud section 33, the end face of which contains the outlet orifice 35, hereinafter the primary orifice.
  • the center section 36 of the power jet piece 3 has an external taper for ease of assembly with the cap piece 4, to be discussed later.
  • the latter shoulder 38 provides a stop for aligning the power jet piece 3 with the reference to the planar surface 16 of the housing l. (see FIG. l).
  • the cap piece 4 has a thin-walled cylindrical entrance portion 4l designed to expand slightly for a leak tight fit over the external taper of the center section 36 of the power jet piece 3 and a blocked shaped exit portion 42.
  • the shoulder 37 of the power jet piece 3 abuts against a triple chord shaped shoulder 43 (see FIG. 4) within the exit portion 42, forming a triangular cavity 44 within the cap piece 4.
  • the exit portion 42 of the cap piece 4 also contains an outlet orifice 45, hereinafter the secondary orifice, and a small diameter nipple 46 for uttachment to the dip tube 6, the latter being inserted into the reservoir 2.
  • the opening of the nipple 46 connects with the triangular cavity 44 described above.
  • the secondary orifice 45 is centrally located and in alignment with the primary orifice 35.
  • the diameter of the secondary orifice 45 should be slightly larger than the diameter of the primary orifice 35.
  • the end face of the exit portion 42 of the cap piece 4 contains two cap piece guideways 48-48 (see FIG. 3), which are parallel to the housing guideways 17-17, and which also assist in the alignment and the rigidity of the aerosol generating subassembly.
  • the end face of the exit portion 42 of the cap piece 4 also contains a recessed cavity 49 having a rim-like surface 49a.
  • the target piece 5 consists of a tab-like structure 5l containing two wing plates 52-52 and a target surface 53.
  • the wing plates 52-52 form an acute angle with each other to enhance the rigidity of the entire aerosol generating subassembly.
  • inner surfaces 54-54 of the wing plates 52-52 are in contact with the cap piece guideways 48-48 and outer edges 55-55 of the wing plates 52-52 are in contact with the housing guideways l7-17. This insures proper alignment and rigidity of the entire aerosol generating subassembly.
  • the target surface 53 which may take many different shapes is shown as a sphere for ease of manufacture. When. the target piece 5 is snugly mounted between the two sets of guideways, as described above, the target surface 53 is contiguous to the rim-like surface 49a of the cap piece 4 forming a re strictive passage 56..
  • a source of compressed gas is connected to the nebulizer by the supply tube 8 and with adequate pressure this gas will exit with a high velocity at the power jet primary orifice 35.
  • this gas will exit with a high velocity at the power jet primary orifice 35.
  • the gap 47 is part of 'a chamber including triangular cavity 44, which has access to the liquid in the reservoir 2 via the nipple 46, and the dip tube 6. Therefore, the
  • the degree of thin-down of the liquid on the target surface 53 will be a function of the velocities of the gas and liquid, the amount of liquid initially deposited on the surface 53, the surface tension of the-particular liquid being used, and the shape of the target surface S3.
  • the entire gas jet is used in mixing with the liquid and depositing the liquid onto and spreading the liquid over a large portion of the target surface 53.
  • the entire gas jet is used in mixing with the liquid and depositing the liquid onto and spreading the liquid over a large portion of the target surface 53.
  • any non-utilized gas as in the typical atomizer or nebulizer where usually aerosol production depends upon impact fracturing as discussed in the introduction, or is due to only a small portion of the target being exposed to the flow of the gas and liquid.
  • Nebulzers constructed as described herein produce useful aerosol at rates in excess of 70 milligrams of pure water per liter of jet gas. It should be noted that the addition of medications of any type to the water can of course alter the surface tension and will have a pronounced effect on rates of aerosol generation.
  • a nebulizer for generating an aerosol using pressurized gas comprising:
  • a housing having a reservoir containing material to be nebulized, said housing having an inlet, and
  • nebulizing means mounted to said housing in fluid communication with said inlet and said reservoir and having jet power means for receiving pressurized gas through said inlet and transmitting a highvelocity gas jet, having tension means in front of said jet power means, having mixing means between said jet power means and said tension means, and having a space between said jet power means and said mixing means for said material to be drawn into the space between said jet power means and said mixing means, said tension means contiguous with said mixing means forming a restrictive passage therebetween for depositing the mixed gas and material solely on a first portion of said tension means causing the deposited mixture to move over the surface of said tension means to a second portion thereof at which point the tendency to move further and the surface tension of the mixture cause the mixture to atomize into aerosol particles of a predetermined size range minimizing unwanted small and large heavy particles.
  • nebulizer of claim l including pressurized gas supply means slidably mating with said jet power means and pressing said jet power means against the inside wall of said inlet forming an air tight fit between said inlet, said jet power means, and said gas supply means.
  • a nebulizer for generating an aerosol using pressurized gas comprising:
  • a housing having an outlet for the discharge of the aerosol and an inlet aperture
  • a supply tube coupled to the source of pressurized gas and said inlet aperture
  • a reservoir mounted to said housing for containing the material to be nebulized
  • an aerosol generating subassembly within said housing including,
  • a power jet piece having an inlet section coupled to said supply tube at the inlet aperture for receiving said pressurized gas and a primary orifice for the gas to exit therefrom, cap piece having a secondary orifice and a recessed cavity on the exit side of the secondary orifice including a rim-like surface, said cap piece being mounted on said power jet piece such that a chamber is formed between said orifices which is connected to the material to be nebulized, and
  • a target piece mounted in alignment with said cap piece and having a target surface with a portion thereof being in close proximity to the rim-like surface forming a restrictive passage such that the material to be nebulized is uniformly deposited on said target surface as it passes through the restrictive passage and is spread over the target surface prior to separating from the target surface in the form of an aerosol,
  • the housing further including a planar surface contiguous to the inlet aperture and two housing guideways on opposite sides of the housing,
  • the power jet piece inlet section including a shoulder for aligning said power jet piece against the planar surface of the housing
  • the target piece further including two wing plates for locating said target piece against the housing guideways.
  • a nebulizer for generating an aerosol using pressurized gas comprising:
  • a housing having a reservoir containing material to be nebulized, said housing having an inlet, and
  • nebulizing means mounted to said housing in fluid communication with said inlet and said reservoir and having jet power means for receiving pressurized gas through said inlet and transmitting a highvelocity gas jet, having tension means in front of said jet power means, and having mixing means between and spaced from said jet power means and said tension means and having the center point thereof aligned with the center point of said jet power means and said tension means, said housing including a planar surface contiguous to said inlet and two housingguideways on opposite sides of said housing,
  • said power jet means including a shoulder for aligning said power jet means against said'planar surface
  • said tension means including two wing plates for loeating said tension means against the housing guideways.
  • a nebulizer for generating an aerosol using pressurized gas comprsingz' a housing having a reservoir containing material to be nebulized, said housing having an inlet, and
  • nebulizing means mounted to said housing in fluid communication with said inlet and said reservoir and having jet power means for receiving pressurized gas through said inlet and transmitting a highvelocity gas jet, having tension means in front of said jet power means, and having mixing means between and spaced from said jet power means and said tension means and having the center point thereof aligned with the center point of said jet power means and said tension means, said housing having guideways, said mixing means having guideways, said tension means fitting between said housing and tension means guideways for proper alignment and to enhance the rigidity of said nebulizing means.
  • a nebulizer for generating an aerosol using pressurized gas comprising a housing having an outlet for the discharge of the aerosol, an inlet aperture, a planar surface contiguous to said aperture, and two housing guideways on opposite sides of the housing and removed from said planar surface,
  • a supply tube coupled to the source of pressurized gas and said inlet aperture
  • a reservoir mounted to said housing for containing the material to be nebulized
  • an aerosol generating subassembly within said housing including, a power jet piece having an inlet section coupled to said supply tube at the inlet aperture for receiving said pressurized gas, said inlet section including a shoulder for aligning said power jet piece against the planar surface of the housing, and a primary orifice for the gas to exit therefrom,
  • a cap piece having, a secondary orifice, a recessed cavity on the exit side of the secondary orifice including a rim-like surface, and guideways on the exit side of the secondary orifice, said cap piece being mounted on said power jet piece such that a chamber is formed between said orifices which is connected to the material to be nebulized,
  • a target piece designed to snugly fit between the housing guideways and cap piece guideways for proper alignment and to enhance the rigidity of the aerosol generating subassembly, and having a target surface with a portion thereof being in close proximity to said rim-like surface forming a restrictive passage such that the material to be nebulized is uniformly deposited on said target surface as it passes through the restrictive passage and is spread over the target surface prior to separating from the target surface in the form of an aerosol.

Abstract

A nebulizer for the generation of an aerosol having three major components mounted within a housing for containing a liquid and directing the resultant aerosol. The three components are designed for ease in assembly and disassembly for cleaning. The gas and liquid are uniformly mixed prior to depositing the liquid onto and spreading the liquid over a target surface for the final atomization.

Description

United States Patent [191 Burns i111 3,744,722 [451 July 10, 1973 [54] NEBULIZER [75] Inventor:
[73] Assignee: Cavitron Corporation, Long lsland,
[22] Filed; nec. 29, 1970 [21] Appl. No.; 102,327
Henry L. Burns, Beaverton, Oreg.
[52] U.S. Cl. 239/338, 128/194 [Sl] Int. Cl B05b 7/24 [58] Field of Search 239/338, 370; l28/l94 [56] References Cited UNITED STATES PATENTS 3,249,553 5/1966 Steinbergm; 239/338 X 2,709,577 5/1955 Pohndorf et al. 239/338 X 2,840,417 6/1958 Dorsak et al. 239/338 X 2,869,188 l/l959 Cameto 239/338 X 3,077,307 2/1963 Moore et al. 239/338 3,097,645 7/1963 Lester 239/338 3,506,589 4/1970 Hoffman et al 239/338 X 3,512,718 5/1970 Cranage 239/338 3,525,476 8/1970 Boling et al 239/338 Primary Examiner-M. Henson Wood, Jr. Assistant Examiner-John J. Love Attorney-Philip Sperber [57] ABSTRACT A nebulizer for the generation of an aerosol having three major components mounted within a housing for containing a liquid and directing the resultant aerosol. The three componentsare designed for ease in assembly and disassembly for cleaning. The gas and liquid are uniformly mixed prior to depositing the liquid onto and spreading the liquid over a target surface for the final atomization.
8 Claims, 4 Drawing Figures "gaze" Pmmfnwumw 3.744.722
SHEEI 1 0F 2 INVENTOR.
Henry L. Burns ATTORNEY NEBULIzER BACKGROUND OF THE INVENTION This invention relates to a new and improved nebulizer, also called an atomizer or a vaporizer, used to atomize or generate an aerosol of a liquid-like medication. The medication is usually administered by inhalation to a patient affected with some disorder, such as emphysema or asthma. It may consist of a single liquid, a mixture of liquids, or solid compounds dissolved in a liquid, all possibilities of which will hereinafter be called the liquid.
In the treatment of patients having disorders requiring an aerosol, it is very important that the size of the aerosol or suspended particles be within a certain size distribution in order for the particles to reach their intended destination. Generallythe most useful size distribution should be between 0.5 to 5.0 microns. Particles larger than 5.0 microns are usually too heavy to ever reach their intended destination and particles smaller than 0.5 microns are too stable and when inhaled will probably never be deposited at their intended destination but will be discharged during exhalation. Efficiency of performance of a nebulizer is generally expressed as the quantity of useful aerosol produced per unit quantity of gas consumed.
Most prior art nebulizers are constructed such that a gas is introduced into a chamber in the direction of some type of targetv arrangement. Prior to reaching the target arrangement, the gas passes over or through an aspirating means which includes a capillary tube, one end of which is submerged in a reservoir of a liquid. As the liquid is drawn up the tube, usually by the Bernoulli principle, it is propelled against the target arrangement to be fractured into aerosol particles. The particle size distribution will depend upon how the gas and liquid mix and the location of the target arrangement relative to flow of the gas-liquid mixture.
The invention of this application operates on the theory that due to the uniformity of mixing and flow distribution of the gas and liquid, the latter is uniformly deposited on the target arrangement. Due to the velocity of the gas-liquid mixture, the deposited liquid is then spread over the surface of the target. Since the surface area increases in the direction of movement of the spreading liquid, the liquid becomes increasingly thinner until its surface tension forces it to atomize into aerosol particles and leave the target arrangement.
Therefore, the principal object of this invention is to provide a nebulizer such that the quality of aerosol produced is generally uniform within a relatively narrow size range useful for medical purposes and other applications where a stable aerosol is desired.
Another object of this invention is to provide a nebulizer that has a high efficiency in the quantity of aerosol produced.
A still further object of the invention is to provide an efficient nebulizer having a design which is economical to manufacture but still very reliable in performance.
Another object of the invention is to provide an effi cient nebulizer having a design in which the critical components are easily assembled, disassembled, cleaned, inspected, and/or replaced.
There are three essential and novel elements of this inventive nebulizer. One component, to be called a power jet piece, includes a gas inlet passage for connection to a source of pressurized gas and a primary orifice. Another component, to be called a cap piece, includes an inlet passage for connection to the liquid medication, a secondary orifice, and a recessed cavity on the exit side of the secondary orifice, the cavity having a rim-like surface. The power jet piece and cap piece are assembled having a loose press fit, so that the orifices are in alignment with each other and a chamber is formed between the exit plane of the primary orifice and the entrance plane of the secondary orifice. The chamber connects with the liquid inlet passage of the cap piece. As the pressurized gas passes between the two aligned orifices, there is a simulated venturi throat effect anda negative pressure develops in the chamber causing the liquid to be drawn into the chamber. Location of a secondary orifice downstream from where the gas and liquid meet insures a more thorough mixing. The third component, to be called a target piece, is slidably mounted on the exit plane side of the cap piece and has a target which is alignedwith the two orifices and in close proximity to the rim-like surface of the cap pieces recessed cavity. A restrictive gap is formed between the target piece and the rim-like surface, so that the liquid flowing from the secondary orifice through the recessed cavity is deposited onto the target surface in a uniform manner. These three essential elements are held in rigid alignment, when the target piece is placed in position.
BRIEF DESCRIPTION OF THE DRAWINGS For a more thorough understanding of the invention, reference may be made to the following description of an exemplary embodiment, taken in conjunction with the figures of the accompanying drawings, in which:
FIG. l illustrates an overall view, partially in cross section, of the nebulizer assembly;
FIG. 2 illustrates the three assembled components of the aerosol generating subassembly, partially in cross section;
FIG. 3 is a cross-sectional view taken along the line 3--3 of FIG. l; and
FIG. 4 is a view taken along the line 2-2 of FIG. l, with the target piece being disassembled from the cap piece.
DESCRIPTION OF EXEMPLARY EMBODIMENTS Referring to FIG. l, the nebulizer is constructed of three major subassemblies; a housing l, a reservoir 2, and an aerosol generating subassembly. The aerosol generating subassembly is composed of three major components: a power jet piece 3, a cap piece 4, and a target piece S. In addition, a dip tube 6, which is shown as a separate part but need not necessarily be, may be considered part of the aerosol generating assembly. Also, an inlet fitting 7 couples the aerosol generating subassembly to a compressed gas supply tube 8. lt is preferable that many of these components be made, at least in part, of a molded material that is somewhat resiliently deformable, such asmolded plastic. ln the following description and discussion two digit numbers will be usedl for details and special features with the first digit identifying the appropriate singular component being described.
The housing l has an outlet opening ll, which is connected to another type of device such as a face mask, a respirator, a vapor tent, or an atmospheric control chamber, etc., which is designed to use the aerosol created by the nebulizer. Adjacent to the outlet opening 11 there is a splatter baffle 12 which prevents any large aerosol particles from reaching the outlet l1, causing them to coalesce on the baffle l2 and eventually fall back into the reservoir 2 for reuse. The housing l is coupled to the reservoir 2 by way of a sealing groove 13 and a skirt section 14. The housing 1 has an inlet aperture l in its side wall for accepting the aerosol generating subassembly and a planar surface 16 for accurate alignment of the aerosol generating subassembly. In addition, there are housing guideways 17-17 on opposite sides of the housing which assist in the alignment and the rigidity of the aerosol generating subassembly. The housing enclosure 18 must be of sufficient volume to allow the useful aerosol of the desired size to pass to the outlet opening 11 without excessive interference from the larger particles which fall back into the reservoir 2.
The reservoir 2 is a generally symmetrical cylindrically shaped container having a particularly thin wall collar and bead 2l at its upper surface that can be snapped into the sealing groove 13 of the housing 1 to prevent a leakage of gas or liquid and obviate the need for any type of gasket. Size and shape of the reservoir is independent of the aerosol generating function. However, for certain uses it may be convenient for the overall size of the reservoir to be such as to allow significant graduations 23 to indicate the level of the liquid in the reservoir. A typical inhalation therapy treatment may require measurements of as little as a 3 milliliters or less and less than 0.5 milliliters of a particular cornponent. The graduations 23 preclude the need to use another device to measure, such as a graduated syringe.
The power jet piece 3 is a symmetrical, cylindrically shaped component having three different size sections along its length. Referring to FIG. 2, the inlet section 31 has an internal tapered section 32, which mates with the inlet fitting 7,' and a thin wall which is expanded radially against the housing inlet aperture (see FIG. 1) when the tapered inlet fitting 7 is inserted into the power jet piece 3. This expansion of the inlet section 3l of the power jet piece 3 against the walls of the housing inlet aperture l5 results in a simple, gasketless, leak tight seal, for the gas to pass through the housing wall, even though there is a free sliding fit for assembly and disassembly of the components. The outlet end of the power jet piece 3 has a reduced diameter stud section 33, the end face of which contains the outlet orifice 35, hereinafter the primary orifice. The center section 36 of the power jet piece 3 has an external taper for ease of assembly with the cap piece 4, to be discussed later. In addition, there is a shoulder 37 which is formed by the diameter change between the center section 36 and the stud section 33, and a shoulder 38 formed by the diameter changes between the center section 36 and the inlet section 3l. The latter shoulder 38 provides a stop for aligning the power jet piece 3 with the reference to the planar surface 16 of the housing l. (see FIG. l).
The cap piece 4 has a thin-walled cylindrical entrance portion 4l designed to expand slightly for a leak tight fit over the external taper of the center section 36 of the power jet piece 3 and a blocked shaped exit portion 42. When these two pieces are assembled, the shoulder 37 of the power jet piece 3 abuts against a triple chord shaped shoulder 43 (see FIG. 4) within the exit portion 42, forming a triangular cavity 44 within the cap piece 4. The exit portion 42 of the cap piece 4 also contains an outlet orifice 45, hereinafter the secondary orifice, and a small diameter nipple 46 for uttachment to the dip tube 6, the latter being inserted into the reservoir 2. The opening of the nipple 46 connects with the triangular cavity 44 described above. In addition, there is a gap 47 between the external end face of the power jet piece 3 and the internal end face of the cap piece 4 which together with the triangular cavity 44 form a chamber. This chamber connects with the reservoir via the nipple 46 and dip tube 6. The secondary orifice 45 is centrally located and in alignment with the primary orifice 35. Preferably, the diameter of the secondary orifice 45 should be slightly larger than the diameter of the primary orifice 35. The end face of the exit portion 42 of the cap piece 4 contains two cap piece guideways 48-48 (see FIG. 3), which are parallel to the housing guideways 17-17, and which also assist in the alignment and the rigidity of the aerosol generating subassembly. The end face of the exit portion 42 of the cap piece 4 also contains a recessed cavity 49 having a rim-like surface 49a.
The target piece 5 consists of a tab-like structure 5l containing two wing plates 52-52 and a target surface 53. The wing plates 52-52 form an acute angle with each other to enhance the rigidity of the entire aerosol generating subassembly. When fully assembled, inner surfaces 54-54 of the wing plates 52-52 are in contact with the cap piece guideways 48-48 and outer edges 55-55 of the wing plates 52-52 are in contact with the housing guideways l7-17. This insures proper alignment and rigidity of the entire aerosol generating subassembly. The target surface 53, which may take many different shapes is shown as a sphere for ease of manufacture. When. the target piece 5 is snugly mounted between the two sets of guideways, as described above, the target surface 53 is contiguous to the rim-like surface 49a of the cap piece 4 forming a re strictive passage 56..
In operation, a source of compressed gas is connected to the nebulizer by the supply tube 8 and with adequate pressure this gas will exit with a high velocity at the power jet primary orifice 35. As the gas passes from the primary orifice 35 to the secondary orifice 45, due to the simulated venturi throat fonned therebetween, a negative pressure will be generated in the gap 47. The gap 47 is part of 'a chamber including triangular cavity 44, which has access to the liquid in the reservoir 2 via the nipple 46, and the dip tube 6. Therefore, the
negative pressure in gap 47 has a tendency to draw the liquid into the gap 47 The combined gas and liquid will then pass through the secondary orifice 45 becoming thoroughly mixed and emerge into the cavity 49. As the liquid-gas mixture passes through the restrictive passage 56, the liquid is uniformly deposited upon the target surface 53. Due to the high velocity of the gas, the liquid will spread across the spherical surface and due to the increasing surface area in the direction of the spreading movement of the liquid, the layer of liquid will become increasingly thinner. This thin layer of liquid will eventually separate from the spherical target surface 53 in the form of an aerosol and will move in the general direction of the outlet opening l1 of the housing l. The degree of thin-down of the liquid on the target surface 53 will be a function of the velocities of the gas and liquid, the amount of liquid initially deposited on the surface 53, the surface tension of the-particular liquid being used, and the shape of the target surface S3.
Due to the smallness of the secondary orifice 45 and the existence of the restrictive passage 56, the entire gas jet is used in mixing with the liquid and depositing the liquid onto and spreading the liquid over a large portion of the target surface 53. There is no loss of efficiency due to any non-utilized gas as in the typical atomizer or nebulizer where usually aerosol production depends upon impact fracturing as discussed in the introduction, or is due to only a small portion of the target being exposed to the flow of the gas and liquid. Nebulzers constructed as described herein produce useful aerosol at rates in excess of 70 milligrams of pure water per liter of jet gas. It should be noted that the addition of medications of any type to the water can of course alter the surface tension and will have a pronounced effect on rates of aerosol generation.
The above-described embodiment of the invention is intended to be merely exemplary, and those skilled in the art will be able to make numerous variations and modifications of it without departing from the spirit and scope of the invention. All such variations and modifications are intended to be included within the scope of the invention as defined in the appended claims.
I claim: 1. A nebulizer for generating an aerosol using pressurized gas, comprising:
a housing having a reservoir containing material to be nebulized, said housing having an inlet, and
nebulizing means mounted to said housing in fluid communication with said inlet and said reservoir and having jet power means for receiving pressurized gas through said inlet and transmitting a highvelocity gas jet, having tension means in front of said jet power means, having mixing means between said jet power means and said tension means, and having a space between said jet power means and said mixing means for said material to be drawn into the space between said jet power means and said mixing means, said tension means contiguous with said mixing means forming a restrictive passage therebetween for depositing the mixed gas and material solely on a first portion of said tension means causing the deposited mixture to move over the surface of said tension means to a second portion thereof at which point the tendency to move further and the surface tension of the mixture cause the mixture to atomize into aerosol particles of a predetermined size range minimizing unwanted small and large heavy particles.
2. The nebulizer of claim l, wherein saidv mixing means has an orifice and a single recessed cavity on the exit side of said orifice enabling said gas and material to flow into said restrictive passage.
3. The nebulizer of claim l, wherein said jet power means, said mixing means, and said tension means are slidably aligned with each other to facilitate assembly and disassembly as well as accurate alignment thereof.
4. The nebulizer of claim l, including pressurized gas supply means slidably mating with said jet power means and pressing said jet power means against the inside wall of said inlet forming an air tight fit between said inlet, said jet power means, and said gas supply means.
5. A nebulizer for generating an aerosol using pressurized gas, comprising:
a housing having an outlet for the discharge of the aerosol and an inlet aperture;
a supply tube coupled to the source of pressurized gas and said inlet aperture;
a reservoir mounted to said housing for containing the material to be nebulized; and
an aerosol generating subassembly within said housing including,
a power jet piece having an inlet section coupled to said supply tube at the inlet aperture for receiving said pressurized gas and a primary orifice for the gas to exit therefrom, cap piece having a secondary orifice and a recessed cavity on the exit side of the secondary orifice including a rim-like surface, said cap piece being mounted on said power jet piece such that a chamber is formed between said orifices which is connected to the material to be nebulized, and
a target piece mounted in alignment with said cap piece and having a target surface with a portion thereof being in close proximity to the rim-like surface forming a restrictive passage such that the material to be nebulized is uniformly deposited on said target surface as it passes through the restrictive passage and is spread over the target surface prior to separating from the target surface in the form of an aerosol,
the housing further including a planar surface contiguous to the inlet aperture and two housing guideways on opposite sides of the housing,
the power jet piece inlet section including a shoulder for aligning said power jet piece against the planar surface of the housing, and
the target piece further including two wing plates for locating said target piece against the housing guideways.
6. A nebulizer for generating an aerosol using pressurized gas, comprising:
a housing having a reservoir containing material to be nebulized, said housing having an inlet, and
nebulizing means mounted to said housing in fluid communication with said inlet and said reservoir and having jet power means for receiving pressurized gas through said inlet and transmitting a highvelocity gas jet, having tension means in front of said jet power means, and having mixing means between and spaced from said jet power means and said tension means and having the center point thereof aligned with the center point of said jet power means and said tension means, said housing including a planar surface contiguous to said inlet and two housingguideways on opposite sides of said housing,
said power jet means including a shoulder for aligning said power jet means against said'planar surface, and
said tension means including two wing plates for loeating said tension means against the housing guideways.
7. A nebulizer for generating an aerosol using pressurized gas, comprsingz' a housing having a reservoir containing material to be nebulized, said housing having an inlet, and
nebulizing means mounted to said housing in fluid communication with said inlet and said reservoir and having jet power means for receiving pressurized gas through said inlet and transmitting a highvelocity gas jet, having tension means in front of said jet power means, and having mixing means between and spaced from said jet power means and said tension means and having the center point thereof aligned with the center point of said jet power means and said tension means, said housing having guideways, said mixing means having guideways, said tension means fitting between said housing and tension means guideways for proper alignment and to enhance the rigidity of said nebulizing means.
8. A nebulizer for generating an aerosol using pressurized gas comprising a housing having an outlet for the discharge of the aerosol, an inlet aperture, a planar surface contiguous to said aperture, and two housing guideways on opposite sides of the housing and removed from said planar surface,
a supply tube coupled to the source of pressurized gas and said inlet aperture;
a reservoir mounted to said housing for containing the material to be nebulized; and
an aerosol generating subassembly within said housing including, a power jet piece having an inlet section coupled to said supply tube at the inlet aperture for receiving said pressurized gas, said inlet section including a shoulder for aligning said power jet piece against the planar surface of the housing, and a primary orifice for the gas to exit therefrom,
a cap piece having, a secondary orifice, a recessed cavity on the exit side of the secondary orifice including a rim-like surface, and guideways on the exit side of the secondary orifice, said cap piece being mounted on said power jet piece such that a chamber is formed between said orifices which is connected to the material to be nebulized,
a target piece designed to snugly fit between the housing guideways and cap piece guideways for proper alignment and to enhance the rigidity of the aerosol generating subassembly, and having a target surface with a portion thereof being in close proximity to said rim-like surface forming a restrictive passage such that the material to be nebulized is uniformly deposited on said target surface as it passes through the restrictive passage and is spread over the target surface prior to separating from the target surface in the form of an aerosol.

Claims (8)

1. A nebulizer for generating an aerosol using pressurized gas, comprising: a housing having a reservoir containing material to be nebulized, said housing having an inlet, and nebulizing means mounted to said housing in fluid communication with said inlet and said reservoir and having jet power means for receiving pressurized gas through said inlet and transmitting a high-velocity gas jet, having tension means in front of said jet power means, having mixing means between said jet power means and said tension means, and having a space between said jet power means and said mixing means for said material to be drawn into the space between said jet power means and said mixing means, said tension means contiguous with said mixing means forming a restrictive passage therebetween for depositing the mixed gas and material solely on a first portion of said tension means causing the deposited mixture to move over the surface of said tension means to a second portion thereof at which point the tendency to move further and the surface tension of the mixture cause the mixture to atomize into aerosol particles of a predetermined size range minimizing unwanted small and large heavy particles.
2. The nebulizer of claim 1, wherein said mixing means has an orifice and a single recessed cavity on the exit side of said orifice enabling said gas and material to flow into said restrictive passage.
3. The nebulizer of claim 1, wherein said jet power means, said mixing means, and said tension means are slidably aligned with each other to facilitate assembly and disassembly as well as accurate alignment thereof.
4. The nebulizer of claim 1, including pressurized gas supply means slidably mating with said jet power means and pressing said jet power means against the inside wall of said inlet forming an air tight fit between said inlet, said jet power means, and said gas supply means.
5. A nebulizer for generating an aerosol using pressurized gas, comprising: a housing having an outlet for the discharge of the aerosol and an inlet aperture; a supply tube coupled to the source of pressurized gas and said inlet aperture; a reservoir mounted to said housing for containing the material to be nebulized; and an aerosol generating subassembly within said housing including, a power jet piece having an inlet section coupled to said supply tube at the inlet aperture for receiving said pressurized gas and a primary orifice for the gas to exit therefrom, a cap piece having a secondary orifice and a recessed cavity on the exit side of the secondary orifice including a rim-like surface, said cap piece being mounted on said power jet piece such that a chamber is formed between said orifices which is connected to the material to be nebulized, and a target piece mounted in alignment with said cap piece and having a target surface with a portion thereof being in close proximity to the rim-like surface forming a restrictive passage such that the material to be nebulized is uniformly deposited on said target surface as it passes through the restrictive passage and is spread over the target surface prior to separating from the target surface in the form of an aerosol, the housing further including a planar surface contiguous to the inlet aperture and two housing guideways on opposite sides of the housing, the power jet piece inlet section including a shoulder for aligning said power jet piece against the planar surface of the housing, and the target piece further including two wing plates for locating said target piece against thE housing guideways.
6. A nebulizer for generating an aerosol using pressurized gas, comprising: a housing having a reservoir containing material to be nebulized, said housing having an inlet, and nebulizing means mounted to said housing in fluid communication with said inlet and said reservoir and having jet power means for receiving pressurized gas through said inlet and transmitting a high-velocity gas jet, having tension means in front of said jet power means, and having mixing means between and spaced from said jet power means and said tension means and having the center point thereof aligned with the center point of said jet power means and said tension means, said housing including a planar surface contiguous to said inlet and two housing guideways on opposite sides of said housing, said power jet means including a shoulder for aligning said power jet means against said planar surface, and said tension means including two wing plates for locating said tension means against the housing guideways.
7. A nebulizer for generating an aerosol using pressurized gas, comprising: a housing having a reservoir containing material to be nebulized, said housing having an inlet, and nebulizing means mounted to said housing in fluid communication with said inlet and said reservoir and having jet power means for receiving pressurized gas through said inlet and transmitting a high-velocity gas jet, having tension means in front of said jet power means, and having mixing means between and spaced from said jet power means and said tension means and having the center point thereof aligned with the center point of said jet power means and said tension means, said housing having guideways, said mixing means having guideways, said tension means fitting between said housing and tension means guideways for proper alignment and to enhance the rigidity of said nebulizing means.
8. A nebulizer for generating an aerosol using pressurized gas comprising a housing having an outlet for the discharge of the aerosol, an inlet aperture, a planar surface contiguous to said aperture, and two housing guideways on opposite sides of the housing and removed from said planar surface, a supply tube coupled to the source of pressurized gas and said inlet aperture; a reservoir mounted to said housing for containing the material to be nebulized; and an aerosol generating subassembly within said housing including, a power jet piece having an inlet section coupled to said supply tube at the inlet aperture for receiving said pressurized gas, said inlet section including a shoulder for aligning said power jet piece against the planar surface of the housing, and a primary orifice for the gas to exit therefrom, a cap piece having, a secondary orifice, a recessed cavity on the exit side of the secondary orifice including a rim-like surface, and guideways on the exit side of the secondary orifice, said cap piece being mounted on said power jet piece such that a chamber is formed between said orifices which is connected to the material to be nebulized, a target piece designed to snugly fit between the housing guideways and cap piece guideways for proper alignment and to enhance the rigidity of the aerosol generating subassembly, and having a target surface with a portion thereof being in close proximity to said rim-like surface forming a restrictive passage such that the material to be nebulized is uniformly deposited on said target surface as it passes through the restrictive passage and is spread over the target surface prior to separating from the target surface in the form of an aerosol.
US00102327A 1970-12-29 1970-12-29 Nebulizer Expired - Lifetime US3744722A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10232770A 1970-12-29 1970-12-29

Publications (1)

Publication Number Publication Date
US3744722A true US3744722A (en) 1973-07-10

Family

ID=22289296

Family Applications (1)

Application Number Title Priority Date Filing Date
US00102327A Expired - Lifetime US3744722A (en) 1970-12-29 1970-12-29 Nebulizer

Country Status (1)

Country Link
US (1) US3744722A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3944635A (en) * 1974-04-19 1976-03-16 Carba Limited Apparatus for humidifying a gas
US4299355A (en) * 1979-01-05 1981-11-10 Haekkinen Taisto Apparatus for atomizing medicaments
US4500480A (en) * 1982-08-23 1985-02-19 Respiratory Care, Inc. Pediatric cartridge humidifier
US4509688A (en) * 1981-12-04 1985-04-09 Puritan-Bennett Corporation One-piece nebulizer jet
US4566452A (en) * 1982-07-12 1986-01-28 American Hospital Supply Corporation Nebulizer
US4588129A (en) * 1983-09-06 1986-05-13 Hudson Oxygen Therapy Sales Company Nebulizer
US5011632A (en) * 1989-02-07 1991-04-30 Shimizu Construction Co., Ltd. Ultrasonic fragrance generation apparatus
US5030253A (en) * 1988-05-31 1991-07-09 Shimizu Construction Co., Ltd. Fragrant air supplying method and supplying system
US5071621A (en) * 1988-01-20 1991-12-10 Shimizu Construction Co. Ltd. Method of supplying scents to a room of a motor vehicle
US5165392A (en) * 1991-07-16 1992-11-24 Small Jr John C Accuvent aerosol delivery system
US5287847A (en) * 1992-07-24 1994-02-22 Vortran Medical Technology, Inc. Universal nebulizer
US5370317A (en) * 1991-06-28 1994-12-06 Glaxo Group Limited Atomizing device for producing a spray from a liquid under pressure
US5584285A (en) * 1995-06-07 1996-12-17 Salter Labs Breathing circuit apparatus for a nebulizer
US6009869A (en) * 1997-12-29 2000-01-04 Allegiance Corporation Supersonic nozzle nebulizer
WO2001021322A1 (en) * 1999-09-24 2001-03-29 Quest International Bv Dispensing devices
US6223745B1 (en) * 1996-10-16 2001-05-01 Aga Aktiebolag Method and a device for producing a fine homogeneous aerosol
US6338443B1 (en) 1999-06-18 2002-01-15 Mercury Enterprises, Inc. High efficiency medical nebulizer
US20060237090A1 (en) * 2003-03-11 2006-10-26 Prolitec, S.A. Method and device for nebulisation
US20070163575A1 (en) * 2005-12-30 2007-07-19 Rojas Antonio M Jr Nebulizer
US20100206305A1 (en) * 2009-02-19 2010-08-19 Galemed Corporation Nebulizer
US20160354560A1 (en) * 2014-02-27 2016-12-08 Omron Healthcare Co., Ltd. Nebulizer and nebulizer kit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2709577A (en) * 1951-07-28 1955-05-31 Nat Welding Equipment Co Oxygen therapy humidifier
US2840417A (en) * 1957-02-12 1958-06-24 Gordon Armstrong Company Inc Nebulizing apparatus
US2869188A (en) * 1950-06-06 1959-01-20 Misto2 Gen Equipment Co Medicinal inhalant atomization
US3077307A (en) * 1961-10-12 1963-02-12 American Hospital Supply Corp Nebulizer
US3097645A (en) * 1960-03-22 1963-07-16 Victor E Lester Nebulizer
US3249553A (en) * 1963-01-28 1966-05-03 Samuel B Steinberg Smoke generator
US3506589A (en) * 1967-12-22 1970-04-14 Norgren Co C A Aerosol generator
US3512718A (en) * 1968-03-06 1970-05-19 Stile Craft Mfg Inc Nebulizer spray unit
US3525476A (en) * 1968-03-27 1970-08-25 Instrumentation Labor Inc Fluid diffuser with fluid pressure discharge means and atomizing of material in holder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2869188A (en) * 1950-06-06 1959-01-20 Misto2 Gen Equipment Co Medicinal inhalant atomization
US2709577A (en) * 1951-07-28 1955-05-31 Nat Welding Equipment Co Oxygen therapy humidifier
US2840417A (en) * 1957-02-12 1958-06-24 Gordon Armstrong Company Inc Nebulizing apparatus
US3097645A (en) * 1960-03-22 1963-07-16 Victor E Lester Nebulizer
US3077307A (en) * 1961-10-12 1963-02-12 American Hospital Supply Corp Nebulizer
US3249553A (en) * 1963-01-28 1966-05-03 Samuel B Steinberg Smoke generator
US3506589A (en) * 1967-12-22 1970-04-14 Norgren Co C A Aerosol generator
US3512718A (en) * 1968-03-06 1970-05-19 Stile Craft Mfg Inc Nebulizer spray unit
US3525476A (en) * 1968-03-27 1970-08-25 Instrumentation Labor Inc Fluid diffuser with fluid pressure discharge means and atomizing of material in holder

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3944635A (en) * 1974-04-19 1976-03-16 Carba Limited Apparatus for humidifying a gas
US4299355A (en) * 1979-01-05 1981-11-10 Haekkinen Taisto Apparatus for atomizing medicaments
US4509688A (en) * 1981-12-04 1985-04-09 Puritan-Bennett Corporation One-piece nebulizer jet
US4566452A (en) * 1982-07-12 1986-01-28 American Hospital Supply Corporation Nebulizer
US4500480A (en) * 1982-08-23 1985-02-19 Respiratory Care, Inc. Pediatric cartridge humidifier
US4588129A (en) * 1983-09-06 1986-05-13 Hudson Oxygen Therapy Sales Company Nebulizer
US5071621A (en) * 1988-01-20 1991-12-10 Shimizu Construction Co. Ltd. Method of supplying scents to a room of a motor vehicle
US5030253A (en) * 1988-05-31 1991-07-09 Shimizu Construction Co., Ltd. Fragrant air supplying method and supplying system
US5011632A (en) * 1989-02-07 1991-04-30 Shimizu Construction Co., Ltd. Ultrasonic fragrance generation apparatus
US5370318A (en) * 1991-06-28 1994-12-06 Glaxo Group Limited Atomizing nozzle for producing a spray from a liquid under pressure
US5370317A (en) * 1991-06-28 1994-12-06 Glaxo Group Limited Atomizing device for producing a spray from a liquid under pressure
US5165392A (en) * 1991-07-16 1992-11-24 Small Jr John C Accuvent aerosol delivery system
US5287847A (en) * 1992-07-24 1994-02-22 Vortran Medical Technology, Inc. Universal nebulizer
US5584285A (en) * 1995-06-07 1996-12-17 Salter Labs Breathing circuit apparatus for a nebulizer
US6223745B1 (en) * 1996-10-16 2001-05-01 Aga Aktiebolag Method and a device for producing a fine homogeneous aerosol
US6009869A (en) * 1997-12-29 2000-01-04 Allegiance Corporation Supersonic nozzle nebulizer
US6338443B1 (en) 1999-06-18 2002-01-15 Mercury Enterprises, Inc. High efficiency medical nebulizer
WO2001021322A1 (en) * 1999-09-24 2001-03-29 Quest International Bv Dispensing devices
US7104471B1 (en) 1999-09-24 2006-09-12 Quest International B.V. Dispensing devices
US20060237090A1 (en) * 2003-03-11 2006-10-26 Prolitec, S.A. Method and device for nebulisation
US20070163575A1 (en) * 2005-12-30 2007-07-19 Rojas Antonio M Jr Nebulizer
US20100206305A1 (en) * 2009-02-19 2010-08-19 Galemed Corporation Nebulizer
US8322334B2 (en) * 2009-02-19 2012-12-04 Galemed Corporation Nebulizer
US20160354560A1 (en) * 2014-02-27 2016-12-08 Omron Healthcare Co., Ltd. Nebulizer and nebulizer kit
US10434266B2 (en) * 2014-02-27 2019-10-08 Omron Healthcare Co., Ltd. Nebulizer and nebulizer kit

Similar Documents

Publication Publication Date Title
US3744722A (en) Nebulizer
US4512341A (en) Nebulizer with capillary feed
US5549102A (en) Nebulizer, especially for application in devices for inhalation therapy
US5533497A (en) Sidestream aerosol generator and method in variable positions
US10406543B2 (en) Spraying apparatus
CA2377566C (en) Low spray force, low retention atomization system
CN107929894B (en) Mixing chamber for an inhalation device and inhalation device
US7059319B2 (en) Device and method for creating aerosols for drug delivery
USRE33717E (en) Liquid atomizing device and method
NZ504021A (en) Method and apparatus for delivering aerosolized medication having air discharged through air tube directly into plume of aerosolized medication
SE8104749L (en) spray nozzle
US2993652A (en) Atomizer
US4511087A (en) Air mist nozzle apparatus
JPH07508680A (en) air atomizing nozzle
US10272456B2 (en) Spraying apparatus
US2785923A (en) Nebulizer
US20060283980A1 (en) Atomizer system integrated with micro-mixing mechanism
US3591090A (en) Nebulizer
CN111482294B (en) Atomizer and aerosol particle filter detection device
DE69212143T2 (en) Inhaler
RU2755024C2 (en) Nozzle for various liquids
TWM548027U (en) Agricultural weeding throttle spray head and spray device
US2396204A (en) Nebulizer
CN211217168U (en) Atomizer and aerosol particle filter detection device
US3512718A (en) Nebulizer spray unit