US3743921A - Tap changing current regulator - Google Patents

Tap changing current regulator Download PDF

Info

Publication number
US3743921A
US3743921A US00262122A US3743921DA US3743921A US 3743921 A US3743921 A US 3743921A US 00262122 A US00262122 A US 00262122A US 3743921D A US3743921D A US 3743921DA US 3743921 A US3743921 A US 3743921A
Authority
US
United States
Prior art keywords
signal
load
thyristors
produce
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00262122A
Inventor
B Legg
E Cowie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3743921A publication Critical patent/US3743921A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/04Controlling
    • H05B39/041Controlling the light-intensity of the source
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/14Regulating voltage or current wherein the variable actually regulated by the final control device is ac using tap transformers or tap changing inductors as final control devices
    • G05F1/16Regulating voltage or current wherein the variable actually regulated by the final control device is ac using tap transformers or tap changing inductors as final control devices combined with discharge tubes or semiconductor devices
    • G05F1/20Regulating voltage or current wherein the variable actually regulated by the final control device is ac using tap transformers or tap changing inductors as final control devices combined with discharge tubes or semiconductor devices semiconductor devices only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/40Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices
    • G05F1/44Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only
    • G05F1/445Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being transistors in series with the load
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/04Controlling
    • H05B39/041Controlling the light-intensity of the source
    • H05B39/044Controlling the light-intensity of the source continuously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • ABSTRACT A constant current control system for lighting applications, in particular airport series lighting arrangements, using a multi-tap transformer connected to the load effectively through back-to-back thyristors which are selectively fired to connect the various taps to the load in order to regulate the current.
  • a signal representative of the square of the current is used to produce the control signal which controls the firing point of the Various thyristors.
  • the control signal is a series of impulses produced by a multivibrator.
  • This invention relates to the regulation of power supplied to a load, in particular a series lighting load such as a lighting arrangement conventionally used for airport lighting.
  • FIG. 1 is a schematic diagram of a system in accordance with our invention.
  • V FIG. 2 is a waveform diagram useful in explaining the operation of the circuit.
  • the load transformer 10 is supplied from a source of 60-cycle alternating current at the available voltage asconvenient.
  • the secondary of this transformer is provided with several taps. Connected to one of these taps, designated 11, are a pair of thyristors 12 and 13 arranged back-to-back. The other ends of these thyristors are connected together and to the primary of the output transformer 14.
  • a similar pair of thyristors designated 15 and 16 are connected to tap 17 and to theprimary of output trans former 14.
  • the load consisting of a series of lamps 18, 18a, 18b, etc., each supplied through its individual transformer 22, 22A, 22B, etc.
  • This load is connected to the secondary of the transformer through a series of contacts 20a, 20b, 20c and 20d, all of which are interrelated so that when 20a and 20b are closed, 20d and 200 are open and conversely when 20d and 200 are closed, 20a and 2012 are open.
  • a current transformer 19 is connected in series with the primary of transformer 14 and the output of this transformer is applied to transducer 21.
  • Transducer 21 is arranged to produce a positive potential representative of the square of the current passing through the current transformer 19. This signal is passed through resistor 24 to the operational amplifier 28.
  • This operational amplifier together with all similar operational amplifiers in the system, is provided with the usual feedback circuits and potentials to permit its normal operation, all of which are not shown.
  • a reference signal derived from potentiometer 26 which is negative in polarity and is applied .through resistor 27 to the'input of the operational amplifier.
  • This reference signal establishes the desired brilliance of the lamps 18.
  • the input to theoperational amplifier 28 is the sum of a positive and a negative signal, and therefore represents the difference between the "output from transducer 21 and the reference, which may be referred to as an error.
  • This error is integrated in'amplifier 28 which is not a simple operational amplifier, but is an integrating amplifier.
  • a further signal is applied to operational amplifier 31 from the ramp generator 32 which is provided with a reference frequency at 60 cycles, which corresponds tothe source.
  • the ramp generator produces a linearly decreasing sawtooth wave, as
  • the next portion of the circuit consists of an operational amplifier arranged as a multivibrator, controlled by the potential at the junction of resistors 35 and.36.
  • the resistor 38 is connected through resistors 50 and 51 to the bases of transistors 52 and 53.
  • the collectors of these transistors are connected to a source of positive potential at terminal 54 through resistors 55 and 56.
  • the collectors are also connected to the collectors of switching transistors 57 and 58; the emitters of both of these transistors being connected to ground.
  • the emitters of transistors 52 and 53 are con nected to the bases of transistors 59 and 60.
  • the collectors of these transistors are connected to the positive supply terminal 54 through resistors 61 and 62 and load resistors 63 and 64.
  • the output from the transistors is applied from the load resistors to the primary of pulse transformers 65 and 66.
  • the emitters of transistors 59 and 60 are connected to ground.
  • the bases of transistors 57 and 58 are driven from switching transformer 67.
  • One terminal of this transformer is connected through diode 68 and resistor 69 to the base of transistor 57.
  • the base of transistor 57 is also connected to ground through r esistor76 and Zener diode 71.
  • the opposite terminal of transformer 67 is connected through diode 72 and resistor 73 to the base of transistor 58, which base is connected to ground through Zener diode 74 and resistor 75.
  • the centre point of the secondary transformer 67 is connected to the positive supply terminal 54 and the primary is provided with 60-cycle alternating current as indicated; this current being from the same source as other 60-cycle supplies in the system.
  • the junction point of resistors 61 and 63 and resistors 62 and 641 is by-passed to ground through capacitors 77 and 76 respectively.
  • the secondary of transformer 66 is connected between the gate and cathode of thyristor i6 and the secondary of transformer-65 is connected between the gate and cathode of thyristor 1%.
  • the firing circuit just described is associated with thyristors 15 and 16.
  • a similar circuit is of course re quired in association with thyristors 12 and 13, which circuit corresponds exactly with that shown and utilizes, insofar as possible, common waveforms and components.
  • the basis of differentiation between the circuits is the bias supplied to the operational amplifier 28 and the corresponding amplifiers in further firing circuits.
  • resistors 39 and 40 determines the discharge rate and another resistor 40 determines the charge rate because of the inclusion of diodes 41 and 42.
  • the non-inverting input terminal to amplifier 37 is held at a negative potential.
  • This negative potential at the non-inverting input to amplifier 37 produces a negative potential at the amplifier output, which charges capacitor 43 to a negative potential through resistor 39 and diode 41.
  • the charge on capacitor 43 is limited by diode 44 and Zener diode 45 so that the magnitude of the potential at the non-inverting input is greater than that at the inverting input and the multivibrator action is arrested. In the absence of Zener diode 435, the capacitor would continue charging until it reaches the amplifier saturation voltage which would prevent the multivibrator resuming operation in a normal manner.
  • the multivibrator circuit As soon as the output from amplifier 31 goes positive, the multivibrator circuit is permitted to operate and produces a series of pulses. These pulses continue as long as the output from amplifier 31 is positive. The output pulses are applied as previously indicated through resistor 38 to the pulse forming network.
  • the operation of the pulse forming network is as follows.
  • transistor 57 is placed between the collector and ground on transistor 52 so that if transistor 57 is switched on, transistor 52 cannot be switched on.
  • the operation of transistor 57 is determined by the switching circuit which includes transformer 67. It will be seen that the centre tap of the secondary of this transformer is supplied with a positive potential. in addition, let us assume that the secondary of the transformer is providing positive potential to diode 6% through resistor 69 to the base of transistor 57. This will cause transistor 57 to be conductive and transistor 52 therefore can not be operative.
  • Zener diode ii is provided to protect transistor 57 from the voltages produced by the combination of the supply voltage from terminal 54 and the output from the secondary of transformer 67. In order to provide rapid switching it is desirable that the output from transformer 67 be large thus producing an abrupt rise of voltage to a point where transistor 57 becomes conductive. On the other hand, it is not desired that large voltages be applied to the base of the transistor and these voltages are instead absorbed through the Zener diode 71.
  • the point of conduction of the thyristor is determined by the time of conduction of transistor 52, which can operate only during a partic ular half-cycle which is arranged to be the conductive half-cycle of thyristor l5, and. also during the period which the multivibrator circuit produces pulses, this period being determined in time by the error signal and its point of coincidence with the ramp produced by the ramp generator. It will therefore appear that the point of conduction of thyristor 15 is determined by the cur- In time period t the dotted line cuts the ramp early in the cycle and causes thyristors l2 and 13 to fire.
  • the dash-dot line alsocuts the ramp and thyristors 15 and 16 are fired.
  • the resultant voltage and current waveforms are shown at D and E respectively and the pulse trains used to fire thyristor 15 for example are shown at C.
  • Thyristors 12 and 13 fire for the whole cycle while thyristors 15 and 16 fire for a substantial portion of the cycle.
  • the load resistance is zero (with contacts 20d and 200 closed).
  • the error signal is such that the amplifier associated with thyristors l5 and 16 is inoperative (due to its bias) and only thyristors l2 and'l3 are fired. Since these are feeding a reactive load they conduct through the zero transistion.
  • the series of pulses as shown at C' or a prolonged firing signal is' used to ensure thyristors turn on in this period.
  • thyristor 16 is also so determined.
  • Thyristors 12 and 13 are similarly controlled by a similar circuit, the only difference being the adjustment of potentiometer corresponding to potentiometer 30, which determines the thyristor to be connected depending on the current required.
  • potentiometer corresponding to potentiometer 30 determines the thyristor to be connected depending on the current required.
  • a short circuit is applied to the secondary of transformer 14. This causes a current in the current transformer 19 whch rapidly rises to and exceeds the value established by potentiometer 26.
  • the integrated error signal changes rapidly in a positive di rection so that the effective point of intersection between the ramp and the integrated signal is delayed to a point late in the cycle. Therefore, the effective potential at the input of amplifier 31 only becomes negative late in the cycle and therefore the point of conduction of thyristors l2 and 13 is late in the cycle.
  • the dash-dot line which represents the point of conduction of thyristors l5 and 16 goes right off the graph. These thyristors do not conduct under this condition, and only thyristors connected to the lower potential taps are fired.
  • the various conductive conditions are illustrated in FIG. 2
  • thyristor pairs could be included and connected to various transformer taps depending upon the degree of control required. The more thyristor pairs provided the less waveform distortion will be produced. It will also be seen that load transformer 14 is necessary in the present situation only because of the voltages and currents being controlled. Recognizing the voltage limitations of the thyristors, it was necessary that they be operated at a restricted voltage rating while the load was operated at a higher voltage. If this were not the case, transformer 14 could have been omitted. It will also be understood that the specific circuitry for producing the pulses, while preferred, is not the only possible arrangement.
  • the square law device designated 21 which produces a signal proportional to the square of the current in current transformer 19 may take various forms. For example, it may be produced by a proper arrangement of a Hall generator. Integrated devices are available however which will produce a square law signal in response to an input signal.

Abstract

A constant current control system for lighting applications, in particular airport series lighting arrangements, using a multitap transformer connected to the load effectively through backto-back thyristors which are selectively fired to connect the various taps to the load in order to regulate the current. A signal representative of the square of the current is used to produce the control signal which controls the firing point of the various thyristors. The control signal is a series of impulses produced by a multivibrator.

Description

United States atet Legg et a1. 2 July 3, 1973 TAP CHANGING CURRENT REGULATOR 3,448,371 6/1969 Boymel 323/4 3,600,668 8 1971 o ldb 323 43.5 s
[761 lnvemmsl Brian Legg, Coral Dnve- 3,469,176 9/1969 1126...??? 323/4 Hamilmm Ontario; i Cowie, 3,061,828 10/1962 Hauck 323/6 ux 4517 Cott nwo D 3,596,172 7/1971 Harrison 323/45 Burlington, Ontario,.both of 3,686,557 8/1972 Fulamura 323/24 X Canada Filed: June 12, 1972 Appl. No.: 262,122
Foreign Application Priority Data July 2, 1971 Canada 117,181
US. Cl 323/4, 315/219, 315/279, 315/307, 323/6, 323/24, 323/435 S, 323/62 Int. Cl. G05f 1/20 Field of Search 315/196, 219, 251, 315/258, 279, 307; 323/4, 6, 7, 24, 43.5 S, 45,
References Cited UNITED STATES PATENTS Mellott et al. 323/435 S Primary Examiner-A. D.- Pellinen Att0rney--R. H. Fox
[57] ABSTRACT A constant current control system for lighting applications, in particular airport series lighting arrangements, using a multi-tap transformer connected to the load effectively through back-to-back thyristors which are selectively fired to connect the various taps to the load in order to regulate the current. A signal representative of the square of the current is used to produce the control signal which controls the firing point of the Various thyristors. The control signal is a series of impulses produced by a multivibrator.
2 Claims, 2 Drawing Figures 2OA 22 22A 22B Patented July 3, 1973 2 Sheets-Sheet 1 Patented July 3, 1973 2 Sheets-Sheet 8 TAP CHANGING CURRENT REGULATOR BACKGROUND OF THE INVENTION This invention relates to the regulation of power supplied to a load, in particular a series lighting load such as a lighting arrangement conventionally used for airport lighting.
v In the prior control of airport lighting, it has been conventional to use saturable reactors to control the current supplied to the series-arranged lamps. It is conventional in the operation of such lamps that a short circuit be placed across the lamps when they are not operative. When the supply is applied to this load in its short circuit condition, it will be evident that, in the absence of regulation, prohibitively large currents would flow. However, in the prior art it was usual, as has been previously indicated, to unsaturate the reactor under these conditions and cause the short circuit to appear, so far as the actual source of energy is concerned, as a highly reactive load. The current was then limited in accordance with the reactance to the permissible current limit. The resultant power would be essentially wholly reactive and would represent the source voltage times the reactive current in VARS. Such a reactive load is obviously disadvantageous particularly in view of power factor penalties which are assessable by suppliers and the excessively high line currents when supplied by standby Diesel generator sets. It would therefore be desirable to reduce this if possible. Saturable reactors also had disadvantages in their slow response time, high losses and severe waveform distortion would SUMMARY OF THE INVENTION These and other objections are overcome in the present invention by utilizing solid state switching devices, not only to regulate the current by controlling the conducting angle of the solid state devices, but also selectively to supply current from different taps of a supply transformer in accordance with the current demand so that the wave shape is more closely related to sinusoidal, and also that in short circuit conditions a lower voltage is applied from the source, thus reducing the total VAR consumption of the system under these short circuit conditions.
A clearer understanding ofour invention may be had from a consideration of the following drawings, in which:
FIG. 1 is a schematic diagram of a system in accordance with our invention; and V FIG. 2 is a waveform diagram useful in explaining the operation of the circuit.
DESCRIPTION OF THE PREFERRED I EMBODIMENTS As will be seen in FIG. I, the load transformer 10 is supplied from a source of 60-cycle alternating current at the available voltage asconvenient. The secondary of this transformer is provided with several taps. Connected to one of these taps, designated 11, are a pair of thyristors 12 and 13 arranged back-to-back. The other ends of these thyristors are connected together and to the primary of the output transformer 14. A similar pair of thyristors designated 15 and 16 are connected to tap 17 and to theprimary of output trans former 14. To the output of the output transformer 14 is connected the load, consisting of a series of lamps 18, 18a, 18b, etc., each supplied through its individual transformer 22, 22A, 22B, etc. This load is connected to the secondary of the transformer through a series of contacts 20a, 20b, 20c and 20d, all of which are interrelated so that when 20a and 20b are closed, 20d and 200 are open and conversely when 20d and 200 are closed, 20a and 2012 are open.
A current transformer 19 is connected in series with the primary of transformer 14 and the output of this transformer is applied to transducer 21. Transducer 21 is arranged to produce a positive potential representative of the square of the current passing through the current transformer 19. This signal is passed through resistor 24 to the operational amplifier 28.
This operational amplifier, together with all similar operational amplifiers in the system, is provided with the usual feedback circuits and potentials to permit its normal operation, all of which are not shown. Also applied to the operational amplifier 28 is a reference signal derived from potentiometer 26 which is negative in polarity and is applied .through resistor 27 to the'input of the operational amplifier. This reference signal establishes the desired brilliance of the lamps 18. As will be seen, the input to theoperational amplifier 28 is the sum of a positive and a negative signal, and therefore represents the difference between the "output from transducer 21 and the reference, which may be referred to as an error. This error is integrated in'amplifier 28 which is not a simple operational amplifier, but is an integrating amplifier. As a result, its output represents the accumulated error. This output is applied to a further operational amplifier 29, whose point of operation is established bythe bias provided from potentiomet'er 30. When and only when the signal from the operational amplifier 28 exceeds the bias potential, amplifier 29 produces an output which is applied through resistor 33 to operational amplifier 31.
A further signal is applied to operational amplifier 31 from the ramp generator 32 which is provided with a reference frequency at 60 cycles, which corresponds tothe source. In response to this reference, the ramp generator produces a linearly decreasing sawtooth wave, as
shown at C in FIG. 2, in phase synchronism with the waveform of the source and having a duration of onehalf cycle. This ramp is applied through resistor 34 to amplifier 31. Amplifier 31 is arranged so that it provides at its output as long as the combination of the interated signal and the ramp is negative, a positive output.
The next portion of the circuit consists of an operational amplifier arranged as a multivibrator, controlled by the potential at the junction of resistors 35 and.36.
nected a diode 44 and a Zener diode 45 in series. The
other input of the amplifier, that is, the non-inverting input, is connected through resistor 48 to a potentiometer consisting of resistors 46 and 47 which are connected between the output of the amplifier and ground. This input terminal of the amplifier is also connected through resistor 49 and diode 77 to the junction of resistors 35 and 36. The square waves produced by the amplifier 37 functioning as a multivibrator are applied through resistor 38 to the pulse forming network which is a symmetrical circuit arranged to operated on alternate half-cycles and thereby provide the necessary controls to the gates of thyristors and 16.
As will be seen, the resistor 38 is connected through resistors 50 and 51 to the bases of transistors 52 and 53. The collectors of these transistors are connected to a source of positive potential at terminal 54 through resistors 55 and 56. The collectors are also connected to the collectors of switching transistors 57 and 58; the emitters of both of these transistors being connected to ground. The emitters of transistors 52 and 53 are con nected to the bases of transistors 59 and 60. The collectors of these transistors are connected to the positive supply terminal 54 through resistors 61 and 62 and load resistors 63 and 64. The output from the transistors is applied from the load resistors to the primary of pulse transformers 65 and 66. The emitters of transistors 59 and 60 are connected to ground. The bases of transistors 57 and 58 are driven from switching transformer 67. One terminal of this transformer is connected through diode 68 and resistor 69 to the base of transistor 57. The base of transistor 57 is also connected to ground through r esistor76 and Zener diode 71. In a similar manner, the opposite terminal of transformer 67 is connected through diode 72 and resistor 73 to the base of transistor 58, which base is connected to ground through Zener diode 74 and resistor 75. The centre point of the secondary transformer 67 is connected to the positive supply terminal 54 and the primary is provided with 60-cycle alternating current as indicated; this current being from the same source as other 60-cycle supplies in the system. The junction point of resistors 61 and 63 and resistors 62 and 641 is by-passed to ground through capacitors 77 and 76 respectively. The secondary of transformer 66 is connected between the gate and cathode of thyristor i6 and the secondary of transformer-65 is connected between the gate and cathode of thyristor 1%.
The firing circuit just described is associated with thyristors 15 and 16. A similar circuit is of course re quired in association with thyristors 12 and 13, which circuit corresponds exactly with that shown and utilizes, insofar as possible, common waveforms and components. The basis of differentiation between the circuits is the bias supplied to the operational amplifier 28 and the corresponding amplifiers in further firing circuits.
OPERATION Let us assume that a 60-cycle supply, as shown at A in FIG. 2, is provided for transformer w and the system is in operation providing current to the load consisting oflamps 18, 18a, etc. with the switches in the condition shown producing an effective load resistance as shown at time period t of curve B in FIG. 2. Waveform C in FIG. .2 is intended to be illustrative only. It will be seen that the solid line represents the ramp, while the dotted line represents the integrated output from amplifier 29. The polarity of this latter should be disregarded however, since it effectively illustrates the zero potential level of the combined signal indicating the point of transition from positive to negative value. At the point of intersection, the potential at the input of amplifier 3% changes polarity. it will therefore be seen that the polarity of the output from amplifier 31 varies from negative to positive at a time determined by the combination of the ramp and the integrated error signal.
Let us now consider the operation of the multivibrator consisting of amplifier 37 and its associated components. Let us assume that the output terminal of amplifier 37 is in its most positive state and has been in this state long enough to charge up capacitor 43 to a point where the inverting input terminal of the amplifier connected to capacitor 43 has just reached the potential of the non-inverting input terminal connected to resistor 49. The output will suddenly decrease and the output terminal of the amplifier will go to a negative value depending on its design. It remains in this condition until capacitor 43 discharges through diode 41 and resistor 39. When capacitor 43 has discharged to a sufficiently low level, the amplifier once again reverses its condition and the output becomes positive. This reversal of positive to negative condition occurs repetitively as long as the non-inverting input terminal of amplifier 37 is permitted to go positive, and occurs at a periodicity determined by resistors 39 and 40. it will be noted that one resistor, i.e. 39, determines the discharge rate and another resistor 40 determines the charge rate because of the inclusion of diodes 41 and 42.
If, however, the potential at the junction of resistors 35 and 36 is negative, the non-inverting input terminal to amplifier 37 is held at a negative potential. This negative potential at the non-inverting input to amplifier 37 produces a negative potential at the amplifier output, which charges capacitor 43 to a negative potential through resistor 39 and diode 41. The charge on capacitor 43 is limited by diode 44 and Zener diode 45 so that the magnitude of the potential at the non-inverting input is greater than that at the inverting input and the multivibrator action is arrested. In the absence of Zener diode 435, the capacitor would continue charging until it reaches the amplifier saturation voltage which would prevent the multivibrator resuming operation in a normal manner. As soon as the output from amplifier 31 goes positive, the multivibrator circuit is permitted to operate and produces a series of pulses. These pulses continue as long as the output from amplifier 31 is positive. The output pulses are applied as previously indicated through resistor 38 to the pulse forming network.
The operation of the pulse forming network is as follows.
Assuming a series of pulses is applied through resistor 38 to the base of transistor 52 for example, this would normally cause transistor 52 to become conductive. However, it will be noted that transistor 57 is placed between the collector and ground on transistor 52 so that if transistor 57 is switched on, transistor 52 cannot be switched on. The operation of transistor 57 is determined by the switching circuit which includes transformer 67. It will be seen that the centre tap of the secondary of this transformer is supplied with a positive potential. in addition, let us assume that the secondary of the transformer is providing positive potential to diode 6% through resistor 69 to the base of transistor 57. This will cause transistor 57 to be conductive and transistor 52 therefore can not be operative. Zener diode ii is provided to protect transistor 57 from the voltages produced by the combination of the supply voltage from terminal 54 and the output from the secondary of transformer 67. In order to provide rapid switching it is desirable that the output from transformer 67 be large thus producing an abrupt rise of voltage to a point where transistor 57 becomes conductive. On the other hand, it is not desired that large voltages be applied to the base of the transistor and these voltages are instead absorbed through the Zener diode 71.
When the polarity of the secondary of transformer 67 reverses, a negative potential appears on its secondary. This causes transistor 57 to be cut off and in this condition transistor 52 can become operative. With the pulses applied to its base through resistor 50, it then applies a similar series of pulses to the base of transistor 59. This transistor in turn conducts a series of current pulses which appears across its load resistor 63 and is applied to pulse transformer 65. These pulses of the form shown at C in FIG. 3 in turn are applied to the gate and cathode of thyristor causing the thyristor to commence conducting.
It will' be seen therefore that the point of conduction of the thyristor is determined by the time of conduction of transistor 52, which can operate only during a partic ular half-cycle which is arranged to be the conductive half-cycle of thyristor l5, and. also during the period which the multivibrator circuit produces pulses, this period being determined in time by the error signal and its point of coincidence with the ramp produced by the ramp generator. It will therefore appear that the point of conduction of thyristor 15 is determined by the cur- In time period t the dotted line cuts the ramp early in the cycle and causes thyristors l2 and 13 to fire. Later in the cycle the dash-dot line alsocuts the ramp and thyristors 15 and 16 are fired. The resultant voltage and current waveforms are shown at D and E respectively and the pulse trains used to fire thyristor 15 for example are shown at C.
In time period t the load resistance increases and more voltage is required to produce the same current. Thyristors 12 and 13 fire for the whole cycle while thyristors 15 and 16 fire for a substantial portion of the cycle.
In time period t, the load resistance is zero (with contacts 20d and 200 closed). The error signal is such that the amplifier associated with thyristors l5 and 16 is inoperative (due to its bias) and only thyristors l2 and'l3 are fired. Since these are feeding a reactive load they conduct through the zero transistion. The series of pulses as shown at C' or a prolonged firing signal is' used to ensure thyristors turn on in this period.
It should be evident that this system as illustrated is only one specific example of our invention. Only two thyristor pairs have been shown on transformer 10, but
rent passing through current transformer 19. In a similar manner, the conducting period of thyristor 16 is also so determined. Thyristors 12 and 13 are similarly controlled by a similar circuit, the only difference being the adjustment of potentiometer corresponding to potentiometer 30, which determines the thyristor to be connected depending on the current required. Under circumstances where the load is not connected as shown, but instead is in its non-operative condition; that is, with-contacts 20a and 20b open, and contacts 20d and 20c closed, a short circuit is applied to the secondary of transformer 14. This causes a current in the current transformer 19 whch rapidly rises to and exceeds the value established by potentiometer 26.
As shown by the dotted line in curve C of FIG. 2, the integrated error signal changes rapidly in a positive di rection so that the effective point of intersection between the ramp and the integrated signal is delayed to a point late in the cycle. Therefore, the effective potential at the input of amplifier 31 only becomes negative late in the cycle and therefore the point of conduction of thyristors l2 and 13 is late in the cycle. It will be noted that the dash-dot line which represents the point of conduction of thyristors l5 and 16 goes right off the graph. These thyristors do not conduct under this condition, and only thyristors connected to the lower potential taps are fired. The various conductive conditions are illustrated in FIG. 2
As the load resistance changes as shown at B, current errors occur which when integrated by amplifier 28 and amplified by amplifiers such as 29, produce reference represented by the broken lines on C. The dotted line represents the reference used to control thyristors 12 and 13 while the dash-dot line represents the reference used to control thyristors l5 and 16.
it is evident that a plurality of thyristor pairs could be included and connected to various transformer taps depending upon the degree of control required. The more thyristor pairs provided the less waveform distortion will be produced. It will also be seen that load transformer 14 is necessary in the present situation only because of the voltages and currents being controlled. Recognizing the voltage limitations of the thyristors, it was necessary that they be operated at a restricted voltage rating while the load was operated at a higher voltage. If this were not the case, transformer 14 could have been omitted. It will also be understood that the specific circuitry for producing the pulses, while preferred, is not the only possible arrangement.
It is also noted that the square law device designated 21 which produces a signal proportional to the square of the current in current transformer 19 may take various forms. For example, it may be produced by a proper arrangement of a Hall generator. Integrated devices are available however which will produce a square law signal in response to an input signal.
Finally, it is noted that the whole apparatus is as sumed to be operated on a 60-cycle alternating supply, and while it is necessary that the various supplies all be from the same source, there is no reason why it should' not operate at some other frequency dependent on the available source of supply.
rent having at least two secondary taps, means to selectively connect a load to one of said taps during portions of the cycle and thereby regulate the current supplied to said load, said means including a pair of oppositelypoled thyristors connected "to each tap, means to produce a first signal representative of the square of the currents supplied to the load, means to produce a second signal representative of the desired load current, means to compare said first and second signals to produce an error signal, means to integrate said error signal, means to compare said integrated error signal with a first reference signal and produce a first output signal when said error signal exceeds said first reference signal, a source of cyclic sawtooth waveforms in phase synchronism with the alternating current being regulated, means to combine said output signal with said sawtooth waveform and produce a first control signal when said sawtooth waveform is equal in absolute value to said output signal, a first oscillator rendered operative by said first control signal, means to apply the out put of said first oscillator to the firing electrodes of a first of said pairs of oppositely-poled thyristors in the proper phase to cause the proper one of said first pair of thyristors to conduct and connect a first tap to said load, means to compare said integrated error signal with a second reference signal and produce a second output signal when said error signalexceeds said second reference signal, means to produce a second control signal, a second oscillator rendered operative by said second control signal and means to apply the output of said second oscillator to the firing electrodes of a second of said pairs of oppositely-poled thyristors in the proper phase to cause the proper one of saidsecond pair of thyristors to conduct and connect a second tap to said load.
2. A regulation system as claimed in claim 1 wherein said second reference signal is greater than said first reference signal and the voltage supplied by said second tap is greater than the voltage applied by the first tap. I

Claims (2)

1. An alternating current regulation system comprising a supply transformer supplied with alternating current having at least two secondary taps, means to selectively connect a load to one of said taps during portions of the cycle and thereby regulate the current supplied to said load, said means including a pair of oppositely-poled thyristors connected to each tap, means to produce a first signal representative of the square of the currents supplied to the load, means to produce a second signal representative of the desired load current, means to compare said first and second signals to produce an error signal, means to integrate said error signal, means to compare said integrated error signal with a first reference signal and produce a first output signal when said error signal exceeds said first reference signal, a source of cyclic sawtooth waveforms in phase synchronism with the alternating current being regulated, means to combine said output signal with said sawtooth waveform and produce a first control signal when said sawtooth waveform is equal in absolute value to said output signal, a first oscillator rendered operative by said first control signal, means to apply the output of said first oscillator to the firing electrodes of a first of said pairs of oppositely-poled thyristors in the proper phase to cause the proper one of said first pair of thyristors to conduct and connect a first tap to said load, means to compare said integrated error signal with a second reference signal and produce a second output signal when said error signal exceeds said second reference signal, means to produce a second control signal, a second oscillator rendered operative by said second control signal and means to apply the output of said second oscillator to the firing electrodes of a second of said pairs of oppositely-poled thyristors in the proper phase to cause the proper one of said second pair of thyristors to conduct and connect a second tap to said load.
2. A regulation system as claimed in claim 1 wherein said second reference signal is greater than said first reference signal and the voltage supplied by said second tap is greater than the voltage applied by said first tap.
US00262122A 1971-07-02 1972-06-12 Tap changing current regulator Expired - Lifetime US3743921A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA117181A CA939001A (en) 1971-07-02 1971-07-02 Lighting control system

Publications (1)

Publication Number Publication Date
US3743921A true US3743921A (en) 1973-07-03

Family

ID=4090203

Family Applications (1)

Application Number Title Priority Date Filing Date
US00262122A Expired - Lifetime US3743921A (en) 1971-07-02 1972-06-12 Tap changing current regulator

Country Status (2)

Country Link
US (1) US3743921A (en)
CA (1) CA939001A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875554A (en) * 1973-05-08 1975-04-01 Westinghouse Electric Corp Elevator system having current limited and short circuit protected power supply for hall lamps
US3995137A (en) * 1973-03-29 1976-11-30 Osaka Transformer Co., Ltd. Alternating current arc welder
US4029993A (en) * 1975-12-18 1977-06-14 General Electric Company Two level inverter circuit
US4057842A (en) * 1976-01-28 1977-11-08 Borg-Warner Corporation Current regulation system for three-phase load
US4262256A (en) * 1978-04-13 1981-04-14 Hydro-Quebec Energy extraction system from a capacitive source with shunt switching regulation
US4293799A (en) * 1979-10-05 1981-10-06 Victor Products (Wallsend) Limited Power supply systems
US4733158A (en) * 1986-08-21 1988-03-22 Datametrics Corporation Control circuit for tap-switching power supplies and multi-tap transformers
US4816738A (en) * 1987-07-31 1989-03-28 Ets. Augier S.A. Tap changing power regulator for airport lighting
US5289110A (en) * 1992-10-14 1994-02-22 Cooper Industries Input current responsive, tap changing transformer system
US5408171A (en) * 1991-10-21 1995-04-18 Electric Power Research Institute, Inc. Combined solid-state and mechanically-switched transformer tap-changer
WO1995017707A1 (en) * 1993-12-23 1995-06-29 Siemens Aktiengesellschaft Current stabiliser with step-up transformer
US5550460A (en) * 1994-09-29 1996-08-27 Siemens Energy & Automation, Inc. Voltage regulator control system with multiple control programs
US5596263A (en) * 1993-12-01 1997-01-21 Siemens Energy & Automation, Inc. Electrical power distribution system apparatus-resident personality memory module
EP0705056A3 (en) * 1994-09-30 1997-01-29 Toroids Hong Kong Limited Apparatus for applying a variable voltage to an electric load
US5604424A (en) * 1993-09-21 1997-02-18 The National Grid Company Plc Electrical changeover switching
US5642290A (en) * 1993-09-13 1997-06-24 Siemens Energy & Automation, Inc. Expansion chassis for a voltage regulator controller
US5796216A (en) * 1993-07-16 1998-08-18 Delta Power Supply, Inc. Electronic ignition enhancing circuit having both fundamental and harmonic resonant circuits as well as a DC offset
US5825164A (en) * 1995-12-21 1998-10-20 Adb-Alnaco, Inc. Inductance controller with load regulator
US6124702A (en) * 1998-11-13 2000-09-26 Active Power, Inc. Step switch cycloconverter utilizing multi-tap armature
US20150028978A1 (en) * 2012-04-20 2015-01-29 Alfred Bieringer Distribution transformer for voltage regulation of local distribution networks
US20150171783A1 (en) * 2012-06-14 2015-06-18 Maschinenfabrik Reinhausen Gmbh On-load tap changer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3061828A (en) * 1958-03-11 1962-10-30 Basic Products Corp Circuit means
US3375437A (en) * 1965-03-15 1968-03-26 Navy Usa Maintenance of power supply regulation during low-line transients
US3448371A (en) * 1966-08-31 1969-06-03 Us Navy Solid state constant current regulator
US3469176A (en) * 1966-05-27 1969-09-23 Sola Basic Ind Inc Constant current regulator
US3596172A (en) * 1969-06-27 1971-07-27 Lear Siegler Inc Buck-boost pulse-width-modulated line regulator
US3600668A (en) * 1970-01-20 1971-08-17 Gen Electric Time ratio solid state voltage regulator
US3686557A (en) * 1970-08-26 1972-08-22 Fischer & Porter Co Floating-type electronic servo-motor process controller

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3061828A (en) * 1958-03-11 1962-10-30 Basic Products Corp Circuit means
US3375437A (en) * 1965-03-15 1968-03-26 Navy Usa Maintenance of power supply regulation during low-line transients
US3469176A (en) * 1966-05-27 1969-09-23 Sola Basic Ind Inc Constant current regulator
US3448371A (en) * 1966-08-31 1969-06-03 Us Navy Solid state constant current regulator
US3596172A (en) * 1969-06-27 1971-07-27 Lear Siegler Inc Buck-boost pulse-width-modulated line regulator
US3600668A (en) * 1970-01-20 1971-08-17 Gen Electric Time ratio solid state voltage regulator
US3686557A (en) * 1970-08-26 1972-08-22 Fischer & Porter Co Floating-type electronic servo-motor process controller

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995137A (en) * 1973-03-29 1976-11-30 Osaka Transformer Co., Ltd. Alternating current arc welder
US3875554A (en) * 1973-05-08 1975-04-01 Westinghouse Electric Corp Elevator system having current limited and short circuit protected power supply for hall lamps
US4029993A (en) * 1975-12-18 1977-06-14 General Electric Company Two level inverter circuit
US4057842A (en) * 1976-01-28 1977-11-08 Borg-Warner Corporation Current regulation system for three-phase load
US4262256A (en) * 1978-04-13 1981-04-14 Hydro-Quebec Energy extraction system from a capacitive source with shunt switching regulation
US4293799A (en) * 1979-10-05 1981-10-06 Victor Products (Wallsend) Limited Power supply systems
US4733158A (en) * 1986-08-21 1988-03-22 Datametrics Corporation Control circuit for tap-switching power supplies and multi-tap transformers
US4816738A (en) * 1987-07-31 1989-03-28 Ets. Augier S.A. Tap changing power regulator for airport lighting
US5408171A (en) * 1991-10-21 1995-04-18 Electric Power Research Institute, Inc. Combined solid-state and mechanically-switched transformer tap-changer
US5289110A (en) * 1992-10-14 1994-02-22 Cooper Industries Input current responsive, tap changing transformer system
US5796216A (en) * 1993-07-16 1998-08-18 Delta Power Supply, Inc. Electronic ignition enhancing circuit having both fundamental and harmonic resonant circuits as well as a DC offset
US5642290A (en) * 1993-09-13 1997-06-24 Siemens Energy & Automation, Inc. Expansion chassis for a voltage regulator controller
US5604424A (en) * 1993-09-21 1997-02-18 The National Grid Company Plc Electrical changeover switching
US5596263A (en) * 1993-12-01 1997-01-21 Siemens Energy & Automation, Inc. Electrical power distribution system apparatus-resident personality memory module
US5666256A (en) * 1993-12-01 1997-09-09 Siemens Energy & Automation, Inc. Electrical power distribution system apparatus-resident personality memory module
US5751566A (en) * 1993-12-23 1998-05-12 Siemens Aktiengesellschaft Current stabilizer with step-up transformer
WO1995017707A1 (en) * 1993-12-23 1995-06-29 Siemens Aktiengesellschaft Current stabiliser with step-up transformer
US5550460A (en) * 1994-09-29 1996-08-27 Siemens Energy & Automation, Inc. Voltage regulator control system with multiple control programs
EP0705056A3 (en) * 1994-09-30 1997-01-29 Toroids Hong Kong Limited Apparatus for applying a variable voltage to an electric load
US5825164A (en) * 1995-12-21 1998-10-20 Adb-Alnaco, Inc. Inductance controller with load regulator
US6124702A (en) * 1998-11-13 2000-09-26 Active Power, Inc. Step switch cycloconverter utilizing multi-tap armature
US20150028978A1 (en) * 2012-04-20 2015-01-29 Alfred Bieringer Distribution transformer for voltage regulation of local distribution networks
US9406434B2 (en) * 2012-04-20 2016-08-02 Maschinenfabrik Reinhausen Gmbh Distribution transformer for voltage regulation of local distribution networks
US20150171783A1 (en) * 2012-06-14 2015-06-18 Maschinenfabrik Reinhausen Gmbh On-load tap changer
US9455658B2 (en) * 2012-06-14 2016-09-27 Maschinenfabrik Reinhausen Gmbh On-load tap changer

Also Published As

Publication number Publication date
CA939001A (en) 1973-12-25

Similar Documents

Publication Publication Date Title
US3743921A (en) Tap changing current regulator
US3525035A (en) Closed loop ferroresonant voltage regulator which simulates core saturation
GB1026532A (en) Improvements in or relating to voltage or current regulator apparatus
GB1191786A (en) Control Circuit Arrangement for Controlled Rectifiers
GB1567749A (en) Power control means for a single phase load
GB1352881A (en) Cycloconverters
US3222587A (en) Alternating current converting circuit
US3611117A (en) Voltage stabilizer with reversible binary counter for alternating-current lines
US3564394A (en) Chopper-type alternating current regulator employing amplitude sensor and zero crossing detector
US3114098A (en) Self-regulating direct current power supply
US4037044A (en) Power control system for single phase induction melting or heating furnace
US3543139A (en) Multiple regulated outputs in a single pulse regulator
US3414798A (en) Constant voltage power supply utilizing independent reference and control circuits coupled to each other by an optical link
US3252010A (en) Scr control circuit gated by unijunction transistor relaxation oscillator with capacitive linearization
US3353082A (en) Fixed power supply utilizing a commutated rectifier
US2674734A (en) Electronic ringing frequency generator
US4131938A (en) Digital chopper regulator
US3419780A (en) Static synthetic sine wave inverter
US3649906A (en) Programmable dc power supply
US3348129A (en) Apparatus for producing phaseshiftable pulses
US3518491A (en) Reverse power flow detector
EP0140851A1 (en) Magnetization arrangement for transformers
US3806792A (en) Parallel inverter with saturable reactor current control
GB1203792A (en) Static frequency multipliers
US3209237A (en) Regulated d. c. to d. c. converter employing saturable reactor control means for a single silicon controlled rectifier