US3742938A - Cardiac pacer and heart pulse monitor - Google Patents

Cardiac pacer and heart pulse monitor Download PDF

Info

Publication number
US3742938A
US3742938A US00103611A US3742938DA US3742938A US 3742938 A US3742938 A US 3742938A US 00103611 A US00103611 A US 00103611A US 3742938D A US3742938D A US 3742938DA US 3742938 A US3742938 A US 3742938A
Authority
US
United States
Prior art keywords
signals
sequence
cardiac
pacer
pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00103611A
Inventor
T Stern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3742938A publication Critical patent/US3742938A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/904Telephone telemetry

Definitions

  • a small transducer transmitter picks up the patients [51] Int. Cl A61b 5/02 blood pulses, and cardiac pacer pulses if p l [58] Field of Search 128/2.05 P, 2.05 RS, i ly codes h m an ends them in proper time se- 128/2.05 T, 2.06 A, 2.06 F, 2.06 T, 2.06 R, quence through the ordinary telephone transmitter 2,1 A, 419 P over the telephone lines to a processing center where the coded signals are checked for presence or absence [56] R feren Cit d and for the time intervals between adjacent signals of UNITED STATES PATENTS the same coded type and adjacent signals of different 3 7 316 3 1971 v l 1 [28/2 I A coded types.
  • This invention relates to a cardiac diagnostic system, and more particularly relates to a diagnostic system for providing follow-up care to persons with implanted cardiac pacers by use of the ordinary telephone without requiring frequent patient visits to the cardiologist.
  • Cardiac pacers are devices which generate electrical impulses at a recurring rate for the purpose of stimulating the heart muscle to produce normal contractions at a regularly recurring rate in the manner of a normal heart which does not require external electrical stimulation.
  • Cardiac pacers are subject to malfunction by reason of defective parts, battery depletion, and improper conduction of the pacer pacing pulses to the heart muscle due to perhaps a broken electrical lead or a shift of an electrode with respect to the heart muscle itself. In the latter case, it is of course possible for the pacer to itself be functioning in a perfectly proper manner while at the same time being completely ineffective insofar as the performance of its vital function is concerned.
  • pacer testing has generally been concerned with attempting to determine whether the pacer is generating its pulse properly, or whether the pulse has deteriorated, usually due to battery depletion. It will be appreciated that a check of pacer pulse performance, while a necessary condition, is not of itself sufficient to insure that the heart of a cardiac patient is in fact being properly paced by the pacer.
  • the system according to the invention provides a simple, inexpensive, convenient and reliable means for quickly determining whether or not the implanted pacer is itself functioning properly and whether or-not the cardiac patient is properly responding to the pacer.
  • the system includes a very small lightweight transducer transmitter device which is in the possession of the patient, and a receiving device which is located at a data processing center which may be in a clinic or at a central processing office.
  • a data processing center which may be in a clinic or at a central processing office.
  • the patient places a telephone call to the processing center, places the telephone headset properly with respect to the transmitter and grasps the transducer transmitter electrodes.
  • the electrical pacer pulse and the subsequent physiological blood pulse of the patient are both picked up by the electrodes, processed in the transmitter and then transmitted out over the telephone line to the data processing receiver center where the information may be processed in a number of different ways to give a complete picture of what is actually happening to the patient.
  • the results of the processed information are immediately available and the patient can be informed at that time via the telephone connection that every thing is in order or that the patient should be in contact with his or her physician.
  • the physician is of course immediately contacted by the data processing unit and informed of the result of the check just carried out so that the doctor is alerted to the need for taking some action.
  • the data recorded in tangible form at the processing center is immediately transmitted to the physician for his own personal evaluation.
  • Another object of the invention is to provide a novel cardiac diagnostic system as aforesaid which utilizes a small lightweight transducer device retained by the cardiac patient and by means of which the requisite diagnostic information is obtained from the patient and transmitted into the telephone system.
  • a further object .of the invention is to provide a novel cardiac diagnostic system as aforesaid wherein the transducer apparatus processes the electrical pacer pulses and the physiological patient blood pulses to provide time related electrical signals from which a diagnosis of the functioning condition of the pacer and the physiological cardiac condition of the patient are quickly determinable.
  • FIG. 1 is a pictorial diagrammatic representation of the transmitting portion of the system and a representative part of the receiving portion of the system according to the invention
  • FIG. 2 is a functional block diagram of the apparatus utilized in the diagnostic system for effecting a complete cardiac diagnosis according to the invention.
  • FIG. 3A to SI is a nine part timing diagram illustrating the general form of information derived from the cardiac patient and the subsequent processing thereof together with illustrations of various types of conditions which can occur and which are detectable for diagno- SIS.
  • transducer transmitter designated generally as 10 and the data receiver and processor designated generally as 11 which are intercoupled by the commercial telephone system designated generally at 12 and terminating at the transmitting and receiving ends respectively with the hand sets 13 and 14.
  • the transducer transmitter 10 is held in a suitable flat hinged case 15 having a battery power supply 16 which energizes the circuitry of the device through switch 17 when the case 15 is opened, and which disconnects the power supply from the circuitry when the case is closed.
  • the electronic processing apparatus contained within the region 18 of the case 15 includes amplifiers 19 and 20 which are respectively fed signals from'pacer pulse pick-up electrode 21 and blood pulse pickup electrode 22 through signal cables 23 and 24.
  • Amplifier l9 amplifies the electrical pacer pulse to insure the triggering of a monostable trigger circuit 25 which generates a square'pulse 26 which is then differentiated and clipped by differentiater clipper 27 to provide a sharp pulse 28 from the leading edge of square pulse 26 while suppressing the sharp pulse generated by the trailing edge of square pulse 26.
  • the blood pulse amplified by amplifier is used to trigger a triggered oscillator 29 to provide a timed burst of audio frequency oscillation 30 which might typically be on the order of two thousand to twenty-five hundred Hertz.
  • the derived pacer pulse 28 and audio burst 30 are, as will be subsequently seen, routed to speaker driver 31 in temporally spaced sequence and are then converted to audio signals by the loud speaker 32 which transmits them through a sound tunnel 33 to the transmitter 34 of telephone hand set 13.
  • the order of events is such that the electrical pacer pulse is generated first and is then followed by the blood pulse resulting from contraction of the heart muscle.
  • the blood pulse can be picked up at any convenient point on the body such as the nose, forehead or a finger or toe, and the time interval between contraction of the heart muscle and pick-up of the blood pulse is determined by the distance between the heart and the point at which the blood pulse is picked up.
  • the finger is a convenient point for pick-up and a suitable finger pulse pick-up device typically could be that manufactured by the Sanei Instrument Company of Japan which is sensitive to shifts in the red spectrum and produces a voltage change with variations in blood flow.
  • the timing intervals to be hereafter mentioned in connection with the timing diagram of FIG. 3 are all intervals which would occur for blood pulses which are detected at the fingers of the patient.
  • the train of signals 28 and after injection into the transmitter 34 of telephone hand-set 13 proceed through the telephone system 12 to the receiver 35 of the telephone hand-set 14 at the data processing center where they are amplified by telephone amplifier 36 and transmitted via cable 37 to one or more pieces of terminal equipment, such as to loudspeaker 38 via cable 39 for the generation of audible signals in the form of a tick representing the pacer pulse followed by a tone representing the blood pulse.
  • the terminal equipment of more significance however would be the strip recorder 40 of the moving stylus type and the interval counter 41 which typically could be a Monsanto 100B counter.
  • the interval counter is a device which provides a read-out of the time interval between selected events. For example, a digital readout can be obtained for the time interval between successive derived pacer pulse spikes 28 in order to determine the pacer pulse rate and whether or not the rate is constant within the allowed tolerance limits.
  • the counter can also be selectively set to determine the same information for pulses derived from the burst 30 of audio frequency signal which corresponded to the occurrence of the physiological blood pulse of the patient.
  • the derived pacer pulse 28 must be separated from the audio burst 30 with the former being permitted to pass to the interval counter 41 while the latter is suppressed. This is carried out by the high pass filter 42 which passes the derived relatively high frequency pacer pulse 28 while supressing the relatively lower frequency tone burst 30 so that the input to interval counter 41 on line 43 consists only of the succession of derived pacer pulses 28.
  • the audio tone burst 30 must be separated from the derived pacer pulse 28 and converted into a pulse input of suitable waveform for use as a signal input to the interval counter 41.
  • the derived blood pulse 46 is injected at the interval counter 41 via the signal input line 47.
  • the interval counter 41 is provided with an output signal connection which provides an output signal that changes from a logical one to a logical zero" when the count is started and reverses when the count is terminated, thus providing a step function output which may be applied to integrator 57. Should the count exceed a predetermined set value, the integrated output signal level reaches amagnitude sufficient to trigger the Schmitt trigger 58 and actuate an alarm 59 of whatever type is desired.
  • the demodulator 44 need not be an envelope detector, but could for example be a high 0 filter tuned to the audio burst frequency 30 and followed by a suitable form of trigger circuit and differentiator to produce the desired derived blood pulse 46.
  • the particular form of demodulator 44 is not significant, it is the signal separating the waveshaping function which is of importance.
  • timing times A through I are illustrated, depicting various diagnostic conditions to be now described.
  • the diagram 3A shows a repetitive sequence of pulse waveforms beginning with a relatively high amplitude .wave having a steep leading edge, and followed by two waveforms of low amplitude with the pattern being thereafter successively repeated.
  • the high amplitude wave designated as 48 corresponds to the R-wave of the EKG tracing of a typically paced heart, while the succeeding low amplitude waves 49 and 50 represent respectively the T-wave and the P-wave.
  • the steeply rising leading edge of the R-wave occurs immediately after the time of the pacer pulse spikes designated as 28 in FlGS. 3C and 3E through 3[ although the time scale is such that the separation is not visible. These pacer pulse spikes are observed to occur at the times designated as t t, and t,.
  • FIG. 3C illustrates the derived pacer pulses 28 as previously described with the intervals (t t (t t At t 0.3 milliseconds where the time interval At is chosen by the physician with respect to the particular patient and will lie normally within the range of 500 to 1,200 milliseconds.
  • FIG. 3D illustrates the tone bursts 30 derived from the blood pulse waveforms 51 illustrated in FIG. 33, these bursts 30 occuring at time intervals (t t,) which should be equal to the previously defined At 1 approximately 30 milliseconds.
  • FIG. SE is a combination of the waveforms of FIG. 3C and FIG. 3D showing the normal pattern of occurrance of a pacer pulse followed at the appropriate time by a blood pulse with the two signals repeating cyclically over and over as shown.
  • a pulse pattern of course illustrates a properly functioning cardiac pacer putting out its pulses at the proper time and resulting in complete capture of the heart muscle with the consequent regular rhythmic contractions of the heart producing the desired blood pulse pattern.
  • FIG. 3F illustrates abnormal conditions which are detectable by the cardiac diagnostic system according to the invention. These abnormal conditions are usually detectable at a sufficiently early point in time so that remedial action can be taken before the development of any critical condition occurs.
  • FIG. 3F illustrates a regularly occurring series of pacer pulses 28 in which the first and third pulses are followed by pulses 46 corresponding to the occurrence of blood pulses. However, it is observed that there are no blood pulses 46 following the second and fourth pacer pulses 28, indicating that the second and fourth pacer pulses 28 were ineffective in causing a contraction of the heart muscle.
  • This type of pulse pattern indicates only intermittent capture of the heart by the cardiac pacer, and also indicates the patient should immediately consult his cardiologist because such a pattern indicates either physiological changes requiring attention or some problem associated with proper transfer of the pacer pulse to the heart muscle.
  • the regularity of the pacer pulses 28 of course rules out any malfunction of the electrical circuitry of the cardiac pacer itself.
  • FIG. 36 discloses a pattern of regularly occurring equally spaced pacer pulses 28 together with a series of three blood pulse signals 52a, 52b and 52c which respectively follow the first, second and fourth pacer pulses. It will be observed that the spacing of the pulses 52a, 52b and 520 with respect to their immediately preceding pacer pulses 28 is of a random time nature, and that there is no blood pulse signal whatever following the third pacer pulse 28. The missing blood pulse and random blood pulse intervals indicate a condition of no capture of the heart muscle by the cardiac pacer. This is a serious condition and must be remedied at the earliest possible time.
  • FIG. 3H again illustrates a regularly occurring sequence of pacer pulses 28 followed however by a regularly occurring series of blood pulses 53, one such pulse 53 occurring after each pacer pulse 28.
  • FIG. 3E discloses that the blood pulses 53 are occurring at a much earlier time after the occurrence of a pacer pulse, and in fact as shown in FIG. 3H with an interval of (t t of approximately 0.5 seconds.
  • FIG. 31 illustrates a normally functioning cardiac pacer properly generating a sequence of pacer pulses 28 in which the seocnd, third and fourth pacer pulses 28 are followed by regularly occurring blood pulses 54' temporally spaced from the preceding pacer pulse by equal amounts.
  • the first pacer pulse 28 is followed by a pair of blood pulses 55 and 56 instead of by only a single blood pulse, and that both of the blood pulses 55 and 56 are temporally spaced from the preceding pacer pulse 28 by time intervals which are different from the time interval of blood pulses 54 which follow the subsequent pacer pulses 28.
  • the first blood pulse 55 is one which occurs independently of the pacer pulse 28 while the second blood pulse 56 is caused by the pacer pulse 28 but is delayed in time due to the occurrence of the immediately preceding blood pulse 55.
  • This condition could indicate possible premature ventricular contraction which could be the first indicator of the incipient onset of ventricular fibrillation, and again represents a condition requiring the attention of the attending physician.
  • Patients without cardiac pacer can use just the blood pulse detecting features, to transmit information to the data center which can be used to determine the presence of cardiac arrhythmias. This can be especially significant for the post coronary patient. Moreover, detection of the existence of a patients R wave can also be provided by using an R-wave sensing circuit in the amplifier 19 in conjunction with the blood pulse detection to provide data, via the telephone, as to the sequence of mechanical and electrical events of the cardiac system for patients without pacemakers.
  • the complete EKG will not be transmitted, only the timing of the R wave to R wave interval is necessary, so only a pulse corresponding to the R wave need be transmitted, as is.done with the pacer spike.
  • a method of cardiac diagnosis for detection of abnormal cardiac conditions in patients remote in distance from the diagnostic center consisting of the steps of,
  • step of comparing the measured time intervals against one another further includes comparing the aforesaid time intervals against standard time intervals previously established by the physician as normal for the particular person being monitored.
  • a method of cardiac diagnosis as described in claim 1 wherein the step of converting each blood pulse consists of the steps of, first converting the blood pulse to an electrical analog signal and then converting the analog signal to a non-analog electrical signal designating only the time of occurrence of the blood pulse.
  • a method of cardiac diagnosis as described in claim 1 wherein the steps of converting each blood pulses consists of the steps of, first converting the blood pulse to an electrical analog signal, then converting the analog signal to a non-analog tone burst electrical signal, then converting the non-analog electrical tone burst signal to an acoustical signal within the bandpass of the transmitter of the commercial telephone.
  • a method of cardiac diagnosis for detection of abnormal conditions in cardiac pacer patients remote in distance from the diagnostic center consisting of the steps of,
  • each such pacer pulse and blood pulse as it occurs to a signal for transmission through a commercial telephone system and thereby generating a sequence of electrical signals occurring in the same timed relationship to one another as the timed relationship between the pacer pulses and blood pulses to which they correspond,
  • a method of cardiac diagnosis as described in claim 5 wherein the step of comparing the measured time intervals against one another further includes comparing the aforesaid time intervals against standard time intervals previously established by the physician as normal for the particular person being monitored.
  • step of measuring the time intervals between selected pairs of signals of the sequence includes the step of first separating the sequence of timed electrical signals into a first sequence of signals corresponding only to pacer pulse signals and a second sequence of signals corresponding only to blood pulse signals.
  • a method of cardiac diagnosis as described in claim 8 wherein the step of separating the sequence of timed electrical signals into the aforesaid first and second sequences and selectively following the signals separating step by one or more of the following steps,
  • a method of cardiac diagnosis as described in claim 5 wherein the step of measuring the time intervals between selected pairs of signals of the sequence includes the step of first separating the sequence of electrical signals, and selecting either or both of a first sequence of signals corresponding only to pacer pulse signals and a second sequence of signals corresponding only to blood pulse signals.
  • a cardiac diagnostic system for detection of abnormal cardiac conditions in patients located remotely from a diagnostic center comprising in combination,
  • a transducer transmitter comprising,
  • first detection means for detecting the occurrence of each of a continuous sequence of the patients physiological blood pulses
  • converter means operatively coupled to said first detection means effective to convert such blood pulses as they occur to a sequence of non-analog timing signals for transmission through a commercial telephone system, and thereby being capable of generating a sequence of electrical signals occurring in the same timed relationship to one another as the timed relationship between the blood pulses to which they correspond.
  • a receiver processer at the data processing center comprising,
  • second detection means adapted to be coupled to a commercial telephone system effective to detect the timed sequence of signals inserted at the transmitting point
  • signal presentation means coupled to said second detection means for measuring, displaying and recording in units of time the intervals between successive pairs of signals of the-sequence
  • a cardiac diagnostic system as described in claim 11 wherein said receiver processer signal presentation means comprises measuring means effective to automatically measure the time intervals between successive pairs of the sequence and provide a read-out of the measurement in units of time.
  • measuring means read-out includes an electrical signal read-out representing the time interval just measured
  • said receiver processer further including a comparator device coupled to said measuring means and effective responsive to said electrical signal read-out from the latter to-actuate an alarm when the time interval represented thereby differs by more than a predetermined amount from a standard time interval selectively programmed into said comparator device.
  • a cardiac diagnostic system for detection of abnormal cardiac conditions in patients located remotely from a diagnostic center comprising in combination,
  • a transducer transmitter comprising,
  • first detection means for detecting the occurrence of each of a continuous sequence of cardiac pacer pulses, and detecting the occurrence 5 of each of a continuous sequence of the patients physiological blood pulses
  • converter means operatively coupled to said first detection means effective to convert each such pacer pulse and each such blood pulse as it occurs to a signal for transmission through a commercial telephone system, and thereby generating a sequence of electrical signals occurring in the same timed relationship to one another as the timed relationship between the pacer pulses and the blood pulses to which they correspond,
  • a receiver processer at the data processing center comprising,
  • second detection means adapted to be coupled to a commercial telephone system effective to detect the timed sequence of signals inserted at the transmitting point
  • signal presentation means coupled to said second detection means for measuring, displaying and recording in units of time the time intervals between selected pairs of signals of the sequence
  • a cardiac diagnostic system as described in claim 15 wherein said receiver processer signal presentation means comprises measuring means effective to automatically measure the time intervals between selected pairs of signals of the sequence and provide a read-out of the measurement in units of time.
  • said first detection means comprises transducer means which generates a first discrete electrical signal upon detection of each pacer pulse and which generates a second discrete electrical signal upon detection of each blood pulse, and wherein said converter means converts said first and second discrete electrical signals respectively into first and second signals of different frequency and combines said signals of different frequency into a single sequence.
  • a cardiac diagnostic system as described in claim 16 wherein said measuring means comprises sorting means effective to separate the. timed sequence of sig nals into a first sequence of signals corresponding only to pacer pulse signals and a second sequence of signals corresponding only to blood pulse signals.
  • a cardiac diagnostic system as described in claim 17 wherein said receiver processer signal presentation means comprises measuring means effective to automatically measure the time intervals between selected pairs of signals of the said single sequence of signals and provide a read-out of the measurement.

Abstract

A method of and system for remote cardiac diagnosis of cardiac patients, whether or not fitted with implanted cardiac pacer by use of the ordinary telephone. A small transducer transmitter picks up the patient''s blood pulses, and cardiac pacer pulses if present, electrically codes them and sends them in proper time sequence through the ordinary telephone transmitter over the telephone lines to a processing center where the coded signals are checked for presence or absence and for the time intervals between adjacent signals of the same coded type and adjacent signals of different coded types. From this data it is possible to determine the operating condition of the cardiac pacer, noncapture and intermittent capture of the heart by the cardiac pacer, cardio-vascular system hemodynamic changes, and cardiac arrhythmias such as missing heartbeat and possible premature ventricular contraction.

Description

United States Patent Stern 1 1 July 3, 1973 CARDIAC PACER AND HEART PULSE MONITOR Primary Examiner-William E. Kamm [76] Inventor: Theodore J. Stern, 84 Sheffield Attorney-Edda) & Udell Drive, Willingboro, NJ. 08046 [22] Filed: Jan. 4, 1971 [57] ABSTRACT 21 Appl. No.: 103,611
[52] US, Cl.. l28/2.05 T, 128/2.05 P, l28/2.06 R,
A method of and system for remote cardiac diagnosis of cardiac patients, whether or not fitted with implanted cardiac pacer by use of the ordinary telephone. A small transducer transmitter picks up the patients [51] Int. Cl A61b 5/02 blood pulses, and cardiac pacer pulses if p l [58] Field of Search 128/2.05 P, 2.05 RS, i ly codes h m an ends them in proper time se- 128/2.05 T, 2.06 A, 2.06 F, 2.06 T, 2.06 R, quence through the ordinary telephone transmitter 2,1 A, 419 P over the telephone lines to a processing center where the coded signals are checked for presence or absence [56] R feren Cit d and for the time intervals between adjacent signals of UNITED STATES PATENTS the same coded type and adjacent signals of different 3 7 316 3 1971 v l 1 [28/2 I A coded types. From this data it is possible to determine 3983 711970 2 232: et a 128/2 6 A the operating condition of the cardiac pacer, non- 3426l50 2/l969 yg Q8/2106 R capture and intermittent capture of the heart by the 3:599:627 8/1971 Millen 128/2.05 T cardiac Pacer, cafqio-vaScvlar System hemodyliarnic 2,918,054 12 1959 Goelkasian.... l28/2.05 T g and cardlac arrhythmlas such as mlssmg 3,318,303 5/1967 l-lammacher l28/2.05 S heartbeat and possible premature ventricular contrac- 3,280,817 10/1966 Jorgensen et al l28/2.05 S tion,
FOREIGN PATENTS OR APPLICATIONS 22 Claims, 11 Drawing Figures 314,141 7/1956 Switzerland l28/2.05 R
Z1 1 L2 F *2; a 88 31 32 PACER j\ 1 fi K 7 1 I put 55 R AMA/0514a 5755 JPEAAEI? S AMPL/F/E TR/GGE IV I "22 C/RCU/T amps/2 i a} 3 l I 29, 3 I I sow/0 Elf Z22 A 72/6 GEE-ED N/i TUNNEL UP 24 2o I J l m 29 l a H/ ass I I 3 F/L T52 39 l 35) W" A I rou/v T52 I R v2. x M TR. IC' .11 34 D/FFEEENTMTa/Q DEMODULATOK AMPLIFIER i 47 55 CLIPPER 57 37 36 i ScHM/Tr 59 5 72 IP I L INT m/aase @441 r 40 EECORDEJE' J PATENTEDJULS 1973 SHEET 2 0F 2 FIG, .3
W VE/V TOR THEODORE J. 5 TERM 4 T TORNE Y5 1 CARDIAC PACER AND HEART PULSE MONITOR This invention relates to a cardiac diagnostic system, and more particularly relates to a diagnostic system for providing follow-up care to persons with implanted cardiac pacers by use of the ordinary telephone without requiring frequent patient visits to the cardiologist.
Cardiac pacers are devices which generate electrical impulses at a recurring rate for the purpose of stimulating the heart muscle to produce normal contractions at a regularly recurring rate in the manner of a normal heart which does not require external electrical stimulation. Cardiac pacers are subject to malfunction by reason of defective parts, battery depletion, and improper conduction of the pacer pacing pulses to the heart muscle due to perhaps a broken electrical lead or a shift of an electrode with respect to the heart muscle itself. In the latter case, it is of course possible for the pacer to itself be functioning in a perfectly proper manner while at the same time being completely ineffective insofar as the performance of its vital function is concerned.
In the past, pacer testing has generally been concerned with attempting to determine whether the pacer is generating its pulse properly, or whether the pulse has deteriorated, usually due to battery depletion. It will be appreciated that a check of pacer pulse performance, while a necessary condition, is not of itself sufficient to insure that the heart of a cardiac patient is in fact being properly paced by the pacer. The system according to the invention provides a simple, inexpensive, convenient and reliable means for quickly determining whether or not the implanted pacer is itself functioning properly and whether or-not the cardiac patient is properly responding to the pacer. Specific immediate or incipient problems are immediately detectable, as for example a condition of only intermittent capture of the heart by the pacer a condition of no capture, hemodynamic changes in the circulatory system of the patient, and possible premature ventricular contractions. These physiological conditions are all possible even though the pacer mechanism itself is functioning perfectly, and their early detection can lead to immediate examination by a cardiologist to determine exactly what is happening to the patient so that corrective steps may be taken at a time when they will be effective.
Briefly, the system includes a very small lightweight transducer transmitter device which is in the possession of the patient, and a receiving device which is located at a data processing center which may be in a clinic or at a central processing office. In accordance with a time schedule as determined by the patients physician, or on an emergency basis, the patient places a telephone call to the processing center, places the telephone headset properly with respect to the transmitter and grasps the transducer transmitter electrodes. The electrical pacer pulse and the subsequent physiological blood pulse of the patient are both picked up by the electrodes, processed in the transmitter and then transmitted out over the telephone line to the data processing receiver center where the information may be processed in a number of different ways to give a complete picture of what is actually happening to the patient.
The results of the processed information are immediately available and the patient can be informed at that time via the telephone connection that every thing is in order or that the patient should be in contact with his or her physician. In the latter event, the physician is of course immediately contacted by the data processing unit and informed of the result of the check just carried out so that the doctor is alerted to the need for taking some action. The data recorded in tangible form at the processing center is immediately transmitted to the physician for his own personal evaluation.
It is a primary object of the invention to provide a novel cardiac diagnostic system by means of which the condition of an implanted cardiac pacer and the physiological responses of the body thereto can be quickly determined by remotely located diagnostic equipment made available to the patient via the ordinary commercial telephone system.
Another object of the invention is to provide a novel cardiac diagnostic system as aforesaid which utilizes a small lightweight transducer device retained by the cardiac patient and by means of which the requisite diagnostic information is obtained from the patient and transmitted into the telephone system.
A further object .of the invention is to provide a novel cardiac diagnostic system as aforesaid wherein the transducer apparatus processes the electrical pacer pulses and the physiological patient blood pulses to provide time related electrical signals from which a diagnosis of the functioning condition of the pacer and the physiological cardiac condition of the patient are quickly determinable.
The foregoing and other objects of the invention will become clear from reading the following specification in conjunction with an examination of the appended drawings, wherein:
FIG. 1 is a pictorial diagrammatic representation of the transmitting portion of the system and a representative part of the receiving portion of the system according to the invention;
FIG. 2 is a functional block diagram of the apparatus utilized in the diagnostic system for effecting a complete cardiac diagnosis according to the invention; and
FIG. 3A to SI is a nine part timing diagram illustrating the general form of information derived from the cardiac patient and the subsequent processing thereof together with illustrations of various types of conditions which can occur and which are detectable for diagno- SIS.
In the several figures, like elements are denoted by like reference characters.
Referring now to the drawings, and first to FIG. 1 and 2, there is seen the transducer transmitter'designated generally as 10 and the data receiver and processor designated generally as 11 which are intercoupled by the commercial telephone system designated generally at 12 and terminating at the transmitting and receiving ends respectively with the hand sets 13 and 14.
The transducer transmitter 10 is held in a suitable flat hinged case 15 having a battery power supply 16 which energizes the circuitry of the device through switch 17 when the case 15 is opened, and which disconnects the power supply from the circuitry when the case is closed. The electronic processing apparatus contained within the region 18 of the case 15 includes amplifiers 19 and 20 which are respectively fed signals from'pacer pulse pick-up electrode 21 and blood pulse pickup electrode 22 through signal cables 23 and 24. Amplifier l9 amplifies the electrical pacer pulse to insure the triggering of a monostable trigger circuit 25 which generates a square'pulse 26 which is then differentiated and clipped by differentiater clipper 27 to provide a sharp pulse 28 from the leading edge of square pulse 26 while suppressing the sharp pulse generated by the trailing edge of square pulse 26. The blood pulse amplified by amplifier is used to trigger a triggered oscillator 29 to provide a timed burst of audio frequency oscillation 30 which might typically be on the order of two thousand to twenty-five hundred Hertz. The derived pacer pulse 28 and audio burst 30 are, as will be subsequently seen, routed to speaker driver 31 in temporally spaced sequence and are then converted to audio signals by the loud speaker 32 which transmits them through a sound tunnel 33 to the transmitter 34 of telephone hand set 13.
Since the heart muscle contracts in response to the electrical pacer pulse, the order of events is such that the electrical pacer pulse is generated first and is then followed by the blood pulse resulting from contraction of the heart muscle. The blood pulse can be picked up at any convenient point on the body such as the nose, forehead or a finger or toe, and the time interval between contraction of the heart muscle and pick-up of the blood pulse is determined by the distance between the heart and the point at which the blood pulse is picked up. As illustrated, the finger is a convenient point for pick-up and a suitable finger pulse pick-up device typically could be that manufactured by the Sanei Instrument Company of Japan which is sensitive to shifts in the red spectrum and produces a voltage change with variations in blood flow. The timing intervals to be hereafter mentioned in connection with the timing diagram of FIG. 3 are all intervals which would occur for blood pulses which are detected at the fingers of the patient.
The train of signals 28 and after injection into the transmitter 34 of telephone hand-set 13 proceed through the telephone system 12 to the receiver 35 of the telephone hand-set 14 at the data processing center where they are amplified by telephone amplifier 36 and transmitted via cable 37 to one or more pieces of terminal equipment, such as to loudspeaker 38 via cable 39 for the generation of audible signals in the form of a tick representing the pacer pulse followed by a tone representing the blood pulse.
The terminal equipment of more significance however would be the strip recorder 40 of the moving stylus type and the interval counter 41 which typically could be a Monsanto 100B counter. The interval counter is a device which provides a read-out of the time interval between selected events. For example, a digital readout can be obtained for the time interval between successive derived pacer pulse spikes 28 in order to determine the pacer pulse rate and whether or not the rate is constant within the allowed tolerance limits. The counter can also be selectively set to determine the same information for pulses derived from the burst 30 of audio frequency signal which corresponded to the occurrence of the physiological blood pulse of the patient. Additionally, and of great importance, is the measurement of time interval between the occurrence of a derived pacer pulse 28 and a pulse corresponding to First, the derived pacer pulse 28 must be separated from the audio burst 30 with the former being permitted to pass to the interval counter 41 while the latter is suppressed. This is carried out by the high pass filter 42 which passes the derived relatively high frequency pacer pulse 28 while supressing the relatively lower frequency tone burst 30 so that the input to interval counter 41 on line 43 consists only of the succession of derived pacer pulses 28.
Secondly, the audio tone burst 30 must be separated from the derived pacer pulse 28 and converted into a pulse input of suitable waveform for use as a signal input to the interval counter 41. This is accomplished by the demodulator 44 which envelope detects the low frequency tone burst 30 while suppressing the relatively high frequency derived pacer pulse 28, and the differentiator clipper 45 which produces a derived blood pulse 46 from the leading edge of the demodulated audio burst signal while clipping the trailing edge pulse. The derived blood pulse 46 is injected at the interval counter 41 via the signal input line 47.
The interval counter 41 is provided with an output signal connection which provides an output signal that changes from a logical one to a logical zero" when the count is started and reverses when the count is terminated, thus providing a step function output which may be applied to integrator 57. Should the count exceed a predetermined set value, the integrated output signal level reaches amagnitude sufficient to trigger the Schmitt trigger 58 and actuate an alarm 59 of whatever type is desired.
The elements shown in the functional block diagram of FIG. 2 are all well known and need not be described in detail, and any functionally equivalent particular form of element would be equally suitable. For example, the demodulator 44 need not be an envelope detector, but could for example be a high 0 filter tuned to the audio burst frequency 30 and followed by a suitable form of trigger circuit and differentiator to produce the desired derived blood pulse 46. The particular form of demodulator 44 is not significant, it is the signal separating the waveshaping function which is of importance.
Turning now to a consideration of the timing diagrams of FIG. 3, it is observed that nine timing times A through I are illustrated, depicting various diagnostic conditions to be now described.
The diagram 3A shows a repetitive sequence of pulse waveforms beginning with a relatively high amplitude .wave having a steep leading edge, and followed by two waveforms of low amplitude with the pattern being thereafter successively repeated. The high amplitude wave designated as 48 corresponds to the R-wave of the EKG tracing of a typically paced heart, while the succeeding low amplitude waves 49 and 50 represent respectively the T-wave and the P-wave. The steeply rising leading edge of the R-wave occurs immediately after the time of the pacer pulse spikes designated as 28 in FlGS. 3C and 3E through 3[ although the time scale is such that the separation is not visible. These pacer pulse spikes are observed to occur at the times designated as t t, and t,. FIG. 33 illustrates the general form of the blood pulse waveform picked up at the finger by the finger pulse pick-up 22, and these are also observed to be cyclically repetitive and occur at times I, and i In a normal situation, the time interval (t t will be equal to (t t and will be approximately 0.6 seconds 0.15 seconds.
FIG. 3C illustrates the derived pacer pulses 28 as previously described with the intervals (t t (t t At t 0.3 milliseconds where the time interval At is chosen by the physician with respect to the particular patient and will lie normally within the range of 500 to 1,200 milliseconds. FIG. 3D illustrates the tone bursts 30 derived from the blood pulse waveforms 51 illustrated in FIG. 33, these bursts 30 occuring at time intervals (t t,) which should be equal to the previously defined At 1 approximately 30 milliseconds.
The showing of FIG. SE is a combination of the waveforms of FIG. 3C and FIG. 3D showing the normal pattern of occurrance of a pacer pulse followed at the appropriate time by a blood pulse with the two signals repeating cyclically over and over as shown. Such a pulse pattern of course illustrates a properly functioning cardiac pacer putting out its pulses at the proper time and resulting in complete capture of the heart muscle with the consequent regular rhythmic contractions of the heart producing the desired blood pulse pattern.
The timing patterns of FIG. 3F through FIG. 31 illustrate abnormal conditions which are detectable by the cardiac diagnostic system according to the invention. These abnormal conditions are usually detectable at a sufficiently early point in time so that remedial action can be taken before the development of any critical condition occurs. FIG. 3F illustrates a regularly occurring series of pacer pulses 28 in which the first and third pulses are followed by pulses 46 corresponding to the occurrence of blood pulses. However, it is observed that there are no blood pulses 46 following the second and fourth pacer pulses 28, indicating that the second and fourth pacer pulses 28 were ineffective in causing a contraction of the heart muscle. This type of pulse pattern indicates only intermittent capture of the heart by the cardiac pacer, and also indicates the patient should immediately consult his cardiologist because such a pattern indicates either physiological changes requiring attention or some problem associated with proper transfer of the pacer pulse to the heart muscle. The regularity of the pacer pulses 28 of course rules out any malfunction of the electrical circuitry of the cardiac pacer itself.
FIG. 36 discloses a pattern of regularly occurring equally spaced pacer pulses 28 together with a series of three blood pulse signals 52a, 52b and 52c which respectively follow the first, second and fourth pacer pulses. It will be observed that the spacing of the pulses 52a, 52b and 520 with respect to their immediately preceding pacer pulses 28 is of a random time nature, and that there is no blood pulse signal whatever following the third pacer pulse 28. The missing blood pulse and random blood pulse intervals indicate a condition of no capture of the heart muscle by the cardiac pacer. This is a serious condition and must be remedied at the earliest possible time.
FIG. 3H again illustrates a regularly occurring sequence of pacer pulses 28 followed however by a regularly occurring series of blood pulses 53, one such pulse 53 occurring after each pacer pulse 28. However, comparison of the timing diagram of FIG. 3H with that of FIG. 3E discloses that the blood pulses 53 are occurring at a much earlier time after the occurrence of a pacer pulse, and in fact as shown in FIG. 3H with an interval of (t t of approximately 0.5 seconds. The
regularity of occurrence of the blood pulses 53 with respect to the pacer pulses 28 indicates that complete capture of the heart muscle by the pacer exists, but that some hemodynamic change has occurred within the physiological system of the cardiac patient which has shortened the time interval within which the heart muscle responds to the cardiac pacer pulse. In this case, the patient will also be referred to his physician so that a determination can be made as to the significance of the changed conditions with respect to the particular patient involved. Such a change may or may not be the forerunner of a serious condition and can only be-de- .termined by a thorough medical diagnosis.
FIG. 31 illustrates a normally functioning cardiac pacer properly generating a sequence of pacer pulses 28 in which the seocnd, third and fourth pacer pulses 28 are followed by regularly occurring blood pulses 54' temporally spaced from the preceding pacer pulse by equal amounts. However, it is observed that the first pacer pulse 28 is followed by a pair of blood pulses 55 and 56 instead of by only a single blood pulse, and that both of the blood pulses 55 and 56 are temporally spaced from the preceding pacer pulse 28 by time intervals which are different from the time interval of blood pulses 54 which follow the subsequent pacer pulses 28. The first blood pulse 55 is one which occurs independently of the pacer pulse 28 while the second blood pulse 56 is caused by the pacer pulse 28 but is delayed in time due to the occurrence of the immediately preceding blood pulse 55. This condition could indicate possible premature ventricular contraction which could be the first indicator of the incipient onset of ventricular fibrillation, and again represents a condition requiring the attention of the attending physician.
From the foregoing discussion of the timing diagrams of FIG. 3, it will be appreciated that merely checking the implanted cardiac pacer itself to determine whether or not it is generating pacer signals, while necessary, is totally inadequate as a determinant of the condition of the patients cardiac system since all of the problem conditions just described in connection with the showings of FIGS. 3F through 31 in fact occur under circumstances where the electrical cardiac pacer is to all intents and purposes properly generating its pacing pulses. Accordingly, it should now be understood that the cardiac diagnostic system according to the invention enables rapid and early diagnosis of incipient cardiac problems before they actually become troublesome so that remedial measures can be immediately undertaken to anticipate and avoid the occurrence of serious or even fatal cardiac conditions.
Patients without cardiac pacer can use just the blood pulse detecting features, to transmit information to the data center which can be used to determine the presence of cardiac arrhythmias. This can be especially significant for the post coronary patient. Moreover, detection of the existence of a patients R wave can also be provided by using an R-wave sensing circuit in the amplifier 19 in conjunction with the blood pulse detection to provide data, via the telephone, as to the sequence of mechanical and electrical events of the cardiac system for patients without pacemakers.
Specifically, the complete EKG will not be transmitted, only the timing of the R wave to R wave interval is necessary, so only a pulse corresponding to the R wave need be transmitted, as is.done with the pacer spike.
Having now described the invention in connection with a particularly illustrated embodiment thereof, it will be appreciated that variations and modifications of the invention may now occur from time to time to those persons normally skilled in the art without departing from the essential scope or spirit of the invention, and accordingly it is intended to claim the same broadly as well as specifically as indicated by the appended claims.
I claim:
1. A method of cardiac diagnosis for detection of abnormal cardiac conditions in patients remote in distance from the diagnostic center, consisting of the steps of,
a. detecting the occurrence of each of a continuous sequence of the patients physiological blood pulses,
b. converting such blood pulses as they occur to a sequence of non-analog timing signals for transmission through a commercial telephone system and thereby generating a sequence of electrical signals occurring in the same timed relationship to one another as the timed relationship between the blood pulses to which they correspond,
c. inserting the sequence of electrical signals into a commercial telephone system and transmitting the signals to a data processing center where the following steps are carried out, I
d. detecting the timed sequence of electrical signals,
e. measuring, displaying and recording in units of time the time interval between each successive pair of signals of the sequence,
f. comparing the aforesaid measured time intervals against one another, and v g. indicating the displayed time intervals and whether or not the compared time intervals differ from one another by more than a predetermined length of time,
whereby, conditions of cardiac arrhythmias, such as missing heartbeat and possible premature ventricular contraction are detectable.
2. A method of cardiac diagnosis as described in claim 1 wherein the step of comparing the measured time intervals against one another further includes comparing the aforesaid time intervals against standard time intervals previously established by the physician as normal for the particular person being monitored.
3. A method of cardiac diagnosis as described in claim 1 wherein the step of converting each blood pulse consists of the steps of, first converting the blood pulse to an electrical analog signal and then converting the analog signal to a non-analog electrical signal designating only the time of occurrence of the blood pulse.
4. A method of cardiac diagnosis as described in claim 1 wherein the steps of converting each blood pulses consists of the steps of, first converting the blood pulse to an electrical analog signal, then converting the analog signal to a non-analog tone burst electrical signal, then converting the non-analog electrical tone burst signal to an acoustical signal within the bandpass of the transmitter of the commercial telephone.
5. A method of cardiac diagnosis for detection of abnormal conditions in cardiac pacer patients remote in distance from the diagnostic center, consisting of the steps of,
a. detecting the occurrence of each of a continuous sequence of cardiac pacer pulses, and detecting the occurrence of each of a continuous sequence of the patients physiological blood pulses,
b. converting each such pacer pulse and blood pulse as it occurs to a signal for transmission through a commercial telephone system and thereby generating a sequence of electrical signals occurring in the same timed relationship to one another as the timed relationship between the pacer pulses and blood pulses to which they correspond,
c. inserting the sequence of electrical signals into a commercial telephone system and transmitting the signals to a data processing center where the following steps are carried out,
d. detecting the timed sequence of electrical signals,
e. measuring the time intervals between selected pairs of signals of the sequence,
f. comparing the aforesaid measured time intervals against one another, and
g. indicating whether or not the compared time intervals differ from one another by more than a predetermined length of time,
whereby, conditions of cardiac pacer failure, noncapture and intermittent capture of the heart by the pacer, cardio-vascular system hemodynamic changes, cardiac arrhythmias, such as missing heartbeat, and possible premature ventricular contraction are detectable.
6. A method of cardiac diagnosis as described in claim 5 wherein the step of comparing the measured time intervals against one another further includes comparing the aforesaid time intervals against standard time intervals previously established by the physician as normal for the particular person being monitored.
7. A method of cardiac diagnosis as described in claim 5 wherein detecting the occurrence of the pacer pulses and detecting the occurrence of the blood pulses are carried out independently of one another, and wherein converting the pacer pulses and blood pulses to a sequence of timed electrical signals includes the step of combining the pulses into a singlesequence of pulses.
8. A method of cardiac diagnosis as described in claim 5 wherein the step of measuring the time intervals between selected pairs of signals of the sequence includes the step of first separating the sequence of timed electrical signals into a first sequence of signals corresponding only to pacer pulse signals and a second sequence of signals corresponding only to blood pulse signals.
9. A method of cardiac diagnosis as described in claim 8 wherein the step of separating the sequence of timed electrical signals into the aforesaid first and second sequences and selectively following the signals separating step by one or more of the following steps,
a. the step of measuring the time interval between each successive pair of signals of said first sequence,
b. the step of measuring the time interval between each successive pair of signals of said second sequence,
c. the step of measuring the time interval between each successive pair of signals in which the first signal of the pair is selected from said first sequence and the second signal of the pair is selected as the next occurring signal from said second sequence.
10. A method of cardiac diagnosis as described in claim 5 wherein the step of measuring the time intervals between selected pairs of signals of the sequence includes the step of first separating the sequence of electrical signals, and selecting either or both of a first sequence of signals corresponding only to pacer pulse signals and a second sequence of signals corresponding only to blood pulse signals.
11. A cardiac diagnostic system for detection of abnormal cardiac conditions in patients located remotely from a diagnostic center, comprising in combination,
a. a transducer transmitter comprising,
1. first detection means for detecting the occurrence of each of a continuous sequence of the patients physiological blood pulses,
. converter means operatively coupled to said first detection means effective to convert such blood pulses as they occur to a sequence of non-analog timing signals for transmission through a commercial telephone system, and thereby being capable of generating a sequence of electrical signals occurring in the same timed relationship to one another as the timed relationship between the blood pulses to which they correspond.
3. means adapted to be coupled to a commercial telephone system effective to insert the said sequence of signals into a commercial telephone system to transmit the signals to a data processing center,
b. a receiver processer at the data processing center comprising,
1. second detection means adapted to be coupled to a commercial telephone system effective to detect the timed sequence of signals inserted at the transmitting point,
2. signal presentation means coupled to said second detection means for measuring, displaying and recording in units of time the intervals between successive pairs of signals of the-sequence,
whereby, conditions of cardiac arrhythmias, such as missing heartbeat, and possible premature ventricular contraction are detectable.
12. A cardiac diagnostic system as described in claim 11 wherein said first detection means comprises a transducer which generates a discrete analog electrical signal upon detection of each blood pulse, and wherein said converter means converts each of said discrete analog electrical signal to a standardized non-analog waveform.
13. A cardiac diagnostic system as described in claim 11 wherein said receiver processer signal presentation means comprises measuring means effective to automatically measure the time intervals between successive pairs of the sequence and provide a read-out of the measurement in units of time.
14. A cardiac diagnostic systems as described in claim 13 wherein said measuring means read-out includes an electrical signal read-out representing the time interval just measured, said receiver processer further including a comparator device coupled to said measuring means and effective responsive to said electrical signal read-out from the latter to-actuate an alarm when the time interval represented thereby differs by more than a predetermined amount from a standard time interval selectively programmed into said comparator device.
15. A cardiac diagnostic system for detection of abnormal cardiac conditions in patients located remotely from a diagnostic center, comprising in combination,
a. a transducer transmitter comprising,
1. first detection means for detecting the occurrence of each of a continuous sequence of cardiac pacer pulses, and detecting the occurrence 5 of each of a continuous sequence of the patients physiological blood pulses,
2. converter means operatively coupled to said first detection means effective to convert each such pacer pulse and each such blood pulse as it occurs to a signal for transmission through a commercial telephone system, and thereby generating a sequence of electrical signals occurring in the same timed relationship to one another as the timed relationship between the pacer pulses and the blood pulses to which they correspond,
3. means adapted to be coupled to a commercial telephone system effective to insert the said sequence of signals into a commercial telephone system to transmit the signals to a data processing center,
b. a receiver processer at the data processing center comprising,
1. second detection means, adapted to be coupled to a commercial telephone system effective to detect the timed sequence of signals inserted at the transmitting point,
2. signal presentation means coupled to said second detection means for measuring, displaying and recording in units of time the time intervals between selected pairs of signals of the sequence,
whereby, conditions of cardiac pacer failure, noncapture and intermittent capture of the heart by the cardiac pacer, cardio-vascular system hemodynamic changes, cardiac arrhythmias such as missing heartbeat, and possible premature ventricular contraction are detectable.
16. A cardiac diagnostic system as described in claim 15 wherein said receiver processer signal presentation means comprises measuring means effective to automatically measure the time intervals between selected pairs of signals of the sequence and provide a read-out of the measurement in units of time.
17. A cardiac diagnostic system as described in claim 15 wherein said first detection means comprises transducer means which generates a first discrete electrical signal upon detection of each pacer pulse and which generates a second discrete electrical signal upon detection of each blood pulse, and wherein said converter means converts said first and second discrete electrical signals respectively into first and second signals of different frequency and combines said signals of different frequency into a single sequence.
18. A cardiac diagnostic system as described in claim 16 wherein said measuring means comprises sorting means effective to separate the. timed sequence of sig nals into a first sequence of signals corresponding only to pacer pulse signals and a second sequence of signals corresponding only to blood pulse signals.
[9. A cardiac diagnostic system as described in claim 16 wherein said measuring means read-out includes an electrical signal read-out representing the time interval just measured, and said receiver processer further includes a comparator device coupled to said measuring means and effective responsive to saidelectrical signal read-out from the latter to actuate an alarm when the time interval represented thereby differs by'more than a predetermined amount from a standard time interval selectively programmed into said comparator device.
20. A cardiac diagnostic system as described in claim 17 wherein said receiver processer signal presentation means comprises measuring means effective to automatically measure the time intervals between selected pairs of signals of the said single sequence of signals and provide a read-out of the measurement.
21. A cardiac diagnostic system as described in claim 20 wherein said measuring means comprises sorting means effective to separate said signals of different frequency in said single sequence of signals into a first sequence of signals corresponding only to pacer pulse signals and a second sequence of signals corresponding next occurring signal from said second sequence.

Claims (28)

1. A method of cardiac diagnosis for detection of abnormal cardiac conditions in patients remote in distance from the diagnostic center, consisting of the steps of, a. detecting the occurrence of each of a continuous sequence of the patient''s physiological blood pulses, b. converting such blood pulses as they occur to a sequence of non-analog timing signals for transmission through a commercial telephone system and thereby generating a sequence of electrical signals occurring in the same timed relationship to one another as the timed relationship between the blood pulses to which they correspond, c. inserting the sequence of electrical signals into a commercial telephone system and transmitting The signals to a data processing center where the following steps are carried out, d. detecting the timed sequence of electrical signals, e. measuring, displaying and recording in units of time the time interval between each successive pair of signals of the sequence, f. comparing the aforesaid measured time intervals against one another, and g. indicating the displayed time intervals and whether or not the compared time intervals differ from one another by more than a predetermined length of time, whereby, conditions of cardiac arrhythmias, such as missing heartbeat and possible premature ventricular contraction are detectable.
2. A method of cardiac diagnosis as described in claim 1 wherein the step of comparing the measured time intervals against one another further includes comparing the aforesaid time intervals against standard time intervals previously established by the physician as normal for the particular person being monitored.
2. signal presentation means coupled to said second detection means for measuring, displaying and recording in units of time the time intervals between selected pairs of signals of the sequence, whereby, conditions of cardiac pacer failure, non-capture and intermittent capture of the heart by the cardiac pacer, cardio-vascular system hemodynamic changes, cardiac arrhythmias such as missing heartbeat, and possible premature ventricular contraction are detectable.
2. converter means operatively coupled to said first detection means effective to convert each such pacer pulse and each such blood pulse as it occurs to a signal for transmission through a commercial telephone system, and thereby generating a sequence of electrical signals occurring in the same timed relationship to one another as the timed relationship between the pacer pulses and the blood pulses to which they correspond,
2. signal presentation means coupled to said second detection means for measuring, displaying and recording in units of time the time intervals between successive pairs of signals of the sequence, whereby, conditions of cardiac arrhythmias, such as missing heartbeat, and possible premature ventricular contraction are detectable.
2. converter means operatively coupled to said first detection means effective to convert such blood pulses as they occur to a sequence of non-analog timing signals for transmission through a commercial telephone system, and thereby being capable of generating a sequence of electrical signals occurring in the same timed relationship to one another as the timed relationship between the blood pulses to which they correspond.
3. means adapted to be coupled to a commercial telephone system effective to insert the said sequence of signals into a commercial telephone system to transmit the signals to a data processing center, b. a receiver processer at the data processing center comprising,
3. means adapted to be coupled to a commercial telephone system effective to insert the said sequence of signals into a commercial telephone system to transmit the signals to a data processing center, b. a receiver processer at the data processing center comprising,
3. A method of cardiac diagnosis as described in claim 1 wherein the step of converting each blood pulse consists of the steps of, first converting the blood pulse to an electrical analog signal and then converting the analog signal to a non-analog electrical signal designating only the time of occurrence of the blood pulse.
4. A method of cardiac diagnosis as described in claim 1 wherein the steps of converting each blood pulses consists of the steps of, first converting the blood pulse to an electrical analog signal, then converting the analog signal to a non-analog tone burst electrical signal, then converting the non-analog electrical tone burst signal to an acoustical signal within the bandpass of the transmitter of a commercial telephone.
5. A method of cardiac diagnosis for detection of abnormal conditions in cardiac pacer patients remote in distance from the diagnostic center, consisting of the steps of, a. detecting the occurrence of each of a continuous sequence of cardiac pacer pulses, and detecting the occurrence of each of a continuous sequence of the patient''s physiological blood pulses, b. converting each such pacer pulse and blood pulse as it occurs to a signal for transmission through a commercial telephone system and thereby generating a sequence of electrical signals occurring in the same timed relationship to one another as the timed relationship between the pacer pulses and blood pulses to which they correspond, c. inserting the sequence of electrical signals into a commercial telephone system and transmitting the signals to a data processing center where the following steps are carried out, d. detecting the timed sequence of electrical signals, e. measuring the time intervals between selected pairs of signals of the sequence, f. comparing the aforesaid measured time intervals against one another, and g. indicating whether or not the compared time intervals differ from one another by more than a predetermined length of time, whereby, conditions of cardiac pacer failure, non-capture and intermittent capture of the heart by the pacer, cardio-vascular system hemodynamic changes, cardiac arrhythmias, such as missing heartbeat, and possible premature ventricular contraction are detectable.
6. A method of cardiac diagnosis as described in claim 5 wherein the step of comparing the measured time intervals against one another further includes comparing the aforesaid time intervals against standard time intervals previously established by the physician as normal for the particular person being monitored.
7. A method of cardiac diagnosis as described in claim 5 wherein detecting the occurrence of the pacer pulses and detecting the occurrence of the blood pulses are carried out independently of one another, and wherein converting the pacer pulses and blood pulses to a sequence of timed electrical signals includes the step of combining the pulses into a single sequence of pulses.
8. A method of cardiac diagnosis as described in claim 5 wherein the step Of measuring the time intervals between selected pairs of signals of the sequence includes the step of first separating the sequence of timed electrical signals into a first sequence of signals corresponding only to pacer pulse signals and a second sequence of signals corresponding only to blood pulse signals.
9. A method of cardiac diagnosis as described in claim 8 wherein the step of separating the sequence of timed electrical signals into the aforesaid first and second sequences and selectively following the signals separating step by one or more of the following steps, a. the step of measuring the time interval between each successive pair of signals of said first sequence, b. the step of measuring the time interval between each successive pair of signals of said second sequence, c. the step of measuring the time interval between each successive pair of signals in which the first signal of the pair is selected from said first sequence and the second signal of the pair is selected as the next occurring signal from said second sequence.
10. A method of cardiac diagnosis as described in claim 5 wherein the step of measuring the time intervals between selected pairs of signals of the sequence includes the step of first separating the sequence of electrical signals, and selecting either or both of a first sequence of signals corresponding only to pacer pulse signals and a second sequence of signals corresponding only to blood pulse signals.
11. A cardiac diagnostic system for detection of abnormal cardiac conditions in patients located remotely from a diagnostic center, comprising in combination, a. a transducer transmitter comprising,
12. A cardiac diagnostic system as described in claim 11 wherein said first detection means comprises a transducer which generates a discrete analog electrical signal upon detection of each blood pulse, and wherein said converter means converts each of said discrete analog electrical signal to a standardized non-analog waveform.
13. A cardiac diagnostic system as described in claim 11 wherein said receiver processer signal presentation means comprises measuring means effective to automatically measure the time intervals between successive pairs of the sequence and provide a read-out of the measurement in units of time.
14. A cardiac diagnostic systems as described in claim 13 wherein said measuring means read-out includes an electrical signal read-out representing the time interval just measured, said receiver processer further including a comparator device coupled to said measuring means and effective responsive to said electrical signal read-out from the latter to actuate an alarm when the time interval represented thereby differs by more than a predetermined amount from a standard time interval selectively programmed into said comparator device.
15. A cardiac diagnostic system for detection of abnormal cardiac conditions in patients located remotely from a diagnostic center, comprising in combination, a. a transducer transmitter comprising,
16. A cardiac diagnostic system as described in claim 15 wherein said receiver processer signal presentation means comprises measuring means effective to automatically measure the time intervals between selected pairs of signals of the sequence and provide a read-out of the measurement in units of time.
17. A cardiac diagnostic system as described in claim 15 wherein said first detection means comprises transducer means which generates a first discrete electrical signal upon detection of each pacer pulse and which generates a second discrete electrical signal upon detection of each blood pulse, and wherein said converter means converts said first and second discrete electrical signals respectively into first and second signals of different frequency and combines said signals of different frequency into a single sequence.
18. A cardiac diagnostic system as described in claim 16 wherein said measuring means comprises sorting means effective to separate the timed sequence of signals into a first sequence of signals corresponding only to pacer pulse signals and a second sequence of signals corresponding only to blood pulse signals.
19. A cardiac diagnostic system as described in claim 16 wherein said measuring means read-out includes an electrical signal read-out representing the time interval just measured, and said receiver processer further includes a comparator device coupled to said measuring means and effective responsive to said electrical signal read-out from the latter to actuate an alarm when the time interval represented thereby differs by more than a predetermined amount from a standard time interval selectively programmed into said comparator device.
20. A cardiac diagnostic system as described in claim 17 wherein said receiver processer signal presentation means comprises measuring means effective to automatically measure the time intervals between selected pairs of signals of the said single sequence of signals and provide a read-out of the measurement.
21. A cardiac diagnostic system as described in claim 20 wherein said measuring means comprises sorting means effective to separate said signals of different frequency in said single sequence of signals into a first sequence of signals corresponding only to pacer pulse signals and a second sequence of signals corresponding only to blood pulse signals.
22. A cardiac diagnostic system as described in claim 21 wherein said measuring means includes selection means for measuring the time intervals between one or more of the following: a. each successive pair of signals of said first sequence, b. each successive pair of signals of said second sequence, c. each successive pair of signals in which the first signal of the pair is selected from said first sequence and the second signal of the pair is selected as the next occurring signal from said second sequence.
US00103611A 1971-01-04 1971-01-04 Cardiac pacer and heart pulse monitor Expired - Lifetime US3742938A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10361171A 1971-01-04 1971-01-04

Publications (1)

Publication Number Publication Date
US3742938A true US3742938A (en) 1973-07-03

Family

ID=22296076

Family Applications (1)

Application Number Title Priority Date Filing Date
US00103611A Expired - Lifetime US3742938A (en) 1971-01-04 1971-01-04 Cardiac pacer and heart pulse monitor

Country Status (1)

Country Link
US (1) US3742938A (en)

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3846704A (en) * 1972-12-13 1974-11-05 R Bessette Apparatus for evaluating athletic performance
US3872252A (en) * 1973-03-07 1975-03-18 Esb Inc Apparatus for monitoring electrical signals, either artificial and/or natural in a living body, via a communication link
US3875930A (en) * 1973-02-22 1975-04-08 Said Silva By Said Narrace System and method of measuring and correlating human physiological characteristics such as brainwave frequency
US3885552A (en) * 1972-11-16 1975-05-27 Pacemaker Diagnostic Clinic Of Cardiac function monitoring system and method for use in association with cardiac pacer apparatus
US3908640A (en) * 1974-11-25 1975-09-30 Robert E Page Cardiovascular instrument
US3920005A (en) * 1972-03-16 1975-11-18 Medtronic Inc Evaluation system for cardiac stimulators
US3923041A (en) * 1973-03-19 1975-12-02 Medtronic Inc Cardiac signal augmentation apparatus
US3938507A (en) * 1973-11-01 1976-02-17 Survival Technology Incorporated Portable heart monitor
US3946744A (en) * 1972-05-30 1976-03-30 Medalert Corporation Electrocardiography signal transmission-reception method including method of measuring pacemaker signal frequency
US4000461A (en) * 1973-10-04 1976-12-28 Textronix, Inc. R-wave detector
FR2328441A1 (en) * 1975-10-08 1977-05-20 Hoffmann La Roche ELECTRONIC REVIEW OF CARDIAC STIMULATORS
US4074710A (en) * 1976-05-28 1978-02-21 City Of Hope National Medical Center Intrathoracic pressure biofeedback method
US4087637A (en) * 1976-09-08 1978-05-02 Esb Incorporated Pacer pulse width signaling system for telephonic communication
US4088139A (en) * 1976-03-08 1978-05-09 Medalert Corporation Automatic detection and registration of failure condition in a cardiac pacer monitoring system
US4096865A (en) * 1976-03-08 1978-06-27 Medalert Corporation Method and apparatus for monitoring a timed failure condition relationship in a cardiac pacer
US4164937A (en) * 1976-12-02 1979-08-21 Spencer William E Equipment for detecting, monitoring, measuring, displaying and recording pulse and heartbeat
US4280506A (en) * 1979-05-16 1981-07-28 Hughes Aircraft Company Digital watch/infrared plethysmograph having a removable pulse sensor unit for use with a finger cuff extension
US4305401A (en) * 1979-05-16 1981-12-15 Hughes Aircraft Company Digital watch/infrared plethysmograph having a quick release remote pulse sensor having a finger cuff
US4323074A (en) * 1979-03-12 1982-04-06 Medtronic, Inc. Pacemaker programming apparatus utilizing a computer system with simplified data input
US4326536A (en) * 1977-11-15 1982-04-27 Matsushita Electric Works, Ltd. Sphygmomanometer
US4337377A (en) * 1980-01-10 1982-06-29 Riper Wilbur E Van Biologic apparatus
US4393874A (en) * 1982-04-26 1983-07-19 Telectronics Pty. Ltd. Bradycardia event counting and reporting pacer
US4418695A (en) * 1978-03-14 1983-12-06 Jacques Buffet Implantable cardiac stimulator having therapeutic diagnostic functions
US4489731A (en) * 1983-02-04 1984-12-25 H & B Technologies, Inc. Pulse rate monitor
US4532934A (en) * 1978-11-01 1985-08-06 Del Mar Avionics Pacemaker monitoring recorder and malfunction analyzer
US4545387A (en) * 1979-07-24 1985-10-08 Balique Georges A Apparatus for recording, control and early detection of cardiovascular diseases
US4548204A (en) * 1981-03-06 1985-10-22 Siemens Gammasonics, Inc. Apparatus for monitoring cardiac activity via ECG and heart sound signals
US4556061A (en) * 1982-08-18 1985-12-03 Cordis Corporation Cardiac pacer with battery consumption monitor circuit
US4566463A (en) * 1983-04-25 1986-01-28 Nippon Colin Co., Ltd. Apparatus for automatically measuring blood pressure
US4601291A (en) * 1983-02-11 1986-07-22 Vitafin N.V. Biomedical system with improved marker channel means and method
US4722349A (en) * 1983-09-29 1988-02-02 Zvi Halperin Arrangement for and method of tele-examination of patients
US4738268A (en) * 1985-07-24 1988-04-19 Tokos Medical Corporation Relative time clock
US4753243A (en) * 1987-01-14 1988-06-28 Rca Corporation Pulse rate monitor
US4802486A (en) * 1985-04-01 1989-02-07 Nellcor Incorporated Method and apparatus for detecting optical pulses
US4838278A (en) * 1987-02-26 1989-06-13 Hewlett-Packard Company Paced QRS complex classifier
US4911167A (en) * 1985-06-07 1990-03-27 Nellcor Incorporated Method and apparatus for detecting optical pulses
US4928692A (en) * 1985-04-01 1990-05-29 Goodman David E Method and apparatus for detecting optical pulses
US4934372A (en) * 1985-04-01 1990-06-19 Nellcor Incorporated Method and apparatus for detecting optical pulses
US5033472A (en) * 1989-02-23 1991-07-23 Nihon Kohden Corp. Method of and apparatus for analyzing propagation of arterial pulse waves through the circulatory system
US5339822A (en) * 1991-05-07 1994-08-23 Protocol Systems, Inc. Method of validating physiologic events resulting from a heartbeat
US5377258A (en) * 1993-08-30 1994-12-27 National Medical Research Council Method and apparatus for an automated and interactive behavioral guidance system
USRE35122E (en) * 1985-04-01 1995-12-19 Nellcor Incorporated Method and apparatus for detecting optical pulses
US5497778A (en) * 1993-06-30 1996-03-12 Hon; Edward H. Apparatus and method for noninvasive measurement of peripheral pressure pulse compliance and systolic time intervals
EP0694283A3 (en) * 1994-07-24 1996-04-03 Austel Licensing Gmbh System for measuring the pulse rate and/or the blood pressure during a telephone call
US5586171A (en) * 1994-07-07 1996-12-17 Bell Atlantic Network Services, Inc. Selection of a voice recognition data base responsive to video data
US6014432A (en) * 1998-05-19 2000-01-11 Eastman Kodak Company Home health care system
EP0895749A3 (en) * 1997-08-05 2000-03-15 Nihon Kohden Corporation Patient monitoring apparatus
EP0895748A3 (en) * 1997-08-08 2000-03-15 Nihon Kohden Corporation Patient monitoring apparatus
US6477404B1 (en) * 2000-03-01 2002-11-05 Cardiac Pacemakers, Inc. System and method for detection of pacing pulses within ECG signals
US20030222548A1 (en) * 2002-05-31 2003-12-04 Richardson William R. Storage device for health care facility
US20040010425A1 (en) * 2002-01-29 2004-01-15 Wilkes Gordon J. System and method for integrating clinical documentation with the point of care treatment of a patient
US20040127952A1 (en) * 2002-12-31 2004-07-01 O'phelan Michael J. Batteries including a flat plate design
US20040147960A1 (en) * 2000-11-03 2004-07-29 Cardiac Pacemakers, Inc. Flat capacitor for an implantable medical device
US20040174658A1 (en) * 2000-11-03 2004-09-09 Cardiac Pacemakers, Inc. Implantable heart monitors having flat capacitors with curved profiles
US20040193221A1 (en) * 2000-11-03 2004-09-30 Cardiac Pacemakers, Inc. Implantable heart monitors having capacitors with endcap headers
US20040267146A1 (en) * 2003-06-24 2004-12-30 Yonce David J. External discrimination between pace pulses at different heart locations
US20050052825A1 (en) * 2000-11-03 2005-03-10 Cardiac Pacemakers, Inc. Flat capacitor having an active case
WO2005060826A1 (en) 2003-12-19 2005-07-07 Compex Medical S.A. Heart rate meter
US20050221171A1 (en) * 2003-02-07 2005-10-06 Cardiac Pacemakers, Inc. Insulative member on battery cathode
US20060023400A1 (en) * 2004-07-16 2006-02-02 Sherwood Gregory J Method and apparatus for high voltage aluminum capacitor design
EP1724684A1 (en) * 2005-05-17 2006-11-22 BUSI Incubateur d'entreprises d'AUVEFGNE System and method for task scheduling, signal analysis and remote sensor
US8234128B2 (en) 2002-04-30 2012-07-31 Baxter International, Inc. System and method for verifying medical device operational parameters
US8451587B2 (en) 2000-11-03 2013-05-28 Cardiac Pacemakers, Inc. Method for interconnecting anodes and cathodes in a flat capacitor
US8543201B2 (en) 2000-11-03 2013-09-24 Cardiac Pacemakers, Inc. Flat capacitor having staked foils and edge-connected connection members
US8761875B2 (en) 2006-08-03 2014-06-24 Cardiac Pacemakers, Inc. Method and apparatus for selectable energy storage partitioned capacitor
US8775196B2 (en) 2002-01-29 2014-07-08 Baxter International Inc. System and method for notification and escalation of medical data
US9093683B2 (en) 2002-12-31 2015-07-28 Cardiac Pacemakers, Inc. Method and apparatus for porous insulative film for insulating energy source layers
US9408542B1 (en) 2010-07-22 2016-08-09 Masimo Corporation Non-invasive blood pressure measurement system
US10016554B2 (en) 2008-07-09 2018-07-10 Baxter International Inc. Dialysis system including wireless patient data
US10061899B2 (en) 2008-07-09 2018-08-28 Baxter International Inc. Home therapy machine
US10173008B2 (en) 2002-01-29 2019-01-08 Baxter International Inc. System and method for communicating with a dialysis machine through a network
US10347374B2 (en) 2008-10-13 2019-07-09 Baxter Corporation Englewood Medication preparation system
US10552577B2 (en) 2012-08-31 2020-02-04 Baxter Corporation Englewood Medication requisition fulfillment system and method
US10646405B2 (en) 2012-10-26 2020-05-12 Baxter Corporation Englewood Work station for medical dose preparation system
US10818387B2 (en) 2014-12-05 2020-10-27 Baxter Corporation Englewood Dose preparation data analytics
US10971257B2 (en) 2012-10-26 2021-04-06 Baxter Corporation Englewood Image acquisition for medical dose preparation system
US11107574B2 (en) 2014-09-30 2021-08-31 Baxter Corporation Englewood Management of medication preparation with formulary management
US11367533B2 (en) 2014-06-30 2022-06-21 Baxter Corporation Englewood Managed medical information exchange
US11495334B2 (en) 2015-06-25 2022-11-08 Gambro Lundia Ab Medical device system and method having a distributed database
US11516183B2 (en) 2016-12-21 2022-11-29 Gambro Lundia Ab Medical device system including information technology infrastructure having secure cluster domain supporting external domain
US11575673B2 (en) 2014-09-30 2023-02-07 Baxter Corporation Englewood Central user management in a distributed healthcare information management system
US11948112B2 (en) 2016-03-03 2024-04-02 Baxter Corporation Engelwood Pharmacy workflow management with integrated alerts

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH314141A (en) * 1954-06-25 1956-05-31 Fenyves Franz Ing Dr Method for measuring a time difference between the occurrence of two events, of which at least the later one is defined in such a way that a visual determination of the occurrence time is preferred to one recorded by apparatus
US2918054A (en) * 1957-09-09 1959-12-22 Peter A Goolkasian Electrically responsive repetitive-surge indicators
US3280817A (en) * 1966-10-25 Bistable memory
US3318303A (en) * 1962-12-06 1967-05-09 Hammacher Konrad Method and apparatus for observing heartbeat activity
US3426150A (en) * 1965-09-27 1969-02-04 Lockheed Aircraft Corp System for fm transmission of cardiological data over telephone lines
US3518983A (en) * 1967-10-03 1970-07-07 Humetrics Corp Arrhythmia detector and method of operation
US3572316A (en) * 1968-02-23 1971-03-23 Chromalloy American Corp Physiological signal monitoring system
US3599627A (en) * 1969-01-09 1971-08-17 John Eugene Millen Method and instrument for determining the pulse rate of a person with an implanted heart pacer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3280817A (en) * 1966-10-25 Bistable memory
CH314141A (en) * 1954-06-25 1956-05-31 Fenyves Franz Ing Dr Method for measuring a time difference between the occurrence of two events, of which at least the later one is defined in such a way that a visual determination of the occurrence time is preferred to one recorded by apparatus
US2918054A (en) * 1957-09-09 1959-12-22 Peter A Goolkasian Electrically responsive repetitive-surge indicators
US3318303A (en) * 1962-12-06 1967-05-09 Hammacher Konrad Method and apparatus for observing heartbeat activity
US3426150A (en) * 1965-09-27 1969-02-04 Lockheed Aircraft Corp System for fm transmission of cardiological data over telephone lines
US3518983A (en) * 1967-10-03 1970-07-07 Humetrics Corp Arrhythmia detector and method of operation
US3572316A (en) * 1968-02-23 1971-03-23 Chromalloy American Corp Physiological signal monitoring system
US3599627A (en) * 1969-01-09 1971-08-17 John Eugene Millen Method and instrument for determining the pulse rate of a person with an implanted heart pacer

Cited By (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920005A (en) * 1972-03-16 1975-11-18 Medtronic Inc Evaluation system for cardiac stimulators
US3946744A (en) * 1972-05-30 1976-03-30 Medalert Corporation Electrocardiography signal transmission-reception method including method of measuring pacemaker signal frequency
US3885552A (en) * 1972-11-16 1975-05-27 Pacemaker Diagnostic Clinic Of Cardiac function monitoring system and method for use in association with cardiac pacer apparatus
US3846704A (en) * 1972-12-13 1974-11-05 R Bessette Apparatus for evaluating athletic performance
US3875930A (en) * 1973-02-22 1975-04-08 Said Silva By Said Narrace System and method of measuring and correlating human physiological characteristics such as brainwave frequency
US3872252A (en) * 1973-03-07 1975-03-18 Esb Inc Apparatus for monitoring electrical signals, either artificial and/or natural in a living body, via a communication link
US3923041A (en) * 1973-03-19 1975-12-02 Medtronic Inc Cardiac signal augmentation apparatus
US4000461A (en) * 1973-10-04 1976-12-28 Textronix, Inc. R-wave detector
US3938507A (en) * 1973-11-01 1976-02-17 Survival Technology Incorporated Portable heart monitor
US3908640A (en) * 1974-11-25 1975-09-30 Robert E Page Cardiovascular instrument
FR2328441A1 (en) * 1975-10-08 1977-05-20 Hoffmann La Roche ELECTRONIC REVIEW OF CARDIAC STIMULATORS
US4096865A (en) * 1976-03-08 1978-06-27 Medalert Corporation Method and apparatus for monitoring a timed failure condition relationship in a cardiac pacer
US4088139A (en) * 1976-03-08 1978-05-09 Medalert Corporation Automatic detection and registration of failure condition in a cardiac pacer monitoring system
US4074710A (en) * 1976-05-28 1978-02-21 City Of Hope National Medical Center Intrathoracic pressure biofeedback method
US4087637A (en) * 1976-09-08 1978-05-02 Esb Incorporated Pacer pulse width signaling system for telephonic communication
US4164937A (en) * 1976-12-02 1979-08-21 Spencer William E Equipment for detecting, monitoring, measuring, displaying and recording pulse and heartbeat
US4326536A (en) * 1977-11-15 1982-04-27 Matsushita Electric Works, Ltd. Sphygmomanometer
US4418695A (en) * 1978-03-14 1983-12-06 Jacques Buffet Implantable cardiac stimulator having therapeutic diagnostic functions
US4532934A (en) * 1978-11-01 1985-08-06 Del Mar Avionics Pacemaker monitoring recorder and malfunction analyzer
US4323074A (en) * 1979-03-12 1982-04-06 Medtronic, Inc. Pacemaker programming apparatus utilizing a computer system with simplified data input
US4280506A (en) * 1979-05-16 1981-07-28 Hughes Aircraft Company Digital watch/infrared plethysmograph having a removable pulse sensor unit for use with a finger cuff extension
US4305401A (en) * 1979-05-16 1981-12-15 Hughes Aircraft Company Digital watch/infrared plethysmograph having a quick release remote pulse sensor having a finger cuff
US4545387A (en) * 1979-07-24 1985-10-08 Balique Georges A Apparatus for recording, control and early detection of cardiovascular diseases
US4337377A (en) * 1980-01-10 1982-06-29 Riper Wilbur E Van Biologic apparatus
US4548204A (en) * 1981-03-06 1985-10-22 Siemens Gammasonics, Inc. Apparatus for monitoring cardiac activity via ECG and heart sound signals
US4393874A (en) * 1982-04-26 1983-07-19 Telectronics Pty. Ltd. Bradycardia event counting and reporting pacer
US4556061A (en) * 1982-08-18 1985-12-03 Cordis Corporation Cardiac pacer with battery consumption monitor circuit
US4489731A (en) * 1983-02-04 1984-12-25 H & B Technologies, Inc. Pulse rate monitor
US4601291A (en) * 1983-02-11 1986-07-22 Vitafin N.V. Biomedical system with improved marker channel means and method
US4566463A (en) * 1983-04-25 1986-01-28 Nippon Colin Co., Ltd. Apparatus for automatically measuring blood pressure
US4722349A (en) * 1983-09-29 1988-02-02 Zvi Halperin Arrangement for and method of tele-examination of patients
US4928692A (en) * 1985-04-01 1990-05-29 Goodman David E Method and apparatus for detecting optical pulses
USRE35122E (en) * 1985-04-01 1995-12-19 Nellcor Incorporated Method and apparatus for detecting optical pulses
US4802486A (en) * 1985-04-01 1989-02-07 Nellcor Incorporated Method and apparatus for detecting optical pulses
US4934372A (en) * 1985-04-01 1990-06-19 Nellcor Incorporated Method and apparatus for detecting optical pulses
US4911167A (en) * 1985-06-07 1990-03-27 Nellcor Incorporated Method and apparatus for detecting optical pulses
US4738268A (en) * 1985-07-24 1988-04-19 Tokos Medical Corporation Relative time clock
US4753243A (en) * 1987-01-14 1988-06-28 Rca Corporation Pulse rate monitor
US4838278A (en) * 1987-02-26 1989-06-13 Hewlett-Packard Company Paced QRS complex classifier
US5033472A (en) * 1989-02-23 1991-07-23 Nihon Kohden Corp. Method of and apparatus for analyzing propagation of arterial pulse waves through the circulatory system
US5339822A (en) * 1991-05-07 1994-08-23 Protocol Systems, Inc. Method of validating physiologic events resulting from a heartbeat
US5497778A (en) * 1993-06-30 1996-03-12 Hon; Edward H. Apparatus and method for noninvasive measurement of peripheral pressure pulse compliance and systolic time intervals
US5722418A (en) * 1993-08-30 1998-03-03 Bro; L. William Method for mediating social and behavioral processes in medicine and business through an interactive telecommunications guidance system
US5377258A (en) * 1993-08-30 1994-12-27 National Medical Research Council Method and apparatus for an automated and interactive behavioral guidance system
US5586171A (en) * 1994-07-07 1996-12-17 Bell Atlantic Network Services, Inc. Selection of a voice recognition data base responsive to video data
US5666400A (en) * 1994-07-07 1997-09-09 Bell Atlantic Network Services, Inc. Intelligent recognition
EP0694283A3 (en) * 1994-07-24 1996-04-03 Austel Licensing Gmbh System for measuring the pulse rate and/or the blood pressure during a telephone call
EP0895749A3 (en) * 1997-08-05 2000-03-15 Nihon Kohden Corporation Patient monitoring apparatus
EP0895748A3 (en) * 1997-08-08 2000-03-15 Nihon Kohden Corporation Patient monitoring apparatus
US6014432A (en) * 1998-05-19 2000-01-11 Eastman Kodak Company Home health care system
US6477404B1 (en) * 2000-03-01 2002-11-05 Cardiac Pacemakers, Inc. System and method for detection of pacing pulses within ECG signals
US6819953B2 (en) 2000-03-01 2004-11-16 Cardiac Pacemakers, Inc. System and method for detection of pacing pulses within ECG signals
US20040174658A1 (en) * 2000-11-03 2004-09-09 Cardiac Pacemakers, Inc. Implantable heart monitors having flat capacitors with curved profiles
US20050052825A1 (en) * 2000-11-03 2005-03-10 Cardiac Pacemakers, Inc. Flat capacitor having an active case
US20040147960A1 (en) * 2000-11-03 2004-07-29 Cardiac Pacemakers, Inc. Flat capacitor for an implantable medical device
US8451587B2 (en) 2000-11-03 2013-05-28 Cardiac Pacemakers, Inc. Method for interconnecting anodes and cathodes in a flat capacitor
US20040193221A1 (en) * 2000-11-03 2004-09-30 Cardiac Pacemakers, Inc. Implantable heart monitors having capacitors with endcap headers
US8543201B2 (en) 2000-11-03 2013-09-24 Cardiac Pacemakers, Inc. Flat capacitor having staked foils and edge-connected connection members
US8744575B2 (en) 2000-11-03 2014-06-03 Cardiac Pacemakers, Inc. Flat capacitor for an implantable medical device
US7154739B2 (en) 2000-11-03 2006-12-26 Cardiac Pacemakers, Inc. Flat capacitor having an active case
US7190569B2 (en) 2000-11-03 2007-03-13 Cardiac Pacemakers, Inc. Implantable heart monitors having capacitors with endcap headers
US10032565B2 (en) 2000-11-03 2018-07-24 Cardiac Pacemakers, Inc. Flat capacitor for an implantable medical device
US6985351B2 (en) 2000-11-03 2006-01-10 Cardiac Pacemakers, Inc. Implantable heart monitors having flat capacitors with curved profiles
US9443660B2 (en) 2000-11-03 2016-09-13 Cardiac Pacemakers, Inc. Flat capacitor for an implantable medical device
US7072713B2 (en) 2000-11-03 2006-07-04 Cardiac Pacemakers, Inc. Flat capacitor for an implantable medical device
US7157671B2 (en) 2000-11-03 2007-01-02 Cardiac Pacemakers, Inc. Flat capacitor for an implantable medical device
US8775196B2 (en) 2002-01-29 2014-07-08 Baxter International Inc. System and method for notification and escalation of medical data
US10173008B2 (en) 2002-01-29 2019-01-08 Baxter International Inc. System and method for communicating with a dialysis machine through a network
US10556062B2 (en) 2002-01-29 2020-02-11 Baxter International Inc. Electronic medication order transfer and processing methods and apparatus
US20040010425A1 (en) * 2002-01-29 2004-01-15 Wilkes Gordon J. System and method for integrating clinical documentation with the point of care treatment of a patient
US8234128B2 (en) 2002-04-30 2012-07-31 Baxter International, Inc. System and method for verifying medical device operational parameters
US20030222548A1 (en) * 2002-05-31 2003-12-04 Richardson William R. Storage device for health care facility
US9093683B2 (en) 2002-12-31 2015-07-28 Cardiac Pacemakers, Inc. Method and apparatus for porous insulative film for insulating energy source layers
US20040127952A1 (en) * 2002-12-31 2004-07-01 O'phelan Michael J. Batteries including a flat plate design
US20100203380A1 (en) * 2002-12-31 2010-08-12 O'phelan Michael J Batteries including a flat plate design
US7479349B2 (en) 2002-12-31 2009-01-20 Cardiac Pacemakers, Inc. Batteries including a flat plate design
US10115995B2 (en) 2002-12-31 2018-10-30 Cardiac Pacemakers, Inc. Batteries including a flat plate design
US9620806B2 (en) 2002-12-31 2017-04-11 Cardiac Pacemakers, Inc. Batteries including a flat plate design
US20050221171A1 (en) * 2003-02-07 2005-10-06 Cardiac Pacemakers, Inc. Insulative member on battery cathode
US8691418B2 (en) 2003-02-07 2014-04-08 Cardiac Pacemakers, Inc. Insulative member on battery cathode
US7336998B2 (en) 2003-06-24 2008-02-26 Cardiac Pacemakers, Inc. External discrimination between pace pulses at different heart locations
US20040267146A1 (en) * 2003-06-24 2004-12-30 Yonce David J. External discrimination between pace pulses at different heart locations
WO2005060826A1 (en) 2003-12-19 2005-07-07 Compex Medical S.A. Heart rate meter
US20060023400A1 (en) * 2004-07-16 2006-02-02 Sherwood Gregory J Method and apparatus for high voltage aluminum capacitor design
US7224575B2 (en) 2004-07-16 2007-05-29 Cardiac Pacemakers, Inc. Method and apparatus for high voltage aluminum capacitor design
US8133286B2 (en) 2004-07-16 2012-03-13 Cardiac Pacemakers, Inc. Method and apparatus for high voltage aluminum capacitor design
US8465555B2 (en) 2004-07-16 2013-06-18 Cardiac Pacemakers, Inc. Method and apparatus for high voltage aluminum capacitor design
EP1724684A1 (en) * 2005-05-17 2006-11-22 BUSI Incubateur d'entreprises d'AUVEFGNE System and method for task scheduling, signal analysis and remote sensor
US8761875B2 (en) 2006-08-03 2014-06-24 Cardiac Pacemakers, Inc. Method and apparatus for selectable energy storage partitioned capacitor
US10095840B2 (en) 2008-07-09 2018-10-09 Baxter International Inc. System and method for performing renal therapy at a home or dwelling of a patient
US11311658B2 (en) 2008-07-09 2022-04-26 Baxter International Inc. Dialysis system having adaptive prescription generation
US10068061B2 (en) 2008-07-09 2018-09-04 Baxter International Inc. Home therapy entry, modification, and reporting system
US10061899B2 (en) 2008-07-09 2018-08-28 Baxter International Inc. Home therapy machine
US10016554B2 (en) 2008-07-09 2018-07-10 Baxter International Inc. Dialysis system including wireless patient data
US10224117B2 (en) 2008-07-09 2019-03-05 Baxter International Inc. Home therapy machine allowing patient device program selection
US10272190B2 (en) 2008-07-09 2019-04-30 Baxter International Inc. Renal therapy system including a blood pressure monitor
US10646634B2 (en) 2008-07-09 2020-05-12 Baxter International Inc. Dialysis system and disposable set
US11918721B2 (en) 2008-07-09 2024-03-05 Baxter International Inc. Dialysis system having adaptive prescription management
US10347374B2 (en) 2008-10-13 2019-07-09 Baxter Corporation Englewood Medication preparation system
US9408542B1 (en) 2010-07-22 2016-08-09 Masimo Corporation Non-invasive blood pressure measurement system
US10089443B2 (en) 2012-05-15 2018-10-02 Baxter International Inc. Home medical device systems and methods for therapy prescription and tracking, servicing and inventory
US10552577B2 (en) 2012-08-31 2020-02-04 Baxter Corporation Englewood Medication requisition fulfillment system and method
US10646405B2 (en) 2012-10-26 2020-05-12 Baxter Corporation Englewood Work station for medical dose preparation system
US10971257B2 (en) 2012-10-26 2021-04-06 Baxter Corporation Englewood Image acquisition for medical dose preparation system
US11367533B2 (en) 2014-06-30 2022-06-21 Baxter Corporation Englewood Managed medical information exchange
US11107574B2 (en) 2014-09-30 2021-08-31 Baxter Corporation Englewood Management of medication preparation with formulary management
US11575673B2 (en) 2014-09-30 2023-02-07 Baxter Corporation Englewood Central user management in a distributed healthcare information management system
US10818387B2 (en) 2014-12-05 2020-10-27 Baxter Corporation Englewood Dose preparation data analytics
US11495334B2 (en) 2015-06-25 2022-11-08 Gambro Lundia Ab Medical device system and method having a distributed database
US11948112B2 (en) 2016-03-03 2024-04-02 Baxter Corporation Engelwood Pharmacy workflow management with integrated alerts
US11516183B2 (en) 2016-12-21 2022-11-29 Gambro Lundia Ab Medical device system including information technology infrastructure having secure cluster domain supporting external domain

Similar Documents

Publication Publication Date Title
US3742938A (en) Cardiac pacer and heart pulse monitor
US3885552A (en) Cardiac function monitoring system and method for use in association with cardiac pacer apparatus
US3832994A (en) Cardiac monitor
US3872252A (en) Apparatus for monitoring electrical signals, either artificial and/or natural in a living body, via a communication link
US3946744A (en) Electrocardiography signal transmission-reception method including method of measuring pacemaker signal frequency
US4151513A (en) Apparatus for sensing and transmitting a pacemaker's stimulating pulse
CN108472489B (en) Synchronizing multiple sources of physiological data
US4532934A (en) Pacemaker monitoring recorder and malfunction analyzer
US4428380A (en) Method and improved apparatus for analyzing activity
US3920005A (en) Evaluation system for cardiac stimulators
US7016721B2 (en) Medical device ECG marker for use in compressed data stream
US3759248A (en) Cardiac arrythmia detector
US4236524A (en) Program testing apparatus
US4208008A (en) Pacing generator programming apparatus including error detecting means
US4181134A (en) Cardiotachometer
US4527567A (en) Method and apparatus for automatically evaluating the quality of the performance of a cardiac pacing system
US7177685B2 (en) Classifying tachyarrhythmia using time interval between ventricular depolarization and mitral valve closure
US4088139A (en) Automatic detection and registration of failure condition in a cardiac pacer monitoring system
US3986496A (en) Apparatus for sensing and transmitting a pacemaker's stimulating pulse
US4305397A (en) Pacing generator programmer with transmission checking circuit
US3595219A (en) Heart rate sensor device
JPH0526489B2 (en)
US3686634A (en) Pulse rate monitor and indicator system utilizing a burst pulse counter and a pulse internal counter
US4790318A (en) Cardiac pacer for pacing a human heart
US4058118A (en) Pulse counter