Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3739774 A
Publication typeGrant
Publication date19 Jun 1973
Filing date10 May 1971
Priority date21 May 1970
Also published asCA937124A, CA937124A1, DE2124802A1
Publication numberUS 3739774 A, US 3739774A, US-A-3739774, US3739774 A, US3739774A
InventorsGregory J
Original AssigneeMl Aviation Co Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Respirators
US 3739774 A
Abstract
A respirator for use in noxious atmospheres comprises a hood which completely covers the head of the wearer and the edge of which extends around his neck or shoulders and a mechanical blower is fitted to the inlet connection so as to provide more air than required for respiration to provide a positive internal pressure. The respirator may also serve as an oxygen mask for use at high altitudes by airmen and preferably includes a separate oro-nasal mask in which case the inlet has two branches, one passing to the mask by way of a non-return valve and the other passing to the interior of the hood also through a non-return valve. When oxygen is being supplied a valve operates to prevent the flow of air from the blower to the mask.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Gregory Q 1 RESPIRATORS [75] Inventor: John Gregory, Marlow, England [30] Foreign Application Priority Data May 21, 1970 Great Britain 24,714/70 Oct. 9, 1970 Great Britain 48,184/70 [52] US. Cl. l28/142.7, 128/142.3 [51] Int. Cl A6211 17/04 [58] Field of Search 128/1427, 141, 142,

[56] References Cited UNITED STATES PATENTS 7/1971 Parker 128/l42.5 10/1957 Reed 128/1427 4/1959 Motsinger 128/1423 7 @lll ill 1 June 19, 1973 2/1971 Bickford 128/142 12/1969 Garrison 128/1422 [57] ABSTRACT A respirator for use in noxious atmospheres comprises a hood which completely covers the head of the wearer and the edge of which extends around his neck or shoulders and a mechanical blower is fitted to the inlet connection so as to provide more air than required for respiration to provide a positive internal pressure. The respirator may also serve as an oxygen mask for use at high altitudes by airmen and preferably includes a separate oro-nasal mask in which case the inlet has two branches, one passing to the mask by way of a nonreturn valve and the other passing to the interior of the hood also through a non-return valve. When oxygen is being supplied a valve operates to prevent the flow of air from the blower to the mask.

6 Claims, 4 Drawing Figures 3 Sheets-Sheet 2 w mmw Patented June 19, 1973 3,739,774

5 Sheets-Sheet 3 1 RESPIRATORS Respirators for use in noxious atmospheres of fumes or poisonous gases normally have a face piece which is intended to form a close seal with the face of the wearer but in practice seldom does. It is extremely difficult to form an effective seal between the edge of the face piece and the face of the wearer and there is thus always the risk that some of the surrounding atmosphere, may be drawn in between the face and the face piece instead of through the filtration canister.

According to the present invention, a respirator comprises a hood which completely covers the head of the wearer and the edge of which extends around his neck or shoulders and a mechanical blower is fitted to the inlet connectionso as to provide more air than required for respiration, so that in use some at least of the excess flows outwardly between the edge of the hood and the neck or body of the wearer. Although the edge of the hood may not make a good seal with the neck or body of the wearer, this is of no consequence in view of the excess air provided by the blower. In other words, the respirator operates at a positive pressure and the outwardly flowing excess air positively prevents any inward flow from the atmosphere. In addition, the excess air prevents the window of the respirator from becoming misted up, while the provision of a hood over the whole of the head of the wearer provides a further protection against airborne contaminants.

The respirator preferably includes a separate oronasal mask which fits closely round the mouth and nose of the wearer, in which case the inlet needs to have two branches, one passing to the mask by way of a nonreturn valve and the other passing to the interior of the hood, also through a non-return valve. Thus the air which is inhaled is exhausted from the mask through a separate outlet fitted with a non-return valve, while only the excess air which provides the positive pressure passes outwardly around the neck of the wearer.

A construction of the same general type can be adapted so that it can serve also as an oxygen mask for use at high altitudes byairmen. For this purpose a separate oxygen supply line needs to be included together with a valve which, when oxygen is being supplied, operates to prevent flow of air from the blower to the mask. When this form of the-respirator is to be used at low altitude, no oxygen is required and the respirator therefore merely functions as previously described, the incoming air being shared between the inlet to the mask and the inlet to the interior of the hood. When operating at high altitudes with the oxygen supply connected, the valve operates to close the air inlet from the blower to the mask so that all the air provided by the blower passes to the interior of the hood and then outwardly as previously described.

The valve just referred to preferably cooperates with a seating against which it is pressed to allow air to flow through it from the blower to the mask when no oxygen is being supplied, and a main spring is brought into action by the oxygen pressure when the latter is connected so as to hold the valve more firmly on its seating against the pressure of air from the blower. The inlet connection to the interior of the hood from the blower remains open under all circumstances. If, when no oxygen is being supplied, the blower fails, the wearer of the respirator can merely draw in air through the filtration canister and this air is allowed to pass freely into the mask through the valve.

When operating at high altitudes with the oxygen supply connected the oxygen pressure brings the main spring into action so that the valve is held closed against the flow of air from the blower, all of which thus passes to the interior of the hood, the oro-nasal mask being supplied with oxygen by way of a normal oxygen regulator. If, under these conditions the oxygen supply fails, the suction caused by respiration of the wearer is sufficient to open the valve even against the effects of the main spring to allow air to flow from the blower. This air will not have sufficient oxygen content for normal respiration purposes but the difficulty in breathing experienced by the wearer due to the effort necessary to open the valve against the main spring serves as a warning of the failure of the oxygen supply before anoxia sets in and thus enables him to turn on the emergency oxygen supply or to take other remedial measures.

As an alternative to the valve just described, i.e. one which has basically two separate operating conditions, it is also possible to use a valve having three separate operating positions. This valve needs to be fitted at the point where the inlet connection to the hood branches and when the respirator is used at low altitude and no oxygen is required, the valve takes up an intermediate position allowing the incoming air to be shared between the inlet to the mask and the inlet to the interior of the hood. When operating at high altitudes with the oxygen supply connected, the valve takes up a position which closes the air inlet to the mask but leaves the inlet to the interior of the hood fully open so that all the air provided by the blower passes to the interior of the hood while the inlet to the mask is connected to the oxygen supply. The third position of the valve is to allow for the possibility of the failure of the blower when the oxygen supply is not connected. If the blower fails when the oxygen is connected, the wearer can breathe oxygen in the normal way and it is only the positive pressure to the interior of the hood which fails. When the oxygen is'not connected, however, it is necessary for the wearer of the respirator to draw in air through the filtration canister, after the manner of a normal respirator, and under these circumstances the valve takes up a position in which it closes the inlet to the interior of the hood so that all the air drawn in passes directly to the mask. In this way it is possible to ensure a supply of air for breathing; even though the air for providing the positive pressure may no longer be available.

As mentioned above, the two-condition valve is preferred, in which one of the two conditions is controlled by a main spring. In order to provide the necessary selective control, the valve is conveniently a plate valve and a light spring acts between the plate of the valve and a second plate or similar member, the position of which is controlled by a piston acted on by the oxygen pressure so as to be moved closer to the first plate, thus compressing the light spring and bringing into action the main spring which also extends between the two plates and is shorter than the light spring. When the oxygen supply is no longer required the piston needs to be returned to its initial position by means of a spring and this same effect would therefore occur if there were a failure of the oxygen supply. This would prevent the main spring having the desired effect of making breathing difficult for the user in the event of oxygen failure so as to give warning of anoxia danger. To avoid this risk a spring-operated latch may be provided for holding the piston in the position to which it is moved by the oxygen pressure. When the oxygen supply is deliberately disconnected, this latch can be released manually to allow the piston to return. If the oxygen supply fails, however, the piston will remain latched in position and the necessary warning of anoxia danger will be given.

A construction of respirator in accordance with the invention will now be described in more detail, by way of example, with reference to the accompanying drawings, in which:

FIG. 1 is an external view of the respirator showing the various associated components;

FIG. 2 is a diagrammatic view partly in section showing the arangement of valves in the respirator;

FIG. 3 is a sectional view to a somewhat enlarged scale showing an alternative condition of the valve illustrated in FIG. 2; and,

FIG. 4 shows a modification of part of the valve shown in FIG. 3.

Turning first to FIG. 1, the respirator proper is indicated as 1 and is in the form of a hood which fits completely over the head of the wearer and has a flap, part of which is shown as 2 which extends over the shoulders of the wearer and also at the back and front. The respirator includes a harness, part of which is seen at 3 and this also supports a pair of filtration canisters 4 connected by lines 5 to the inlet of a mechanical blower 6. This blower is powered by an electric motor which is normally intended to be supplied via a connection 7 from the aircraft supply. As an alternative, however, a battery 8 is included which is connected to the blower 6 by a quick-release bayonet connection 9. Both the blower 6 and the battery 8 are also supported by the harness 3. The output from the blower 6 passes via a line 10 to the hood which it enters by two separate branches l1 and 12, the first passing to the interior of the hood and the second to an oro-nasal mask 13. The outlet from the mask 13 is shown as 14 but a proportion of the air supplied to the interior of the hood passes outwardly between the flap 2 and the body of the wearer and any other leakage paths which may exist so as to prevent any inward flow from the atmosphere. The remainder of the air passes outwardly through an excess pressure relief valve 15. Other parts also seen in FIG. 1 are an oxygen connection 16, a communcation connection 17 and a test connection 18.

In operation, the blower 6 normally draws air inwardly through the filtration canisters 4 and supplies the air via the line 10 to the two branches of the inlet connection 11 and 12. FIG. 2 illustrates the various valves controlling the inlet of air and oxygen to the interior of the hood 1 and also the outlet valve 14 for air or oxygen from the oro-nasal mask 13. Under normal operating conditions, the air passing along the line 10 splits between the branches 11 and 12, that passing along the branch 11 then passing through a non-return inlet valve 20 and into the interior of the hood 1 to provide positive pressure within the respirator as already described. The air passing into the branch 12 passes through a non-return valve indicated generally as 21 and then via a connection 22 to the mask 13. After res piration the air passes outwardly along a connection 23 and then through a non-return valve 24 to the outlet 14. When oxygen is supplied along the line 16, the valve 21 is effectively closed, as will be described in more detail later, so that all the air from the blower 6 passes along the branch 11 and into the interior of the hood to provide the positive pressure. The oxygen in the line 16 is under high pressure which is reduced to a value suitable for respiration by an oxygen regulator 28 from which oxygen flows to the mask 13 along the connection 22. Oxygen under pressure also flows along a branch line 29 to control the alternative action of the valve 21 as will now be described in more detail.

The valve 21 comprises a plate 30 cooperating wiJh a seating 31 and is normally controlled by a light compression spring 32 which acts between the plate 30 and a second plate 33. Under these conditions the valve acts as a normal non-return valve, thus allowing air from the blower 6 to flow freely through it as indicated by the arrows. In addition to the light compression spring 32 a stronger main spring 35 is also provided which is secured to the plate 33, but since it is shorter than the spring 32, as seen in FIG. 2, it does not normally act on the plate 30 at all and all the control is exerted by the light spring 32 as just described.

When oxygen is being supplied, however, the high pressure oxygen in the branch line 29 passes to the interior of a cylinder 37 within which works a piston 38 to which the plate 33 is secured. The piston is acted on by a tension spring 40 so that it normally occupies the position shown in FIG. 2, but the oxygen pressure applied to the interior of the cylinder 37 overcomes the spring 40 and moves the piston 38 downwardly to the position shown in FIG. 3. This also moves the plate 33 downwardly until the stronger spring 35 comes into engagement with the plate 30 and thus effectively takes over control from the light spring 32. The pressure exerted by the stronger spring 35 is greater than the pressure exerted by the air from the blower 6 so that, under these conditions, the valve 21 remains closed and all the air passes to the branch 1 1 as described previously.

The piston 38 is provided with a spring-operated latch constituted by a plunger 42 acted on by a compression spring 43 so as to enter a recess 44 in the side of the piston 38. If the oxygen supply is switched off, the plunger 42 is retracted manually by means of a ring 45 also seen in FIG. 1 which allows the piston 38 to return to the position shown in FIG. 2 so that normal operation is resumed. On the other hand, if the oxygen supply fails the piston 38 remains in the position shown in FIG. 3 so that the valve 21 is controlled by the stronger spring 35. Although the pressure developed by the blower 6 is not sufficient to overcome this stronger spring, the wearer of the respirator can nevertheless suck in air through the valve 21, although with difficulty, and the difficulty in breathing thus gives warning of anoxia danger, as previously described.

FIG. 4 shows a minor modification to part of the valve shown in FIGS. 2 and 3, intended to allow for the possibility of failure of the oxygen regulator 28. Although some of the parts are shaped differently from those shown in FIG. 3 the function is the same and corresponding parts are shown by the same reference numerals. In this construction, the position in which the plunger 42 locks the cylinder 38 is such that the end of the plunger does not reach the bottom of the recess 44, but inward movement of the plunger 42 is restricted by a spring clip 50 which engages the wall of the housing shown as 51. The plunger 42 is formed with a portion of reduced diameter constituted by a calibrated notch 52. As shown in the position of FIG. 4 this notch lies just outside the wall of the cylinder 37 but if the plunger 42 is pressed inwardly to the bottom of the recess 44, thus overcoming the effect of the spring clip 50, the notch 52 is brought opposite the opening in the wall of the cylinder 37. This permits a controlled flow of high pressure oxygen from the interior of the cylinder 37 to the entrance to the connection 22 and hence to the mask 13. The flow of oxygen is throttled by the narrow gap between the notch 52 and the opening in the cylinder wall and this has an effect equivalent to that of the oxygen regulator in reducing the pressure of the oxygen to a value suitable for respiration.

By means of the construction just described all the various possible operating conditions can be allowed for. When no oxygen is required, the blower 6 provides air both forrespiration and for providing positive pressure. If the blower fails under these conditions, the wearer of the respirator can merely draw in air through the filtration canisters 4, but no positive pressure is provided. When oxygen is being used the air provided by the blower 6 flows solely to the interior of the hood to provide the positive pressure. If, under these conditions, the blower fails, this merely means that no positive pressure is provided and the wearer merely inhales oxygen in the normal way. Failure of the oxygen supply leads to the difficult breathing conditions previously described and indicates to the wearer that the emergency supply must be connected. Finally, failure of the oxygen regulator can be remedied by operation of the valve shown in FIG. 4 as just described.

I claim:

l. A respirator comprising a hood which is dimensioned to completely cover the head of the wearer and has a terminal lower edge dimensioned to encircle the body of the wearer beneath his head to define a narrow passageway between said edge and said body,

an oro-nasal mask within said hood,

an inlet for admitting air to said hood, said inlet having two branches, one leading into said mask through a first non-return valve, and the other leading into the interior of said hood outside said mask through a second non-return valve,

a mechanical blower connected to supply air to said inlet, whereby a portion thereof passes through said second non-return valve into said hood outside said mask and thence outwardly through the passage bwtewwn the edge of the hood and the body of the wearer,

a connector for connecting said mask to a supply of oxygen, and means for preventing the flow of air from said blower to said mask while said oxygen is being supplied.

2. A respirator as claimed in claim 1 in which said first non-return valve comprises a valve-member and a seat and said flow-preventing means comprises means urging said valve member against said seat with a force small enough to permit air to flow through said first non-return valve from said blower to said mask when no oxygen is being supplied, a main spring for urging said valve member more strongly toward said seat, and means for bringing said main spring into action under the control of the oxygen pressure when said oxygen is being supplied so as to hold said valve member more firmly on said seat against the pressure of air form said blower.

3. A respirator as claimed in claim 1 in which said first non-return valve is a plate valve comprising first and second plates, a seat, a light spring positioned between said first and second plates to press said first plate against said seat, a cylinder containing a piston responsive to the oxygen pressure when oxygen is being supplied to move said second plate closer to said first plate, thus compressing said light spring, and a main spring between said plates which is shorter than said light spring and urged against said first plate by said second plate when said piston is subjected to said oxygen pressure.

4. A respirator as claimed in claim 3 comprising a spring-operated latch for holding said piston in the position to which it is moved by said oxygen pressure.

5. A respirator as claimed in claim 4 in which said latch is a spring-operated plunger passing through a sealed opening in said cylinder and being formed with a portion of reduced diameter which when brought into register with said opening, permits a throttled flow of oxygen from the interior of said cylinder to said mask.

6. A respirator as claimed in claim 1 comprising an air exhaust duct leading from said mask to the exterior of said hood.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2810386 *7 Nov 195222 Oct 1957American Optical CorpOxygen masks embodying means for ventilating goggles
US2881758 *13 Jun 195614 Apr 1959Motsinger Armard VVentilated impermeable protective outfit
US3481333 *31 Mar 19662 Dec 1969Automatic Sprinkler CorpInhalation-exhalation regulator system with suction control
US3565068 *7 Feb 196923 Feb 1971Automatic Sprinkler CorpBreathing apparatus
US3595227 *7 Mar 196927 Jul 1971Gen ElectricDiving vest
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3976063 *16 Sep 197424 Aug 1976The Bendix CorporationEscape breathing apparatus
US4127122 *25 Mar 197728 Nov 1978Gesellschaft Fur Kernforschung GmbhBreathing apparatus
US4352353 *31 Jan 19805 Oct 1982The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern IrelandProtective clothing
US4608976 *10 Sep 19842 Sep 1986Canocean Resources, Ltd.Breathing protective apparatus with inhalation and exhalation regulator
US4674492 *25 Jul 198623 Jun 1987Filcon CorporationAlarm system for respirator apparatus and method of use
US4676236 *23 Dec 198530 Jun 1987Gentex CorporationHelmet airflow system
US5078130 *14 Jul 19887 Jan 1992Gentex CorporationPersonnel headgear enabling free breathing of ambient air or selective breathing from various sources
US5186165 *5 Jun 199116 Feb 1993Brookdale International Systems Inc.Filtering canister with deployable hood and mouthpiece
US5315987 *2 Dec 199231 May 1994Brookdale International Systems Inc.Filtering canister with deployable hood and mouthpiece
US5394867 *2 Aug 19937 Mar 1995Brookdale International Systems Inc.Personal disposable emergency breathing system with dual air supply
US647802613 Mar 200012 Nov 2002Thomas J. WoodNasal ventilation interface
US699408915 Sep 20047 Feb 2006Innomed Technologies, IncNasal ventilation interface
US699717713 Jul 200414 Feb 2006Inno Med Technologies, Inc.Ventilation interface for sleep apnea therapy
US700061328 Jun 200421 Feb 2006Innomed Technologies, Inc.Nasal interface and system including ventilation insert
US704797420 Oct 200323 May 2006Innomed Technologies, Inc.Nasal cannula
US705932817 Dec 200413 Jun 2006Innomed Technologies, Inc.Ventilation interface for sleep apnea therapy
US718862415 Sep 200413 Mar 2007Innomed Technologies Inc.Ventilation interface for sleep apnea therapy
US71917819 Dec 200420 Mar 2007Innomed Technologies, Inc.Nasal ventilation interface and system
US723446510 Dec 200426 Jun 2007Innomed Technologies, Inc.Nasal ventilation interface and system
US73805513 Sep 20043 Jun 2008Tvi CorporationBreathing apparatus
US74727071 Jul 20046 Jan 2009Innomed Technologies, Inc.Nasal interface and system including ventilation insert
US754358429 Sep 20039 Jun 2009Interspiro, Inc.Powered air purifying respirator system and breathing apparatus
US755932731 May 200514 Jul 2009Respcare, Inc.Ventilation interface
US764792723 Aug 200419 Jan 2010Wilcox Industries Corp.Self-contained breathing system
US765818926 Jun 20069 Feb 2010Resmed LimitedCompact oronasal patient interface
US77080177 Feb 20074 May 2010Resmed LimitedCompact oronasal patient interface
US794214824 Dec 200417 May 2011Resmed LimitedCompact oronasal patient interface
US795889318 Mar 200914 Jun 2011Resmed LimitedCushion for a respiratory mask assembly
US80425396 Jul 200525 Oct 2011Respcare, Inc.Hybrid ventilation mask with nasal interface and method for configuring such a mask
US811319815 Jan 201014 Feb 2012Wilcox Industries Corp.Self-contained breathing system
US81365256 Jun 200620 Mar 2012Resmed LimitedMask system
US826174512 Dec 200511 Sep 2012Respcare, Inc.Ventilation interface
US82919064 Jun 200923 Oct 2012Resmed LimitedPatient interface systems
US829728527 Jul 200730 Oct 2012Resmed LimitedDelivery of respiratory therapy
US8479727 *4 May 20049 Jul 2013The United States Of America As Represented By The Secretary Of The ArmyEnhanced chemical/biological respiratory protection system
US848519229 Jun 201216 Jul 2013Resmed LimitedCushion for patient interface
US851702329 Jan 200827 Aug 2013Resmed LimitedMask system with interchangeable headgear connectors
US852278423 Jan 20133 Sep 2013Resmed LimitedMask system
US852856118 Jan 201310 Sep 2013Resmed LimitedMask system
US855008129 Nov 20128 Oct 2013Resmed LimitedCushion for patient interface
US855008229 Nov 20128 Oct 2013Resmed LimitedCushion for patient interface
US855008329 Nov 20128 Oct 2013Resmed LimitedCushion for patient interface
US855008427 Feb 20098 Oct 2013Resmed LimitedMask system
US855588529 Nov 201215 Oct 2013Resmed LimitedCushion for patient interface
US856740414 Nov 201229 Oct 2013Resmed LimitedCushion for patient interface
US857321314 Nov 20125 Nov 2013Resmed LimitedCushion for patient interface
US857321428 Nov 20125 Nov 2013Resmed LimitedCushion for patient interface
US857321529 Nov 20125 Nov 2013Resmed LimitedCushion for patient interface
US857893529 Nov 201212 Nov 2013Resmed LimitedCushion for patient interface
US861328014 Nov 201224 Dec 2013Resmed LimitedCushion for patient interface
US861328129 Nov 201224 Dec 2013Resmed LimitedCushion for patient interface
US861621129 Nov 201231 Dec 2013Resmed LimitedCushion for patient interface
US873335817 May 201127 May 2014Resmed LimitedCushion for a respiratory mask assembly
US878953210 Mar 200629 Jul 2014Respcare, Inc.Ventilation mask
US88071353 Jun 200519 Aug 2014Resmed LimitedCushion for a patient interface
US886979718 Apr 200828 Oct 2014Resmed LimitedCushion and cushion to frame assembly mechanism for patient interface
US88697983 Sep 200928 Oct 2014Resmed LimitedFoam-based interfacing structure method and apparatus
US888772510 May 200618 Nov 2014Respcare, Inc.Ventilation interface
US890503114 Feb 20129 Dec 2014Resmed LimitedPatient interface systems
US891525117 Feb 201223 Dec 2014Resmed LimitedMask system
US893602221 Mar 200820 Jan 20153M Innovative Properties CompanyAir delivery apparatus for respirator hood
US894406115 Mar 20133 Feb 2015Resmed LimitedCushion to frame assembly mechanism
US8950401 *13 Feb 201210 Feb 2015Wilcox Industries Corp.Self-contained breathing system
US896019629 May 201324 Feb 2015Resmed LimitedMask system with interchangeable headgear connectors
US902755623 Jan 201312 May 2015Resmed LimitedMask system
US90329556 Jun 200619 May 2015Resmed LimitedMask system
US90670339 May 201130 Jun 2015Resmed LimitedCompact oronasal patient interface
US911993131 Jul 20141 Sep 2015Resmed LimitedMask system
US913855312 Jun 201222 Sep 2015Innomed Technologies, Inc.Ventilation interface for sleep apnea therapy
US914959414 Sep 20126 Oct 2015Resmed LimitedPatient interface systems
US916203427 Jul 200720 Oct 2015Resmed LimitedDelivery of respiratory therapy
US916208821 Nov 201220 Oct 2015Honeywell International Inc.Method of assembly and disassembly of abrasive blast respirator
US9192793 *21 Nov 201224 Nov 2015Honeywell International Inc.Abrasive blast respirator
US9192794 *21 Nov 201224 Nov 2015Honeywell International Inc.Noise reduction system for supplied air respirator
US919279621 Nov 201224 Nov 2015Honeywell International Inc.Method of donning and testing abrasive blast respirator
US92208605 Feb 201029 Dec 2015Resmed LimitedCompact oronasal patient interface
US923811618 Aug 201419 Jan 2016Redmed LimitedCushion for a patient interface
US929580020 Dec 201329 Mar 2016Resmed LimitedCushion for patient interface
US938131630 Jan 20095 Jul 2016Resmed LimitedInterchangeable mask assembly
US948080929 Jul 20081 Nov 2016Resmed LimitedPatient interface
US972448811 Apr 20148 Aug 2017Resmed LimitedCushion for a respiratory mask assembly
US975753312 Aug 201312 Sep 2017Resmed LimitedMask system with snap-fit shroud
US977056823 Feb 201726 Sep 2017Resmed LimitedMask system with snap-fit shroud
US20040134498 *20 Oct 200315 Jul 2004Roger StricklandNasal cannula
US20040182394 *21 Mar 200323 Sep 2004Alvey Jeffrey ArthurPowered air purifying respirator system and self contained breathing apparatus
US20040182395 *29 Sep 200323 Sep 2004Brookman Michael J.Powered air purifying respirator system and breathing apparatus
US20040182397 *21 Mar 200323 Sep 2004Innomed Technologies, Inc.Nasal interface including ventilation insert
US20050022817 *3 Sep 20043 Feb 2005Tvi CorporationBreathing apparatus
US20050028821 *1 Jul 200410 Feb 2005Wood Thomas J.Nasal interface and system including ventilation insert
US20050028823 *15 Sep 200410 Feb 2005Wood Thomas J.Nasal ventilation interface
US20050034730 *15 Sep 200417 Feb 2005Wood Thomas J.Ventilation interface for sleep apnea therapy
US20050039757 *13 Jul 200424 Feb 2005Wood Thomas J.Ventilation interface for sleep apnea therapy
US20050045182 *28 Jun 20043 Mar 2005Wood Thomas J.Nasal interface and system including ventilation insert
US20050109341 *2 Apr 200426 May 2005Alvey Jeffrey A.Powered air purifying respirator system and self contained breathing apparatus
US20050126574 *17 Dec 200416 Jun 2005Wood Thomas J.Ventilation interface for sleep apnea therapy
US20050133040 *10 Dec 200423 Jun 2005Wood Thomas J.Nasal interface and system including ventilation insert
US20050235999 *4 Aug 200427 Oct 2005Wood Thomas JNasal ventilation interface and system
US20050236000 *10 Dec 200427 Oct 2005Wood Thomas JNasal ventilation interface and system
US20050247310 *4 May 200410 Nov 2005Grove Corey MEnhanced chemical/biological respiratory protection system
US20060048777 *21 Jul 20059 Mar 2006Interspiro, Inc.Apparatus and method for providing breathable air and bodily protection in a contaminated environment
US20060124131 *6 Jul 200515 Jun 2006Respcare, Inc.Hybrid ventilation mask with nasal interface and method for configuring such a mask
US20060150982 *23 Apr 200413 Jul 2006Wood Thomas JNasal ventilation interface and system
US20060191533 *8 Sep 200531 Aug 2006Interspiro, Inc.Powered air purifying respirator system and breathing apparatus
US20060237017 *26 Jun 200626 Oct 2006Resmed LimitedCompact oronasal patient interface
US20060266361 *31 May 200530 Nov 2006Shara HernandezVentilation interface
US20070144525 *24 Dec 200428 Jun 2007Resmed LimitedCompact oronasal patient interface
US20070186930 *7 Feb 200716 Aug 2007Resmed LimitedCompact oronasal patient interface
US20070221226 *10 Mar 200627 Sep 2007Norman HansenVentilation mask
US20070235030 *23 Aug 200411 Oct 2007Teetzel James WSelf-contained breathing system
US20070272249 *10 May 200629 Nov 2007Sanjay ChandranVentilation interface
US20080129063 *30 Nov 20075 Jun 2008Samsung Electronics Co., Ltd.Vacuum type pickup apparatus and vacuum type pickup Method
US20090277452 *6 Jun 200612 Nov 2009Steven John LubkeMask System
US20100037891 *21 Mar 200818 Feb 2010Walker Garry JAir delivery apparatus for respirator hood
US20100132717 *5 Feb 20103 Jun 2010Resmed LimitedCompact oronasal patient interface
US20100215203 *30 Jun 200926 Aug 2010Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd.Speaker and wireless charging system using same
US20100224193 *15 Jan 20109 Sep 2010Wilcox Industries Corp.Self-contained breathing system
US20100224194 *3 Sep 20089 Sep 2010Walker Garry JRespirator Flow Control Apparatus and Method
US20100294270 *8 Oct 200825 Nov 2010Curran Desmond TRespirator Assembly with Air Flow Direction Control
US20120138059 *13 Feb 20127 Jun 2012Wilcox Industries Corp.Self-contained breathing system
US20140116429 *21 Nov 20121 May 2014Honeywell International Inc.Abrasive blast respirator
US20140116445 *21 Nov 20121 May 2014Honeywell International Inc.Noise reduction system for supplied air respirator
US20150083134 *1 Dec 201426 Mar 20153M Innovative Properties CompanyRespirator Flow Control Apparatus And Method
USD62328828 Apr 20067 Sep 2010Resmed LimitedPatient interface
USD64555722 Feb 200720 Sep 2011Resmed LimitedPaired set of prongs for patient interface
USD65290928 Jan 200924 Jan 2012Resmed LimitedRespiratory mask frame
USD6592376 Apr 20108 May 2012Resmed LimitedPatient interface
USD66957619 Dec 201123 Oct 2012Resmed LimitedRespiratory mask frame
USD70331216 Apr 201222 Apr 2014Resmed LimitedPatient interface
USD75792726 Feb 201431 May 2016Resmed LimitedFrame for patient interface
CN1802188B25 Feb 20048 Dec 2010英特斯普罗公司Powered air purifying respirator system and breathing apparatus
CN104918663A *26 Nov 201316 Sep 2015Be 航天公司Improved protective breathing apparatus inhalation duct
EP2129443A1 *21 Mar 20089 Dec 20093M Innovative Properties CompanyRespirator flow control apparatus and method
EP2129443A4 *21 Mar 20081 Apr 20153M Innovative Properties CoRespirator flow control apparatus and method
WO2004093997A1 *25 Feb 20044 Nov 2004Interspiro AbPowered air purifying respirator system and breathing apparatus
WO2016090161A1 *3 Dec 20159 Jun 2016The University Of Utah Research FoundationMedical gas delivery device
Classifications
U.S. Classification128/201.28
International ClassificationA62B18/00, A62B18/04, A62B7/00
Cooperative ClassificationA62B18/04, A62B7/00
European ClassificationA62B18/04, A62B7/00