US3739327A - Electroacoustic transducers of the mass loaded vibratile piston type - Google Patents

Electroacoustic transducers of the mass loaded vibratile piston type Download PDF

Info

Publication number
US3739327A
US3739327A US00098631A US3739327DA US3739327A US 3739327 A US3739327 A US 3739327A US 00098631 A US00098631 A US 00098631A US 3739327D A US3739327D A US 3739327DA US 3739327 A US3739327 A US 3739327A
Authority
US
United States
Prior art keywords
transducer
piston
inertial mass
housing
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00098631A
Inventor
D Massa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MASSA DONALD P COHASSET
Dynamics Corp of America
Massa Products Corp
Original Assignee
Dynamics Corp of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamics Corp of America filed Critical Dynamics Corp of America
Application granted granted Critical
Publication of US3739327A publication Critical patent/US3739327A/en
Assigned to MASSA PRODUCTS CORPORATION reassignment MASSA PRODUCTS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CONSTANCE ANN MASSA TRUST, DONALD P. MASSA TRUST, GEORGIANA M. MASSA TRUST, ROBERT MASSA TRUST
Assigned to MASSA, DONALD P., COHASSET, MA, DELLORFANO, FRED M. JR. reassignment MASSA, DONALD P., COHASSET, MA ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: STONELEIGH TRUST, THE
Assigned to TRUSTEES FOR AND ON BEHALF OF THE D.P. MASSA TRUST, THE C.A. MASSA TRUST, THE G.M. MASSA TRUST, AND THE R. MASSA TRUST reassignment TRUSTEES FOR AND ON BEHALF OF THE D.P. MASSA TRUST, THE C.A. MASSA TRUST, THE G.M. MASSA TRUST, AND THE R. MASSA TRUST ASSIGN TO TRUSTEES AS EQUAL TENANTS IN COMMON, THE ENTIRE INTEREST. Assignors: MASSA, CONSTANCE A., MASSA, DONALD P., MASSA, GEORGIANA M., MASSA, ROBERT
Assigned to MASSA PRODUCTS CORPORATION reassignment MASSA PRODUCTS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CONSTANCE ANN MASSA TRUST *, DONALD P. MASSA TRUST, GEORGIANA M. MASSA TRUST, ROBERT M. MASSA TRUST
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0611Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
    • B06B1/0618Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile of piezo- and non-piezoelectric elements, e.g. 'Tonpilz'
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/72Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using ultrasonic, sonic or infrasonic waves

Definitions

  • This type of transducer generally comprises a piezo-v electric cylindrical transducer element rigidly cemented between a vibratile piston and an inertial mass element.
  • One of the problems which must be solved in such transducer structures concerns the need for making reliable electrical connections to electrode surfaces of the piezoelectric element. This reliability is generally accomplished by soldering flexible leads to the electrodes or by providing conducting foil electrodes which are held in mechanical contact with the electrode surfaces.
  • the vibrations of the structure are likely to break these connections.
  • a relatively high cost is required for the construction of these conventional electrode connections.
  • an object of this invention is to improve the means for making electrical connection to the electrode surfaces of a piezoelectric element in a transducer.
  • Another object of this invention is to eliminate wire leads making direct electrical connection to the electrode surfaces of the piezoelectric element in a trans ducer.
  • a still further object of this invention is to utilize the basic component elements of the transducer vibrating assembly to complete the electrical connections to the piezoelectric element.
  • an object is to avoid using electrical conductors or foil electrodes in direct contact with the piezoelectric element.
  • Yet another object of this invention is to simplify the construction of mass loaded vibratile piston-type transducers, whereby a lower cost and an increased reliability is achieved, as compared to prior art structures.
  • the terminals for the individual electrodes on the transducer element assemblies are two terminal lugs conveniently located at the rear of the assembled element. One lug attaches directly to the mass element, and the other lug attached to a stress bolt threaded into the vibratile piston.
  • the invention provides a simplified construction of a transducer element assembly and completely eliminates the necessity for any direct wiring to electrode surfaces on the ceramic. This elimination enables a more reliable and less costly structure.
  • FIG. 1 is a rear plan view of a mass loaded transducer assembly incorporating an illustrative embodiment of this invention
  • FIG. 2 is a cross-sectional side view taken along the line 22 of FIG. 1;
  • FIG. 3 is an end view of a first embodiment of a polarized ceramic transducer element that may be used in the transducer element assembly of FIG. 2;
  • FIG; 4 is a cross-sectional side view taken along the line 4-4 of FIG. 3;
  • FIG. 5 is an end view of another embodiment of a polarized ceramic transducer element that may be used in the transducer element assembly of FIG. 2;
  • FIG. 6 is a cross-sectional side view taken along the line 6-6 of FIG. 5;
  • FIG. 7 is a longitudinal partial cross-sectional view of a deep water transducer employing several of the element assemblies illustrated in FIG. 2;
  • FIG. 8 is a cross-sectional view of the transducer assembly of FIG. 7 taken along the line 8-8 thereof.
  • the reference character 11 identifies a vibratile piston which might be made of any suitable electrically conductive material, such as aluminum, for example.
  • a cylindrical transducer element 12 may be made of any well known piezoelectric materials, such as barium titanate or lead-zirconate-titanate. As best seen in FIGS. 3 and 4, the ceramic 12 has electrode surfaces 13 and 14 (such as fired silver) formed on each end of the cylinder.
  • An electrically conductive cylindrical inertial mass element 15 (FIG. 2) may be made of steel, for example.
  • the electrode on one end of the hollow, polarized, piezoelectric ceramic cylinder 12 is bonded to one side of the piston 11.
  • the mass element 15 is bonded to the electrode 14 on the opposite end of the ceramic cylinder.
  • the bonding is accompished by means of a conducting cement, such as an epoxy mixed with a silver dust.
  • the inertial mass element 15 has a clearance hole passing through its axis for receiving a stress bolt 19 for completing the assembly.
  • an assembly may be completed by placing an insulating collar 17 over the stress bolt 19 and then putting a terminal lug 16 over the collar.
  • Another terminal lug 18 is placed between the top of collar 17 and the bottom of the head on the stress bolt 19. All these parts are secured together by means of the stress bolts 19, which is tightened into a tapped hole machined into the piston 11.
  • Any suitable spring means such as a Belleville spring washer (not shown) may be placed under the head of the screw 19 to control the compression stress applied to the ceramic cylinder 12.
  • the assembly of FIG. 2 provides means for conveniently making electrical connections to the ceramic without requiring any direct connections of wires or foil to the electrodes. All electrical potentials appear at the terminal lugs 16 and 18 on the rear of the transducer assembly. This arrangement enables the wiring together of multiple transducer elements, when they are assembled as an array inside a housing structure.
  • the ceramic cylinder 12 (FIGS. 2 and 4) has electrode surfaces on each of its two ends.
  • the ceramic is axially polarized with the polarizing potentials and applied to the electrodes 13 and 14, as indicated.
  • Another type of polarization for the ceramic element is illustrated in FIGS. 5 and 6.
  • the tubular ceramic cylinder 20 has an electrode surface 21 on its inside wall and an electrode surface 22 on its outside wall.
  • the ceramic material is radially polarized through the ceramic wall, with the polarizing potentials and applied as indicated.
  • the positive electrode continues from the inside cylindrical wall and wraps over a portion of one end of the ceramic cylinder.
  • the negative electrode continues from the outside cylindrical wall and wraps over a portion of the opposite end of the ceramic cylinder, as illustrated in FIG. 6.
  • This radially polarized ceramic element 20 may be substituted for the ceramic element 12 in FIG. 2.
  • Other types of electroacoustic transducer elements such as an X-cut quartz plate, for example, may also be substituted for the ceramic cylinder 12, in FIG. 2.
  • FIGS. 7 and 8 show an illustrative embodiment of the inventive transducer assembly in a single transducer housing.
  • a number of these transducer assemblies are arranged with their pistons 11 cemented to a sound conducting window 23, such as rubber or neoprene, for example. This cementing may be accomplished by means of epoxy (or another suitable cement).
  • transducer assemblies are electrically wired together by means of a conductor 24, which is soldered to each of the common positive potential terminal lugs 16.
  • a conductor 25 is soldered to each of the common negative potential terminal lugs 18.
  • the conductors 24 and 25 are soldered to the terminals 26 and 27, which are sealed in a conventional insulated manner through the wall of the rigid housing structure 28.
  • the periphery of the rubber window 23 is bonded to the open end of the housing 28, again by means of a suitable cement, such as epoxy.
  • the space within the housing 28 is preferably filled with a rubbery potting compound 29, such as polyurethane or with a liquid such as castor oil. This filling is inserted into the housing through an opening, after which it is sealed by means of a threaded plug 30.
  • a rubbery potting compound 29 such as polyurethane or with a liquid such as castor oil.
  • the described invention eliminates direct wiring or foil connections to the electrode surfaces on the ceramic element. There is a simple, convenient, and reliable means for making a transducer assembly, which has great advantages over prior art structures.
  • An electroacoustic transducer comprising an electrically conductive vibratile piston having at least one plane surface on one side thereof, an electrically conductive inertial mass element having at least one plane surface on one side thereof, piezoelectric transducer means for converting electrical oscillations into mechanical vibrations, said transducer means having a pair of opposite plane surfaces, separate electrode means formed directly on each of said pair of opposite plane surfaces of said transducer means, said integral electrode means being free of external connections, means for rigidly fastening said plane surface on said one side of said vibratile piston directly to one of said opposite plane surfaces of said transducer means and fastening said plane surface on said one side of said inertial mass element directly to said separate electrode means on the opposite surface of said transducer means, a first electrical terminal means connected to said inertial mass element, an electrically conductive bolt member attached to said piston, passing through said inertial mass member, and insulated from said mass member, and a second electrical terminal means electrically connected to said bolt member, whereby an electrical connection is made directly to
  • transducer means comprises a polarized ceramic cylinder with said separate electrode on said opposite surfaces of said transducer means.
  • said rigid fastening means includes a stress bolt for holding said piston and said inertial mass element tightly against the opposite end surfaces of said ceramic, whereby said ceramic is held in mechanical compression.
  • An electroacoustic transducer comprising a vibratile piston having a pair of opposite plane surfaces, an inertial mass element having at least one plane surface, transducer means for converting electrical oscillations into mechanical vibrations, said transducer means having two parallel plane surfaces, electrode means integrally formed on at least a portion of each of said two parallel plane surfaces on said transducer means, mechanical fastening means for securely holding said piston, said inertial mass element, and said transducer means in direct physical contact free of any discrete electrode members having tabs for making external electrical connections thereto; said piston, said mass, and said transducer being held in axial alignment, one of said parallel plane surfaces of said transducer means being held in intimate mechanical contact with said plane surface of said inertial mass element, the other of said parallel plane surfaces of said transducer means being held in intimate mechanical contact with one of said plane surfaces of said piston means, a first electrical terminal means being connected to said inertial mass element, said mechanical fastening means comprising an electrically conductive bolt member attached to said piston, passing through
  • transducer means is a hollow ceramic cylinder.
  • said inertial mass element has an axial hole
  • said mechanical fastening means including a stress bolt passing through said axial hole and applying axial compressive stress to said ceramic cylinder.
  • a deep water transducer comprising a plurality of electrically conductive plate pistons flexibly connected to each other in a substantially planar alignmnt, a housing with an open side and one side of said planar alignment facing outwardly from said housing, a plurality of piezoelectric transducing elements, each element being held with one side in intimate contact with the other side of each of an individually associated one of said pistons, an electrically conductive inertial mass element held in intimate contact with the other side of each individually associated transducing element, a stress bolt interconnecting each of said mass elements and insulated from said mass elements and the associated plate piston for applying a stress to the associated one of said piezoelectric elements, said stress bolt making electrical contact with the associated plate piston, and means for electrically interconnecting said piezoelectrical elements via said mass elements and said stress bolts.
  • transducer of claim 16 wherein said flexible connection is a sheet of elastic material sealing the open side of said housing.

Abstract

A cylindrical, piezoelectric, ceramic transducer is clamped between an electrically conductive mass element and a vibratile piston. The electrical connection is completed from the piston via a stress bolt to a terminal near the mass element. This arrangement enables sturdy electrical connections to be made to electrodes on the ceramic material and eliminates soldered wire, or foil electrical connections to the ceramic.

Description

United States Patent 1 1 Massa 1 June 12, 1973 [54] ELECTROACOUSTIC TRANSDUCERS 0F 3,218,488 11/1965 Jacke 310/8.7'X
THE MASS LOADED VIBRATILE PISTON 3968A 12/1962 Ehrlich TYPE 3,478,309 11/1969 Massa, Jr...
"Mmwmunww 3,525,071 8/1970 Massa, Jr. [75] Inventor: Donald P. Massa, Cohasset, Mass. 3 6/ 7 Massa 3,150,347 9 1964 H h [73] Ass1gnee: Massa Division Dynamics Corpora- I am 340,9
' tion of America, Hingham, Mass. P h l rimary Examiner-Benjamin A. Bore e t [22] Flled' 1970 Assistant Examinerl-larold Tudor [21] Appl. No.: 98,631 AttorneyLouis Bernat [52] U.S. Cl. 340/10 R, 340/9 [57] ABSTRACT Cl- 1 A piezo lectri ceramic transducer is [58] Field of Search 340/8, 9, 10, 11, clamped between an electrically conductive mass 1 340/12; 310/87 ment and a vibratile piston. The electrical connection is completed from the piston via a stress bolt to a termi- [56] References C'ted nal near the mass element. This arrangement enables UNITED STATES PATENTS sturdy electrical connections to be made to electrodes 3 329 403 7 19 7 Branson 0 3 7 X on the ceramic material and eliminates soldered wire, 3,113,761 12/1963 Platzman 259/72 or foil electrical connections to the ceramic. 3,284,761 11/1966 Douglas..... 340/9 X 2,724,818 11/1955 Camp 340/9 17 Claims, 8 Drawing Figures ELECTROACOUSTIC TRANSDUCERS OF THE MASS LOADED VIBRATILE PISTON TYPE The invention relates to electroacoustic piezoelectric ceramic transducers of the mass loaded vibratile piston type, and more particularly to such transducers for use in very deep water.
This type of transducer generally comprises a piezo-v electric cylindrical transducer element rigidly cemented between a vibratile piston and an inertial mass element. One of the problems which must be solved in such transducer structures concerns the need for making reliable electrical connections to electrode surfaces of the piezoelectric element. This reliability is generally accomplished by soldering flexible leads to the electrodes or by providing conducting foil electrodes which are held in mechanical contact with the electrode surfaces. However, the vibrations of the structure are likely to break these connections. In addition, a relatively high cost is required for the construction of these conventional electrode connections. These and other problems are especially severe in high power transducers which are likely to be subjected to intense vibration of the piezoelectric element while submerged in deep water.
Accordingly, an object of this invention is to improve the means for making electrical connection to the electrode surfaces of a piezoelectric element in a transducer.
Another object of this invention is to eliminate wire leads making direct electrical connection to the electrode surfaces of the piezoelectric element in a trans ducer.
A still further object of this invention is to utilize the basic component elements of the transducer vibrating assembly to complete the electrical connections to the piezoelectric element. Here, an object is to avoid using electrical conductors or foil electrodes in direct contact with the piezoelectric element.
Yet another object of this invention is to simplify the construction of mass loaded vibratile piston-type transducers, whereby a lower cost and an increased reliability is achieved, as compared to prior art structures.
In keeping with an aspect of the invention, these and other objects are accomplished by providing connections between electrodes on a piezoelectric transducer element and near-by metallic parts, thereby eliminating wire-like connections. More particularly, the terminals for the individual electrodes on the transducer element assemblies are two terminal lugs conveniently located at the rear of the assembled element. One lug attaches directly to the mass element, and the other lug attached to a stress bolt threaded into the vibratile piston. Thus, the invention provides a simplified construction of a transducer element assembly and completely eliminates the necessity for any direct wiring to electrode surfaces on the ceramic. This elimination enables a more reliable and less costly structure.
For a better understanding of the invention itself, together with further features and advantages thereof, reference is made to the accompanying description and drawings in which:
FIG. 1 is a rear plan view ofa mass loaded transducer assembly incorporating an illustrative embodiment of this invention;
FIG. 2 is a cross-sectional side view taken along the line 22 of FIG. 1;
FIG. 3 is an end view of a first embodiment of a polarized ceramic transducer element that may be used in the transducer element assembly of FIG. 2;
FIG; 4 is a cross-sectional side view taken along the line 4-4 of FIG. 3;
FIG. 5 is an end view of another embodiment of a polarized ceramic transducer element that may be used in the transducer element assembly of FIG. 2;
FIG. 6 is a cross-sectional side view taken along the line 6-6 of FIG. 5;
FIG. 7 is a longitudinal partial cross-sectional view of a deep water transducer employing several of the element assemblies illustrated in FIG. 2; and
FIG. 8 is a cross-sectional view of the transducer assembly of FIG. 7 taken along the line 8-8 thereof.
In the various figures, the reference character 11 identifies a vibratile piston which might be made of any suitable electrically conductive material, such as aluminum, for example. A cylindrical transducer element 12 may be made of any well known piezoelectric materials, such as barium titanate or lead-zirconate-titanate. As best seen in FIGS. 3 and 4, the ceramic 12 has electrode surfaces 13 and 14 (such as fired silver) formed on each end of the cylinder. An electrically conductive cylindrical inertial mass element 15 (FIG. 2) may be made of steel, for example.
The electrode on one end of the hollow, polarized, piezoelectric ceramic cylinder 12 is bonded to one side of the piston 11. The mass element 15 is bonded to the electrode 14 on the opposite end of the ceramic cylinder. On each end, the bonding is accompished by means of a conducting cement, such as an epoxy mixed with a silver dust.
The inertial mass element 15 has a clearance hole passing through its axis for receiving a stress bolt 19 for completing the assembly. As a result, an assembly may be completed by placing an insulating collar 17 over the stress bolt 19 and then putting a terminal lug 16 over the collar. Another terminal lug 18 is placed between the top of collar 17 and the bottom of the head on the stress bolt 19. All these parts are secured together by means of the stress bolts 19, which is tightened into a tapped hole machined into the piston 11. Any suitable spring means, such as a Belleville spring washer (not shown) may be placed under the head of the screw 19 to control the compression stress applied to the ceramic cylinder 12.
When the assembly of FIG. 2 is completed, a negative electrical potential appears on electrode 13 and at the terminal lug 18, the circuit being completed via the stress bolt 19. An electrical connection is also completed from the positive electrode 14 to the terminal lug 16, which is in contact with the inertial tail mass 15.
Thus, the assembly of FIG. 2 provides means for conveniently making electrical connections to the ceramic without requiring any direct connections of wires or foil to the electrodes. All electrical potentials appear at the terminal lugs 16 and 18 on the rear of the transducer assembly. This arrangement enables the wiring together of multiple transducer elements, when they are assembled as an array inside a housing structure.
The ceramic cylinder 12 (FIGS. 2 and 4) has electrode surfaces on each of its two ends. The ceramic is axially polarized with the polarizing potentials and applied to the electrodes 13 and 14, as indicated. Another type of polarization for the ceramic element is illustrated in FIGS. 5 and 6. Here, the tubular ceramic cylinder 20 has an electrode surface 21 on its inside wall and an electrode surface 22 on its outside wall. The ceramic material is radially polarized through the ceramic wall, with the polarizing potentials and applied as indicated. The positive electrode continues from the inside cylindrical wall and wraps over a portion of one end of the ceramic cylinder. Likewise, the negative electrode continues from the outside cylindrical wall and wraps over a portion of the opposite end of the ceramic cylinder, as illustrated in FIG. 6. This radially polarized ceramic element 20 may be substituted for the ceramic element 12 in FIG. 2. Other types of electroacoustic transducer elements, such as an X-cut quartz plate, for example, may also be substituted for the ceramic cylinder 12, in FIG. 2.
FIGS. 7 and 8 show an illustrative embodiment of the inventive transducer assembly in a single transducer housing. A number of these transducer assemblies are arranged with their pistons 11 cemented to a sound conducting window 23, such as rubber or neoprene, for example. This cementing may be accomplished by means of epoxy (or another suitable cement).
These transducer assemblies are electrically wired together by means of a conductor 24, which is soldered to each of the common positive potential terminal lugs 16. Likewise, a conductor 25 is soldered to each of the common negative potential terminal lugs 18. The conductors 24 and 25 are soldered to the terminals 26 and 27, which are sealed in a conventional insulated manner through the wall of the rigid housing structure 28.
After making these electrical connections, the periphery of the rubber window 23 is bonded to the open end of the housing 28, again by means of a suitable cement, such as epoxy.
If the transducer assembly is to be used for deep underwater applications, the space within the housing 28 is preferably filled with a rubbery potting compound 29, such as polyurethane or with a liquid such as castor oil. This filling is inserted into the housing through an opening, after which it is sealed by means of a threaded plug 30.
The described invention eliminates direct wiring or foil connections to the electrode surfaces on the ceramic element. There is a simple, convenient, and reliable means for making a transducer assembly, which has great advantages over prior art structures.
While specific embodiments have been shown, it should be understood that various modifications and alternative constructions may be made without departing from the true spirit and scope of the invention. Therefore, the appended claims are intended to cover all modifications and equivalents which fall within the true spirit and scope of the invention.
1 claim:
1. An electroacoustic transducer comprising an electrically conductive vibratile piston having at least one plane surface on one side thereof, an electrically conductive inertial mass element having at least one plane surface on one side thereof, piezoelectric transducer means for converting electrical oscillations into mechanical vibrations, said transducer means having a pair of opposite plane surfaces, separate electrode means formed directly on each of said pair of opposite plane surfaces of said transducer means, said integral electrode means being free of external connections, means for rigidly fastening said plane surface on said one side of said vibratile piston directly to one of said opposite plane surfaces of said transducer means and fastening said plane surface on said one side of said inertial mass element directly to said separate electrode means on the opposite surface of said transducer means, a first electrical terminal means connected to said inertial mass element, an electrically conductive bolt member attached to said piston, passing through said inertial mass member, and insulated from said mass member, and a second electrical terminal means electrically connected to said bolt member, whereby an electrical connection is made directly to said transducer means only via said plane surfaces on said one sides.
2. The invention of claim 1 wherein said transducer means comprises a polarized ceramic cylinder with said separate electrode on said opposite surfaces of said transducer means.
3. The invention in claim 2 wherein said rigid fastening means includes a stress bolt for holding said piston and said inertial mass element tightly against the opposite end surfaces of said ceramic, whereby said ceramic is held in mechanical compression.
4. The invention in claim 3 wherein said stress bolt is threaded into the piston and insulated from said inertial mass element.
5. The invention in claim 4 and first terminal lug means in electrical contact with the surfaces of said inertial mass element and said ceramic cylinder and a second terminal lug means in electrical contact with said stress bolt.
6. The invention in claim 5 wherein said first and said second terminal lugs and said stress bolt are separated by an electrical insulator with said stress bolt in contact with one of said lugs and holds said terminal lugs securely in position.
7. An electroacoustic transducer comprising a vibratile piston having a pair of opposite plane surfaces, an inertial mass element having at least one plane surface, transducer means for converting electrical oscillations into mechanical vibrations, said transducer means having two parallel plane surfaces, electrode means integrally formed on at least a portion of each of said two parallel plane surfaces on said transducer means, mechanical fastening means for securely holding said piston, said inertial mass element, and said transducer means in direct physical contact free of any discrete electrode members having tabs for making external electrical connections thereto; said piston, said mass, and said transducer being held in axial alignment, one of said parallel plane surfaces of said transducer means being held in intimate mechanical contact with said plane surface of said inertial mass element, the other of said parallel plane surfaces of said transducer means being held in intimate mechanical contact with one of said plane surfaces of said piston means, a first electrical terminal means being connected to said inertial mass element, said mechanical fastening means comprising an electrically conductive bolt member attached to said piston, passing through said inertial mass member, and insulated from said mass member, and a second electrical terminal means electrically connected to said bolt member, whereby an electrical connection is made directly to said transducer means only via said plane surfaces of said inertial mass element and said piston which are in intimate contact with the electrode surfaces on said transducer means.
8. The invention in claim 7 wherein said transducer means is a hollow ceramic cylinder.
9. The invention in claim 8 wherein the ceramic cylinder is polarized axially between electrode surfaces placed over each end plane face of said hollow cylinder.
10. The invention in claim 8 wherein the ceramic cylinder is polarized radially between electrode surfaces placed over the inside and outside cylindrical walls of the ceramic.
11. The invention in claim 8 wherein said inertial mass element has an axial hole, said mechanical fastening means including a stress bolt passing through said axial hole and applying axial compressive stress to said ceramic cylinder.
12. A plurality of electroacoustic transducer assemblies as defined in claim 7 and an open-sided housing closed by a sheet of sound transparent material, means for bonding an exposed plane surface of each of said vibratile pistons in said transducer assemblies to one side of said sheet of sound transparent material, insulated terminal means sealed through the wall of said housing, electrical connection means interconnecting said transducer assemblies to each other and to said insulated terminal means, and means for sealing the periphery of said sheet of said sound transparent material to the open side of said housing, whereby said transduc ers are attached to one surface of said sound transparent material and completely sealing the enclosure.
13. The invention in claim 12 and a non-electricallyconductive fluid filling the space within said sealed enclosure.
14. The invention in claim 12 and a non-electricallyconductive potting compound filling the space within said sealed enclosure.
15. A plurality of electroacoustic transducer assemblies as defined in claim 7 and a housing with an open side, means for positioning the exposed plane surfaces of said vibratile pistons of said transducer assemblies in alignment at the open side of said housing, potting means for sealing said assemblies inside of said housing and for closing said open side of said housing, insulated terminal means extending through the wall of said housing, and electrical connection means for interconnecting said transducer assemblies and said insulated terminal means.
16. A deep water transducer comprising a plurality of electrically conductive plate pistons flexibly connected to each other in a substantially planar alignmnt, a housing with an open side and one side of said planar alignment facing outwardly from said housing, a plurality of piezoelectric transducing elements, each element being held with one side in intimate contact with the other side of each of an individually associated one of said pistons, an electrically conductive inertial mass element held in intimate contact with the other side of each individually associated transducing element, a stress bolt interconnecting each of said mass elements and insulated from said mass elements and the associated plate piston for applying a stress to the associated one of said piezoelectric elements, said stress bolt making electrical contact with the associated plate piston, and means for electrically interconnecting said piezoelectrical elements via said mass elements and said stress bolts.
17. The transducer of claim 16 wherein said flexible connection is a sheet of elastic material sealing the open side of said housing.

Claims (17)

1. An electroacoustic transducer comprising an electrically conductive vibratile piston having at least one plane surface on one side thereof, an electrically conductive inertial mass element having at least one plane surface on one side thereof, piezoelectric transducer means for converting electrical oscillations into mechanical vibrations, said transducer means having a pair of opposite plane surfaces, separate electrode means formed directly on each of said pair of opposite plane surfaces of said transducer means, said integral electrode means being free of external connections, means for rigidly fastening said plane surface on said one side of said vibratile piston directly to one of said opposite plane surfaces of said transducer means and fastening said plane surface on said one side of said inertial mass element directly to said separate electrode means on the opposite surface of said transducer means, a first electrical terminal means connected to said inertial mass element, an electrically conductive bolt member attached to said piston, passing through said inertial mass member, and insulated from said mass member, and a second electrical terminal means electrically connected to said bolt member, whereby an electrical connection is made directly to sAid transducer means only via said plane surfaces on said one sides.
2. The invention of claim 1 wherein said transducer means comprises a polarized ceramic cylinder with said separate electrode on said opposite surfaces of said transducer means.
3. The invention in claim 2 wherein said rigid fastening means includes a stress bolt for holding said piston and said inertial mass element tightly against the opposite end surfaces of said ceramic, whereby said ceramic is held in mechanical compression.
4. The invention in claim 3 wherein said stress bolt is threaded into the piston and insulated from said inertial mass element.
5. The invention in claim 4 and first terminal lug means in electrical contact with the surfaces of said inertial mass element and said ceramic cylinder and a second terminal lug means in electrical contact with said stress bolt.
6. The invention in claim 5 wherein said first and said second terminal lugs and said stress bolt are separated by an electrical insulator with said stress bolt in contact with one of said lugs and holds said terminal lugs securely in position.
7. An electroacoustic transducer comprising a vibratile piston having a pair of opposite plane surfaces, an inertial mass element having at least one plane surface, transducer means for converting electrical oscillations into mechanical vibrations, said transducer means having two parallel plane surfaces, electrode means integrally formed on at least a portion of each of said two parallel plane surfaces on said transducer means, mechanical fastening means for securely holding said piston, said inertial mass element, and said transducer means in direct physical contact free of any discrete electrode members having tabs for making external electrical connections thereto; said piston, said mass, and said transducer being held in axial alignment, one of said parallel plane surfaces of said transducer means being held in intimate mechanical contact with said plane surface of said inertial mass element, the other of said parallel plane surfaces of said transducer means being held in intimate mechanical contact with one of said plane surfaces of said piston means, a first electrical terminal means being connected to said inertial mass element, said mechanical fastening means comprising an electrically conductive bolt member attached to said piston, passing through said inertial mass member, and insulated from said mass member, and a second electrical terminal means electrically connected to said bolt member, whereby an electrical connection is made directly to said transducer means only via said plane surfaces of said inertial mass element and said piston which are in intimate contact with the electrode surfaces on said transducer means.
8. The invention in claim 7 wherein said transducer means is a hollow ceramic cylinder.
9. The invention in claim 8 wherein the ceramic cylinder is polarized axially between electrode surfaces placed over each end plane face of said hollow cylinder.
10. The invention in claim 8 wherein the ceramic cylinder is polarized radially between electrode surfaces placed over the inside and outside cylindrical walls of the ceramic.
11. The invention in claim 8 wherein said inertial mass element has an axial hole, said mechanical fastening means including a stress bolt passing through said axial hole and applying axial compressive stress to said ceramic cylinder.
12. A plurality of electroacoustic transducer assemblies as defined in claim 7 and an open-sided housing closed by a sheet of sound transparent material, means for bonding an exposed plane surface of each of said vibratile pistons in said transducer assemblies to one side of said sheet of sound transparent material, insulated terminal means sealed through the wall of said housing, electrical connection means interconnecting said transducer assemblies to each other and to said insulated terminal means, and means for sealing the periphery of said sheet of said sounD transparent material to the open side of said housing, whereby said transducers are attached to one surface of said sound transparent material and completely sealing the enclosure.
13. The invention in claim 12 and a non-electrically-conductive fluid filling the space within said sealed enclosure.
14. The invention in claim 12 and a non-electrically-conductive potting compound filling the space within said sealed enclosure.
15. A plurality of electroacoustic transducer assemblies as defined in claim 7 and a housing with an open side, means for positioning the exposed plane surfaces of said vibratile pistons of said transducer assemblies in alignment at the open side of said housing, potting means for sealing said assemblies inside of said housing and for closing said open side of said housing, insulated terminal means extending through the wall of said housing, and electrical connection means for interconnecting said transducer assemblies and said insulated terminal means.
16. A deep water transducer comprising a plurality of electrically conductive plate pistons flexibly connected to each other in a substantially planar alignmnt, a housing with an open side and one side of said planar alignment facing outwardly from said housing, a plurality of piezoelectric transducing elements, each element being held with one side in intimate contact with the other side of each of an individually associated one of said pistons, an electrically conductive inertial mass element held in intimate contact with the other side of each individually associated transducing element, a stress bolt interconnecting each of said mass elements and insulated from said mass elements and the associated plate piston for applying a stress to the associated one of said piezoelectric elements, said stress bolt making electrical contact with the associated plate piston, and means for electrically interconnecting said piezoelectrical elements via said mass elements and said stress bolts.
17. The transducer of claim 16 wherein said flexible connection is a sheet of elastic material sealing the open side of said housing.
US00098631A 1970-12-16 1970-12-16 Electroacoustic transducers of the mass loaded vibratile piston type Expired - Lifetime US3739327A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US9863170A 1970-12-16 1970-12-16

Publications (1)

Publication Number Publication Date
US3739327A true US3739327A (en) 1973-06-12

Family

ID=22270206

Family Applications (1)

Application Number Title Priority Date Filing Date
US00098631A Expired - Lifetime US3739327A (en) 1970-12-16 1970-12-16 Electroacoustic transducers of the mass loaded vibratile piston type

Country Status (1)

Country Link
US (1) US3739327A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156863A (en) * 1978-04-28 1979-05-29 The United States Of America As Represented By The Secretary Of The Navy Conical beam transducer array
US4183007A (en) * 1978-02-22 1980-01-08 Fischer & Porter Company Ultrasonic transceiver
US4326275A (en) * 1979-09-27 1982-04-20 Hazeltine Corporation Directional transducer
US4649385A (en) * 1982-08-13 1987-03-10 Teloc R & D Ltd. Electronic locating system for persons receiving telephone calls
DE3635806A1 (en) * 1985-11-27 1987-06-04 Taga Electric Co Ltd ULTRASONIC VIBRATOR
US5726952A (en) * 1996-05-18 1998-03-10 Endress + Hauser Gmbh + Co. Sound or ultrasound sensor
DE102005056895A1 (en) * 2005-11-28 2007-05-31 Endress + Hauser Gmbh + Co. Kg Device for determining and monitoring the fill level of a product in a container according to the transit time measurement method
US20110051969A1 (en) * 2008-05-07 2011-03-03 Ixsea Acoustic antenna having integrated printed circuits
US20180032027A1 (en) * 2016-07-29 2018-02-01 Lexmark International, Inc. Redundant electrical contact between a fastener and a component
US11578928B2 (en) 2019-02-13 2023-02-14 Bae Systems Information And Electronic Systems Integration Inc. Evaporative cooling for transducer array

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2724818A (en) * 1951-08-21 1955-11-22 Bendix Aviat Corp Magnetostriction vibrator construction for directional transducers
US3068446A (en) * 1958-08-21 1962-12-11 Stanley L Ehrlich Tubular electrostrictive transducer with spaced electrodes and loading masses
US3113761A (en) * 1961-07-26 1963-12-10 Ultrasonic Ind Inc Ultrasonic tank housing
US3150347A (en) * 1959-11-30 1964-09-22 Hanish Sam Underwater transducer element
US3218488A (en) * 1961-08-01 1965-11-16 Branson Instr Transducer
US3284761A (en) * 1964-08-18 1966-11-08 Westinghouse Electric Corp Transducer
US3328751A (en) * 1966-03-28 1967-06-27 Dynamics Corp Massa Div Electroacoustic transducer
US3329408A (en) * 1965-03-29 1967-07-04 Branson Instr Transducer mounting arrangement
US3478309A (en) * 1968-04-10 1969-11-11 Dynamics Corp America Electroacoustic transducer with multiple beam characteristics
US3525071A (en) * 1968-04-10 1970-08-18 Dynamics Corp America Electroacoustic transducer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2724818A (en) * 1951-08-21 1955-11-22 Bendix Aviat Corp Magnetostriction vibrator construction for directional transducers
US3068446A (en) * 1958-08-21 1962-12-11 Stanley L Ehrlich Tubular electrostrictive transducer with spaced electrodes and loading masses
US3150347A (en) * 1959-11-30 1964-09-22 Hanish Sam Underwater transducer element
US3113761A (en) * 1961-07-26 1963-12-10 Ultrasonic Ind Inc Ultrasonic tank housing
US3218488A (en) * 1961-08-01 1965-11-16 Branson Instr Transducer
US3284761A (en) * 1964-08-18 1966-11-08 Westinghouse Electric Corp Transducer
US3329408A (en) * 1965-03-29 1967-07-04 Branson Instr Transducer mounting arrangement
US3328751A (en) * 1966-03-28 1967-06-27 Dynamics Corp Massa Div Electroacoustic transducer
US3478309A (en) * 1968-04-10 1969-11-11 Dynamics Corp America Electroacoustic transducer with multiple beam characteristics
US3525071A (en) * 1968-04-10 1970-08-18 Dynamics Corp America Electroacoustic transducer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4183007A (en) * 1978-02-22 1980-01-08 Fischer & Porter Company Ultrasonic transceiver
US4156863A (en) * 1978-04-28 1979-05-29 The United States Of America As Represented By The Secretary Of The Navy Conical beam transducer array
US4326275A (en) * 1979-09-27 1982-04-20 Hazeltine Corporation Directional transducer
US4649385A (en) * 1982-08-13 1987-03-10 Teloc R & D Ltd. Electronic locating system for persons receiving telephone calls
DE3635806A1 (en) * 1985-11-27 1987-06-04 Taga Electric Co Ltd ULTRASONIC VIBRATOR
US5726952A (en) * 1996-05-18 1998-03-10 Endress + Hauser Gmbh + Co. Sound or ultrasound sensor
DE102005056895A1 (en) * 2005-11-28 2007-05-31 Endress + Hauser Gmbh + Co. Kg Device for determining and monitoring the fill level of a product in a container according to the transit time measurement method
US20110051969A1 (en) * 2008-05-07 2011-03-03 Ixsea Acoustic antenna having integrated printed circuits
US9114427B2 (en) * 2008-05-07 2015-08-25 Ixblue Acoustic antenna having integrated printed circuits
US20180032027A1 (en) * 2016-07-29 2018-02-01 Lexmark International, Inc. Redundant electrical contact between a fastener and a component
US10338518B2 (en) * 2016-07-29 2019-07-02 Lexmark International, Inc. Redundant electrical contact between a fastener and a component
US11578928B2 (en) 2019-02-13 2023-02-14 Bae Systems Information And Electronic Systems Integration Inc. Evaporative cooling for transducer array

Similar Documents

Publication Publication Date Title
US3142035A (en) Ring-shaped transducer
US3739327A (en) Electroacoustic transducers of the mass loaded vibratile piston type
US3167668A (en) Piezoelectric transducers
US2565158A (en) Hydraulic electromechanical transducer
US3510698A (en) Electroacoustical transducer
US2787777A (en) Ceramic transducer having stacked elements
US3749948A (en) Pressure transducer
US3025359A (en) Vibration-compensated pressure sensitive microphone
US20170031040A1 (en) Hermetically sealed hydrophones with very low acceleration sensitivity
US3328751A (en) Electroacoustic transducer
US3179823A (en) Transducer for dissipation and detection of high frequency vibratory energy
US4184093A (en) Piezoelectric polymer rectangular flexural plate hydrophone
US2838695A (en) Multi-section quartz torsional transducers
US4219889A (en) Double mass-loaded high power piezo-electric underwater transducer
US3586889A (en) Means for resiliently mounting transducer elements between a housing and an inertial mass
US4545041A (en) Shock-hardened hydrophone
US3199071A (en) Electroacoustic transducer construction suitable for operation in deep water
US4679178A (en) Arrangement in hydrophone
JPS61172081A (en) Flexible piezoelectric transducer assembly and sonar piezoelectric transducer assembly
US3525071A (en) Electroacoustic transducer
US2413462A (en) Transducer
US5199004A (en) Sealed acoustical element using conductive epoxy
US3337843A (en) Underwater transducer array for deep submergence
US2520938A (en) Tourmaline crystal transducer
US3846744A (en) Shock hardened transducer

Legal Events

Date Code Title Description
AS Assignment

Owner name: TRUSTEES FOR AND ON BEHALF OF THE D.P. MASSA TRUST

Free format text: ASSIGN TO TRUSTEES AS EQUAL TENANTS IN COMMON, THE ENTIRE INTEREST.;ASSIGNORS:MASSA, DONALD P.;MASSA, CONSTANCE A.;MASSA, GEORGIANA M.;AND OTHERS;REEL/FRAME:005395/0942

Effective date: 19841223

Owner name: MASSA PRODUCTS CORPORATION, 80 LINCOLN STREET, HIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:DONALD P. MASSA TRUST;CONSTANCE ANN MASSA TRUST *;GEORGIANA M. MASSA TRUST;AND OTHERS;REEL/FRAME:005395/0954

Effective date: 19841223

Owner name: MASSA, DONALD P., COHASSET, MA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:STONELEIGH TRUST, THE;REEL/FRAME:005397/0016

Effective date: 19841223

Owner name: MASSA PRODUCTS CORPORATION, 280 LINCOLN STREET, HI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:DONALD P. MASSA TRUST;CONSTANCE ANN MASSA TRUST;ROBERT MASSA TRUST;AND OTHERS;REEL/FRAME:005395/0971

Effective date: 19860612

Owner name: DELLORFANO, FRED M. JR.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:STONELEIGH TRUST, THE;REEL/FRAME:005397/0016

Effective date: 19841223