US3737843A - Hydraulically controlled device for modulating the mud - Google Patents

Hydraulically controlled device for modulating the mud Download PDF

Info

Publication number
US3737843A
US3737843A US00206367A US3737843DA US3737843A US 3737843 A US3737843 A US 3737843A US 00206367 A US00206367 A US 00206367A US 3737843D A US3737843D A US 3737843DA US 3737843 A US3737843 A US 3737843A
Authority
US
United States
Prior art keywords
flow
pressure
hydraulic
fluid
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00206367A
Inventor
J Lepeuvedic
C Quichaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Nationale des Petroles dAquitaine SA
Original Assignee
Societe Nationale des Petroles dAquitaine SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale des Petroles dAquitaine SA filed Critical Societe Nationale des Petroles dAquitaine SA
Application granted granted Critical
Publication of US3737843A publication Critical patent/US3737843A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • E21B47/24Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry by positive mud pulses using a flow restricting valve within the drill pipe

Definitions

  • This invention concerns a hydraulic system for transmitting signals, representing measurements taken at the bottom of a well, to the surface.
  • Hydraulically controlled devices have attracted particular attention because of their functional reliability and high power-to-weight ratio.
  • the applicant has designed a device with independent hydraulic control, in which the hydraulic fluid circuit contains a pump discharging fluid under pressure, through a control device such as a slide distributor or electrovalve, on one side or other of the piston of a double-action hydraulic jack, connected mechanically to a mechanism which restricts the passage of the drilling fluid.
  • This device like other existing systems involving hydraulic circuits with separate control fluid, uses a control component operated by electric impulses related to the measurement signals, and which may be a slide distributor controlled by one or two coils or a combination of electro-valves.
  • This method of controlling the mechanism for restricting the flow of drilling fluid has many drawbacks, however.
  • the equipment involved is often too bulky for the confined space available inside drilling rods.
  • the small flow of fluid produced for a given exciting power means that the fluid restricting mechanism operates at reduced speed, limiting the number of signals that can be sent in one unit of time.
  • Another drawback of existing control systems is that the amplitude of the pressure impulses obtained by operating the restricting mechanism varies with the flow and density of the mud passing through it, which means that when impulses of uniform level are required, in wells being drilling with varying mud flows and densities, a correction system has to be used every time the composition of the drilling fluid is changed.
  • the aim of this invention is to offer a hydraulic system for rapid operation of the restriction mechanism. Another aim is to provide a hydraulic servo-device which can operate the restriction mechanism at pre-set amplitudes, and which can be regulated independently of drilling fluid circulating conditions.
  • the invention also concerns a method of producing modulations in the total mud flow, at selected frequencies ranging from several tenths of a Hertz to several tens of Hertzes.
  • the system according to this invention allows a considerable amount of data to be transmitted easily, using modulation frequencies that are quite distinct from the unwanted ones often produced by drilling mud pumps.
  • the present invention concerns a hydraulically controlled system to transmit signals representing measurements taken at the bottom of a well to the surface, in the form of pressure modulations created by periodical restrictions on the flow of the drilling fluid, and consists of a mechanism for restricting this flow, a device for controlling the mechanism, operated by electrical signals related to the measurement signals, a hydraulic fluid circuit by means of which the controlling device operates the flow-restriction device, a turbine driven by the drilling fluid and a hydraulic fluid pressure pump on the same shaft, being characterized by the fact that the device to control the periodical restrictions on the flow of drilling fluid consists of a servovalve controlling a hydraulic fluid, the flow of which is uniformly related, in quantity and direction, to the electrical intensity passing through its coil.
  • the restriction mechanism used to impart impulses to the drilling fluid and transmit signals to the surface in the form of pressure modulations may be a shutter or needle-valve connected mechanically to a hydraulic sink such as a jack, hydraulic gear or piston motor receiving a continuous flow of control fluid.
  • the servo-valve acts through a control fluid circuit to operate a doubleaction hydraulic jack, linked mechanically to a needlevalve attached to its piston, which acts with a fixed seat.
  • the movement of the piston is confined between two positions marked by mechanical stops, corresponding to minimum and maximum openings of the drilling fluid flow-restriction mechanism, maximum opening being obtained by passing an electric current, corresponding to fast displacement of the jack in the direction of opening of the passage, through the servovalve coil, while minimum opening is obtained by reversing the direction of the electric current.
  • the advantage of this method is the speed with which the restriction mechanism is operated.
  • it allows signals to be sent in the form of rapid pressure variations, ranging from 5 to 30 bars, and succeeding one another at intervals of between 1 and 30 seconds, each such signal being obtained by reversing the electric current passing through the servovalve coil.
  • the servovalve is the device by which a functional characteristic of the restriction mechanism is controlled by an electrical signal which varies according to a pre-set pattern.
  • a current representing the difference between two signals, one from the detector of a controlled characteristic of the restriction mechanism, and the other from a generator of electrical signals related to the measurement signals, is applied to the servovalve coil.
  • the functional characteristics of the restriction mechanism may be its position, or the pressure-drop it creates in the drilling fluid passing through it.
  • Instantaneous command of the position of the restriction mechanism by control signals allows its functioning to vary in terms of time on the same pattern as the control signal variations.
  • Instantaneous command of the pressure-drop in the restriction mechanism by control signals allows it to function, notably as regards the amplitude of the signals transmitted in the form of pressure modulations, without being affected by the flow, nature and density of the drilling fluid used, or the control fluid pressure.
  • a servovalve to control the functioning of the restriction mechanism allows the use of a wide range of frequencies, from several tenths to several tens of Hertz, with a different set of frequencies for each speed of movement of the mechanism. This range of frequencies allows a considerable amount of information to be transmitted easily, using modulation frequencies quite distinct from the unwanted ones usually produced by drilling pumps.
  • the controlled hydraulic system allows information to be transmitted by the drilling fluid current, by means of signals consisting of continuous or intermittent modulations of the drilling fluid pressure, in the form of sinusoidal pressure variations at frequencies of from 0.1 to 100 cycles per second.
  • the electrical control voltage which may be nil at rest, is formed during transmission of the signals, by superimposing a sinusoidal alternating voltage with a frequency of between 0.1 and 100 cycles per second on a direct voltage, making it possible, by controlling the position of the restriction mechanism or the pressuredrop it creates, to obtain an average pressure-drop of between and bars, in the flow of drilling fluid passing through the mechanism.
  • FIG. 1 shows a special drill collar containing the controlled hydraulic system for modulation of the mud flow. Externally it resembles components commonly used in drilling operations. In particular, it has standard APl threads at each end, so that it can be incorporated at any point in the drilling line, preferably near the tool.
  • FIG. 2 shows the electrical circuit by which the position of the hydraulic jack is controlled by any type of electrical signal.
  • FIG. 3 shows the electrical circuit by which the pressure-drop in the restriction mechanism is controlled by any type of electrical signal.
  • the special drill collar (1) containing the controlled hydraulic system, in FIG. 1, has standard threaded sections string wide bore on the female side, compatible with the threads and housing the internal equipment, which rests on a shoulder (3).
  • This internal equipment consists of a modulation valve which occupies the whole upper end of the wide bore, forcing all the drilling fluid to circulate between the fixed seat (12) and mobile needle (13).
  • the invention is not confined to use of this type of valve, and other restriction mechanisms, such as a dome valve or balanced multi-seat valves, may also be used to modulate the mud flow.
  • Beneath the modulating valve is a watertight cylinder (15), containing the hydraulic valve-control system, electrical control circuits, measurement-sensing devices (not shown) and an independent electricity supply system.
  • the lower end of this cylinder is connected to a turbine (l6) supplying energy from the mud flow.
  • the drilling fluid can pass from the modulating valve (11) to the turbine (16), along the annular space between the bore of the drill collar (1) and the cylinder (15).
  • the fixed (17) and mobile (18) blades of this turbine which is of standard type, are held by nuts (19 and 20) against shoulders provided inside the turbine casing and on the shaft (14).
  • the drilling fluid penetrates into the fixed blading through a series of apertures (21) at the top of the turbine casing, and leaves the turbine through the bottom, round the shaft, going on to irrigate the drilling tool in the usual way.
  • the shaft (14), with the mobile blades (18) is suspended from a bearing (22) inside the watertight cylinder (15).
  • the shaft passes from the turbine casing into the cylinder through a sealing system (23), which may be a conventional stuffing-box held in position by a nut (24).
  • the role of the bearing (22) is also to absorb the axial hydraulic thrust on the mobile blades.
  • the advantage of having this bearing inside the cylinder is the ease with which it can be lubricated by the fluid with which the watertight cylinder is filled; this may be a mineral oil, which can withstand the pressures and temperatures encountered at the bottoms of drilling wells.
  • a device not shown in the figure allows the static pressure of the drilling fluid to be applied to the filling and control fluids inside the cylinder (15).
  • the shaft (14) drives an alternator (5), which supplies electricity, and a regulated hydraulic pressure generator (7), not shown in detail in the figure.
  • regulated pressure generator chosen is of little importance. It may consist of a fixed-cylinder pump, regulator and tank accumulating oil under pressure, or of a self-regulating variable-cylinder pump and pressure tank.
  • the invention is in no way confined to use of these types of pressure generator: any other regulated pump and tank containing oil under pressure, providing sufficient instant flow at uniform pressure to operate the restriction mechanism energetically may be used, without departing from the context of the present invention, provided that their size is compatible with the space available inside the watertight cylinder (15).
  • the pressure generator (7) is the servovalve the function of which is to modulate the control fluid delivered at uniform pressure by the generator. It does this by receiving the fluid under pressure through an intake pipe (49) and returning it without pressure to the generator, through a discharge pipe (48).
  • the servovalve (50) is connected with the two sides of a piston (56), by pipes (51 and 52).
  • This piston forms the main part of a double-acting jack connected mechanically with the restriction mechanism. It moves inside a cylindrical space (55), operating a rod (57) connected to the mobile valve-pin (13), which acts with the fixed seat (12) to modulate the flow of drilling fluid.
  • the piston (56) can move upwards or downwards, depending on whether the fluid under pressure is directed to the upward side along one pipe (51), or to the downward side along the other pipe (52).
  • control sensors and electronic circuits regulating the electricity and controlling the servovalve (50) are placed in a compartment (35) in the upper part of the watertight cylinder (15), round the rod (57).
  • measurement sensors supplying signals representing drilling parameters may also be housed in this compartment.
  • Passages separate from the hydraulic circuit are provided in the cylindrical space (55) and generator (7), for electrical conductors (58 and 6), which link the servovalve (50) and alternator (5) with the circuits inside the special compartment (35).
  • the servovalve contains a control coil or winding through which passes an electric current supplied by these circuits.
  • control sensors areinstruments detecting some functional characteristic of the restriction mechanism. Their applications are illustrated in FIGS. 2 and 3.
  • the method of control by position illustrated in FIG. 2 involves a position sensor (33), the rod (32) of which is connected with the rod (57) between the jack piston (56), and the valve-needle.
  • the position of this rod (57) is controlled by an electrical signal, which is fixed or variable in time, so that a restriction, fixed or varying in time, is produced.
  • FIG. 2 provides a diagrammatical illustration of how this principle is applied.
  • the coder (59 supplies a reference or control signal, fixed or varying according to a pattern preferably related to measurements taken at the bottom of the well, and designed to produce a pressure variation of predetermined form in the drilling fluid. These two signals are compared in an error detector (60), which is also an amplifier. The difference between the two signals is applied to the servovalve coil by conductors (58). Because of the operating principle of the servovalve, the piston (56) will move in the direction which tends to reduce the difference.
  • the piston (56) comes to rest in a position dictated solely by the value of the reference signal, and unaffected by oil pressure, drilling fluid, speed and flow, etc. If the reference signal varies in time, the piston position will also vary in accordance with the same pattern. In this way, position of the needle of the valve modulating the flow of drilling fluid is controlled by a reference signal, which may, for instance, represent successive measurements, coded or uncoded, taken at the bottom of a well during drilling.
  • the electric power needed to operate the measurement and control sensors and the electronic circuits (59 and 60) is supplied from the alternator (5), by a power-supply unit (31), which is also housed in the compartment (35).
  • FIG. 3 shows one interesting possibility offered by the controlled hydraulic device.
  • FIG. 2 illustrated how the position of the modulating valve needle (13) could be controlled by a fixed or variable reference signal.
  • a fixed position ofthe modulating valve needle will not ensure a predetermined difference in pressure on each side of the restriction point.
  • the pressure-drop varies depending on the density, and is proportional to the square of the flow.
  • the system illustrated diagrammatically in FIG. 3 overcomes this drawback, offering a way of controlling the restriction so as to ensure, within a certain range of flows, a pressure-difference that either remains uniform or var ies in accordance with a predetermind pattern, without being affected by the flow.
  • a pressure differential sensor (36), which detects the pressure above the valve by means of one pipe (38), and the pressure below it by means of another pipe (37), and supplies an electrical signal representing the difference in pressure, in other words the pressure-drop created by the modulating valve.
  • This signal is compared with a reference signal supplied by a coder (59), in an error-detector amplifier
  • the difference'between the two signals is applied, in the form of an electrical error signal, to the servovalve (50) coil, by conductors (58).
  • the reference signal is fixed, the pressure-drop will also remain steady, at a level determined solely by this reference signal; the signal representing the difference in pressures above and below the restriction point will then correspond exactly to the reference signal.
  • the pressure-difference created by the modulating valve depends on a given reference signal, regardless of the viscosity, density or flow of the drilling fluid. If the reference signal is made to vary in time, according to a pattern related to the drilling parameter measurements to be transmitted, pressure variations can also be created easily in the column of drilling fluid, matching the same time pattern, and thus providing transmission signals.
  • the process can be used to obtain variable-frequency modulations related to the parameter being measured at the bottom of the well, with a high information-transmission capacity.
  • What claimed is 1.
  • a hydraulically controlled device for transmitting signals representing measurements taken within a well to the surface in the form of pressure modulations created by periodical restrictions on the flow of the drilling fluid, which device comprises a mechanism for restricting said flow,
  • said device comprises a hydraulic fluid pressure pump to supply pressure fluid to said hydraulic circuit and an electrical generator, both driven by said turbine, and
  • control means comprises electrically operated servo valve means supplied from said generator for controlling the flow of hydraulic fluid in said circuit in dependence on the quantity and direction of the electrical signal delivered to the servo valve and means for regulating the electrical signal to said servo valve at least in part in dependence on said measurements.
  • said flow restriction mechanism comprises a mobile valve-needle cooperating with a fixed seat and attached to a doubleaction hydraulic jack piston mounted for movement between two positions, one of which corresponds to maximum opening of the flow-restricting mechanism and is obtained by passing an electric current in one diand said servo valve comprises a control coil to which said difference signal is applied to control said functional characteristic.
  • a device in which said sensor is responsive to the position of said flow-restricting mechanism.
  • a device in which said sensor is a pressure difference sensor which measures the difference in pressure above and below said flowrestricting mechanism.

Abstract

A hydraulically controlled device to transmit measurements taken at the bottom of a well to the surface, in the form of pressure modulations created by periodical restrictions on the passage of the drilling fluid, characterized by the use of a servovalve which operates the drilling fluid flow-restriction system, and the hydraulic control fluid of which is uniformly related, in quantity and direction, to the electric intensity passing through its coil.

Description

United States Patent 1 [111 3,737,843
Le Peuvedic et al. [4 1 June 5, 1973 54 HYDRAULICALLY CONTROLLED 2,958,511 11/1960 Pgegferle 175/40 DEVICE FOR MODULATING THE MUD 3,255,353 6/1966 Scherbatskoy ..340/l8 LD 2,898,084 8/1959 Eckel et al. ..340/l8 LD [75] Inventors: Jean-Pierre Le Peuvedic, Pau;
Claude Quichaud, Billere, both of FOREIGN PATENTS OR APPLICATIONS France 237,629 5 1960 Australia ..175 45 [73] Assignee: Societe Anonyme dite: Societe Nationale Des Petroles DAquitaine, Primary Examiner-Samuel Femberg courbevoie, Fran Assistant Examiner-N. Moskowitz Attorney .l0seph F. Brisebois and John A. Feketis [22] Filed: Dec. 9, I971 [2!] Appl. No.2 206,367 ABSTRACT A hydraulically controlled device to transmit measure- 521 0.5. Ci. ..340/l8 NC, 340/12 LD, 175/45 taken at the bottom of a to the Surface, in 511 1m. 01. ..G0lv 1/40 the form of 11 lressure modulations created P P [58] Field of Search ..340/l8 NC is LD' restrictims the Passage 0f the inning fluld 175/56 40 characterized by the use of a servovalve which operates the drilling fluid flow-restriction system, and [56] Reterences Cited the hydraulic control fluid of which is uniformly related, in quantity and direction, to the'electric intensi- UNITED STATES PATENTS y Passing through its coil- 2,7s7,759 4 1951 Arps ..340 1s NC 5 Claims, 3 Drawing Figures 7 25 24 l 4 2! 17 4 -76 78 I4 q xaww Emm w w 2 Sheets-Sheet 1 Patented June 5, 1973 7 2 7 B 6 4 ZZWM 4 b Patented June 5, 1973 3,737,843
2 Sheets-Shoo! 2 HYDRAULICALLY CONTROLLED DEVICE FOR MODULATING THE MUD This invention concerns a hydraulic system for transmitting signals, representing measurements taken at the bottom of a well, to the surface.
When drilling a well, it is very useful to know a number of parameters concerning the ground being drilled and the working conditions of the tool. Such information is generally used to define and adjust drilling conditions. It is usually transmitted from the bottom of the well to the surface by means of series of hydraulic impulses produced in the drilling fluid at the base of the well, and transmitted to the surface without disturbing the normal drilling operations.
Many inventors have tried to design simple devices for producing reliable, high-level hydraulic impulses, despite the unfavourable conditions prevailing at the bottoms of wells. Hydraulically controlled devices have attracted particular attention because of their functional reliability and high power-to-weight ratio. The applicant, for instance, has designed a device with independent hydraulic control, in which the hydraulic fluid circuit contains a pump discharging fluid under pressure, through a control device such as a slide distributor or electrovalve, on one side or other of the piston of a double-action hydraulic jack, connected mechanically to a mechanism which restricts the passage of the drilling fluid.
This device, like other existing systems involving hydraulic circuits with separate control fluid, uses a control component operated by electric impulses related to the measurement signals, and which may be a slide distributor controlled by one or two coils or a combination of electro-valves.
This method of controlling the mechanism for restricting the flow of drilling fluid has many drawbacks, however. The equipment involved is often too bulky for the confined space available inside drilling rods. The small flow of fluid produced for a given exciting power means that the fluid restricting mechanism operates at reduced speed, limiting the number of signals that can be sent in one unit of time. Another drawback of existing control systems is that the amplitude of the pressure impulses obtained by operating the restricting mechanism varies with the flow and density of the mud passing through it, which means that when impulses of uniform level are required, in wells being drilling with varying mud flows and densities, a correction system has to be used every time the composition of the drilling fluid is changed.
The aim of this invention is to offer a hydraulic system for rapid operation of the restriction mechanism. Another aim is to provide a hydraulic servo-device which can operate the restriction mechanism at pre-set amplitudes, and which can be regulated independently of drilling fluid circulating conditions. The invention also concerns a method of producing modulations in the total mud flow, at selected frequencies ranging from several tenths of a Hertz to several tens of Hertzes. The system according to this invention allows a considerable amount of data to be transmitted easily, using modulation frequencies that are quite distinct from the unwanted ones often produced by drilling mud pumps.
The present invention concerns a hydraulically controlled system to transmit signals representing measurements taken at the bottom of a well to the surface, in the form of pressure modulations created by periodical restrictions on the flow of the drilling fluid, and consists of a mechanism for restricting this flow, a device for controlling the mechanism, operated by electrical signals related to the measurement signals, a hydraulic fluid circuit by means of which the controlling device operates the flow-restriction device, a turbine driven by the drilling fluid and a hydraulic fluid pressure pump on the same shaft, being characterized by the fact that the device to control the periodical restrictions on the flow of drilling fluid consists of a servovalve controlling a hydraulic fluid, the flow of which is uniformly related, in quantity and direction, to the electrical intensity passing through its coil.
The restriction mechanism used to impart impulses to the drilling fluid and transmit signals to the surface in the form of pressure modulations may be a shutter or needle-valve connected mechanically to a hydraulic sink such as a jack, hydraulic gear or piston motor receiving a continuous flow of control fluid.
According to one embodiment, the servo-valve acts through a control fluid circuit to operate a doubleaction hydraulic jack, linked mechanically to a needlevalve attached to its piston, which acts with a fixed seat. In this embodiment, the movement of the piston is confined between two positions marked by mechanical stops, corresponding to minimum and maximum openings of the drilling fluid flow-restriction mechanism, maximum opening being obtained by passing an electric current, corresponding to fast displacement of the jack in the direction of opening of the passage, through the servovalve coil, while minimum opening is obtained by reversing the direction of the electric current.
The advantage of this method is the speed with which the restriction mechanism is operated. When used at the base of a well, during drilling, to transmit information to the surface, it allows signals to be sent in the form of rapid pressure variations, ranging from 5 to 30 bars, and succeeding one another at intervals of between 1 and 30 seconds, each such signal being obtained by reversing the electric current passing through the servovalve coil.
According to another embodiment of the invention, the servovalve is the device by which a functional characteristic of the restriction mechanism is controlled by an electrical signal which varies according to a pre-set pattern. A current representing the difference between two signals, one from the detector of a controlled characteristic of the restriction mechanism, and the other from a generator of electrical signals related to the measurement signals, is applied to the servovalve coil.
The functional characteristics of the restriction mechanism may be its position, or the pressure-drop it creates in the drilling fluid passing through it.
Instantaneous command of the position of the restriction mechanism by control signals, preferably related to the measurement signals, allows its functioning to vary in terms of time on the same pattern as the control signal variations.
Instantaneous command of the pressure-drop in the restriction mechanism by control signals, preferably related to the measurement signals, allows it to function, notably as regards the amplitude of the signals transmitted in the form of pressure modulations, without being affected by the flow, nature and density of the drilling fluid used, or the control fluid pressure.
Use of a servovalve to control the functioning of the restriction mechanism allows the use of a wide range of frequencies, from several tenths to several tens of Hertz, with a different set of frequencies for each speed of movement of the mechanism. This range of frequencies allows a considerable amount of information to be transmitted easily, using modulation frequencies quite distinct from the unwanted ones usually produced by drilling pumps.
The controlled hydraulic system according to this invention allows information to be transmitted by the drilling fluid current, by means of signals consisting of continuous or intermittent modulations of the drilling fluid pressure, in the form of sinusoidal pressure variations at frequencies of from 0.1 to 100 cycles per second. The electrical control voltage, which may be nil at rest, is formed during transmission of the signals, by superimposing a sinusoidal alternating voltage with a frequency of between 0.1 and 100 cycles per second on a direct voltage, making it possible, by controlling the position of the restriction mechanism or the pressuredrop it creates, to obtain an average pressure-drop of between and bars, in the flow of drilling fluid passing through the mechanism.
The figures described below illustrate some embodiments of the present invention.
FIG. 1 shows a special drill collar containing the controlled hydraulic system for modulation of the mud flow. Externally it resembles components commonly used in drilling operations. In particular, it has standard APl threads at each end, so that it can be incorporated at any point in the drilling line, preferably near the tool.
FIG. 2 shows the electrical circuit by which the position of the hydraulic jack is controlled by any type of electrical signal.
FIG. 3 shows the electrical circuit by which the pressure-drop in the restriction mechanism is controlled by any type of electrical signal.
The special drill collar (1) containing the controlled hydraulic system, in FIG. 1, has standard threaded sections string wide bore on the female side, compatible with the threads and housing the internal equipment, which rests on a shoulder (3).
This internal equipment consists of a modulation valve which occupies the whole upper end of the wide bore, forcing all the drilling fluid to circulate between the fixed seat (12) and mobile needle (13). The invention is not confined to use of this type of valve, and other restriction mechanisms, such as a dome valve or balanced multi-seat valves, may also be used to modulate the mud flow.
Beneath the modulating valve is a watertight cylinder (15), containing the hydraulic valve-control system, electrical control circuits, measurement-sensing devices (not shown) and an independent electricity supply system.
The lower end of this cylinder is connected to a turbine (l6) supplying energy from the mud flow. The drilling fluid can pass from the modulating valve (11) to the turbine (16), along the annular space between the bore of the drill collar (1) and the cylinder (15). The fixed (17) and mobile (18) blades of this turbine, which is of standard type, are held by nuts (19 and 20) against shoulders provided inside the turbine casing and on the shaft (14). The drilling fluid penetrates into the fixed blading through a series of apertures (21) at the top of the turbine casing, and leaves the turbine through the bottom, round the shaft, going on to irrigate the drilling tool in the usual way. The shaft (14), with the mobile blades (18), is suspended from a bearing (22) inside the watertight cylinder (15). The shaft passes from the turbine casing into the cylinder through a sealing system (23), which may be a conventional stuffing-box held in position by a nut (24). The role of the bearing (22) is also to absorb the axial hydraulic thrust on the mobile blades. The advantage of having this bearing inside the cylinder is the ease with which it can be lubricated by the fluid with which the watertight cylinder is filled; this may be a mineral oil, which can withstand the pressures and temperatures encountered at the bottoms of drilling wells.
A device not shown in the figure allows the static pressure of the drilling fluid to be applied to the filling and control fluids inside the cylinder (15).
Pressure differences on each side of the sealing system (23) thus remain slight, making it easier to design and maintain in good condition.
The shaft (14) drives an alternator (5), which supplies electricity, and a regulated hydraulic pressure generator (7), not shown in detail in the figure.
The type of regulated pressure generator chosen is of little importance. It may consist of a fixed-cylinder pump, regulator and tank accumulating oil under pressure, or of a self-regulating variable-cylinder pump and pressure tank.
The invention is in no way confined to use of these types of pressure generator: any other regulated pump and tank containing oil under pressure, providing sufficient instant flow at uniform pressure to operate the restriction mechanism energetically may be used, without departing from the context of the present invention, provided that their size is compatible with the space available inside the watertight cylinder (15).
Above the pressure generator (7) is the servovalve the function of which is to modulate the control fluid delivered at uniform pressure by the generator. It does this by receiving the fluid under pressure through an intake pipe (49) and returning it without pressure to the generator, through a discharge pipe (48). On the other side, the servovalve (50) is connected with the two sides of a piston (56), by pipes (51 and 52). This piston forms the main part of a double-acting jack connected mechanically with the restriction mechanism. It moves inside a cylindrical space (55), operating a rod (57) connected to the mobile valve-pin (13), which acts with the fixed seat (12) to modulate the flow of drilling fluid. The piston (56) can move upwards or downwards, depending on whether the fluid under pressure is directed to the upward side along one pipe (51), or to the downward side along the other pipe (52).
The control sensors and electronic circuits regulating the electricity and controlling the servovalve (50) are placed in a compartment (35) in the upper part of the watertight cylinder (15), round the rod (57).
In some cases, measurement sensors supplying signals representing drilling parameters may also be housed in this compartment. Passages separate from the hydraulic circuit are provided in the cylindrical space (55) and generator (7), for electrical conductors (58 and 6), which link the servovalve (50) and alternator (5) with the circuits inside the special compartment (35).
The servovalve contains a control coil or winding through which passes an electric current supplied by these circuits.
When there is no exciting current, no hydraulic communication exists, and the piston (56) cannot move. The special peculiarity of the servovalve is that it can produce any degree of suchcommunication, from complete closure to direct communication between the oil under pressure and one side of the jack piston (56), when an electric current of appropriate direction and intensity is applied to its control coil. In other words, the flow of fluid controlled by a servovalve is uniformly related, in direction and quantity, to the electric intensity passing through its control coil.
The control sensors areinstruments detecting some functional characteristic of the restriction mechanism. Their applications are illustrated in FIGS. 2 and 3.
The method of control by position illustrated in FIG. 2 involves a position sensor (33), the rod (32) of which is connected with the rod (57) between the jack piston (56), and the valve-needle. The position of this rod (57) is controlled by an electrical signal, which is fixed or variable in time, so that a restriction, fixed or varying in time, is produced.
FIG. 2 provides a diagrammatical illustration of how this principle is applied.
A position sensor (33), connected mechanically with the jack rod (57), supplies an electrical signal representing the position of the valve-needle (13), in accordance with a continuous, uniform pattern. The coder (59 supplies a reference or control signal, fixed or varying according to a pattern preferably related to measurements taken at the bottom of the well, and designed to produce a pressure variation of predetermined form in the drilling fluid. These two signals are compared in an error detector (60), which is also an amplifier. The difference between the two signals is applied to the servovalve coil by conductors (58). Because of the operating principle of the servovalve, the piston (56) will move in the direction which tends to reduce the difference. When the reference signal is fixed, the piston (56) comes to rest in a position dictated solely by the value of the reference signal, and unaffected by oil pressure, drilling fluid, speed and flow, etc. If the reference signal varies in time, the piston position will also vary in accordance with the same pattern. In this way, position of the needle of the valve modulating the flow of drilling fluid is controlled by a reference signal, which may, for instance, represent successive measurements, coded or uncoded, taken at the bottom of a well during drilling.
The electric power needed to operate the measurement and control sensors and the electronic circuits (59 and 60) is supplied from the alternator (5), by a power-supply unit (31), which is also housed in the compartment (35).
FIG. 3 shows one interesting possibility offered by the controlled hydraulic device. FIG. 2 illustrated how the position of the modulating valve needle (13) could be controlled by a fixed or variable reference signal. When the flow or density. of the drilling fluid vary, however, a fixed position ofthe modulating valve needle will not ensure a predetermined difference in pressure on each side of the restriction point. For a given restriction, the pressure-drop varies depending on the density, and is proportional to the square of the flow. The system illustrated diagrammatically in FIG. 3 overcomes this drawback, offering a way of controlling the restriction so as to ensure, within a certain range of flows, a pressure-difference that either remains uniform or var ies in accordance with a predetermind pattern, without being affected by the flow.
This is done by a pressure differential sensor (36), which detects the pressure above the valve by means of one pipe (38), and the pressure below it by means of another pipe (37), and supplies an electrical signal representing the difference in pressure, in other words the pressure-drop created by the modulating valve.
This signal is compared with a reference signal supplied by a coder (59), in an error-detector amplifier The difference'between the two signals is applied, in the form of an electrical error signal, to the servovalve (50) coil, by conductors (58). When the reference signal is fixed, the pressure-drop will also remain steady, at a level determined solely by this reference signal; the signal representing the difference in pressures above and below the restriction point will then correspond exactly to the reference signal.
In this way, the pressure-difference created by the modulating valve depends on a given reference signal, regardless of the viscosity, density or flow of the drilling fluid. If the reference signal is made to vary in time, according to a pattern related to the drilling parameter measurements to be transmitted, pressure variations can also be created easily in the column of drilling fluid, matching the same time pattern, and thus providing transmission signals. In particular, the process can be used to obtain variable-frequency modulations related to the parameter being measured at the bottom of the well, with a high information-transmission capacity.
What claimed is 1. In a hydraulically controlled device for transmitting signals representing measurements taken within a well to the surface in the form of pressure modulations created by periodical restrictions on the flow of the drilling fluid, which device comprises a mechanism for restricting said flow,
means for controlling said mechanism operated by electrical signals indicative of said measurements,
a hydraulic fluid circuit by means of which said control means operates the flow-restricting mechanism, and
a turbine driven by the drilling fluid,
the improvement according to which:
said device comprises a hydraulic fluid pressure pump to supply pressure fluid to said hydraulic circuit and an electrical generator, both driven by said turbine, and
said control means comprises electrically operated servo valve means supplied from said generator for controlling the flow of hydraulic fluid in said circuit in dependence on the quantity and direction of the electrical signal delivered to the servo valve and means for regulating the electrical signal to said servo valve at least in part in dependence on said measurements.
2. A device according to claim 1 in which said flow restriction mechanism comprises a mobile valve-needle cooperating with a fixed seat and attached to a doubleaction hydraulic jack piston mounted for movement between two positions, one of which corresponds to maximum opening of the flow-restricting mechanism and is obtained by passing an electric current in one diand said servo valve comprises a control coil to which said difference signal is applied to control said functional characteristic.
4. A device according to claim 3 in which said sensor is responsive to the position of said flow-restricting mechanism.
5. A device according to claim 3 in which said sensor is a pressure difference sensor which measures the difference in pressure above and below said flowrestricting mechanism.

Claims (5)

1. In a hydraulically controlled device for transmitting signals representing measurements taken within a well to the surface in the form of pressure modulations created by periodical restrictions on the flow of the drilling fluid, which device comprises a mechanism for restricting said flow, means for controlling said mechanism operated by electrical signals indicative of said measurements, a hydraulic fluid circuit by means of which said control means operates the flow-restricting mechanism, and a turbine driven by the drilling fluid, the improvement according to which: said device comprises a hydraulic fluid pressure pump to supply pressure fluid to said hydraulic circuit and an electrical generator, both driven by said turbine, and said control means comprises electrically operated servo valve means supplied from said generator for controlling the flow of hydraulic fluid in said circuit in dependence on the quantity and direction of the electrical signal delivered to the servo valve and means for regulating the electrical signal to said servo valve at least in part in dependence on said measurements.
2. A device according to claim 1 in which said flow restriction mechanism comprises a mobile valve-needle cooperating with a fixed seat and attached to a double-action hydraulic jack piston mounted for movement between two positions, one of which corresponds to maximum opening of the flow-restricting mechanism and is obtained by passing an electric current in one direction through the servo valve coil, and the other of which corresponds to minimum opening of the flow-restricting mechanism and is obtained by passing current through said coil in the opposite direction.
3. A device according to claim 1 in which said control means comprises a sensor which emits an electrical signal indicative of a controlled functional characteristic of said restriction mechanism, a generator of signals related to said measurement signals, and an error detector delivering a signal equal to the difference between the signals emitted by said sensor and generator, and said servo valve comprises a control coil to which said difference signal is applied to control said functional characteristic.
4. A device according to claim 3 in which said sensor is responsive to the position of said flow-restricting mechanism.
5. A device according to claim 3 in which said sensor is a pressure difference sensor which measures the difference in pressure above and below said flow-restricting mechanism.
US00206367A 1971-12-09 1971-12-09 Hydraulically controlled device for modulating the mud Expired - Lifetime US3737843A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US20636771A 1971-12-09 1971-12-09

Publications (1)

Publication Number Publication Date
US3737843A true US3737843A (en) 1973-06-05

Family

ID=22766063

Family Applications (1)

Application Number Title Priority Date Filing Date
US00206367A Expired - Lifetime US3737843A (en) 1971-12-09 1971-12-09 Hydraulically controlled device for modulating the mud

Country Status (1)

Country Link
US (1) US3737843A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860902A (en) * 1973-02-14 1975-01-14 Hughes Tool Co Logging method and system
US3983948A (en) * 1974-07-01 1976-10-05 Texas Dynamatics, Inc. Method and apparatus for indicating the orientation of a down hole drilling assembly
US4120097A (en) * 1974-10-02 1978-10-17 John Doise Jeter Pulse transmitter
US4139836A (en) * 1977-07-01 1979-02-13 Sperry-Sun, Inc. Wellbore instrument hanger
USRE30246E (en) * 1972-09-20 1980-04-01 Texaco Inc. Methods and apparatus for driving a means in a drill string while drilling
DE3032834A1 (en) * 1979-08-30 1981-03-19 Teleco Oilfield Services, Inc., Middletown, Conn. ELECTRICAL CONNECTING DEVICE FOR HOLE HOLE TELEMETRY SYSTEMS
US4266606A (en) * 1979-08-27 1981-05-12 Teleco Oilfield Services Inc. Hydraulic circuit for borehole telemetry apparatus
WO1982001257A1 (en) * 1980-09-25 1982-04-15 Logging Inc Exploration Servo valve for well-logging telemetry
US4520665A (en) * 1982-07-13 1985-06-04 Societe Nationale Elf Aquitaine (Production) System for detecting a native reservoir fluid in a well bore
FR2557630A1 (en) * 1980-08-27 1985-07-05 Sperry Sun Inc APPARATUS, LOCATED IN A MINE HOLE, FOR TRANSMITTING SIGNALS BY MODULATION OF SLUDGE PRESSURE
US4734892A (en) * 1983-09-06 1988-03-29 Oleg Kotlyar Method and tool for logging-while-drilling
US4825421A (en) * 1986-05-19 1989-04-25 Jeter John D Signal pressure pulse generator
US4869100A (en) * 1988-07-22 1989-09-26 Birdwell J C Variable orifice control means
US5073877A (en) * 1986-05-19 1991-12-17 Schlumberger Canada Limited Signal pressure pulse generator
US5079750A (en) * 1977-12-05 1992-01-07 Scherbatskoy Serge Alexander Method and apparatus for transmitting information in a borehole employing discrimination
US5626200A (en) * 1995-06-07 1997-05-06 Halliburton Company Screen and bypass arrangement for LWD tool turbine
US6016288A (en) * 1994-12-05 2000-01-18 Thomas Tools, Inc. Servo-driven mud pulser
US6050349A (en) * 1997-10-16 2000-04-18 Prime Directional Systems, Llc Hydraulic system for mud pulse generation
US6097310A (en) * 1998-02-03 2000-08-01 Baker Hughes Incorporated Method and apparatus for mud pulse telemetry in underbalanced drilling systems
US6105690A (en) * 1998-05-29 2000-08-22 Aps Technology, Inc. Method and apparatus for communicating with devices downhole in a well especially adapted for use as a bottom hole mud flow sensor
US20030056985A1 (en) * 2001-02-27 2003-03-27 Baker Hughes Incorporated Oscillating shear valve for mud pulse telemetry
US6714138B1 (en) 2000-09-29 2004-03-30 Aps Technology, Inc. Method and apparatus for transmitting information to the surface from a drill string down hole in a well
US20060034154A1 (en) * 2004-07-09 2006-02-16 Perry Carl A Rotary pulser for transmitting information to the surface from a drill string down hole in a well
US20060225920A1 (en) * 2005-03-29 2006-10-12 Baker Hughes Incorporated Method and apparatus for downlink communication
US20070023718A1 (en) * 2005-07-29 2007-02-01 Precision Energy Services, Ltd. Mud pulser
US20080007423A1 (en) * 2005-03-29 2008-01-10 Baker Hughes Incorporated Method and Apparatus for Downlink Communication Using Dynamic Threshold Values for Detecting Transmitted Signals
USRE40944E1 (en) 1999-08-12 2009-10-27 Baker Hughes Incorporated Adjustable shear valve mud pulser and controls therefor
US9238965B2 (en) 2012-03-22 2016-01-19 Aps Technology, Inc. Rotary pulser and method for transmitting information to the surface from a drill string down hole in a well
US9540926B2 (en) 2015-02-23 2017-01-10 Aps Technology, Inc. Mud-pulse telemetry system including a pulser for transmitting information along a drill string
US10323511B2 (en) 2017-02-15 2019-06-18 Aps Technology, Inc. Dual rotor pulser for transmitting information in a drilling system
US10465506B2 (en) 2016-11-07 2019-11-05 Aps Technology, Inc. Mud-pulse telemetry system including a pulser for transmitting information along a drill string

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2787759A (en) * 1950-08-31 1957-04-02 Jan J Arps Apparatus for logging wells
US2898084A (en) * 1954-12-16 1959-08-04 Jersey Prod Res Co Seismic shock source
US2958511A (en) * 1957-06-10 1960-11-01 Dresser Ind Earth borehole drilling apparatus and system
US3255353A (en) * 1962-12-21 1966-06-07 Serge A Scherbatskoy Apparatus for nuclear well logging while drilling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2787759A (en) * 1950-08-31 1957-04-02 Jan J Arps Apparatus for logging wells
US2898084A (en) * 1954-12-16 1959-08-04 Jersey Prod Res Co Seismic shock source
US2958511A (en) * 1957-06-10 1960-11-01 Dresser Ind Earth borehole drilling apparatus and system
US3255353A (en) * 1962-12-21 1966-06-07 Serge A Scherbatskoy Apparatus for nuclear well logging while drilling

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE30246E (en) * 1972-09-20 1980-04-01 Texaco Inc. Methods and apparatus for driving a means in a drill string while drilling
US3860902A (en) * 1973-02-14 1975-01-14 Hughes Tool Co Logging method and system
US3983948A (en) * 1974-07-01 1976-10-05 Texas Dynamatics, Inc. Method and apparatus for indicating the orientation of a down hole drilling assembly
US4120097A (en) * 1974-10-02 1978-10-17 John Doise Jeter Pulse transmitter
US4139836A (en) * 1977-07-01 1979-02-13 Sperry-Sun, Inc. Wellbore instrument hanger
US5079750A (en) * 1977-12-05 1992-01-07 Scherbatskoy Serge Alexander Method and apparatus for transmitting information in a borehole employing discrimination
US4266606A (en) * 1979-08-27 1981-05-12 Teleco Oilfield Services Inc. Hydraulic circuit for borehole telemetry apparatus
DE3032834A1 (en) * 1979-08-30 1981-03-19 Teleco Oilfield Services, Inc., Middletown, Conn. ELECTRICAL CONNECTING DEVICE FOR HOLE HOLE TELEMETRY SYSTEMS
US4319240A (en) * 1979-08-30 1982-03-09 Teleco Oilfield Services Inc. Electrical connector for borehole telemetry apparatus
FR2557630A1 (en) * 1980-08-27 1985-07-05 Sperry Sun Inc APPARATUS, LOCATED IN A MINE HOLE, FOR TRANSMITTING SIGNALS BY MODULATION OF SLUDGE PRESSURE
WO1982001257A1 (en) * 1980-09-25 1982-04-15 Logging Inc Exploration Servo valve for well-logging telemetry
US4386422A (en) * 1980-09-25 1983-05-31 Exploration Logging, Inc. Servo valve for well-logging telemetry
US4520665A (en) * 1982-07-13 1985-06-04 Societe Nationale Elf Aquitaine (Production) System for detecting a native reservoir fluid in a well bore
US4734892A (en) * 1983-09-06 1988-03-29 Oleg Kotlyar Method and tool for logging-while-drilling
US4825421A (en) * 1986-05-19 1989-04-25 Jeter John D Signal pressure pulse generator
US5073877A (en) * 1986-05-19 1991-12-17 Schlumberger Canada Limited Signal pressure pulse generator
US4869100A (en) * 1988-07-22 1989-09-26 Birdwell J C Variable orifice control means
US6016288A (en) * 1994-12-05 2000-01-18 Thomas Tools, Inc. Servo-driven mud pulser
US5626200A (en) * 1995-06-07 1997-05-06 Halliburton Company Screen and bypass arrangement for LWD tool turbine
US6050349A (en) * 1997-10-16 2000-04-18 Prime Directional Systems, Llc Hydraulic system for mud pulse generation
US6097310A (en) * 1998-02-03 2000-08-01 Baker Hughes Incorporated Method and apparatus for mud pulse telemetry in underbalanced drilling systems
US6105690A (en) * 1998-05-29 2000-08-22 Aps Technology, Inc. Method and apparatus for communicating with devices downhole in a well especially adapted for use as a bottom hole mud flow sensor
USRE40944E1 (en) 1999-08-12 2009-10-27 Baker Hughes Incorporated Adjustable shear valve mud pulser and controls therefor
US6714138B1 (en) 2000-09-29 2004-03-30 Aps Technology, Inc. Method and apparatus for transmitting information to the surface from a drill string down hole in a well
US20030056985A1 (en) * 2001-02-27 2003-03-27 Baker Hughes Incorporated Oscillating shear valve for mud pulse telemetry
US6975244B2 (en) 2001-02-27 2005-12-13 Baker Hughes Incorporated Oscillating shear valve for mud pulse telemetry and associated methods of use
US7808859B2 (en) 2001-02-27 2010-10-05 Baker Hughes Incorporated Oscillating shear valve for mud pulse telemetry
US20060118334A1 (en) * 2001-02-27 2006-06-08 Baker Hughes Incorporated Oscillating shear valve for mud pulse telemetry
US20080068929A1 (en) * 2001-02-27 2008-03-20 Baker Hughes Incorporated Oscillating shear valve for mud pulse telemetry
US7280432B2 (en) 2001-02-27 2007-10-09 Baker Hughes Incorporated Oscillating shear valve for mud pulse telemetry
US7327634B2 (en) 2004-07-09 2008-02-05 Aps Technology, Inc. Rotary pulser for transmitting information to the surface from a drill string down hole in a well
US20060034154A1 (en) * 2004-07-09 2006-02-16 Perry Carl A Rotary pulser for transmitting information to the surface from a drill string down hole in a well
US20080007423A1 (en) * 2005-03-29 2008-01-10 Baker Hughes Incorporated Method and Apparatus for Downlink Communication Using Dynamic Threshold Values for Detecting Transmitted Signals
US7518950B2 (en) 2005-03-29 2009-04-14 Baker Hughes Incorporated Method and apparatus for downlink communication
US20060225920A1 (en) * 2005-03-29 2006-10-12 Baker Hughes Incorporated Method and apparatus for downlink communication
US7983113B2 (en) 2005-03-29 2011-07-19 Baker Hughes Incorporated Method and apparatus for downlink communication using dynamic threshold values for detecting transmitted signals
US20070023718A1 (en) * 2005-07-29 2007-02-01 Precision Energy Services, Ltd. Mud pulser
US9238965B2 (en) 2012-03-22 2016-01-19 Aps Technology, Inc. Rotary pulser and method for transmitting information to the surface from a drill string down hole in a well
US9540926B2 (en) 2015-02-23 2017-01-10 Aps Technology, Inc. Mud-pulse telemetry system including a pulser for transmitting information along a drill string
US10465506B2 (en) 2016-11-07 2019-11-05 Aps Technology, Inc. Mud-pulse telemetry system including a pulser for transmitting information along a drill string
US10323511B2 (en) 2017-02-15 2019-06-18 Aps Technology, Inc. Dual rotor pulser for transmitting information in a drilling system
US10669843B2 (en) * 2017-02-15 2020-06-02 Aps Technology, Inc. Dual rotor pulser for transmitting information in a drilling system

Similar Documents

Publication Publication Date Title
US3737843A (en) Hydraulically controlled device for modulating the mud
US3756076A (en) Device with independent hydraulic control to transmit measurements taken at the bottom of a well
RU2263202C2 (en) Method for high-pressure trip gas usage in gas-lift well
CA1202880A (en) Measuring while drilling apparatus mud pressure signal valve
US4184545A (en) Measuring and transmitting apparatus for use in a drill string
EP0088402B1 (en) Apparatus for well logging telemetry
US3693428A (en) Hydraulic control device for transmitting measuring values from the bottom of a well to the surface as pressure pulses through the drilling mud
CA2333166C (en) Generating commands for a downhole tool
US4562560A (en) Method and means for transmitting data through a drill string in a borehole
US3268017A (en) Drilling with two fluids
US8682589B2 (en) Apparatus and method for managing supply of additive at wellsites
DE60032920T2 (en) DEVICE FOR TRANSMITTING ELECTRICAL ENERGY BETWEEN ROTATING AND NON-ROTATING PARTS OF DRILLING TOOLS
CA2061576A1 (en) Differential actuating system for downhole tools
US11578569B2 (en) Apparatus and methods for a gas lift valve
MX2007008965A (en) Pump control for formation testing.
GB2183273A (en) Controlling drill bit torque
US4932005A (en) Fluid means for data transmission
US4235021A (en) Measuring while drilling tool
US3893525A (en) Drilling control transfer systems
US2770308A (en) Borehole apparatus operated by the well fluid
CN103437754B (en) Rotary drilling rig pressure control method and pressurizing control system
US3807902A (en) Control of well fluid level
US3714868A (en) Valve system for proportional flow control for fluid-operated motor
US3249054A (en) Pump
US2958511A (en) Earth borehole drilling apparatus and system