US3734091A - Oxygen control system with blood oxygen saturation sensing means and method for closed system breathing - Google Patents

Oxygen control system with blood oxygen saturation sensing means and method for closed system breathing Download PDF

Info

Publication number
US3734091A
US3734091A US00155547A US3734091DA US3734091A US 3734091 A US3734091 A US 3734091A US 00155547 A US00155547 A US 00155547A US 3734091D A US3734091D A US 3734091DA US 3734091 A US3734091 A US 3734091A
Authority
US
United States
Prior art keywords
oxygen
user
blood
time
supersaturation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00155547A
Inventor
R Taplin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airco Inc
Original Assignee
Airco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airco Inc filed Critical Airco Inc
Application granted granted Critical
Publication of US3734091A publication Critical patent/US3734091A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/083Measuring rate of metabolism by using breath test, e.g. measuring rate of oxygen consumption
    • A61B5/0833Measuring rate of oxygen consumption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics
    • A61M2230/205Blood composition characteristics partial oxygen pressure (P-O2)

Definitions

  • an optical oximeter has been used to monitor the oxygen level in the blood to produce an electric signal thatis used toregulate the supply of oxygen to breathing apparatus carried by the user, e.g., a
  • the object is to maintain the oxygen level in the blood of the user substantially at saturation value at all times.
  • Light transmitted by the apparatus through blood varies in intensity and color as the oxygen level in the blood varies due to changes in the red corpuscles as they absorb oxygen, thus making it possible to determine quantitatively the oxygen level ofithe blood.
  • a difficulty arises, in that when the blood becomes saturated with oxygen, supersaturation will occur if more oxygen is supplied to the blood stream, the excess oxygen being absorbed in the blood plasma or in adjacent tissues instead of in the red corpuscles, which latter can absorb no more.
  • SUMMARY OF THE INVENTION g'llhe invention provides a method and apparatus for .using an. optical oximeter to monitor the blood of the user .to detect supersaturation of oxygen in the system ofth'e user. when this condition occurs, in order to generate asig nial proportional to the degree of such supersaturation, which signal is used to reduce the oxygen supplyasrequired to relieve the condition of supersaturatio'nandthus maintain the system of the user substanterval that is proportional to the degree of supersaturationvthat was present.
  • a signal inversely proportional to this time interval is used to regulate the oxygen supply substantially to the percent oxygen saturation level.
  • An over-riding control is provided so that the anoxic breathing mixture will not be given to the user at any time when the blood is deficient in oxygen, but instead the rate of oxygen flow will immediately be increased.
  • FIGURE is a block-type schematic circuit diagram of the preferred embodiment of the invention.
  • 20 is an intermittently operable on-off valve connecting an oxygen supply to a breathing bag, under the control of an optical oximeter 22 actuated by changes in color and intensity of blood circulating in the body of the user, e.g. in the ear pinna.
  • the valve 20 is opened and closed by electrical pulses from a controlled variable-width pulse generator 24 acting upon a solenoid valve-actuating device represented schematically by an inductance coil 26.
  • the valve is open during each pulse and closed between pulses.
  • a suitable oximeter for use herein and an improved earpiece therefor are shown and described in U. S. Pat. No. 2,790,438, issued Apr. 30, 1957 jointly to this applicant and to William Paul.
  • the device 22 may be any device capable of measuring the degree of oxygenation of the blood of the user from an oxygen-deficient level up to but not over, 100 percent of saturation in the blood corpuscles, at which latter level detectable changes in the blood corpuscles cease while saturation of the blood system as a whole can increase beyond 100 percent.
  • the time duration of the pulse is determined by the time required for an adjustable time-variable one-shot multivibrator 28 to return to its stable state after being put into an unstable state by a pulse from a valve cycle rate adjuster 30.
  • the time required by the multivibrator 28 to return to its stable state is in turn determined by a direct current signal, termed a d.c. level, applied to a control electrode of the multivibrator.
  • a direct current signal termed d.c. level
  • the lower the d.c. level the shorter the time interval determined by the multivibrator and hence the less the pulse width of the pulse applied to the solenoid 26 by the generator 24 and the shorter the open time of the valve 20.
  • the total time interval or cycle time comprising a pulse and the space following the pulse is adjustable by means of the valve cycle time adjuster 30, which is arranged to deliver a pulse to the multivibrator 28 at adjustable reg ular intervals longer than the maximum time interval determined by the multivibrator.
  • the frequency at which the valve 20 operates, as well as the duty cycle of the operation of the valve can be adjusted over suitable ranges.
  • the valve 20 will ordinarily open and close every 2 to 5 seconds, although other frequencies of operation may be used. As the user breathes from a breathing bag in the conventional manner, the periodic closing of the valve 20 at these rates does not interfere with breathing and is a part of standard practice.
  • the valve 20 performs the function of a make-up for keeping the breathing bag up to suitable pressure at all times.
  • the source 31 has the lowest level, for establishing an anoxic mixture by cutting down the oxygen flow rate through the valve to a suitable low value. This rate is adjustable by a potentiometer or other suitable device shown as a d.c. level adjuster 34.
  • the source 32 has a range of intermediate levels and the level provided at any given time is varied in accordance with measurements made upon the degree of supersaturation in the users blood obtained with the aid of the oximeter 22.
  • the source 33 has the highest level and comes into play whenever a condition below a minimum safe percent saturation, e.g. 97 percent, is detected by the oximeter 22.
  • the oxygen flow rate to the breathing bag at any given time depends upon which of the three sources 31, 32, 33 is at that time controlling the multivibrator 28.
  • the valve 20 will have a duty cycle such that the valve is open most of the time, e.g., l9 twentieths of the time. Consequently, the oxygen deficiency alarm 33 is effective to increase the oxygen pressure in the breathing bag at a very rapid rate, thus assuring protection of the user from serious oxygen deficiency as detected by the oximeter 22.
  • a measurement to determine supersaturation of oxygen in the users blood is initiated at time intervals of about one to five minutes, under the control of a sample interval timer 44, the length of the interval being adjustable by any suitable means, shown as a sample rate adjuster 46.
  • the timer 44 sends start signals, (1) to a counter-clear device 48 connected to a counter 50 to re-set the counter to zero, (2) to operate a switch 52 to immediately admit a train of regularly spaced pulses from a counter time base pulse generator 54 to the counter 50 through the switch 52 to make a count, and (3) to turn on a flip-flop 56 by applying a signal to a conductor 58 causing the flip-flop to generate a high level or ON output signal on a conductor 60 connected to one input terminal of the linear gate 36, and to generate a low level or OFF output signal on a conductor 62 connected to one input terminal of the linear gate 38.
  • the anoxic mixture is supplied to the user and, if the users blood is supersaturated, the counter 50 counts until the oxygen level in the users blood has fallen from the degree of supersaturation existing at the start of the count to approximately l00 percent saturation, at which time the oximeter 22 detects a lack of 100 percent saturation and sends a signal from a 100 percent saturation detection signal means 66 (l) to the switch 52 over a conductor 67 to stop entry of pulses into the counter 50 through the switch 52, thereby stopping the count, and (2) over a conductor 68 to reverse the flipflop 56, putting a low level or OFF signal on the conductor 60 and a high level or ON signal on the conductor 62.
  • the effect of reversing the flip-flop 56 is to disable the linear gate 36 andenable the linear gate 38.
  • the stopped count remains stored in the counter 50 until the next time the counter-clear 48 is actuated.
  • a digital to analog converter 70 is provided which at all times converts the count to a d.c. level which increases with the count.
  • An inverter 72 is provided to give a d.c. level which decreases as the count increases, so as to provide for decreasing the flow rate of oxygen to correspond with an increase in the degree of supersaturation found in the test.
  • the inverter 72 controls the d.c. level in the device 32.
  • the converter 70 and inverter 72 are so adjusted that a zero count, indicating an absence of supersaturation will provide the proper d.c. level in device 32 to set the valve 20 for a flow rate suitable to just maintain percent saturation.
  • the linear gate 38 remains in the enabled condition, transmitting the d.c. level from the device 32 to the signal mixer amplifier 40 continuously until the next operation of the sample interval timer 44 initiating a new measurement of the blood condition, the result of which measurement may be to increase the rate of oxygen supply, or to decrease the supply, or to continue the previous rate according to the users blood condition.
  • Diodes 41 and 42 are positioned so as to direct signals into the mixer amplifier 40 and to prevent the gates from interacting with each other.
  • the oximeter should detect an oxygen deficiency, that is, a blood condition a predetermined degree below 100 percent oxygen saturation, the device 33 is actuated to impress a high d.c. level signal upon the signal mixer amplifier 40. Because this high d.c. level signal is greater than any d.c. level ever applied to amplifier 40 either by device 31 or by device 32 the signal from device 33 is predominant and immediately resets the multivibrator 28 to produce a longer on-time of the valve 20, thereby quickly increasing the supply rate of oxygen to the user.
  • Amplifier circuit 40 contains appropriate amplitude sensitive circuitry, including resistors, to allow the signal from device 33 to override the signal coming from either 31 or 32.
  • apparatus for controlling the oxygen concentration in a breathing mixture for supplying a user in combination, means to measure supersaturation of oxygen in the blood stream of the user by establishing the time required for an anoxic mixture to reduce oxygen content at said blood stream below saturation, means providing a control signal determined by said time, and means responsive to said control signal to adjust the oxygen concentration in said breathing mixture in relation to the measured degree of supersaturation.
  • Apparatus for measuring the degree of oxygen supersaturation in the blood stream comprising, in combination, an oximeter of a type that can detect oxygen concentration up to 100 percent of saturation, means for temporarily supplying to the lungs a breathing mixture having a constant degree of oxygen deficiency, means employing said oximeter to continuously monitor the state of the blood and to generate a signal when the blood stream is reduced from whatever degree of supersaturation existed when the oxygen-deficient mixture was first supplied to a condition of substantially 100 percent saturation, and means to measure the time elapsed from the time at which the oxygen-deficient mixture was first supplied until the 100 percent saturation signal is generated by the oximeter, whereby the elapsed time is a measure of the original degree of supersaturation of the blood stream.
  • Apparatus in accordance with claim 2 together with means responsive to the length of said elapsed time for controlling the oxygen concentration of a breathing mixture normally supplied to the user in accordance with the measured degree of supersaturation.
  • a system for regulating the rate of oxygen supply for closed system breathing in such manner as to avoid either under or over saturation of the users blood with oxygen comprising in combination, an optical oximeter arranged for continuously monitoring the users blood, said oximeter being capable of detecting undersaturation of oxygen in the blood of the user, means for periodically reducing the supply rate of oxygen to the user to a constant oxygen-deficient rate, means for counting a succession of time intervals of substantially equal duration, means to start a count in said counting means coincidently with the beginning of the oxygendeficient supply to the user, means to generate a signal when the oximeter first detects an oxygen concentration less than 100 percent in the blood of the user, means to use said signal to increase the supply rate of oxygen to a non'deficient value and to stop the said count, and means to use the magnitude of said count to regulate the said non-deficient rate of oxygen supply to the user in response to the measured degree of supersaturation.
  • a system for regulating the rate of oxygen supply for closed system breathing in such manner as to avoid either under or over saturation of the users blood with oxygen comprising in combination, first regulatory means designed to determine a relatively low, constant rate of oxygen supply useful for gradually relieving a condition of supersaturation of oxygen in the users blood, second regulatory means arranged to determine a variable rate of oxygen supply in accordance with the user's demand for oxygen from time to time, a third regulatory means designed to determine a constant rate of oxygen supply greater in magnitude than any rate determined by either said first or said second regulatory means for rapidly making up any oxygen deficiency in the users blood, an optical oximeter arranged to continuously monitor the users blood, time interval measuring means, sample interval timing means for initiating a measurement of degree of supersaturation of oxygen in the blood, means actuated by said sample interval timing means to energize said first regulatory means, and to start a time measurement in said time interval measuring means, means operable by said oximeter upon detection of less than percent oxygen saturation in the users blood to terminate a time interval measurement by said time interval
  • the method of controlling the oxygen concentration in a breathing mixture for supplying a user comprising the steps of measuring supersaturation of oxy gen in the blood stream of the user by establishing the time required for an anoxic mixture to reduce oxygen content at said blood stream below saturation, generating a control signal determined by said time, and using the said control signal to adjust the oxygen concentration in the said breathing mixture in relation to the degree of supersaturation measured.
  • the method of measuring the degree of oxygen supersaturation in the blood stream with the aid of an oximeter of a type that can detect oxygen concentration up to 100 percent of saturation comprises the steps of temporarily supplying to the lungs a breathing mixture having a constant oxygen deficiency, using the oximeter to continuously monitor the state of the blood and to give a signal when the blood stream is reduced from whatever degree of supersaturation existed when the oxygen-deficient mixture was first supplied to a condition of substantially 100 percent saturation, and measuring the time elapsed from the time at which the oxygen-deficient mixture was first supplied until the 100 percent saturation signal is generated by the oximeter, whereby the elapsed time is a measure of the original degree of supersaturation of the blood stream.

Abstract

The blood circulating in the body of the subject, e.g. in the ear pinna, is tested at suitable time intervals to detect supersaturation of oxygen, using an optical oximeter and a temporary oxygen-deficient (anoxic) breathing mixture in conjunction with a timing device to develop a signal which varies inversely with the time required for the anoxic mixture to bring the oxygen level in the blood down to saturation level, which signal is used to control the duty cycle of a valve in the line supplying oxygen to the user''s breathing bag, so that between tests the user is provided with oxygen at a rate responsive to his breathing requirements to maintain his system close to 100 percent saturation in oxygen; an over-riding control being exerted by the oximeter to increase the flow rate of oxygen to the user immediately whenever the oximeter detects an oxygen level below saturation; the anoxic mixture being provided by temporarily reducing the flow rate of oxygen through the valve to a suitable low value.

Description

OXYGEN CONTROL SYSTEM WITH BLOOD OXYGEN SATURATION Primary Examiner-William E. Kamm SENSING MEANS AND METHOD FOR Attorney-H. Hume Mathews and Edmund W. Bopp CLOSED SYSTEM BREATHING [57] ABSTRACT [75] Inventor: Ronald H. Taplin, Shirley, England v The blood circulating-1n the body of the sub ect, e.g. Asslgnssr A1790, New York, in the ear pinna, is tested at suitable time intervals to [22] Filed: June 22 1971 detect supersaturation of oxygen, using an optical oximeter and a temporary oxygen-deficient (anoxic) [21] Appl. No.: 155,547 breathin mixture in con'unction with a timin device (1 l 'lh' h l 'hh to eve p a slgna w 1c varies: inversey wit t e Related Apphcatmn Data time required for the anoxic mixture to bring the ox- 3 continuationqmpan f sen 65,253, Aug 19, ygen level in the blood down to saturation level, which 1970, abandoned, which is a continuation of sin. No. signal is used to control the y cysls of a valve in 708,054, Feb. 26, 1968, abandoned. the line supplying oxygen to the users breathing bag, so that between tests the user is provided with oxygen 52 0.8. CI. ..128/142, 128/2 L, 128/191 at a rats responsive to his breathing requirements is 51 Int. Cl. ..A6lb /00 maintain his system close to 100 Percent saturation in 58 Field of Search ..l28/2 L, 2 R, 142, W an Over-riding being exerted by the 128/191 202 oximeter to increase the flow rate of oxygen to the user immediately whenever the oximeter detects an [56] References Cited oxygen level below saturation; the anoxic mixture being provided by temporarily reducing the flow rate UNITED STATES PATENTS of oxygen through the valve to a suitable low value.
2,998,009 8/1961 Holm et a1 ..128/142 10 Claims, 1 Drawing; Figure 46 SAMPLE RATE ADJUSTER FROM TO OX V GEN BREATH/N6 -44 SUPPLY 5 SAMPLE 4 INTERVAL 5a a TIMER 4 a ea 102 0N I I 26 56 LINEAR 54 52 FLIP-FLOP GATE Cali/TROLL COUNrER VAR/ABLE TIME 8455 WIDTH PULSE PULSE GENERATOR GENERATOR 70 1 62 i 0. CLEVEL 40; 26- 57 fxjf ADJUSTER SIGNAL TIME-VARIABLE CONVERTER 3/ 0N-$HOT AMP. M/Lr/v/aQAToR' DESATURATE 1 ac. LEVEL /00 72 sAruRiarig /v WVERTE/ T/ME sou/v. /12 an er/01v i LEVEL SIGNAL MEAMS UNEAR ADJUSTER 33 GATE L 22 OXYGEN M DEF/cle/vcr ALARM Dr C. LE VE L OXYGEN CONTROL SYSTEM WITH BLOOD OXYGEN SATURATION SENSING MEANS AND METHOD FOR CLOSED SYSTEM BREATHING BACKGROUND OF THE INVENTION This application is aContinuation-in-Part of an application Ser. No. 65,268 filed on Aug. 19, 1970, now abandoned. This last mentioned application was a Streamlined Continuation of application Ser. No. 708,054, filed on Feb. 26, 1968, now abandoned.
FIELD OF THE INVENTION being operated upon, etc.
DESCRIPTION OF THE PRIOR ART In the past, an optical oximeter has been used to monitor the oxygen level in the blood to produce an electric signal thatis used toregulate the supply of oxygen to breathing apparatus carried by the user, e.g., a
deep seadiver, increasing the oxygen supply when the oxygen level falls and decreasing the oxygen supply when the oxygen level rises. The object is to maintain the oxygen level in the blood of the user substantially at saturation value at all times. Light transmitted by the apparatus through blood varies in intensity and color as the oxygen level in the blood varies due to changes in the red corpuscles as they absorb oxygen, thus making it possible to determine quantitatively the oxygen level ofithe blood. However, a difficulty arises, in that when the blood becomes saturated with oxygen, supersaturation will occur if more oxygen is supplied to the blood stream, the excess oxygen being absorbed in the blood plasma or in adjacent tissues instead of in the red corpuscles, which latter can absorb no more. When this occurs, there is no further change in the color or intensity of the transmitted light, with the result that the oximeter is unable to measure any degree of supersaturationof oxygen in the system of the user. As it is known that supersaturation with oxygen is an undesirable condition for the user and, if carried to excess, can be dangerous to health, it is desirable that the breathing system be enabled to, respond not only to a condition ofvoxygen deficiency, but also to a condition of super- Saturation.
SUMMARY OF THE INVENTION g'llhe invention provides a method and apparatus for .using an. optical oximeter to monitor the blood of the user .to detect supersaturation of oxygen in the system ofth'e user. when this condition occurs, in order to generate asig nial proportional to the degree of such supersaturation, which signal is used to reduce the oxygen supplyasrequired to relieve the condition of supersaturatio'nandthus maintain the system of the user substanterval that is proportional to the degree of supersaturationvthat was present. A signal inversely proportional to this time interval is used to regulate the oxygen supply substantially to the percent oxygen saturation level. An over-riding control is provided so that the anoxic breathing mixture will not be given to the user at any time when the blood is deficient in oxygen, but instead the rate of oxygen flow will immediately be increased.
BRIEF DESCRIPTION OF Tll-IE DRAWING The single FIGURE is a block-type schematic circuit diagram of the preferred embodiment of the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to the drawing, 20 is an intermittently operable on-off valve connecting an oxygen supply to a breathing bag, under the control of an optical oximeter 22 actuated by changes in color and intensity of blood circulating in the body of the user, e.g. in the ear pinna. The valve 20 is opened and closed by electrical pulses from a controlled variable-width pulse generator 24 acting upon a solenoid valve-actuating device represented schematically by an inductance coil 26. The valve is open during each pulse and closed between pulses. A suitable oximeter for use herein and an improved earpiece therefor are shown and described in U. S. Pat. No. 2,790,438, issued Apr. 30, 1957 jointly to this applicant and to William Paul. In general, the device 22 may be any device capable of measuring the degree of oxygenation of the blood of the user from an oxygen-deficient level up to but not over, 100 percent of saturation in the blood corpuscles, at which latter level detectable changes in the blood corpuscles cease while saturation of the blood system as a whole can increase beyond 100 percent.
The time duration of the pulse, termed the pulse width, is determined by the time required for an adjustable time-variable one-shot multivibrator 28 to return to its stable state after being put into an unstable state by a pulse from a valve cycle rate adjuster 30. The time required by the multivibrator 28 to return to its stable state is in turn determined by a direct current signal, termed a d.c. level, applied to a control electrode of the multivibrator. The lower the d.c. level, the shorter the time interval determined by the multivibrator and hence the less the pulse width of the pulse applied to the solenoid 26 by the generator 24 and the shorter the open time of the valve 20. Similarly, the higher the d.c. level, the longer the open time of the valve 20. The total time interval or cycle time comprising a pulse and the space following the pulse is adjustable by means of the valve cycle time adjuster 30, which is arranged to deliver a pulse to the multivibrator 28 at adjustable reg ular intervals longer than the maximum time interval determined by the multivibrator. Thus, the frequency at which the valve 20 operates, as well as the duty cycle of the operation of the valve can be adjusted over suitable ranges. The valve 20 will ordinarily open and close every 2 to 5 seconds, although other frequencies of operation may be used. As the user breathes from a breathing bag in the conventional manner, the periodic closing of the valve 20 at these rates does not interfere with breathing and is a part of standard practice. The valve 20 performs the function of a make-up for keeping the breathing bag up to suitable pressure at all times.
Three separate sources ofd. c. level 31, 32 and 33 are provided for varying the time interval determined by the multi-vibrator 28. The source 31 has the lowest level, for establishing an anoxic mixture by cutting down the oxygen flow rate through the valve to a suitable low value. This rate is adjustable by a potentiometer or other suitable device shown as a d.c. level adjuster 34. The source 32 has a range of intermediate levels and the level provided at any given time is varied in accordance with measurements made upon the degree of supersaturation in the users blood obtained with the aid of the oximeter 22. The source 33 has the highest level and comes into play whenever a condition below a minimum safe percent saturation, e.g. 97 percent, is detected by the oximeter 22. The oxygen flow rate to the breathing bag at any given time depends upon which of the three sources 31, 32, 33 is at that time controlling the multivibrator 28. When the source 33 is in control, the valve 20 will have a duty cycle such that the valve is open most of the time, e.g., l9 twentieths of the time. Consequently, the oxygen deficiency alarm 33 is effective to increase the oxygen pressure in the breathing bag at a very rapid rate, thus assuring protection of the user from serious oxygen deficiency as detected by the oximeter 22.
A measurement to determine supersaturation of oxygen in the users blood is initiated at time intervals of about one to five minutes, under the control of a sample interval timer 44, the length of the interval being adjustable by any suitable means, shown as a sample rate adjuster 46. The timer 44 sends start signals, (1) to a counter-clear device 48 connected to a counter 50 to re-set the counter to zero, (2) to operate a switch 52 to immediately admit a train of regularly spaced pulses from a counter time base pulse generator 54 to the counter 50 through the switch 52 to make a count, and (3) to turn on a flip-flop 56 by applying a signal to a conductor 58 causing the flip-flop to generate a high level or ON output signal on a conductor 60 connected to one input terminal of the linear gate 36, and to generate a low level or OFF output signal on a conductor 62 connected to one input terminal of the linear gate 38. The presence of the ON signal on the conductor 60 permits the d.c. level from device 31, which is always present on a conductor 64 connected to the second input terminal of the linear gate 36 to pass through that circuit to the signal mixer amplifier 40 with the result that the valve 20 is operated in a low duty cycle suitable to deliver the desired anoxic mixture for the saturation measurement. Linear gates of the type shown in schematic form are well known in the art. Such gates can be designed to transmit analog information and can be opened or closed by a controlling voltage.
The anoxic mixture is supplied to the user and, if the users blood is supersaturated, the counter 50 counts until the oxygen level in the users blood has fallen from the degree of supersaturation existing at the start of the count to approximately l00 percent saturation, at which time the oximeter 22 detects a lack of 100 percent saturation and sends a signal from a 100 percent saturation detection signal means 66 (l) to the switch 52 over a conductor 67 to stop entry of pulses into the counter 50 through the switch 52, thereby stopping the count, and (2) over a conductor 68 to reverse the flipflop 56, putting a low level or OFF signal on the conductor 60 and a high level or ON signal on the conductor 62. The effect of reversing the flip-flop 56 is to disable the linear gate 36 andenable the linear gate 38. The stopped count remains stored in the counter 50 until the next time the counter-clear 48 is actuated. A digital to analog converter 70 is provided which at all times converts the count to a d.c. level which increases with the count. An inverter 72 is provided to give a d.c. level which decreases as the count increases, so as to provide for decreasing the flow rate of oxygen to correspond with an increase in the degree of supersaturation found in the test. The inverter 72 controls the d.c. level in the device 32. The converter 70 and inverter 72 are so adjusted that a zero count, indicating an absence of supersaturation will provide the proper d.c. level in device 32 to set the valve 20 for a flow rate suitable to just maintain percent saturation.
The linear gate 38 remains in the enabled condition, transmitting the d.c. level from the device 32 to the signal mixer amplifier 40 continuously until the next operation of the sample interval timer 44 initiating a new measurement of the blood condition, the result of which measurement may be to increase the rate of oxygen supply, or to decrease the supply, or to continue the previous rate according to the users blood condition. Diodes 41 and 42 are positioned so as to direct signals into the mixer amplifier 40 and to prevent the gates from interacting with each other.
However, if at any time, even during the progress of a count, the oximeter should detect an oxygen deficiency, that is, a blood condition a predetermined degree below 100 percent oxygen saturation, the device 33 is actuated to impress a high d.c. level signal upon the signal mixer amplifier 40. Because this high d.c. level signal is greater than any d.c. level ever applied to amplifier 40 either by device 31 or by device 32 the signal from device 33 is predominant and immediately resets the multivibrator 28 to produce a longer on-time of the valve 20, thereby quickly increasing the supply rate of oxygen to the user. Amplifier circuit 40 contains appropriate amplitude sensitive circuitry, including resistors, to allow the signal from device 33 to override the signal coming from either 31 or 32.
While illustrative forms of apparatus and methods in accordance with the invention have been described and shown herein, it will be understood that numerous changes may be made without departing from the general principles and scope of the invention.
1 claim:
1. In apparatus for controlling the oxygen concentration in a breathing mixture for supplying a user, in combination, means to measure supersaturation of oxygen in the blood stream of the user by establishing the time required for an anoxic mixture to reduce oxygen content at said blood stream below saturation, means providing a control signal determined by said time, and means responsive to said control signal to adjust the oxygen concentration in said breathing mixture in relation to the measured degree of supersaturation.
2. Apparatus for measuring the degree of oxygen supersaturation in the blood stream, comprising, in combination, an oximeter of a type that can detect oxygen concentration up to 100 percent of saturation, means for temporarily supplying to the lungs a breathing mixture having a constant degree of oxygen deficiency, means employing said oximeter to continuously monitor the state of the blood and to generate a signal when the blood stream is reduced from whatever degree of supersaturation existed when the oxygen-deficient mixture was first supplied to a condition of substantially 100 percent saturation, and means to measure the time elapsed from the time at which the oxygen-deficient mixture was first supplied until the 100 percent saturation signal is generated by the oximeter, whereby the elapsed time is a measure of the original degree of supersaturation of the blood stream.
3. Apparatus in accordance with claim 2, together with means responsive to the length of said elapsed time for controlling the oxygen concentration of a breathing mixture normally supplied to the user in accordance with the measured degree of supersaturation.
4. A system for regulating the rate of oxygen supply for closed system breathing in such manner as to avoid either under or over saturation of the users blood with oxygen, comprising in combination, an optical oximeter arranged for continuously monitoring the users blood, said oximeter being capable of detecting undersaturation of oxygen in the blood of the user, means for periodically reducing the supply rate of oxygen to the user to a constant oxygen-deficient rate, means for counting a succession of time intervals of substantially equal duration, means to start a count in said counting means coincidently with the beginning of the oxygendeficient supply to the user, means to generate a signal when the oximeter first detects an oxygen concentration less than 100 percent in the blood of the user, means to use said signal to increase the supply rate of oxygen to a non'deficient value and to stop the said count, and means to use the magnitude of said count to regulate the said non-deficient rate of oxygen supply to the user in response to the measured degree of supersaturation.
5. A system in accordance with claim 4, together with means operative at any time that the oximeter detects a predetermined oxygen concentration less than 100 percent of saturation to generate a second signal, and means to utilize said second signal to immediately increase the rate of oxygen supply to the user to relieve the detected oxygen deficiency.
6. A system in accordance with claim 4, together with means for adjusting the time period between successive operations of the said oxygen supply rate reducing means.
7. A system for regulating the rate of oxygen supply for closed system breathing in such manner as to avoid either under or over saturation of the users blood with oxygen, comprising in combination, first regulatory means designed to determine a relatively low, constant rate of oxygen supply useful for gradually relieving a condition of supersaturation of oxygen in the users blood, second regulatory means arranged to determine a variable rate of oxygen supply in accordance with the user's demand for oxygen from time to time, a third regulatory means designed to determine a constant rate of oxygen supply greater in magnitude than any rate determined by either said first or said second regulatory means for rapidly making up any oxygen deficiency in the users blood, an optical oximeter arranged to continuously monitor the users blood, time interval measuring means, sample interval timing means for initiating a measurement of degree of supersaturation of oxygen in the blood, means actuated by said sample interval timing means to energize said first regulatory means, and to start a time measurement in said time interval measuring means, means operable by said oximeter upon detection of less than percent oxygen saturation in the users blood to terminate a time interval measurement by said time interval measuring means and to disable said first regulatory means, means controlled by said time interval measuring means for adjusting the said second regulatory means, to determine an oxygen supply rate inversely proportional to the time interval so measured and to energize said second regulatory means, and means operable by said oximeter upon detection of an oxygen deficiency in the users blood to enable said third regulatory means while at the same disabling both said first and second regulatory means, to relieve said oxygen deficiency at any time regardless of the operation of the remainder of the system.
8. The method of controlling the oxygen concentration in a breathing mixture for supplying a user, comprising the steps of measuring supersaturation of oxy gen in the blood stream of the user by establishing the time required for an anoxic mixture to reduce oxygen content at said blood stream below saturation, generating a control signal determined by said time, and using the said control signal to adjust the oxygen concentration in the said breathing mixture in relation to the degree of supersaturation measured.
9. The method of measuring the degree of oxygen supersaturation in the blood stream with the aid of an oximeter of a type that can detect oxygen concentration up to 100 percent of saturation, which method comprises the steps of temporarily supplying to the lungs a breathing mixture having a constant oxygen deficiency, using the oximeter to continuously monitor the state of the blood and to give a signal when the blood stream is reduced from whatever degree of supersaturation existed when the oxygen-deficient mixture was first supplied to a condition of substantially 100 percent saturation, and measuring the time elapsed from the time at which the oxygen-deficient mixture was first supplied until the 100 percent saturation signal is generated by the oximeter, whereby the elapsed time is a measure of the original degree of supersaturation of the blood stream.
10. The method in accordance with claim 9, together with the further step of generating a control signal inversely proportional to the said elapsed time, and utilizing the said control signal for decreasing the supply rate of oxygen to the lungs in proportion to the measured degree of supersaturation.

Claims (10)

1. In apparatus for controlling the oxygen concentration in a breathing mixture for supplying a user, in combination, means to measure supersaturation of oxygen in the blood stream of the user by establishing the time required for an anoxic mixture to reduce oxygen content at said blood stream below saturation, means providing a control signal determined by said time, and means responsive to said control signal to adjust the oxygen concentration in said breathing mixture in relation to the measured degree of supersaturation.
2. Apparatus for measuring the degree of oxygen supersaturation in the blood stream, comprising, in combination, an oximeter of a type that can detect oxygen concentration up to 100 percent of saturation, means for temporarily supplying to the lungs a breathing mixture having a constant degree of oxygen deficiency, means employing said oximeter to continuously monitor the state of the blood and to generate a signal when the blood stream is reduced from whatever degree of supersaturation existed when the oxygen-deficient mixture was first supplied to a condition of substantially 100 percent saturation, and means to measure the time elapsed from the time at which the oxygen-deficient mixture was first supplied until the 100 percent saturation signal is generated by the oximeter, whereby the elapsed time is a measure of the original degree of supersaturation of the blood stream.
3. Apparatus in accordance with claim 2, together with means responsive to the length of said elapsed time for controlling the oxygen concentration of a breathing mixture normally supplied to the user in accordance with the measured degree of supersaturation.
4. A system for regulating the rate of oxygen supply for closed system breathing in such manner as to avoid either under or over saturation of the user''s blood with oxygen, comprising in combination, an optical oximeter arranged for continuously monitoring the user''s blood, said oximeter being capable of detecting under-saturation of oxygen in the blood of the user, means for periodically reducing the supply rate of oxygen to the user to a constant oxygen-deficient rate, means for counting a succession of time intervals of substantially equal duration, means to start a count in said counting means coincidently with the beginning of the oxygen-deficient supply to the user, means to generate a signal when the oximeter first detects an oxygen concentration less than 100 percent in the blood of the user, means to use said signal to increase the supply rate of oxygen to a non-deficient value and to stop the said count, and means to use the magnitude of said count to regulate the said non-deficient rate of oxygen supply to the user in response to the measured degree of supersaturation.
5. A system in accordance with claim 4, together with means operative at any time that the oximeter detects a predetermined oxygen concentration less than 100 percent of saturation to generate a second signal, and means to utilize said second signal to immediately increase the rate of oxygen supply to the user to relieve the detected oxygen deficiency.
6. A system in accordance with claim 4, together with means for adjusting the time period between successive operations of the said oxygen supply rate reducing means.
7. A system for regulating the rate of oxygen supply for closed system breathing in such manner as to avoid either under or over saturation of the user''s blood with oxygen, comprising in combination, first regulatory means designed to determine a relatively low, constant rate of oxygen supply useful for gradually relieving a condition of supersaturation of oxygen in the user''s blood, second regulatory means arranged to determine a variable rate of oxygen supply in accordance with the user''s demand for oxygen from time to time, a third regulatory means designed to determine a constant rate of oxygen supply greater in magnitude than any rate determined by either said first or said second regulatory means for rapidly making up any oxygen deficiency in the user''s blood, an optical oximeter arranged to continuously monitor the user''s blood, time interval measuring means, sample interval timing means for initiating a measurement of degree of supersaturation of oxygen in the blood, means actuated by said sample interval timing means to energize said first regulatory means, and to start a time measurement in said time interval measuring means, means operable by said oximeter upon detection of less than 100 percent oxygen saturation in the user''s blood to terminate a time interval measurement by said time interval measuring means and to disable said first regulatory means, means controlled by said time interval measuring means for adjusting the said second regulatory means, to determine an oxygen supply rate inversely proportional to the time interval so measured and to energize said second regulatory means, and means operable by said oximeter upon detection of an oxygen deficiency in the user''s blood to enable said third regulatory means while at the same disabling both said first and second regulatory means, to relieve said oxygen deficiency at any time regardless of the operation of the remainder of the system.
8. The method of controlling the oxygen concentration in a breathing mixture for supplying a user, comprising the steps of measuring supersaturation of oxygen in the blood stream of the user by establishing the time required for an anoxic mixture to reduce oxygen content at said blood stream below saturation, generating a control signal determined by said time, and using the said control signal to adjust the oxygen concentration in the said breathing mixture in relation to the degree of supersaturation measured.
9. The method of measuring the degree of oXygen supersaturation in the blood stream with the aid of an oximeter of a type that can detect oxygen concentration up to 100 percent of saturation, which method comprises the steps of temporarily supplying to the lungs a breathing mixture having a constant oxygen deficiency, using the oximeter to continuously monitor the state of the blood and to give a signal when the blood stream is reduced from whatever degree of supersaturation existed when the oxygen-deficient mixture was first supplied to a condition of substantially 100 percent saturation, and measuring the time elapsed from the time at which the oxygen-deficient mixture was first supplied until the 100 percent saturation signal is generated by the oximeter, whereby the elapsed time is a measure of the original degree of supersaturation of the blood stream.
10. The method in accordance with claim 9, together with the further step of generating a control signal inversely proportional to the said elapsed time, and utilizing the said control signal for decreasing the supply rate of oxygen to the lungs in proportion to the measured degree of supersaturation.
US00155547A 1971-06-22 1971-06-22 Oxygen control system with blood oxygen saturation sensing means and method for closed system breathing Expired - Lifetime US3734091A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15554771A 1971-06-22 1971-06-22

Publications (1)

Publication Number Publication Date
US3734091A true US3734091A (en) 1973-05-22

Family

ID=22555871

Family Applications (1)

Application Number Title Priority Date Filing Date
US00155547A Expired - Lifetime US3734091A (en) 1971-06-22 1971-06-22 Oxygen control system with blood oxygen saturation sensing means and method for closed system breathing

Country Status (1)

Country Link
US (1) US3734091A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4202339A (en) * 1977-04-21 1980-05-13 Alexander Wirtzfeld Cardiac pacemaker
WO1980000917A1 (en) * 1978-11-13 1980-05-15 Department Paediatrics Med Servo-control of arterial oxygen tension
FR2503368A1 (en) * 1981-04-01 1982-10-08 Biox Tech Inc METHOD AND DEVICE FOR MEASURING BLOOD CONSTITUENTS
US4570638A (en) * 1983-10-14 1986-02-18 Somanetics Corporation Method and apparatus for spectral transmissibility examination and analysis
US4765340A (en) * 1985-04-02 1988-08-23 Minolta Camera Kabushiki Kaisha Apnea detector
US4817623A (en) 1983-10-14 1989-04-04 Somanetics Corporation Method and apparatus for interpreting optical response data
US5140989A (en) * 1983-10-14 1992-08-25 Somanetics Corporation Examination instrument for optical-response diagnostic apparatus
US5315990A (en) * 1991-12-30 1994-05-31 Mondry Adolph J Method for delivering incremental doses of oxygen for maximizing blood oxygen saturation levels
US5349961A (en) * 1983-10-14 1994-09-27 Somanetics Corporation Method and apparatus for in vivo optical spectroscopic examination
DE4309923A1 (en) * 1993-03-26 1994-09-29 Boesch Wilhelm Apparatus arrangement for supplying respiration gas to a patient
US5365922A (en) * 1991-03-19 1994-11-22 Brigham And Women's Hospital, Inc. Closed-loop non-invasive oxygen saturation control system
US5388575A (en) * 1992-09-25 1995-02-14 Taube; John C. Adaptive controller for automatic ventilators
US5682877A (en) * 1991-12-30 1997-11-04 Mondry; Adolph J. System and method for automatically maintaining a blood oxygen saturation level
US5752509A (en) * 1995-07-10 1998-05-19 Burkhard Lachmann Artificial ventilation system
US6142149A (en) * 1997-10-23 2000-11-07 Steen; Scot Kenneth Oximetry device, open oxygen delivery system oximetry device and method of controlling oxygen saturation
US6371114B1 (en) 1998-07-24 2002-04-16 Minnesota Innovative Technologies & Instruments Corporation Control device for supplying supplemental respiratory oxygen
US6512938B2 (en) 2000-12-12 2003-01-28 Nelson R. Claure System and method for closed loop controlled inspired oxygen concentration
US6532958B1 (en) 1997-07-25 2003-03-18 Minnesota Innovative Technologies & Instruments Corporation Automated control and conservation of supplemental respiratory oxygen
US20030111078A1 (en) * 2001-06-21 2003-06-19 Habashi Nader Maher Ventilation method and control of a ventilator based on same
US20040206352A1 (en) * 2003-04-21 2004-10-21 Conroy John D. System and method for monitoring passenger oxygen saturation levels and estimating oxygen usage requirements
US20040206353A1 (en) * 2003-04-21 2004-10-21 Conroy John D. System and method for monitoring passenger oxygen saturation levels and estimating oxygen usage requirements
US20050109340A1 (en) * 2003-11-21 2005-05-26 Tehrani Fleur T. Method and apparatus for controlling a ventilator
US20070271009A1 (en) * 2003-10-30 2007-11-22 Conroy John D Jr System And Method For Monitoring Passenger Oxygen Saturation Levels And Estimating Oxygen Usage Requirements
US20080202525A1 (en) * 2007-02-23 2008-08-28 General Electric Company Setting mandatory mechanical ventilation parameters based on patient physiology
US20080202520A1 (en) * 2007-02-23 2008-08-28 General Electric Company Setting mandatory mechanical ventilation parameters based on patient physiology
US20080202519A1 (en) * 2007-02-23 2008-08-28 General Electric Company Setting mandatory mechanical ventilation parameters based on patient physiology
US20080202517A1 (en) * 2007-02-23 2008-08-28 General Electric Company Setting madatory mechanical ventilation parameters based on patient physiology
US20080202518A1 (en) * 2007-02-23 2008-08-28 General Electric Company Setting mandatory mechanical ventilation parameters based on patient physiology
US20080230064A1 (en) * 2007-03-23 2008-09-25 General Electric Company Setting inspiratory time in mandatory mechanical ventilation based on patient physiology, such as when forced inhalation flow ceases
US20080230061A1 (en) * 2007-03-23 2008-09-25 General Electric Company Setting expiratory time in mandatory mechanical ventilation based on a deviation from a stable condition of end tidal gas concentrations
US20080230063A1 (en) * 2007-03-23 2008-09-25 General Electric Company Setting inspiratory time in mandatory mechanical ventilation based on patient physiology, such as forced inhalation time
US20080230060A1 (en) * 2007-03-23 2008-09-25 General Electric Company Setting inspiratory time in mandatory mechanical ventilation based on patient physiology, such as when tidal volume is inspired
US20080236582A1 (en) * 2007-03-31 2008-10-02 Tehrani Fleur T Weaning and decision support system for mechanical ventilation
US20080236581A1 (en) * 2007-03-29 2008-10-02 Borje Rantala Method in a patient ventilating system
US20090199855A1 (en) * 2004-11-01 2009-08-13 Davenport James M System and method for conserving oxygen delivery while maintaining saturation
US20090305306A1 (en) * 2006-02-10 2009-12-10 Th Brigham And Women's Hospital, Inc Lectin Complement Pathway Assays and Related Compositions and Methods
US20100139659A1 (en) * 2008-12-01 2010-06-10 Dräger Medical AG & Co. KG Spo2 control with adaptive linear compensation
US8676529B2 (en) 2011-01-31 2014-03-18 Covidien Lp Systems and methods for simulation and software testing
US8788236B2 (en) 2011-01-31 2014-07-22 Covidien Lp Systems and methods for medical device testing
US9775546B2 (en) 2012-04-17 2017-10-03 Masimo Corporation Hypersaturation index
EP3238768A1 (en) 2016-04-27 2017-11-01 Linde Aktiengesellschaft System and method for delivering oxygen and preventing hypercapnia
US10514662B1 (en) 2015-01-22 2019-12-24 Vapotherm, Inc. Oxygen mixing and delivery
US11612706B2 (en) 2019-11-25 2023-03-28 John C. Taube Methods, systems, and devices for controlling mechanical ventilation
US11779720B2 (en) 2019-11-04 2023-10-10 Vapotherm, Inc. Methods, devices, and systems for improved oxygenation patient monitoring, mixing, and delivery
US11877905B2 (en) 2009-05-29 2024-01-23 Gayle J. Fletcher Elastically deformable bite fork stabilizer and associated methods

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4202339A (en) * 1977-04-21 1980-05-13 Alexander Wirtzfeld Cardiac pacemaker
WO1980000917A1 (en) * 1978-11-13 1980-05-15 Department Paediatrics Med Servo-control of arterial oxygen tension
FR2503368A1 (en) * 1981-04-01 1982-10-08 Biox Tech Inc METHOD AND DEVICE FOR MEASURING BLOOD CONSTITUENTS
US5349961A (en) * 1983-10-14 1994-09-27 Somanetics Corporation Method and apparatus for in vivo optical spectroscopic examination
US4570638A (en) * 1983-10-14 1986-02-18 Somanetics Corporation Method and apparatus for spectral transmissibility examination and analysis
US4817623A (en) 1983-10-14 1989-04-04 Somanetics Corporation Method and apparatus for interpreting optical response data
US5140989A (en) * 1983-10-14 1992-08-25 Somanetics Corporation Examination instrument for optical-response diagnostic apparatus
US4765340A (en) * 1985-04-02 1988-08-23 Minolta Camera Kabushiki Kaisha Apnea detector
US5365922A (en) * 1991-03-19 1994-11-22 Brigham And Women's Hospital, Inc. Closed-loop non-invasive oxygen saturation control system
US5315990A (en) * 1991-12-30 1994-05-31 Mondry Adolph J Method for delivering incremental doses of oxygen for maximizing blood oxygen saturation levels
US5682877A (en) * 1991-12-30 1997-11-04 Mondry; Adolph J. System and method for automatically maintaining a blood oxygen saturation level
US5388575A (en) * 1992-09-25 1995-02-14 Taube; John C. Adaptive controller for automatic ventilators
DE4309923A1 (en) * 1993-03-26 1994-09-29 Boesch Wilhelm Apparatus arrangement for supplying respiration gas to a patient
US5752509A (en) * 1995-07-10 1998-05-19 Burkhard Lachmann Artificial ventilation system
US7331343B2 (en) 1997-07-25 2008-02-19 Minnesota Innovative Technologies & Instruments Corporation (Miti) Control of supplemental respiratory oxygen
US6532958B1 (en) 1997-07-25 2003-03-18 Minnesota Innovative Technologies & Instruments Corporation Automated control and conservation of supplemental respiratory oxygen
US20040159323A1 (en) * 1997-07-25 2004-08-19 Minnesota Innovative Technologies And Instruments Control of respiratory oxygen delivery
US6561187B2 (en) 1997-07-25 2003-05-13 Minnesota Innovative Technologies & Instruments Corporation Control of supplemental respiratory oxygen
US20060213519A1 (en) * 1997-07-25 2006-09-28 Minnesota Innovative Technologies And Instruments Control of respiratory oxygen delivery
US20030145852A1 (en) * 1997-07-25 2003-08-07 Minnesota Innovative Technologies And Instruments Control of supplemental respiratory Oxygen
US6142149A (en) * 1997-10-23 2000-11-07 Steen; Scot Kenneth Oximetry device, open oxygen delivery system oximetry device and method of controlling oxygen saturation
US6371114B1 (en) 1998-07-24 2002-04-16 Minnesota Innovative Technologies & Instruments Corporation Control device for supplying supplemental respiratory oxygen
US20030078480A1 (en) * 2000-12-12 2003-04-24 Claure Nelson R. System and method for closed loop controlled inspired oxygen concentration
US6671529B2 (en) 2000-12-12 2003-12-30 University Of Miami System and method for closed loop controlled inspired oxygen concentration
US6512938B2 (en) 2000-12-12 2003-01-28 Nelson R. Claure System and method for closed loop controlled inspired oxygen concentration
US8573205B2 (en) 2001-06-21 2013-11-05 Intensive Care On-Line Network, Inc. Ventilation method and control of a ventilator based on same
US20060174884A1 (en) * 2001-06-21 2006-08-10 Habashi Nader M Ventilation method and control of a ventilator based on same
US20030111078A1 (en) * 2001-06-21 2003-06-19 Habashi Nader Maher Ventilation method and control of a ventilator based on same
US7246618B2 (en) * 2001-06-21 2007-07-24 Nader Maher Habashi Ventilation method and control of a ventilator based on same
US20080072901A1 (en) * 2001-06-21 2008-03-27 Habashi Nader M Ventilation method and control of a ventilator based on same
US20040206352A1 (en) * 2003-04-21 2004-10-21 Conroy John D. System and method for monitoring passenger oxygen saturation levels and estimating oxygen usage requirements
US20040206353A1 (en) * 2003-04-21 2004-10-21 Conroy John D. System and method for monitoring passenger oxygen saturation levels and estimating oxygen usage requirements
US7246620B2 (en) 2003-04-21 2007-07-24 Conroy Jr John D System for monitoring pilot and/or passenger oxygen saturation levels and estimating oxygen usage requirements
US20070271009A1 (en) * 2003-10-30 2007-11-22 Conroy John D Jr System And Method For Monitoring Passenger Oxygen Saturation Levels And Estimating Oxygen Usage Requirements
US7383105B2 (en) 2003-10-30 2008-06-03 Conroy Jr John D System and method for monitoring passenger oxygen saturation levels and estimating oxygen usage requirements
US20050109340A1 (en) * 2003-11-21 2005-05-26 Tehrani Fleur T. Method and apparatus for controlling a ventilator
US7802571B2 (en) 2003-11-21 2010-09-28 Tehrani Fleur T Method and apparatus for controlling a ventilator
US20090199855A1 (en) * 2004-11-01 2009-08-13 Davenport James M System and method for conserving oxygen delivery while maintaining saturation
US8524453B2 (en) 2006-02-10 2013-09-03 The Brigham And Woman's Hospital, Inc. Lectin complement pathway assays and related compositions and methods
US20090305306A1 (en) * 2006-02-10 2009-12-10 Th Brigham And Women's Hospital, Inc Lectin Complement Pathway Assays and Related Compositions and Methods
US20080202524A1 (en) * 2007-02-23 2008-08-28 General Electric Company Setting madatory mechanical ventilation parameters based on patient physiology
US20080202523A1 (en) * 2007-02-23 2008-08-28 General Electric Company Setting mandatory mechanical ventilation parameters based on patient physiology
US20080202518A1 (en) * 2007-02-23 2008-08-28 General Electric Company Setting mandatory mechanical ventilation parameters based on patient physiology
US20080202525A1 (en) * 2007-02-23 2008-08-28 General Electric Company Setting mandatory mechanical ventilation parameters based on patient physiology
US20080202521A1 (en) * 2007-02-23 2008-08-28 General Electric Company Setting mandatory mechanical ventilation parameters based on patient physiology
US20080202520A1 (en) * 2007-02-23 2008-08-28 General Electric Company Setting mandatory mechanical ventilation parameters based on patient physiology
US20080202517A1 (en) * 2007-02-23 2008-08-28 General Electric Company Setting madatory mechanical ventilation parameters based on patient physiology
US20080202522A1 (en) * 2007-02-23 2008-08-28 General Electric Company Setting mandatory mechanical ventilation parameters based on patient physiology
US20080202519A1 (en) * 2007-02-23 2008-08-28 General Electric Company Setting mandatory mechanical ventilation parameters based on patient physiology
US20080230063A1 (en) * 2007-03-23 2008-09-25 General Electric Company Setting inspiratory time in mandatory mechanical ventilation based on patient physiology, such as forced inhalation time
US20080230064A1 (en) * 2007-03-23 2008-09-25 General Electric Company Setting inspiratory time in mandatory mechanical ventilation based on patient physiology, such as when forced inhalation flow ceases
US20080230060A1 (en) * 2007-03-23 2008-09-25 General Electric Company Setting inspiratory time in mandatory mechanical ventilation based on patient physiology, such as when tidal volume is inspired
US20080230061A1 (en) * 2007-03-23 2008-09-25 General Electric Company Setting expiratory time in mandatory mechanical ventilation based on a deviation from a stable condition of end tidal gas concentrations
US20080236581A1 (en) * 2007-03-29 2008-10-02 Borje Rantala Method in a patient ventilating system
US8695593B2 (en) 2007-03-31 2014-04-15 Fleur T. Tehrani Weaning and decision support system for mechanical ventilation
US20080236582A1 (en) * 2007-03-31 2008-10-02 Tehrani Fleur T Weaning and decision support system for mechanical ventilation
US8528552B2 (en) 2008-12-01 2013-09-10 Dräger Medical GmbH SPO2 control with adaptive linear compensation
US20100139659A1 (en) * 2008-12-01 2010-06-10 Dräger Medical AG & Co. KG Spo2 control with adaptive linear compensation
US11877905B2 (en) 2009-05-29 2024-01-23 Gayle J. Fletcher Elastically deformable bite fork stabilizer and associated methods
US8676529B2 (en) 2011-01-31 2014-03-18 Covidien Lp Systems and methods for simulation and software testing
US8788236B2 (en) 2011-01-31 2014-07-22 Covidien Lp Systems and methods for medical device testing
US11071480B2 (en) 2012-04-17 2021-07-27 Masimo Corporation Hypersaturation index
US10531819B2 (en) 2012-04-17 2020-01-14 Masimo Corporation Hypersaturation index
US10674948B2 (en) 2012-04-17 2020-06-09 Mastmo Corporation Hypersaturation index
US9775546B2 (en) 2012-04-17 2017-10-03 Masimo Corporation Hypersaturation index
US10514662B1 (en) 2015-01-22 2019-12-24 Vapotherm, Inc. Oxygen mixing and delivery
US11092984B1 (en) 2015-01-22 2021-08-17 Vapotherm, Inc. Oxygen mixing and delivery
US11853084B1 (en) 2015-01-22 2023-12-26 Vapotherm, Inc. Oxygen mixing and delivery
WO2017186880A1 (en) 2016-04-27 2017-11-02 Linde Aktiengesellschaft System and method for delivering oxygen and preventing hypercapnia
EP3238768A1 (en) 2016-04-27 2017-11-01 Linde Aktiengesellschaft System and method for delivering oxygen and preventing hypercapnia
US11779720B2 (en) 2019-11-04 2023-10-10 Vapotherm, Inc. Methods, devices, and systems for improved oxygenation patient monitoring, mixing, and delivery
US11612706B2 (en) 2019-11-25 2023-03-28 John C. Taube Methods, systems, and devices for controlling mechanical ventilation

Similar Documents

Publication Publication Date Title
US3734091A (en) Oxygen control system with blood oxygen saturation sensing means and method for closed system breathing
US4753245A (en) Apparatus for measuring the oxygen uptake of a person
Campbell et al. Changes in the perception of inspiratory resistive loads during partial curarization.
US5865174A (en) Supplemental oxygen delivery apparatus and method
US4874362A (en) Method and device for insufflating gas
US4090078A (en) Method and arrangement for determining alcohol content in the breath
US3802698A (en) Exercise control system
US4896675A (en) Apparatus for monitoring degree of mental tension
US4368410A (en) Ultrasound therapy device
US4201225A (en) Method and apparatus for measuring stimulated acoustic reflex latency time
US4248240A (en) Apparatus for detecting the activity of the respiratory organs and the heart of a living being
US20130152933A1 (en) Automated fluid delivery system and method
WO1987001023A1 (en) Electromyographic repetitive strain injury monitor
ES8307477A1 (en) A method and a device for correcting the cuff pressure in measuring the blood pressure in a part of the body by means of a plethysmograph.
US4008714A (en) Brain wave correlation system and method of delivering a recorded program of material educational in content
CA1106451A (en) Device for pulse current action on central nervous system
CA1164532A (en) Mandibular electromyograph
US4074710A (en) Intrathoracic pressure biofeedback method
GB2083615A (en) Measurement control of liquid drop flow rate
GB1306695A (en) Tonometers
US3633568A (en) Automatically operating apparatus for measuring blood pressure
Benolken Effects of light-and dark-adaptation processes on the generator potential of the Limulus eye
KR20190131037A (en) Breathing gas supply device and control method
CN204446249U (en) A kind of snore stopper
JPS55472A (en) Speed detector