US3733771A - Closure means and method - Google Patents

Closure means and method Download PDF

Info

Publication number
US3733771A
US3733771A US00123167A US3733771DA US3733771A US 3733771 A US3733771 A US 3733771A US 00123167 A US00123167 A US 00123167A US 3733771D A US3733771D A US 3733771DA US 3733771 A US3733771 A US 3733771A
Authority
US
United States
Prior art keywords
container
liquid
free gas
orifice
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00123167A
Inventor
W Megowen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3733771A publication Critical patent/US3733771A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D51/00Closures not otherwise provided for
    • B65D51/24Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes

Definitions

  • ABSTRACT A closure for fragile containers of gassy liquids having a depending volumetric member extending down into the interior of the container to displace free gas from within the container, thereby substantially reducing or completely eliminating the chance of an explosion should the container be broken.
  • the member occupies a volume such that when the container is filled with a usual amount of liquid either all free gas is purged by introducing the member or a small volume of free gas is left not exceeding the amount by which the liquid will expand if heated to the highest temperature normally expected to be encountered in use.
  • the member is either a hollow, flexible walled body or composed of a cellular foam so as to be compressible under liquid thermal expansion forces to relieve excess pressure on the container, or is a hollow body provided with a small opening to admit liquid under expansionary pressures.
  • the container is sealed by the member either in cooperation or in unitary construction with a cap.
  • carbonated beverage is composed of carbonated water, a sweetning agent, acid, flavor, color, and a preservative.
  • the characteristic pungent taste or bite associated with carbonated beverages is contributed by carbon dioxide solute, which also inhibits the growth of bacteria.
  • carbon dioxide is usually found along with air as a free gas in a space at the top of the container, typically occupying about 25 cc. of a ounce bottle. The presence of the free gas creates an explosion hazard in fragile containers such as glass bottles should the bottle break, causing the glass fragments to scatter at high velocity.
  • Bottle closures are known to the art that provide means for relieving free gas pressure build-up inside a bottle, such as flexible membranes or bellows for expanding the volume available to the gas under pressure. These closures, however, do not attack the basic safety problem created by the mere existence of a significant quantity of free gas in a fragile container, even at normal temperatures.
  • the present invention contemplates a method and associated closure apparatus for closing a container for gassy liquids such as carbonated beverages so as to effectively overcome the explosive tendencies encoun tered in the prior art, even at the extremes of temperature to which the container and liquid may reasonably be expected to undergo, and also to allow for thermal expansion of the liquid without endangering the integrity of the container. Moreover, to the extent the explosion hazard can be totally eliminated, thinner container material can be used with a consequent savings in material cost.
  • a closure is provided with a volumetric member extending into the interior of the container when the closure is engaged on the container orifice.
  • the member is of a size such that most if not all of the free gas is displaced from the container when it is introduced therein, and the potential explosive tendency is reduced in proportion to the amount of free gas purged.
  • Water solubility of CO decreases by a factor of about 0.52 from 32 to F. room temperature, and by a factor of 0.41 from 70 to F.; approximately 79 percent of the CO solute will be driven out of solution as the liquid is raised from the lower to the upper temperature extreme to increase the quantity of free gas available for an explosion.
  • the reduction in gas space is such that the increased free gas pressure is more than enough to overcome the decrease in solubility due to temperature rise and to produce a net flow of free gas into solution. Once in solution the gas is effectively removed from contributing to an explosion; it is capable of exerting a static pressure within the liquid solvent, but an explosion occurs too fast for the dissolved gas to act as a propellant.
  • the invention contemplates reducing the free gas space to a level so low that substantially all free gas will be eliminated and explosive energy reduced substantially to zero at a temperature no greater than the highest normally encountered temperature, which for carbonated beverages is about 140F.
  • All free gas may be purged from the container at the time the volumetric member is introduced if the member is sufficiently large; it is also permissible to leave a small amount of free gas in the containers whereby the above-described reduction in explosive energy takes place should the liquid be heated.
  • the free gas may be confined by using a volumetric member which is a walled, hollow compartment having a small opening accessible to free gas in the container, in which case the amount of gas if any available for an explosion is forced through the opening into the compartment as the liquid thermally expands, rather than being absorbed into solution.
  • the opening should be small enough to throttle passage of gas therethrough in the event of container breakage.
  • the volumetric member When the free gas is purged rather than confined, although the danger of an explosion is removed, a substantially complete elimination of free gas as described creates a danger of container rupture should the liquid be subjected to additional heating and expansion.
  • This danger is met by forming the volumetric member from a material so as to be compressible at applied pressures greater than the internal gaseous equilibrium pressure of the gassy liquid, whereby the member will compress and provide expansion room for the liquid before the container ruptures.
  • the member may have a hollow compartment with thin, flexible walls, permissibly vented to allow gas escape under compression, or may be formed from a compressible cellular substance.
  • the volumetric member may also constitute a hollow compartment with a small opening to admit liquid therein under expansion pressures after substantially all free gas has been removed from the container.
  • the closure is provided with means either independent of or integrated with the volumetric member for sealing the container orifice, which means maintains the member in spatial relation to the container.
  • FIG. 1 is a view in frontal elevation of one embodiment of the explosion preventing closure of this invention as it would appear engaged in a transparent glass container filled with a carbonated beverage.
  • FIG. 2 is an enlarged view in frontal elevation showing an embodiment of the invention in which a volumetric member has been compressed to relieve pressure on the container walls from liquid thermal expansion. 7
  • FIG. 3 is an enlarged cross-sectional view of another form of compressible volumetric member.
  • FIG. 4 is an enlarged cross-sectional view of an embodiment in which openings are provided on the walls of the volumetric member to accommodate liquid thermal expansion.
  • FIGS. 5 and 6 are respectively perspective and crosssectional views detailing means associated with a volumetric member for sealing a container orifice.
  • a closure generally indicated by reference numeral 10 is provided as illustrated in FIG. 1 to render a glass or other fragile container 12 non-explosive when it is filled with a gassy liquid 14 such as a carbonated beverage.
  • the closure has a sealing portion 16 for sealably engaging the containers l2 outlet orifice l8, and a volumetric member extending from the sealing portion 16 down through the orifice 18 into the interior of the container 12.
  • the closure 10 is set on the container 12 after the liquid 14 has been poured in by guiding the volumetric member 20 through the orifice l8 and into the container 12. If the container 12 has not been completely filled with liquid 14, a volume of free gas will be left at the top.
  • free gas is defined as gas within the container 12 that is immediately available to contribute explosive energy should the container 12 break. Displacement of the free gas from within the container 12 is facilitated by the lateral dimension of the volumetric member 20 being somewhat smaller than the inside orifice 18 diameter, or by providing vertical grooves (not shown) on the surface of the volumetric member 20.
  • the size of the volumetric member 20 is such that most if not all of the free gas is purged from the container 12 when it is introduced therein, with a corresponding decrease in potential explosive energy. It is to be understood that, while a total elimination of free gas will reduce the potential explosive energy to zero, significant reductions in explosive energy at a given temperature can be achieved in proportion to the amount of gas eliminated without total elimination. In normal bottles of carbonated beverages making use of the principles of this invention, the free gas volume will never exceed 5 cc..
  • the volumetric member 20 is adapted to relieve pressure on the container walls should the liquid 14 be heated beyond the point at which substantially all free gas is eliminated.
  • FIG. 2 an embodiment is shown in which an originally cylindrically shaped volumetric member, the original shape of which is indicated by the dashed lines 22, has been compressed by liquid thermal expansion pressures to an hourglass shape 24.
  • FIG. 3 shows in cross-section another compressible cylindrical volumetric member being hollow with a rounded lower end 26 and thin deformable walls 28. Any suitably deformable material that does not produce an adverse reaction with the gassy liquid 14 may be used.
  • 0.035 inch low density polyethylene is a representative example, although the grade and thickness maybe changed to produce a material with equally acceptable deformation properties.
  • the volumetric member of FIG. 3 is vented to the outer atmosphere through an opening 30 in the closure to maintain the gas pressure within the member at at mospheric as it is compressed.
  • a major portion of the compressible surface area is contacted by the liquid 14 so as to be able to receive excess thermal expansionary pressures.
  • any compressible structure with the proper deformation characteristics such as a solid member formed from a compressible cellular substance of which foam rubber is an example, may be used.
  • the volumetric member will begin to deform until the liquid 14 has been heated sufficiently to expand into this space 32, which in the preferred embodiment is sufficiently small that substantially all free gas will be eliminated by the time the liquid 14 is heated to its highest normally expected temperature.
  • the free gas space 32 should not exceed about 4.5 cc. at the packaging temperature. Should any free gas remain at the upper temperature limit, the volumetric member can be formed from a rigid material such as polypropylene.
  • a wall of a hollow volumetric member 34 is provided with a small opening 36 to relieve liquid thermal expansion pressure by permitting an expansion of liquid 14 into the interior of the member.
  • the opening 36 may be located in the bottom wall 38, in which case it is preferably small enough to permit liquid flow only at pressures greater than the internal gaseous equilibrium pressure of the liquid 14, thereby directing liquid expansion into any free gas space until a sufficiently high liquid pressure is reached. If an opening 40 is provided in the upper portion of a side wall 42, any free gas will be forced into the volumetric member 34 should the liquid 14 expand,
  • a flexible seal 44 having a skirt 46 with an annular recess corresponding to an orifice lip 48 and a pull tab 50 is joined with the volumetric member shown and snapped onto the container orifice 18.
  • a central opening 30 communicates with and vents the interior of the volumetric member.
  • FIG. 4 a volumetric member 34 provided on the upper portion with an annular flange52 sitting upon the orifice 18.
  • a snap-on cap 54 engages the orifice l8 and holds the flange 52 thereon.
  • FIG. 4 Another sealing arrangement is shown in which a resiliently flanged volumetric member 56 similar to that of FIG. 4 but with a flange portion 58 wider than the outside orifice 18 diameter is held on a threaded orifice 18 by an inside-threaded cap 60 of aluminum or other suitable material.
  • the overhanging flange portion captively snaps into an annular recess or groove 62 when the cap is screwed on so that the volumetric member 56 is withdrawn when the cap 54 is removed.
  • FIG. 6 a flanged volumetric member 64 is shown with threads on the upper depending portion 66 thereof screwed onto an inside-threaded container orifice 68.
  • the flange 70 is sealably seated on the orifice 68.
  • an aerosol bomb also exhibits a free gas explosion danger.
  • the potential explosive energy within an aerosol bomb may be significantly reduced by the use of a volumetric member inserted therein.
  • other means for accommodating liquid thermal expansion such as pressure contractable bellows or accordian devices may also be envisioned. It is therefore my intention that the described embodiments be taken in an illustrative sense, and that the invention be limited only in terms of the appended claims.
  • a method for closing a fragile container having an outlet orifice and mostly filled with a gassy liquid so as to render sai'd filled container non-explosive comprising, displacing at least most free gas from within said container by introducing a volumetric member into the interior thereof through said outlet orifice, any volume of free gas remaining being no greater than the expansion of said gassy liquid if heated from the closing temperature to F., sealing said orifice against gas and liquid flow, and relieving subsequent liquid expansion pressures within said container at temperatures greater than the closing temperature by admitting a portion of said liquid into the volume originally occupied by said volumetric member.
  • volumetric member displaces substantially all free gas from within said container when it is introduced into said container.
  • a method of filling an orificed fragile container with a gassy liquid comprising the following steps: (1) putting the gassy liquid into the orificed fragile container until the fragile container is nearly full but less than filled, so that a space filled with free gas exists near the orifice; (2) forcing substantially all of said free gas out of said space by mechanical insertion of a pliant member through said orifice; and (3) closing said orifice against gas and'liquid flow.

Abstract

A closure for fragile containers of gassy liquids having a depending volumetric member extending down into the interior of the container to displace free gas from within the container, thereby substantially reducing or completely eliminating the chance of an explosion should the container be broken. The member occupies a volume such that when the container is filled with a usual amount of liquid either all free gas is purged by introducing the member or a small volume of free gas is left not exceeding the amount by which the liquid will expand if heated to the highest temperature normally expected to be encountered in use. The member is either a hollow, flexible walled body or composed of a cellular foam so as to be compressible under liquid thermal expansion forces to relieve excess pressure on the container, or is a hollow body provided with a small opening to admit liquid under expansionary pressures. The container is sealed by the member either in cooperation or in unitary construction with a cap.

Description

United States Patent 1 91 Megowen CLOSURE MEANS AND METHOD [76] Inventor: William J. Megowen, Russell St.,
Carlisle, Mass. 01741 [22] Filed: Mar. 11, 1971 [21] Appl. No.: 123,167
52 us. c1. "1.53/37, 53 43, 215/37 51 1m. (:1. ..B65b 7/28 58 Field of Search .53/37, 43; 215/37, 215/38 R [56] References Cited UNITED STATES PATENTS 2,503,944 4/1950 Frascari ..53/37 X 2,582,489 1/1952 Krueger ..215/38 R FOREIGN PATENTS 0R APPLICATIONS 627,238 7/1963 Belgium ..215/38 R Primary ExaminerGranville Y. Custer, .lr. Assistant Examiner-E. F. Desmond Attorney-Russell & Nields 1 May 22, 1973 [57] ABSTRACT A closure for fragile containers of gassy liquids having a depending volumetric member extending down into the interior of the container to displace free gas from within the container, thereby substantially reducing or completely eliminating the chance of an explosion should the container be broken. The member occupies a volume such that when the container is filled with a usual amount of liquid either all free gas is purged by introducing the member or a small volume of free gas is left not exceeding the amount by which the liquid will expand if heated to the highest temperature normally expected to be encountered in use. The member is either a hollow, flexible walled body or composed of a cellular foam so as to be compressible under liquid thermal expansion forces to relieve excess pressure on the container, or is a hollow body provided with a small opening to admit liquid under expansionary pressures. The container is sealed by the member either in cooperation or in unitary construction with a cap.
5 Claims, 6 Drawing Figures PATENTELKXYQZ ms r 3 733,771
//VVE/V7'OR WILLIAM J. MEGOWEN BYWDkM ATTORNEYS CLOSURE MEANS AND METHOD BACKGROUND OF THE INVENTION 1. Field of the Invention This invention pertains to closures, and more particularly to closures for fragile containers in which is found an accumulation of pressurized free gas.
2. Description of the Prior Art The modern carbonated beverage is composed of carbonated water, a sweetning agent, acid, flavor, color, and a preservative. The characteristic pungent taste or bite associated with carbonated beverages is contributed by carbon dioxide solute, which also inhibits the growth of bacteria. In addition to the solute form, carbon dioxide is usually found along with air as a free gas in a space at the top of the container, typically occupying about 25 cc. of a ounce bottle. The presence of the free gas creates an explosion hazard in fragile containers such as glass bottles should the bottle break, causing the glass fragments to scatter at high velocity. The danger is aggravated at high beverage temperatures at which the water solubility of carbon dioxide is reduced and free gas is driven out of solution to add to the explosive energy, which energy is a function of free gas quantity and pressure. It has proven mechanically difficult to completely fill the bottle and thus remove the free gas, and even if this was accomplished thermal expansion of the beverage within could rupture the bottle should it and its contents become heated. Thermal expansion is not an urgent problem in containers with a relatively large volume of free gas, as 10 ounces of water will expand by only about 5 cc. when heated from 32 to l40F., the maximum opposite temperature extremes usually encountered by carbonated beverages, and by about 4.5 cc. from room temperature of 70 to 140F. It becomes critical, however, at the small free gas volumes associated with completely or nearly completely filled containers.
Bottle closures are known to the art that provide means for relieving free gas pressure build-up inside a bottle, such as flexible membranes or bellows for expanding the volume available to the gas under pressure. These closures, however, do not attack the basic safety problem created by the mere existence of a significant quantity of free gas in a fragile container, even at normal temperatures.
SUMMARY OF THE INVENTION The present invention contemplates a method and associated closure apparatus for closing a container for gassy liquids such as carbonated beverages so as to effectively overcome the explosive tendencies encoun tered in the prior art, even at the extremes of temperature to which the container and liquid may reasonably be expected to undergo, and also to allow for thermal expansion of the liquid without endangering the integrity of the container. Moreover, to the extent the explosion hazard can be totally eliminated, thinner container material can be used with a consequent savings in material cost.
In the accomplishment of these purposes, a closure is provided with a volumetric member extending into the interior of the container when the closure is engaged on the container orifice. The member is of a size such that most if not all of the free gas is displaced from the container when it is introduced therein, and the potential explosive tendency is reduced in proportion to the amount of free gas purged.
In addition to the direct lowering of explosive energy described, the aforesaid reduction of free gas to a small amount brings about an effect whereby subsequent heating of the container and contents, rather than aggravating the danger as in the prior art, actually works to further lessen the explosive energy inside the container. This may be understood by observing that although the solubility of gas in the gassy liquid decreases with increasing temperature of the gassy liquid, such increasing temperature also causes thermal expansion of the liquid, which reduces the volume available for the free gas, thus increasing free gas pressure and the resultant tendency for the free gas to return into solution. In prior bottled beverages with about 25 cc. free gas space in a 10 ounce container the variation of solubility with temperature is the dominant effect. Water solubility of CO decreases by a factor of about 0.52 from 32 to F. room temperature, and by a factor of 0.41 from 70 to F.; approximately 79 percent of the CO solute will be driven out of solution as the liquid is raised from the lower to the upper temperature extreme to increase the quantity of free gas available for an explosion.
Counteracting this tendency is an increasing tendency for gas to return into solution with rising temperatures produced by increased free gas pressures resulting from liquid thermal expansion and a consequent reduction in the amount of space available for the free gas. Solubility over the expected pressure range is approximately proportionate to free gas pressure. It can therefore be seen that a liquid thermal expansion of 5 cc. will increase the free gas pressure only about 20 percent in currently available containers, an amount insufficient to offset the decrease in solubility from beverage temperature rise, and that both quantity and pressure of the free gas will therefore increase with rising temperatures. With the present invention however, free gas space is reduced by the introduction of the volumetric member into the container to a volume at which thermal expansion of the liquid will have a large percentage effect on the amount of free gas space. The reduction in gas space is such that the increased free gas pressure is more than enough to overcome the decrease in solubility due to temperature rise and to produce a net flow of free gas into solution. Once in solution the gas is effectively removed from contributing to an explosion; it is capable of exerting a static pressure within the liquid solvent, but an explosion occurs too fast for the dissolved gas to act as a propellant. The invention contemplates reducing the free gas space to a level so low that substantially all free gas will be eliminated and explosive energy reduced substantially to zero at a temperature no greater than the highest normally encountered temperature, which for carbonated beverages is about 140F. All free gas may be purged from the container at the time the volumetric member is introduced if the member is sufficiently large; it is also permissible to leave a small amount of free gas in the containers whereby the above-described reduction in explosive energy takes place should the liquid be heated.
In lieu of purging free gas from the container, the free gas may be confined by using a volumetric member which is a walled, hollow compartment having a small opening accessible to free gas in the container, in which case the amount of gas if any available for an explosion is forced through the opening into the compartment as the liquid thermally expands, rather than being absorbed into solution. The opening should be small enough to throttle passage of gas therethrough in the event of container breakage.
When the free gas is purged rather than confined, although the danger of an explosion is removed, a substantially complete elimination of free gas as described creates a danger of container rupture should the liquid be subjected to additional heating and expansion. This danger is met by forming the volumetric member from a material so as to be compressible at applied pressures greater than the internal gaseous equilibrium pressure of the gassy liquid, whereby the member will compress and provide expansion room for the liquid before the container ruptures. The member may have a hollow compartment with thin, flexible walls, permissibly vented to allow gas escape under compression, or may be formed from a compressible cellular substance. The volumetric member may also constitute a hollow compartment with a small opening to admit liquid therein under expansion pressures after substantially all free gas has been removed from the container.
The closure is provided with means either independent of or integrated with the volumetric member for sealing the container orifice, which means maintains the member in spatial relation to the container.
Further objects and features of the present invention will appear from the ensuing detailed description and accompanying drawings.
DRAWINGS FIG. 1 is a view in frontal elevation of one embodiment of the explosion preventing closure of this invention as it would appear engaged in a transparent glass container filled with a carbonated beverage.
I FIG. 2 is an enlarged view in frontal elevation showing an embodiment of the invention in which a volumetric member has been compressed to relieve pressure on the container walls from liquid thermal expansion. 7
FIG. 3 is an enlarged cross-sectional view of another form of compressible volumetric member.
FIG. 4 is an enlarged cross-sectional view of an embodiment in which openings are provided on the walls of the volumetric member to accommodate liquid thermal expansion.
FIGS. 5 and 6 are respectively perspective and crosssectional views detailing means associated with a volumetric member for sealing a container orifice.
DETAILED DESCRIPTION OF THE INVENTION According to the present invention a closure generally indicated by reference numeral 10 is provided as illustrated in FIG. 1 to render a glass or other fragile container 12 non-explosive when it is filled with a gassy liquid 14 such as a carbonated beverage. The closure has a sealing portion 16 for sealably engaging the containers l2 outlet orifice l8, and a volumetric member extending from the sealing portion 16 down through the orifice 18 into the interior of the container 12.
The closure 10 is set on the container 12 after the liquid 14 has been poured in by guiding the volumetric member 20 through the orifice l8 and into the container 12. If the container 12 has not been completely filled with liquid 14, a volume of free gas will be left at the top. For purposes of this invention free gas is defined as gas within the container 12 that is immediately available to contribute explosive energy should the container 12 break. Displacement of the free gas from within the container 12 is facilitated by the lateral dimension of the volumetric member 20 being somewhat smaller than the inside orifice 18 diameter, or by providing vertical grooves (not shown) on the surface of the volumetric member 20.
The size of the volumetric member 20 is such that most if not all of the free gas is purged from the container 12 when it is introduced therein, with a corresponding decrease in potential explosive energy. It is to be understood that, while a total elimination of free gas will reduce the potential explosive energy to zero, significant reductions in explosive energy at a given temperature can be achieved in proportion to the amount of gas eliminated without total elimination. In normal bottles of carbonated beverages making use of the principles of this invention, the free gas volume will never exceed 5 cc.. It is another feature of the invention that even if some free gas is left when the container 12 is closed, thermal expansion of the liquid will cause the gas to be progressively removed from the free state as the liquid temperature rises, and in the preferred embodiment substantially all free gas is removed at a temperature no greater than the highest temperature it would normally be expected to encounter, which for bottled carbonated beverages is about F.
The volumetric member 20 is adapted to relieve pressure on the container walls should the liquid 14 be heated beyond the point at which substantially all free gas is eliminated. In FIG. 2 an embodiment is shown in which an originally cylindrically shaped volumetric member, the original shape of which is indicated by the dashed lines 22, has been compressed by liquid thermal expansion pressures to an hourglass shape 24. FIG. 3 shows in cross-section another compressible cylindrical volumetric member being hollow with a rounded lower end 26 and thin deformable walls 28. Any suitably deformable material that does not produce an adverse reaction with the gassy liquid 14 may be used. 0.035 inch low density polyethylene is a representative example, although the grade and thickness maybe changed to produce a material with equally acceptable deformation properties. As the liquid 14 expands under the application of heat, the additional pressure compresses the volumetric member; consequent liquid flow into the space 23 vacated by the volumetric member 22, 24 relieves pressure against the container 12. While there is still free gas present deformation of the member will lag the liquid expansion, and the pressure relief and free gas elimination mechanisms will operate concurrently. When the container 12 is fully flooded member deformation is substantially equal to subsequent liquid expansion.
The volumetric member of FIG. 3 is vented to the outer atmosphere through an opening 30 in the closure to maintain the gas pressure within the member at at mospheric as it is compressed. In the compressible embodiment a major portion of the compressible surface area is contacted by the liquid 14 so as to be able to receive excess thermal expansionary pressures. Although a hollow, flexible-walled member is illustrated in the drawings, any compressible structure with the proper deformation characteristics, such as a solid member formed from a compressible cellular substance of which foam rubber is an example, may be used.
As shown in FIG. 3 a small free gas space 32 has been left in the container 12. The volumetric member will begin to deform until the liquid 14 has been heated sufficiently to expand into this space 32, which in the preferred embodiment is sufficiently small that substantially all free gas will be eliminated by the time the liquid 14 is heated to its highest normally expected temperature. In the case of carbonated beverages packaged in a l ounce container at room temperature of 70F., the free gas space 32 should not exceed about 4.5 cc. at the packaging temperature. Should any free gas remain at the upper temperature limit, the volumetric member can be formed from a rigid material such as polypropylene.
In the embodiment illustrated in FIG. 4 a wall of a hollow volumetric member 34 is provided with a small opening 36 to relieve liquid thermal expansion pressure by permitting an expansion of liquid 14 into the interior of the member. The opening 36 may be located in the bottom wall 38, in which case it is preferably small enough to permit liquid flow only at pressures greater than the internal gaseous equilibrium pressure of the liquid 14, thereby directing liquid expansion into any free gas space until a sufficiently high liquid pressure is reached. If an opening 40 is provided in the upper portion of a side wall 42, any free gas will be forced into the volumetric member 34 should the liquid 14 expand,
I rather than being absorbed into solution as in the previous embodiments.
Various means already known to the art for tightly sealing the container 12 may be modified to accommodate the volumetric member and employed in conjunction therewith, or the sealing means may be integrated with the volumetric member in a unitary construction. Referring now to FIG. 3, a flexible seal 44 having a skirt 46 with an annular recess corresponding to an orifice lip 48 and a pull tab 50 is joined with the volumetric member shown and snapped onto the container orifice 18. A central opening 30 communicates with and vents the interior of the volumetric member.
In FIG. 4 is shown a volumetric member 34 provided on the upper portion with an annular flange52 sitting upon the orifice 18. A snap-on cap 54 engages the orifice l8 and holds the flange 52 thereon. Another sealing arrangement is shown in FIG. in which a resiliently flanged volumetric member 56 similar to that of FIG. 4 but with a flange portion 58 wider than the outside orifice 18 diameter is held on a threaded orifice 18 by an inside-threaded cap 60 of aluminum or other suitable material. The overhanging flange portion captively snaps into an annular recess or groove 62 when the cap is screwed on so that the volumetric member 56 is withdrawn when the cap 54 is removed. Referring now to FIG. 6, a flanged volumetric member 64 is shown with threads on the upper depending portion 66 thereof screwed onto an inside-threaded container orifice 68.
The flange 70 is sealably seated on the orifice 68.
Having now described the basic principles of my invention along with several embodiments, other variations and applications may occur to one skilled in the art. For example, although the specification has referred to packaged carbonated beverages for illustration, an aerosol bomb also exhibits a free gas explosion danger. Heretofore it has been found necessary to provide for a certain amount of free gas to compensate for thermal expansion of the aerosol. According to the present invention the potential explosive energy within an aerosol bomb may be significantly reduced by the use of a volumetric member inserted therein. As another example, other means for accommodating liquid thermal expansion such as pressure contractable bellows or accordian devices may also be envisioned. It is therefore my intention that the described embodiments be taken in an illustrative sense, and that the invention be limited only in terms of the appended claims.
I claim:
1. A method for closing a fragile container having an outlet orifice and mostly filled with a gassy liquid so as to render sai'd filled container non-explosive comprising, displacing at least most free gas from within said container by introducing a volumetric member into the interior thereof through said outlet orifice, any volume of free gas remaining being no greater than the expansion of said gassy liquid if heated from the closing temperature to F., sealing said orifice against gas and liquid flow, and relieving subsequent liquid expansion pressures within said container at temperatures greater than the closing temperature by admitting a portion of said liquid into the volume originally occupied by said volumetric member.
2. A method according to claim 1 wherein said subsequent expansion pressures are relieved by compressing said member to a volume less than its original volume, the extent of said compression being a function of said expansion pressure.
3. A method according to claim 1 wherein said subsequent expansion pressures are relieved by moving a portion of said liquid into the interior of said volumetric member through an opening provided in a wall thereof.
4. A method according to claim 1 wherein said volumetric member displaces substantially all free gas from within said container when it is introduced into said container.
5. A method of filling an orificed fragile container with a gassy liquid comprising the following steps: (1) putting the gassy liquid into the orificed fragile container until the fragile container is nearly full but less than filled, so that a space filled with free gas exists near the orifice; (2) forcing substantially all of said free gas out of said space by mechanical insertion of a pliant member through said orifice; and (3) closing said orifice against gas and'liquid flow.

Claims (5)

1. A method for closing a fragile container having an outlet orifice and mostly filled with a gassy liquid so as to render said filled container non-explosive comprising, displacing at least most free gas from within said container by introducing a volumetric member into the interior thereof through said outlet orifice, any volume of free gas remaining being no greater than the expansion of said gassy liquid if heated from the closing temperature to 140*F., sealing said orifice against gas and liquid flow, and relieving subsequent liquid expansion pressures within said container at temperatures greater than the closing temperature by admitting a portion of said liquid into the volume originally Occupied by said volumetric member.
2. A method according to claim 1 wherein said subsequent expansion pressures are relieved by compressing said member to a volume less than its original volume, the extent of said compression being a function of said expansion pressure.
3. A method according to claim 1 wherein said subsequent expansion pressures are relieved by moving a portion of said liquid into the interior of said volumetric member through an opening provided in a wall thereof.
4. A method according to claim 1 wherein said volumetric member displaces substantially all free gas from within said container when it is introduced into said container.
5. A method of filling an orificed fragile container with a gassy liquid comprising the following steps: (1) putting the gassy liquid into the orificed fragile container until the fragile container is nearly full but less than filled, so that a space filled with free gas exists near the orifice; (2) forcing substantially all of said free gas out of said space by mechanical insertion of a pliant member through said orifice; and (3) closing said orifice against gas and liquid flow.
US00123167A 1971-03-11 1971-03-11 Closure means and method Expired - Lifetime US3733771A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12316771A 1971-03-11 1971-03-11

Publications (1)

Publication Number Publication Date
US3733771A true US3733771A (en) 1973-05-22

Family

ID=22407088

Family Applications (1)

Application Number Title Priority Date Filing Date
US00123167A Expired - Lifetime US3733771A (en) 1971-03-11 1971-03-11 Closure means and method

Country Status (1)

Country Link
US (1) US3733771A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065018A (en) * 1976-08-02 1977-12-27 William J. Megowen Closure means and method
US4896789A (en) * 1989-02-17 1990-01-30 Tecumseh Products Company Anti-leak fuel cap liner
US4995218A (en) * 1988-09-12 1991-02-26 Arthur Guinness Son & Company (Dublin) Limited Method of packaging a beverage
US4996823A (en) * 1988-09-12 1991-03-05 Arthur Guinness Son & Company (Dublin) Limited Method of packaging a beverage and a package structure
US5009901A (en) * 1988-09-12 1991-04-23 Arthur Guinness Son & Company (Dublin) Limited Method of packaging a beverage and a beverage package
US5022215A (en) * 1989-05-05 1991-06-11 Sterilinja Oy Method and apparatus for storing and transporting a solution of peracetic acid
US5197602A (en) * 1991-05-30 1993-03-30 Drug Plastics & Glass Company, Inc. Packing system comprising a plurality of outer containers having container inserts therein for holding a predetermined volume of material
US5315811A (en) * 1991-05-30 1994-05-31 Drug Plastics & Glass Company, Inc. Method of packaging with an outer container having a container insert for holding a predetermined volume of material
DE4428434A1 (en) * 1994-08-11 1996-02-15 Boehringer Ingelheim Kg Sealing cap and method for filling gas-free containers
US5807345A (en) * 1995-06-30 1998-09-15 Abbott Laboratories Luer cap for terminally sterilized syringe
US6243936B1 (en) 1991-05-30 2001-06-12 Drug Plastics And Glass Company, Inc. Method for assembling an outer container having a container insert therein for holding a predetermined volume of material
US6302101B1 (en) 1999-12-14 2001-10-16 Daniel Py System and method for application of medicament into the nasal passage
US20070101758A1 (en) * 2002-04-23 2007-05-10 Henry Roth Method And System For Use With A Consumable Beverage
US20070169435A1 (en) * 2006-01-26 2007-07-26 Shawn Kinney Process for aseptic vacuum filling and stoppering of low viscosity liquids in syringes
US20070169434A1 (en) * 2006-01-26 2007-07-26 Shawn Kinney Process for aseptic vacuum filling and stoppering of low viscosity liquids in syringes
US20070175237A1 (en) * 2002-04-23 2007-08-02 Donna Roth Method and System for use with a Consumable Beverage
US20070215496A1 (en) * 2006-03-17 2007-09-20 Scarborough Ella B Bottle assembly
US20080000898A1 (en) * 2006-06-28 2008-01-03 Christopher Edward Ramsden Methods and apparatus for providing edible substances with a beverage
US20090151807A1 (en) * 2007-08-07 2009-06-18 Davis Chanda Janese Container Insert for Zero Headspace
US20090179032A1 (en) * 2008-01-11 2009-07-16 Ball Corporation Method and Apparatus for Providing A Positive Pressure in the Headspace of a Plastic Container
US20090184027A1 (en) * 2008-01-17 2009-07-23 Rose Plastic Usa, L.P. Impact resistant container
US20090250426A1 (en) * 2008-04-04 2009-10-08 Stokely-Van Camp, Inc. Container Closure With Internal Threading System
WO2011143713A1 (en) * 2010-05-19 2011-11-24 Kismet Design Pty Ltd Heat transfer apparatus and container
US20130119009A1 (en) * 2008-11-20 2013-05-16 Inoflate, Llc Method and device for pressurizing containers
USD688912S1 (en) 2011-09-17 2013-09-03 Steel Technology, Llc Wide mouth flask
US20170101215A1 (en) * 2014-03-28 2017-04-13 World Bottling Cap, LLC Bottle crown with opener assembly
US20180037383A1 (en) * 2016-08-05 2018-02-08 Gaplast Gmbh Container closure system

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065018A (en) * 1976-08-02 1977-12-27 William J. Megowen Closure means and method
US4995218A (en) * 1988-09-12 1991-02-26 Arthur Guinness Son & Company (Dublin) Limited Method of packaging a beverage
US4996823A (en) * 1988-09-12 1991-03-05 Arthur Guinness Son & Company (Dublin) Limited Method of packaging a beverage and a package structure
US5009901A (en) * 1988-09-12 1991-04-23 Arthur Guinness Son & Company (Dublin) Limited Method of packaging a beverage and a beverage package
US4896789A (en) * 1989-02-17 1990-01-30 Tecumseh Products Company Anti-leak fuel cap liner
GB2232960B (en) * 1989-05-05 1993-08-04 Sterilinja Oy Storing and/or transporting a solution
US5022215A (en) * 1989-05-05 1991-06-11 Sterilinja Oy Method and apparatus for storing and transporting a solution of peracetic acid
US5197602A (en) * 1991-05-30 1993-03-30 Drug Plastics & Glass Company, Inc. Packing system comprising a plurality of outer containers having container inserts therein for holding a predetermined volume of material
US5315811A (en) * 1991-05-30 1994-05-31 Drug Plastics & Glass Company, Inc. Method of packaging with an outer container having a container insert for holding a predetermined volume of material
US6243936B1 (en) 1991-05-30 2001-06-12 Drug Plastics And Glass Company, Inc. Method for assembling an outer container having a container insert therein for holding a predetermined volume of material
DE4428434A1 (en) * 1994-08-11 1996-02-15 Boehringer Ingelheim Kg Sealing cap and method for filling gas-free containers
US5807345A (en) * 1995-06-30 1998-09-15 Abbott Laboratories Luer cap for terminally sterilized syringe
US6302101B1 (en) 1999-12-14 2001-10-16 Daniel Py System and method for application of medicament into the nasal passage
US20080178630A1 (en) * 2002-04-23 2008-07-31 Henry Roth Method and system for use with a consumable beverage
US7997099B2 (en) 2002-04-23 2011-08-16 Cool Gear International, Llc Method and system for use with a consumable beverage
US8061158B2 (en) 2002-04-23 2011-11-22 Cool Gear International, Llc Method and system for use with a consumable beverage
US20070175237A1 (en) * 2002-04-23 2007-08-02 Donna Roth Method and System for use with a Consumable Beverage
US8051674B2 (en) * 2002-04-23 2011-11-08 Cool Gear International, Llc Method and system for use with a consumable beverage
US20070101758A1 (en) * 2002-04-23 2007-05-10 Henry Roth Method And System For Use With A Consumable Beverage
US20070169435A1 (en) * 2006-01-26 2007-07-26 Shawn Kinney Process for aseptic vacuum filling and stoppering of low viscosity liquids in syringes
US20070169434A1 (en) * 2006-01-26 2007-07-26 Shawn Kinney Process for aseptic vacuum filling and stoppering of low viscosity liquids in syringes
US7328549B2 (en) * 2006-01-26 2008-02-12 Hyaluron, Inc. Process for aseptic vacuum filling and stoppering of low viscosity liquids in syringes
US20070215496A1 (en) * 2006-03-17 2007-09-20 Scarborough Ella B Bottle assembly
US20080000898A1 (en) * 2006-06-28 2008-01-03 Christopher Edward Ramsden Methods and apparatus for providing edible substances with a beverage
US20090151807A1 (en) * 2007-08-07 2009-06-18 Davis Chanda Janese Container Insert for Zero Headspace
US20090179032A1 (en) * 2008-01-11 2009-07-16 Ball Corporation Method and Apparatus for Providing A Positive Pressure in the Headspace of a Plastic Container
US8342344B2 (en) 2008-01-11 2013-01-01 Amcor Rigid Plastics Usa, Inc. Method and apparatus for providing a positive pressure in the headspace of a plastic container
US20090184027A1 (en) * 2008-01-17 2009-07-23 Rose Plastic Usa, L.P. Impact resistant container
US20090250426A1 (en) * 2008-04-04 2009-10-08 Stokely-Van Camp, Inc. Container Closure With Internal Threading System
US7980403B2 (en) 2008-04-04 2011-07-19 Stokely-Van Camp, Inc. Container closure with internal threading system
US20130119009A1 (en) * 2008-11-20 2013-05-16 Inoflate, Llc Method and device for pressurizing containers
WO2011143713A1 (en) * 2010-05-19 2011-11-24 Kismet Design Pty Ltd Heat transfer apparatus and container
CN103097260A (en) * 2010-05-19 2013-05-08 基斯麦特设计有限公司 Heat transfer apparatus and container
CN103097260B (en) * 2010-05-19 2015-08-05 基斯麦特设计有限公司 Heat-transfer devices and container
US9802739B2 (en) 2010-05-19 2017-10-31 Kismet Design Pty Ltd Heat transfer apparatus and container
USD688912S1 (en) 2011-09-17 2013-09-03 Steel Technology, Llc Wide mouth flask
US20170101215A1 (en) * 2014-03-28 2017-04-13 World Bottling Cap, LLC Bottle crown with opener assembly
US20180037363A1 (en) * 2014-03-28 2018-02-08 World Bottling Cap Llc Bottle crown with opener assembly
US20180037383A1 (en) * 2016-08-05 2018-02-08 Gaplast Gmbh Container closure system
US10494159B2 (en) * 2016-08-05 2019-12-03 Gaplast Gmbh Container closure system

Similar Documents

Publication Publication Date Title
US3733771A (en) Closure means and method
US4870805A (en) Method of packaging a fluid under pressure, and packaging container for use with the method
US3071276A (en) Vented closure
US3181720A (en) Pressure or vacuum release closure for a container or the like
US4892230A (en) Carbonated beverage bottle
US3189231A (en) Aerosol dispenser with sponge follower and method of making same
US4174784A (en) Anti-collapse cap
US3240394A (en) Pressurized dispensing container
KR970704611A (en) (Closure cap and process for filling containers without forming gas bubbles)
US3998349A (en) Closure means
HUT71779A (en) Container filled with beverage and method for manufacture thereof
EP0328336A1 (en) Container closures and Materials for use in these
US3677774A (en) Combined package containing an enclosed gaseous atmosphere for preservation
US3020688A (en) Method for filling and assembling a compartmented pressurized dispensing device
US4623076A (en) Refillable container with depressurization means
US4065018A (en) Closure means and method
US3189210A (en) Venting closure for containers
AU558991B2 (en) Pressurised bag inside gas-tight container and method fo manufacture
US3406079A (en) Packaging of salad oils and the like
AU2890692A (en) Foam generation by dispersion of bubbles
EP0229420B1 (en) Hot fill thermoplastic container
GB2291031A (en) A beverage container with means for frothing the beverage
US3308981A (en) Venting closure for containers
RU2804333C2 (en) Method and packaging for preserving food in hydrogen medium
USRE33539E (en) Refillable container with depressurization means