US3730188A - Electrosurgical apparatus for dental use - Google Patents

Electrosurgical apparatus for dental use Download PDF

Info

Publication number
US3730188A
US3730188A US00127727A US3730188DA US3730188A US 3730188 A US3730188 A US 3730188A US 00127727 A US00127727 A US 00127727A US 3730188D A US3730188D A US 3730188DA US 3730188 A US3730188 A US 3730188A
Authority
US
United States
Prior art keywords
voltage
rectifiers
electrosurgical apparatus
circuit
radio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00127727A
Inventor
I Ellman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3730188A publication Critical patent/US3730188A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/0066Sensing and controlling the application of energy without feedback, i.e. open loop control

Definitions

  • ABSTRACT Electrosurgical apparatus for dental use employing an electronic radio-frequency oscillator is described.
  • the radio-frequency oscillator or R.F. generator is powered by an electronic power supply constructed to selectively deliver full-wave rectified voltage and current for excellent cuttin with minimal hemostasis, half-wave rectified voltage and current providing moderate cutting with maximum: hemostasis, and voltage and current between the full-wave rectified and half-wave rectified condition for combined good cutting and good hemostasis.
  • a further variation makes selectively available filtered or unfiltered rectified voltage and current for further control over cutting and hemostasis.
  • Electrosurgical apparatus has come into wide use in dentistry because of its capability for making incisions in or cutting live gum tissue while minimizing bleeding, i.e., hemostasis.
  • the apparatus comprises a high-frequency oscillator or radio-frequency (R.F.) generator in the range, generally, of 2-4 MHz, which is usually a conventional Hartley or Colpitts oscillator employing a triode or tetrode electron tube capable of delivering from 25-100 watts of R.F. power.
  • R.F. generators have been generally powered by single phase full-wave or half-wave rectifier circuits operated directly from the commonly available A.C. house supply and capable of supplying the high voltages and currents necessary to operate the R.F. generator.
  • R.F. output that is optimum for cutting is often not the optimum R.F. output for controlling bleeding.
  • Prior art efforts to overcome these difficulties have followed generally along two different paths.
  • two different kinds of R.F. generators have bee provided each to supply a different form of R.F. output for maximizing cutting or maximizing hemostasis.
  • a spark-gap generator is used for generating damped R.F. oscillations giving excellent coagulation
  • an electron tube generator is employed for providing sustained undamped oscillations for excellent cutting.
  • Apparatus has been developed following the second path employing special gating multivibrator or other pulsing circuits for enabling controlled bursts of short duration of the R.F. oscillations to be supplied to the tissue.
  • the main object of the invention is improved electrosurgical apparatus capable of delivering controlled R.F. power to provide excellent cutting, excellent hemostasis, or both with remarkably simple and inexpensive circuitry.
  • the power supply that powers or activates the R.F. generator such that, in a manner selected by the dentist, it will provide to the R.F. generator fully-rectified D.C. power, half-wave rectified D.C. power, and forms of rectified D.C. power lying between these extremes.
  • the power supply can be selectively controlled to provide filtered or unfiltered D.C. power to the R.F. generator providing still a further way of optimizing the cutting and coagulating capabilities of electrosurgery for dental use.
  • FIG. 1 is a circuit diagram of one form of electrosurgical apparatus in accordance with the invention employing a bridge rectifier circuit
  • FIGS. 2a, 2b and 2c illustrate the waveforms of the three D.C. output voltages derivable from the bridge rectifier embodiment of FIG. 1
  • FIG. 3 is a circuit diagram of just the power supply of .a second embodiment of the invention employing a center-tapped transformer
  • FIG. 4 is a circuit diagram of just the power supply of a third embodiment of the invention employing a filtered rectifier
  • FIGS. 5a, 5b and 5c illustrate the waveforms of the three D.C. output voltages derivable from the embodiment of F IG. 4.
  • FIG. 1 illustrates a typical R.F. electron tube generator employing a Colpitts oscillator circuit. This is employed merely to illustrate one form of known oscillator, it being understood that other known forms of radio-frequency oscillators may also be used. Also, while a tetrode tube is shown, triodes or semiconductor devices can be used in place of the tetrode. The filament circuitry for the tube is not shown as it is well known, and similarly many of the known safety features of the circuit have been omitted as unnecessary to an understanding of the present invention.
  • the tetrode 10 contains the usual cathode 11, control grid 12, screen grid 13 and plate'l4.
  • the usual tank circuit 15, consisting of paralled connected coil 16 and capacitors 17 is coupled via capacitors l8 and grid resistor 19 between the control grid 12 and plate 14.
  • the connection between the tank capacitors 17 is grounded.
  • the control grid 12 is also connected via an R.F. choke 21 and resistor 22 to ground.
  • the cathode 12 is grounded via an on-off switch 23, which can be a foot switch operable by the dentist for turning the R.F. generator on and off as desired.
  • the R.F. power output is taken from the plate via several blocking capacitors 25, one of which 26 is variable to control the output R.F. power.
  • the power can be applied to the patient via terminals 27, which is the hot or active terminal, and 28, which is ground.
  • terminals 27, which is the hot or active terminal, and 28, which is ground As is well known, the patient is connected to the ground terminal 28, and the usual cutting implement or electrode is connected to the active terminal 27 and then applied by the dentist to the patients tissue where cutting or coagulation is desired.
  • the high voltage for operating the R.F. generator is obtained from a power supply designated 30.
  • the power supply 30 comprises the usual high voltage transformer 31 having a primary winding 32 connected to the A.C. supply, usually 1 10 volts, Hz, and a high voltage secondary winding 33 connected to opposite sides of a bridge rectifier 34 at points designated 35 and 36.
  • the remaining two points of the bridge designated 37 and 38, are connected respectively to the tetrode plate 14 via an R.F. choke 39 and: to ground.
  • Three of the rectifiers, designated 40, of the bridge are connected in the usual way as shown.
  • the fourth rectifier 41 instead of being connected directly to point 38 as is usual, is connected to the movable arm 42 of a threeposition rotary switch 43 having positions A, B, and C. Position A is directly grounded. Position B is grounded via a series resistor 44, and Position C is unconnected or open.
  • FIG. 2 illustrates the voltage output waveforms from the point 37 to ground of the power supply 30 with switch 43 in the three positions as selected by the dentist upon operating the switch 43.
  • switch 43 With switch 43 in position A, a normal bridge rectifier is obtained producing unfiltered full-wave rectification, as illustrated by the solid line curve in FIG. 2a.
  • switch 43 in position C one leg of the bridge is disabled producing unfiltered half-wave rectification, as illustrated in FIG. 2C.
  • switch 43 in position B one leg of the bridge has an additional resistance 44 in series causing a voltage drop across it with the result that while fullwave rectification is obtained, the output voltage level during the half cycle when the rectifier 41 is conducting is reduced, producing a full voltage half sine wave 44, as illustrated in FIG. 2b, and a partial voltage half sine wave 45.
  • FIG. 2 solid line waveforms illustrate the top half of the modulation envelope of the R.F. power output which can be applied to the patient, the bottom half being a mirror image of the top half. This is illustrated by the dashed curves shown.
  • the R.F. power generated by the waveform depicted in FIG. 2a provides the hottest current and thus maximum cutting but with minimum hemostasis.
  • the R.F. power corresponding to the waveform of FIG. 20 provides poorer cutting but excellent hemostasis because the R.F. energy is interrupted for a time substantially equal to the time of its application, thus allowing the tissue to cool between the R.F. pulses.
  • the waveform of FIG. 2b provides an operating condition roughly halfway between that of FIGS. 2a and 20, that is, the cutting is better than with the waveform of FIG. 20, and the hemostasis is more effective than with the waveform of FIG. 20 because of the smaller power pulses 45, allowing some tissue cooling, alternating with the larger power pulses 44.
  • FIG. 3 is a circuit of a modified power supply providing an even greater flexibility of operation.
  • a full-wave rectifier circuit is illustrated, this time with a centertapped transformer 50, of which only the secondary is shown.
  • the usual two rectifiers 51 and 52 are shown.
  • the anode of the rectifier 52 would be connected directly to the point 53, with the result that the output wave-form would appear as depicted in FIG. 2a.
  • the rectifier anode is connected to the movable arm 54 of a rheostat 55 one end 56 of whose resistor is connected to the point 53, and the other end 57 of which is unconnected or open. With the arm 54 full counterclockwise at point 56, then the full-wave output of FIG.
  • FIG. 4 shows a further modified power supply affording still greater control of the output R.F. power.
  • a bridge rectifier is depicted, the same numbers referencing the same elements, except in this modification a three-ganged three-position switch 60, 61, 62 is employed.
  • the movable arm 63 of switch 60 connects the rectifier 41 to ground in two positions D and E, and leaves it unconnected in the third position F.
  • the switch 61 of the three-ganged switch connects the power supply output lead 64 to a filter capacitor in switch position D, and remains unconnected in positions E and F.
  • the switch 62 similarly to switch 61, connects a lower voltage point from a voltage divider 65 via lead 66 to a filter capacitor 67 in position D, and remains unconnected in positions E and F.
  • FIG. 5 The results on the DC. output from the supply rectifier circuit is depicted in FIG. 5.
  • position D FIG. 5a
  • a normal full-wave condensor filter rectification is obtained that is applied to the tetrode plate 14, while similarly the voltage applied to the screen 13 of the tetrode is additionally filtered by capacitor 67, providing a high degree of cutting action due to the continu ous R.F. power generation, as illustrated by the dashed waveforms.
  • FIG. 5b a full-wave unfiltered rectified output is obtained, similar to that of FIG. 2a.
  • position F FIG. 5c
  • half-wave unfiltered rectified output is obtained, similar to that of FIG. 20.
  • this combination with filtering can also be combined with the resistor 44 or rheostat 55 of FIGS. 1 and 3 respectively, providing additional possibilities of control over the R.F. power output as desired by the dentist.
  • the filtered fully rectified supply voltage will afford the hottest current and cleanest cutting with minimal hemostasis whereas the unfiltered half-wave rectified supply voltage will afford poorer cutting but maximum coagulation, and the unfiltered full-wave rectified supply voltage an inbetween condition.
  • the plate voltage will be, for example, 600 volts, the screen voltage about 300 volts, and the resistor 44 may be about 7,500 ohms.
  • Electrosurgical apparatus for dental use providing controlled cutting and coagulation comprising a radiofrequency oscillator circuit for generating at its output radio-frequency oscillating currents when activated by voltage at its input, means coupled to the output of said radio-frequency oscillator for applying said radiofrequency oscillating currents to a dental patient, a voltage supply circuit for receiving AC. voltage and converting same to a rectified DC.
  • said output voltage capable of activating said radio-frequency oscillator when applied to the oscillator input
  • means for applying the said output voltage of the supply circuit to the input of the radio-frequency oscillator and means connected to said voltage supply circuit for selectively changing the waveform of its output voltage and thereby selectively modifying the radio-frequency oscillating currents generated by the oscillator when activated by said output voltage
  • said voltage supply circuit comprising a single-phase full-wave rectifier circuit comprising plural rectifiers capable of producing a fully-rectified output voltage
  • the selective changing means comprising means connected to the rectifier circuit for producing a half-wave rectified output voltage.
  • Electrosurgical apparatus as set forth in claim 1 wherein the selective changing means comprises means for introducing resistance in series with at least one of the rectifiers to produce a rectified output voltage wherein the peak voltage is different for alternate half cycles.
  • Electrosurgical apparatus as set forth in claim 1 wherein the selective changing means comprises means for connecting one of the rectifiers to the bridge circuit, means for disconnecting one of the rectifiers from the bridge circuit, and means for connecting one of the rectifiers in series with a fixed resistor in the bridge circuit.
  • Electrosurgical apparatus as set forth in claim 1 wherein the selective changing means includes a variable resistance, and means for selectively connecting the variable resistance into the voltage supply circuit.
  • Electrosurgical apparatus as set forth in claim 1 wherein the voltage supply circuit comprises a single phase full-wave bridge rectifier circuit and the selective changing means includes means for disabling at least one of the rectifiers.
  • Electrosurgical apparatus as set forth in claim 1 wherein the rectifier circuit comprises a center-tapped transformer and two rectifiers, and the selective changing means comprises means for disconnecting one of the two rectifiers.
  • Electrosurgical apparatus as set forth in claim 1 wherein the voltage supply circuit comprises filtering means, and the selective changing means comprises means for selectively connecting the filtering means to the voltage supply circuit.
  • Electrosurgical apparatus as set forth in claim 8 wherein the selective changing means comprises a three-position switch for connecting the filtering means in one switch position and for disabling part of the rectifying circuit in another switch position.

Abstract

Electrosurgical apparatus for dental use employing an electronic radio-frequency oscillator is described. The radio-frequency oscillator or R.F. generator is powered by an electronic power supply constructed to selectively deliver full-wave rectified voltage and current for excellent cutting with minimal hemostasis, half-wave rectified voltage and current providing moderate cutting with maximum hemostasis, and voltage and current between the full-wave rectified and half-wave rectified condition for combined good cutting and good hemostasis. A further variation makes selectively available filtered or unfiltered rectified voltage and current for further control over cutting and hemostasis.

Description

United States Patent [191 Ellman ELECTROSURGICAL APPARATUS FOR DENTAL USE [22] Filed: Mar. 24, 1971 [21] Appl. No.: 127,727
[52] U.S. Cl ..128/303.l4, 128/303.17
[51] Int. Cl. ..A6lb 17/38, A6ln 3/02 [58] Field of Search ..l28/303.14, 303.17, 128/423 [56] References Cited UNITED STATES PATENTS 1,945,867 2/1934 Rawls ..l28/303.l4
3,058,470 10/1962 Seeliger et a1. ..128/303.17 X
3,261,358 7/1966 Bernard ..128/423 3,478,744 11/1969 Leiter l28/303.l4
POWER SUPPLY [11 1 3,739,188 51 May 1,1973
Primary ExaminerChanning L. Pace Attorney-Jack Oisher [5 7] ABSTRACT Electrosurgical apparatus for dental use employing an electronic radio-frequency oscillator is described. The radio-frequency oscillator or R.F. generator is powered by an electronic power supply constructed to selectively deliver full-wave rectified voltage and current for excellent cuttin with minimal hemostasis, half-wave rectified voltage and current providing moderate cutting with maximum: hemostasis, and voltage and current between the full-wave rectified and half-wave rectified condition for combined good cutting and good hemostasis. A further variation makes selectively available filtered or unfiltered rectified voltage and current for further control over cutting and hemostasis.
9 Claims, 9 Drawing Figures ACTIVE AC 36 INPUT GROUND Patented May 1, 1973 3,730,188
ACTIVE POWER suPPLY AC INPUT snouuo Fi 2a POS. B 13% my. Fig. 2b
POS. C 151, i 2C os. D \f'u Fig. 50
0 F n 5 P 8 pi; 2,5
INVENTOR. LA. ELLMAN ATTORNEY ELECTROSURGICAL APPARATUS FOR DENTAL USE This invention relates to electrosurgical apparatus primarily for dental use.
Electrosurgical apparatus has come into wide use in dentistry because of its capability for making incisions in or cutting live gum tissue while minimizing bleeding, i.e., hemostasis. In its known form, the apparatus comprises a high-frequency oscillator or radio-frequency (R.F.) generator in the range, generally, of 2-4 MHz, which is usually a conventional Hartley or Colpitts oscillator employing a triode or tetrode electron tube capable of delivering from 25-100 watts of R.F. power. Such R.F. generators have been generally powered by single phase full-wave or half-wave rectifier circuits operated directly from the commonly available A.C. house supply and capable of supplying the high voltages and currents necessary to operate the R.F. generator. However, the R.F. output that is optimum for cutting is often not the optimum R.F. output for controlling bleeding. Prior art efforts to overcome these difficulties have followed generally along two different paths. In the first, two different kinds of R.F. generators have bee provided each to supply a different form of R.F. output for maximizing cutting or maximizing hemostasis. For example, a spark-gap generator is used for generating damped R.F. oscillations giving excellent coagulation, and an electron tube generator is employed for providing sustained undamped oscillations for excellent cutting. Apparatus has been developed following the second path employing special gating multivibrator or other pulsing circuits for enabling controlled bursts of short duration of the R.F. oscillations to be supplied to the tissue.
Both of these prior art paths have resulted in complicated, expensive apparatus that have not fulfilled a real need in the dental art for simple, inexpensive apparatus offering sufficient control over the waveform of the generated R.F. power output enabling the dentist to obtain optimum cutting, hemostasis, or combined cutting and hemostasis for satisfying the wide variation in operating conditions encountered in treating many dental patients.
The main object of the invention is improved electrosurgical apparatus capable of delivering controlled R.F. power to provide excellent cutting, excellent hemostasis, or both with remarkably simple and inexpensive circuitry.
These and other objects of the invention as will appear hereinafter are achieved in accordance with the invention by constructing the power supply that powers or activates the R.F. generator such that, in a manner selected by the dentist, it will provide to the R.F. generator fully-rectified D.C. power, half-wave rectified D.C. power, and forms of rectified D.C. power lying between these extremes. As a further feature of the invention, the power supply can be selectively controlled to provide filtered or unfiltered D.C. power to the R.F. generator providing still a further way of optimizing the cutting and coagulating capabilities of electrosurgery for dental use.
The foregoing and other objects of the invention will become more apparent from the following detailed description of several exemplary embodiments of the invention taken in conjunction with the accompanying drawing wherein: FIG. 1 is a circuit diagram of one form of electrosurgical apparatus in accordance with the invention employing a bridge rectifier circuit; FIGS. 2a, 2b and 2c illustrate the waveforms of the three D.C. output voltages derivable from the bridge rectifier embodiment of FIG. 1; FIG. 3 is a circuit diagram of just the power supply of .a second embodiment of the invention employing a center-tapped transformer; FIG. 4 is a circuit diagram of just the power supply of a third embodiment of the invention employing a filtered rectifier; FIGS. 5a, 5b and 5c illustrate the waveforms of the three D.C. output voltages derivable from the embodiment of F IG. 4.
FIG. 1 illustrates a typical R.F. electron tube generator employing a Colpitts oscillator circuit. This is employed merely to illustrate one form of known oscillator, it being understood that other known forms of radio-frequency oscillators may also be used. Also, while a tetrode tube is shown, triodes or semiconductor devices can be used in place of the tetrode. The filament circuitry for the tube is not shown as it is well known, and similarly many of the known safety features of the circuit have been omitted as unnecessary to an understanding of the present invention.
The tetrode 10 contains the usual cathode 11, control grid 12, screen grid 13 and plate'l4. The usual tank circuit 15, consisting of paralled connected coil 16 and capacitors 17 is coupled via capacitors l8 and grid resistor 19 between the control grid 12 and plate 14. The connection between the tank capacitors 17 is grounded. The control grid 12 is also connected via an R.F. choke 21 and resistor 22 to ground. The cathode 12 is grounded via an on-off switch 23, which can be a foot switch operable by the dentist for turning the R.F. generator on and off as desired. The R.F. power output is taken from the plate via several blocking capacitors 25, one of which 26 is variable to control the output R.F. power. The power can be applied to the patient via terminals 27, which is the hot or active terminal, and 28, which is ground. As is well known, the patient is connected to the ground terminal 28, and the usual cutting implement or electrode is connected to the active terminal 27 and then applied by the dentist to the patients tissue where cutting or coagulation is desired.
The high voltage for operating the R.F. generator is obtained from a power supply designated 30. The power supply 30 comprises the usual high voltage transformer 31 having a primary winding 32 connected to the A.C. supply, usually 1 10 volts, Hz, and a high voltage secondary winding 33 connected to opposite sides of a bridge rectifier 34 at points designated 35 and 36. The remaining two points of the bridge designated 37 and 38, are connected respectively to the tetrode plate 14 via an R.F. choke 39 and: to ground. Three of the rectifiers, designated 40, of the bridge are connected in the usual way as shown. However, in accordance with the invention, the fourth rectifier 41, instead of being connected directly to point 38 as is usual, is connected to the movable arm 42 of a threeposition rotary switch 43 having positions A, B, and C. Position A is directly grounded. Position B is grounded via a series resistor 44, and Position C is unconnected or open.
FIG. 2 illustrates the voltage output waveforms from the point 37 to ground of the power supply 30 with switch 43 in the three positions as selected by the dentist upon operating the switch 43. With switch 43 in position A, a normal bridge rectifier is obtained producing unfiltered full-wave rectification, as illustrated by the solid line curve in FIG. 2a. With switch 43 in position C, one leg of the bridge is disabled producing unfiltered half-wave rectification, as illustrated in FIG. 2C. With switch 43 in position B, one leg of the bridge has an additional resistance 44 in series causing a voltage drop across it with the result that while fullwave rectification is obtained, the output voltage level during the half cycle when the rectifier 41 is conducting is reduced, producing a full voltage half sine wave 44, as illustrated in FIG. 2b, and a partial voltage half sine wave 45.
Application of the voltages depicted in FIG. 2 to the R.F. generator will cause it to break into oscillation each time the rising voltage of each half sine wave reaches a level causing the tetrode to conduct, and the R.F. oscillations will terminate as the voltage reapproaches zero. Thus, the FIG. 2 solid line waveforms illustrate the top half of the modulation envelope of the R.F. power output which can be applied to the patient, the bottom half being a mirror image of the top half. This is illustrated by the dashed curves shown.
The R.F. power generated by the waveform depicted in FIG. 2a provides the hottest current and thus maximum cutting but with minimum hemostasis. The R.F. power corresponding to the waveform of FIG. 20 provides poorer cutting but excellent hemostasis because the R.F. energy is interrupted for a time substantially equal to the time of its application, thus allowing the tissue to cool between the R.F. pulses. The waveform of FIG. 2b provides an operating condition roughly halfway between that of FIGS. 2a and 20, that is, the cutting is better than with the waveform of FIG. 20, and the hemostasis is more effective than with the waveform of FIG. 20 because of the smaller power pulses 45, allowing some tissue cooling, alternating with the larger power pulses 44.
Thus, by simple switching of one of the legs of the bridge rectifier in and out of the circuit, or in series with a resistor, a very simple circuit results for controlling the output R.F. power waveforms in a stepped manner for optimizing, at the will of the operating dentist, the apparatus for cutting, for hemostasis, and for combined cutting and hemostasis.
FIG. 3 is a circuit of a modified power supply providing an even greater flexibility of operation. A full-wave rectifier circuit is illustrated, this time with a centertapped transformer 50, of which only the secondary is shown. The usual two rectifiers 51 and 52 are shown. In the usual full-wave rectified circuit, the anode of the rectifier 52 would be connected directly to the point 53, with the result that the output wave-form would appear as depicted in FIG. 2a. In accordance with the invention however, the rectifier anode is connected to the movable arm 54 of a rheostat 55 one end 56 of whose resistor is connected to the point 53, and the other end 57 of which is unconnected or open. With the arm 54 full counterclockwise at point 56, then the full-wave output of FIG. 2a is obtained. With the arm 54 full clockwise at point 57, then, with a sufficiently high resistance, say 50,000 ohms, the rectifier 52 is effectively open-circuited producing the half-wave voltage depicted in FIG. 20. With arm 54 in intermediate positions, then waveforms similar to that of FIG. 2b are obtained, with the amplitude of the smaller voltage 45 being controllable in a continuous manner between the full level shown in FIG. 2a and the zero level shown in FIG. 2c. This provides the practicing dentist with a greater degree of control over the output power for most efficient cutting, hemostasis or both. It is understood that the rheostat 55 of FIG. 3 can be employed as a substitute for the three-position switch 43 to provide the same advantages in a bridge rectifier.
FIG. 4 shows a further modified power supply affording still greater control of the output R.F. power. As in FIG. 1, a bridge rectifier is depicted, the same numbers referencing the same elements, except in this modification a three-ganged three- position switch 60, 61, 62 is employed. The movable arm 63 of switch 60 connects the rectifier 41 to ground in two positions D and E, and leaves it unconnected in the third position F. The switch 61 of the three-ganged switch connects the power supply output lead 64 to a filter capacitor in switch position D, and remains unconnected in positions E and F. The switch 62, similarly to switch 61, connects a lower voltage point from a voltage divider 65 via lead 66 to a filter capacitor 67 in position D, and remains unconnected in positions E and F.
The results on the DC. output from the supply rectifier circuit is depicted in FIG. 5. In position D, FIG. 5a, a normal full-wave condensor filter rectification is obtained that is applied to the tetrode plate 14, while similarly the voltage applied to the screen 13 of the tetrode is additionally filtered by capacitor 67, providing a high degree of cutting action due to the continu ous R.F. power generation, as illustrated by the dashed waveforms. In position E, FIG. 5b, a full-wave unfiltered rectified output is obtained, similar to that of FIG. 2a. In position F, FIG. 5c, half-wave unfiltered rectified output is obtained, similar to that of FIG. 20. Of course, this combination with filtering can also be combined with the resistor 44 or rheostat 55 of FIGS. 1 and 3 respectively, providing additional possibilities of control over the R.F. power output as desired by the dentist.
As before, the filtered fully rectified supply voltage will afford the hottest current and cleanest cutting with minimal hemostasis whereas the unfiltered half-wave rectified supply voltage will afford poorer cutting but maximum coagulation, and the unfiltered full-wave rectified supply voltage an inbetween condition.
In a typical example for the FIG. 1 embodiment, the
plate voltage will be, for example, 600 volts, the screen voltage about 300 volts, and the resistor 44 may be about 7,500 ohms.
While my invention has been described and illustrated in several specific embodiments, it will be understood they are merely exemplary, and that various changes and modifications may be made in the circuitry disclosed without departing from the principles of the invention herein described.
What is claimed is:
l. Electrosurgical apparatus for dental use providing controlled cutting and coagulation comprising a radiofrequency oscillator circuit for generating at its output radio-frequency oscillating currents when activated by voltage at its input, means coupled to the output of said radio-frequency oscillator for applying said radiofrequency oscillating currents to a dental patient, a voltage supply circuit for receiving AC. voltage and converting same to a rectified DC. output voltage capable of activating said radio-frequency oscillator when applied to the oscillator input, means for applying the said output voltage of the supply circuit to the input of the radio-frequency oscillator, and means connected to said voltage supply circuit for selectively changing the waveform of its output voltage and thereby selectively modifying the radio-frequency oscillating currents generated by the oscillator when activated by said output voltage, said voltage supply circuit comprising a single-phase full-wave rectifier circuit comprising plural rectifiers capable of producing a fully-rectified output voltage, and the selective changing means comprising means connected to the rectifier circuit for producing a half-wave rectified output voltage.
2. Electrosurgical apparatus as set forth in claim 1 wherein the selective changing means comprises means for introducing resistance in series with at least one of the rectifiers to produce a rectified output voltage wherein the peak voltage is different for alternate half cycles.
3. Electrosurgical apparatus as set forth in claim 1 wherein the selective changing means comprises means for connecting one of the rectifiers to the bridge circuit, means for disconnecting one of the rectifiers from the bridge circuit, and means for connecting one of the rectifiers in series with a fixed resistor in the bridge circuit.
4. Electrosurgical apparatus as set forth in claim 1 wherein the selective changing means includes a variable resistance, and means for selectively connecting the variable resistance into the voltage supply circuit.
5. Electrosurgical apparatus as set forth in claim 1 wherein the voltage supply circuit comprises a single phase full-wave bridge rectifier circuit and the selective changing means includes means for disabling at least one of the rectifiers.
6. Electrosurgical apparatus as set forth in claim 1 wherein the rectifier circuit comprises a center-tapped transformer and two rectifiers, and the selective changing means comprises means for disconnecting one of the two rectifiers.
7. Electrosurgical apparatusas set forth in claim 6 wherein the selective changing means comprises means for introducing a resistance in series with one of the two rectifiers.
8. Electrosurgical apparatus as set forth in claim 1 wherein the voltage supply circuit comprises filtering means, and the selective changing means comprises means for selectively connecting the filtering means to the voltage supply circuit.
9. Electrosurgical apparatus as set forth in claim 8 wherein the selective changing means comprises a three-position switch for connecting the filtering means in one switch position and for disabling part of the rectifying circuit in another switch position.

Claims (9)

1. Electrosurgical apparatus for dental use providing controlled cutting and coagulation comprising a radio-frequency oscillator circuit for generating at its output radio-frequency oscillating currents when activated by voltage at its input, means coupled to the output of said radio-frequency oscillator for applying said radio-frequency oscillating currents to a dental patient, a voltage supply circuit for receiving A.C. voltage and converting same to a rectified D.C. output voltage capable of activating said radio-frequency oscillator when applied to the oscillator input, means for applying the said output voltage of the supply circuit to the input of the radio-frequency oscillator, and means connected to said voltage supply circuit for selectively changing the waveform of its output voltage and thereby selectively modifying the radio-frequency oscillating currents generated by the oscillator when activated by said output voltage, said voltage supply circuit comprising a single-phase full-wave rectifier circuit comprising plural rectifiers capable of producing a fully-rectified output voltage, and the selective changing means comprising means connected to the rectifier circuit for producing a half-wave rectified output voltAge.
2. Electrosurgical apparatus as set forth in claim 1 wherein the selective changing means comprises means for introducing resistance in series with at least one of the rectifiers to produce a rectified output voltage wherein the peak voltage is different for alternate half cycles.
3. Electrosurgical apparatus as set forth in claim 1 wherein the selective changing means comprises means for connecting one of the rectifiers to the bridge circuit, means for disconnecting one of the rectifiers from the bridge circuit, and means for connecting one of the rectifiers in series with a fixed resistor in the bridge circuit.
4. Electrosurgical apparatus as set forth in claim 1 wherein the selective changing means includes a variable resistance, and means for selectively connecting the variable resistance into the voltage supply circuit.
5. Electrosurgical apparatus as set forth in claim 1 wherein the voltage supply circuit comprises a single phase full-wave bridge rectifier circuit and the selective changing means includes means for disabling at least one of the rectifiers.
6. Electrosurgical apparatus as set forth in claim 1 wherein the rectifier circuit comprises a center-tapped transformer and two rectifiers, and the selective changing means comprises means for disconnecting one of the two rectifiers.
7. Electrosurgical apparatus as set forth in claim 6 wherein the selective changing means comprises means for introducing a resistance in series with one of the two rectifiers.
8. Electrosurgical apparatus as set forth in claim 1 wherein the voltage supply circuit comprises filtering means, and the selective changing means comprises means for selectively connecting the filtering means to the voltage supply circuit.
9. Electrosurgical apparatus as set forth in claim 8 wherein the selective changing means comprises a three-position switch for connecting the filtering means in one switch position and for disabling part of the rectifying circuit in another switch position.
US00127727A 1971-03-24 1971-03-24 Electrosurgical apparatus for dental use Expired - Lifetime US3730188A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12772771A 1971-03-24 1971-03-24

Publications (1)

Publication Number Publication Date
US3730188A true US3730188A (en) 1973-05-01

Family

ID=22431631

Family Applications (1)

Application Number Title Priority Date Filing Date
US00127727A Expired - Lifetime US3730188A (en) 1971-03-24 1971-03-24 Electrosurgical apparatus for dental use

Country Status (1)

Country Link
US (1) US3730188A (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875945A (en) * 1973-11-02 1975-04-08 Demetron Corp Electrosurgery instrument
US3884237A (en) * 1972-06-19 1975-05-20 Malley Conor C O Apparatus for intraocular surgery
US3952748A (en) * 1974-07-18 1976-04-27 Minnesota Mining And Manufacturing Company Electrosurgical system providing a fulguration current
US3961630A (en) * 1973-11-12 1976-06-08 Dentsply Research & Development Corporation Protective circuit for radio-frequency electrosurgical device
US4092986A (en) * 1976-06-14 1978-06-06 Ipco Hospital Supply Corporation (Whaledent International Division) Constant output electrosurgical unit
US4100505A (en) * 1976-05-07 1978-07-11 Macan Engineering & Manufacturing Company, Inc. Variable crest factor high frequency generator apparatus
US4191188A (en) * 1976-05-07 1980-03-04 Macan Engineering & Manufacturing Company, Inc. Variable crest factor high frequency generator apparatus
US4211230A (en) * 1978-07-31 1980-07-08 Sybron Corporation Electrosurgical coagulation
US4301801A (en) * 1979-02-16 1981-11-24 Ipco Hospital Supply Corporation (Whaledent International Division) Electrosurge failsafe system
DE3612646A1 (en) * 1985-04-16 1987-04-30 Ellman International Electrosurgical handle piece for blades, needles and forceps
US5318564A (en) * 1992-05-01 1994-06-07 Hemostatic Surgery Corporation Bipolar surgical snare and methods of use
US5324289A (en) * 1991-06-07 1994-06-28 Hemostatic Surgery Corporation Hemostatic bi-polar electrosurgical cutting apparatus and methods of use
US5445635A (en) * 1992-05-01 1995-08-29 Hemostatic Surgery Corporation Regulated-current power supply and methods for resistively-heated surgical instruments
US5472443A (en) * 1991-06-07 1995-12-05 Hemostatic Surgery Corporation Electrosurgical apparatus employing constant voltage and methods of use
US5484434A (en) * 1993-12-06 1996-01-16 New Dimensions In Medicine, Inc. Electrosurgical scalpel
US5484436A (en) * 1991-06-07 1996-01-16 Hemostatic Surgery Corporation Bi-polar electrosurgical instruments and methods of making
US5633578A (en) * 1991-06-07 1997-05-27 Hemostatic Surgery Corporation Electrosurgical generator adaptors
US5693045A (en) * 1995-06-07 1997-12-02 Hemostatic Surgery Corporation Electrosurgical generator cable
US5766166A (en) * 1995-03-07 1998-06-16 Enable Medical Corporation Bipolar Electrosurgical scissors
EP1050277A1 (en) 1998-02-02 2000-11-08 Jon C. Garito Dual-frequency electrosurgical instrument
US6179837B1 (en) 1995-03-07 2001-01-30 Enable Medical Corporation Bipolar electrosurgical scissors
EP1082945A1 (en) 1999-09-10 2001-03-14 Alan G. Ellman Low-voltage electrosurgical apparatus
US6391029B1 (en) 1995-03-07 2002-05-21 Enable Medical Corporation Bipolar electrosurgical scissors
US6458122B1 (en) * 1998-06-18 2002-10-01 Telea Electronic Engineering Srl Radiofrequency electrosurgical generator with current control
US6464701B1 (en) 1995-03-07 2002-10-15 Enable Medical Corporation Bipolar electrosurgical scissors
US20020165541A1 (en) * 2001-04-20 2002-11-07 Whitman Michael P. Bipolar or ultrasonic surgical device
US20020169392A1 (en) * 2001-05-01 2002-11-14 Csaba Truckai Electrosurgical working end and method for obtaining tissue samples for biopsy
US20030069579A1 (en) * 2001-09-13 2003-04-10 Csaba Truckai Electrosurgical working end with resistive gradient electrodes
US20030144652A1 (en) * 2001-11-09 2003-07-31 Baker James A. Electrosurgical instrument
US20030171748A1 (en) * 2001-10-22 2003-09-11 Sciogen Llc Electrosurgical instrument and method of use
US20030199870A1 (en) * 2001-10-22 2003-10-23 Csaba Truckai Jaw structure for electrosurgical instrument
US20030216732A1 (en) * 2002-05-20 2003-11-20 Csaba Truckai Medical instrument with thermochromic or piezochromic surface indicators
US20030220637A1 (en) * 2001-10-22 2003-11-27 Csaba Truckai Electrosurgical working end with replaceable cartridges
US20040116979A1 (en) * 2002-10-01 2004-06-17 Surgrx Electrosurgical instrument and method of use
US6773409B2 (en) 2001-09-19 2004-08-10 Surgrx Llc Surgical system for applying ultrasonic energy to tissue
US20040199161A1 (en) * 2003-02-14 2004-10-07 Surgrx, Inc., A Delaware Corporation Electrosurgical probe and method of use
US20040215185A1 (en) * 2001-10-18 2004-10-28 Csaba Truckai Electrosurgical working end for cotrolled energy delivery
US20050159745A1 (en) * 2004-01-16 2005-07-21 Surgrx, Inc. Electrosurgical instrument with replaceable cartridge
US20050171535A1 (en) * 2001-10-22 2005-08-04 Surgrx, Inc. Electrosurgical instrument and method of use
US6929644B2 (en) 2001-10-22 2005-08-16 Surgrx Inc. Electrosurgical jaw structure for controlled energy delivery
EP1562508A1 (en) * 2002-10-29 2005-08-17 Cathrx Pty Ltd System for, and method of, heating a biological site in a patient s body
US20050203507A1 (en) * 2004-03-12 2005-09-15 Surgrx, Inc. Electrosurgical instrument and method of use
US20050261678A1 (en) * 2004-04-19 2005-11-24 Surgrx, Inc. Surgical sealing surfaces and methods of use
US20050267464A1 (en) * 2001-10-18 2005-12-01 Surgrx, Inc. Electrosurgical instrument and method of use
US20060000823A1 (en) * 2003-11-19 2006-01-05 Surgrx, Inc. Polymer compositions exhibiting a PTC property and methods of fabrication
US7011657B2 (en) 2001-10-22 2006-03-14 Surgrx, Inc. Jaw structure for electrosurgical instrument and method of use
US20060069388A1 (en) * 2002-04-30 2006-03-30 Csaba Truckai Electrosurgical instrument and method
US7083619B2 (en) 2001-10-22 2006-08-01 Surgrx, Inc. Electrosurgical instrument and method of use
US20060217700A1 (en) * 2005-03-28 2006-09-28 Garito Jon C Electrosurgical instrument with enhanced capability
US7189233B2 (en) 2001-10-22 2007-03-13 Surgrx, Inc. Electrosurgical instrument
US20080045942A1 (en) * 2001-10-22 2008-02-21 Surgrx, Inc. Electrosurgical instrument and method of use
EP2030584A1 (en) 2007-08-30 2009-03-04 Jon C. Garito Tri-frequency electrosurgical instrument
US7875026B1 (en) * 2007-02-23 2011-01-25 Ellman International, Inc. Finger-controllable electrosurgical handpiece
US10143831B2 (en) 2013-03-14 2018-12-04 Cynosure, Inc. Electrosurgical systems and methods
US10492849B2 (en) 2013-03-15 2019-12-03 Cynosure, Llc Surgical instruments and systems with multimodes of treatments and electrosurgical operation
US11051872B2 (en) 2017-12-04 2021-07-06 II Robert James Stanley Electrosurgical electrodes and systems and methods including same
USD1005484S1 (en) 2019-07-19 2023-11-21 Cynosure, Llc Handheld medical instrument and docking base
US11819259B2 (en) 2018-02-07 2023-11-21 Cynosure, Inc. Methods and apparatus for controlled RF treatments and RF generator system
USD1025356S1 (en) 2023-10-05 2024-04-30 Cynosure, Llc Handheld medical instrument and optional docking base

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1945867A (en) * 1932-04-27 1934-02-06 Technical Equipment Company High frequency oscillatory apparatus for electrotherapeutic and sterilization purposes
US3058470A (en) * 1956-04-26 1962-10-16 Siemens Reiniger Werke Ag Apparatus for electrical highfrequency surgery
US3261358A (en) * 1959-03-20 1966-07-19 Bernard Pierre Denis Source of current for application to a patient for obtaining a therapeutic effect
US3478744A (en) * 1964-12-30 1969-11-18 Harry Leiter Surgical apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1945867A (en) * 1932-04-27 1934-02-06 Technical Equipment Company High frequency oscillatory apparatus for electrotherapeutic and sterilization purposes
US3058470A (en) * 1956-04-26 1962-10-16 Siemens Reiniger Werke Ag Apparatus for electrical highfrequency surgery
US3261358A (en) * 1959-03-20 1966-07-19 Bernard Pierre Denis Source of current for application to a patient for obtaining a therapeutic effect
US3478744A (en) * 1964-12-30 1969-11-18 Harry Leiter Surgical apparatus

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884237A (en) * 1972-06-19 1975-05-20 Malley Conor C O Apparatus for intraocular surgery
US3875945A (en) * 1973-11-02 1975-04-08 Demetron Corp Electrosurgery instrument
US3961630A (en) * 1973-11-12 1976-06-08 Dentsply Research & Development Corporation Protective circuit for radio-frequency electrosurgical device
US3952748A (en) * 1974-07-18 1976-04-27 Minnesota Mining And Manufacturing Company Electrosurgical system providing a fulguration current
US4100505A (en) * 1976-05-07 1978-07-11 Macan Engineering & Manufacturing Company, Inc. Variable crest factor high frequency generator apparatus
US4191188A (en) * 1976-05-07 1980-03-04 Macan Engineering & Manufacturing Company, Inc. Variable crest factor high frequency generator apparatus
US4092986A (en) * 1976-06-14 1978-06-06 Ipco Hospital Supply Corporation (Whaledent International Division) Constant output electrosurgical unit
US4211230A (en) * 1978-07-31 1980-07-08 Sybron Corporation Electrosurgical coagulation
US4301801A (en) * 1979-02-16 1981-11-24 Ipco Hospital Supply Corporation (Whaledent International Division) Electrosurge failsafe system
DE3612646A1 (en) * 1985-04-16 1987-04-30 Ellman International Electrosurgical handle piece for blades, needles and forceps
US5769849A (en) * 1991-06-07 1998-06-23 Hemostatic Surgery Corporation Bi-polar electrosurgical endoscopic instruments
US5324289A (en) * 1991-06-07 1994-06-28 Hemostatic Surgery Corporation Hemostatic bi-polar electrosurgical cutting apparatus and methods of use
US5810808A (en) * 1991-06-07 1998-09-22 Hemostatic Surgery Corporation Hemostatic bi-polar electrosurgical cutting apparatus and methods of use
US5472443A (en) * 1991-06-07 1995-12-05 Hemostatic Surgery Corporation Electrosurgical apparatus employing constant voltage and methods of use
US5776128A (en) * 1991-06-07 1998-07-07 Hemostatic Surgery Corporation Hemostatic bi-polar electrosurgical cutting apparatus
US5484436A (en) * 1991-06-07 1996-01-16 Hemostatic Surgery Corporation Bi-polar electrosurgical instruments and methods of making
US5633578A (en) * 1991-06-07 1997-05-27 Hemostatic Surgery Corporation Electrosurgical generator adaptors
US5318564A (en) * 1992-05-01 1994-06-07 Hemostatic Surgery Corporation Bipolar surgical snare and methods of use
US5445635A (en) * 1992-05-01 1995-08-29 Hemostatic Surgery Corporation Regulated-current power supply and methods for resistively-heated surgical instruments
US5484434A (en) * 1993-12-06 1996-01-16 New Dimensions In Medicine, Inc. Electrosurgical scalpel
US5766166A (en) * 1995-03-07 1998-06-16 Enable Medical Corporation Bipolar Electrosurgical scissors
US6179837B1 (en) 1995-03-07 2001-01-30 Enable Medical Corporation Bipolar electrosurgical scissors
US6350264B1 (en) 1995-03-07 2002-02-26 Enable Medical Corporation Bipolar electrosurgical scissors
US6391029B1 (en) 1995-03-07 2002-05-21 Enable Medical Corporation Bipolar electrosurgical scissors
US6464701B1 (en) 1995-03-07 2002-10-15 Enable Medical Corporation Bipolar electrosurgical scissors
US5693045A (en) * 1995-06-07 1997-12-02 Hemostatic Surgery Corporation Electrosurgical generator cable
EP1050277A1 (en) 1998-02-02 2000-11-08 Jon C. Garito Dual-frequency electrosurgical instrument
US6458122B1 (en) * 1998-06-18 2002-10-01 Telea Electronic Engineering Srl Radiofrequency electrosurgical generator with current control
US9662514B2 (en) 1999-06-02 2017-05-30 Covidien Lp Bipolar or ultrasonic surgical device
EP1082945A1 (en) 1999-09-10 2001-03-14 Alan G. Ellman Low-voltage electrosurgical apparatus
US8523890B2 (en) 2001-04-20 2013-09-03 Covidien Lp Bipolar or ultrasonic surgical device
US8292888B2 (en) 2001-04-20 2012-10-23 Tyco Healthcare Group Lp Bipolar or ultrasonic surgical device
US20020165541A1 (en) * 2001-04-20 2002-11-07 Whitman Michael P. Bipolar or ultrasonic surgical device
US8845665B2 (en) 2001-04-20 2014-09-30 Covidien Lp Bipolar or ultrasonic surgical device
US20020169392A1 (en) * 2001-05-01 2002-11-14 Csaba Truckai Electrosurgical working end and method for obtaining tissue samples for biopsy
US6913579B2 (en) 2001-05-01 2005-07-05 Surgrx, Inc. Electrosurgical working end and method for obtaining tissue samples for biopsy
US20030069579A1 (en) * 2001-09-13 2003-04-10 Csaba Truckai Electrosurgical working end with resistive gradient electrodes
US6802843B2 (en) 2001-09-13 2004-10-12 Csaba Truckai Electrosurgical working end with resistive gradient electrodes
US6773409B2 (en) 2001-09-19 2004-08-10 Surgrx Llc Surgical system for applying ultrasonic energy to tissue
US7070597B2 (en) 2001-10-18 2006-07-04 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US20050267464A1 (en) * 2001-10-18 2005-12-01 Surgrx, Inc. Electrosurgical instrument and method of use
US20040215185A1 (en) * 2001-10-18 2004-10-28 Csaba Truckai Electrosurgical working end for cotrolled energy delivery
US20050192568A1 (en) * 2001-10-22 2005-09-01 Surgrx, Inc. Electrosurgical jaw structure for controlled energy delivery
US20080188851A1 (en) * 2001-10-22 2008-08-07 Surgrx, Inc. Electrosurgical instrument
US7189233B2 (en) 2001-10-22 2007-03-13 Surgrx, Inc. Electrosurgical instrument
US20050171535A1 (en) * 2001-10-22 2005-08-04 Surgrx, Inc. Electrosurgical instrument and method of use
US7112201B2 (en) 2001-10-22 2006-09-26 Surgrx Inc. Electrosurgical instrument and method of use
US6929644B2 (en) 2001-10-22 2005-08-16 Surgrx Inc. Electrosurgical jaw structure for controlled energy delivery
US9149326B2 (en) 2001-10-22 2015-10-06 Ethicon Endo-Surgery, Inc. Electrosurgical instrument and method
US20030171748A1 (en) * 2001-10-22 2003-09-11 Sciogen Llc Electrosurgical instrument and method of use
US20030199870A1 (en) * 2001-10-22 2003-10-23 Csaba Truckai Jaw structure for electrosurgical instrument
US6905497B2 (en) 2001-10-22 2005-06-14 Surgrx, Inc. Jaw structure for electrosurgical instrument
US7981113B2 (en) 2001-10-22 2011-07-19 Surgrx, Inc. Electrosurgical instrument
US7186253B2 (en) 2001-10-22 2007-03-06 Surgrx, Inc. Electrosurgical jaw structure for controlled energy delivery
US7381209B2 (en) 2001-10-22 2008-06-03 Surgrx, Inc. Electrosurgical instrument
US7011657B2 (en) 2001-10-22 2006-03-14 Surgrx, Inc. Jaw structure for electrosurgical instrument and method of use
US7354440B2 (en) 2001-10-22 2008-04-08 Surgrx, Inc. Electrosurgical instrument and method of use
US20080045942A1 (en) * 2001-10-22 2008-02-21 Surgrx, Inc. Electrosurgical instrument and method of use
US7041102B2 (en) 2001-10-22 2006-05-09 Surgrx, Inc. Electrosurgical working end with replaceable cartridges
US20030220637A1 (en) * 2001-10-22 2003-11-27 Csaba Truckai Electrosurgical working end with replaceable cartridges
US7083619B2 (en) 2001-10-22 2006-08-01 Surgrx, Inc. Electrosurgical instrument and method of use
US20070129728A1 (en) * 2001-10-22 2007-06-07 Surgrx, Inc. Electrosurgical instrument
US6926716B2 (en) 2001-11-09 2005-08-09 Surgrx Inc. Electrosurgical instrument
US20030144652A1 (en) * 2001-11-09 2003-07-31 Baker James A. Electrosurgical instrument
US8075558B2 (en) 2002-04-30 2011-12-13 Surgrx, Inc. Electrosurgical instrument and method
US8460292B2 (en) 2002-04-30 2013-06-11 Ethicon Endo-Surgery, Inc. Electrosurgical instrument and method
US20060069388A1 (en) * 2002-04-30 2006-03-30 Csaba Truckai Electrosurgical instrument and method
US20030216732A1 (en) * 2002-05-20 2003-11-20 Csaba Truckai Medical instrument with thermochromic or piezochromic surface indicators
US7087054B2 (en) 2002-10-01 2006-08-08 Surgrx, Inc. Electrosurgical instrument and method of use
US20040116979A1 (en) * 2002-10-01 2004-06-17 Surgrx Electrosurgical instrument and method of use
US7871410B2 (en) 2002-10-29 2011-01-18 Cathrx Ltd System for, and method of, heating a biological site in a patient's body
EP1562508A1 (en) * 2002-10-29 2005-08-17 Cathrx Pty Ltd System for, and method of, heating a biological site in a patient s body
EP1562508A4 (en) * 2002-10-29 2006-04-05 Cathrx Ltd System for, and method of, heating a biological site in a patient s body
US20050273091A1 (en) * 2002-10-29 2005-12-08 Cathrxptyltd System for, and method of, heating a biological site in a patient's body
US20040199161A1 (en) * 2003-02-14 2004-10-07 Surgrx, Inc., A Delaware Corporation Electrosurgical probe and method of use
US7169146B2 (en) 2003-02-14 2007-01-30 Surgrx, Inc. Electrosurgical probe and method of use
US20060000823A1 (en) * 2003-11-19 2006-01-05 Surgrx, Inc. Polymer compositions exhibiting a PTC property and methods of fabrication
US7309849B2 (en) 2003-11-19 2007-12-18 Surgrx, Inc. Polymer compositions exhibiting a PTC property and methods of fabrication
US7632269B2 (en) 2004-01-16 2009-12-15 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with replaceable cartridge
US20050159745A1 (en) * 2004-01-16 2005-07-21 Surgrx, Inc. Electrosurgical instrument with replaceable cartridge
US7955331B2 (en) 2004-03-12 2011-06-07 Ethicon Endo-Surgery, Inc. Electrosurgical instrument and method of use
US20050203507A1 (en) * 2004-03-12 2005-09-15 Surgrx, Inc. Electrosurgical instrument and method of use
US7220951B2 (en) * 2004-04-19 2007-05-22 Surgrx, Inc. Surgical sealing surfaces and methods of use
US20050261678A1 (en) * 2004-04-19 2005-11-24 Surgrx, Inc. Surgical sealing surfaces and methods of use
US20070146113A1 (en) * 2004-04-19 2007-06-28 Surgrx, Inc. Surgical sealing surfaces and methods of use
US8075555B2 (en) 2004-04-19 2011-12-13 Surgrx, Inc. Surgical sealing surfaces and methods of use
US7674261B2 (en) * 2005-03-28 2010-03-09 Elliquence, Llc Electrosurgical instrument with enhanced capability
US20060217700A1 (en) * 2005-03-28 2006-09-28 Garito Jon C Electrosurgical instrument with enhanced capability
US7875026B1 (en) * 2007-02-23 2011-01-25 Ellman International, Inc. Finger-controllable electrosurgical handpiece
EP2030584A1 (en) 2007-08-30 2009-03-04 Jon C. Garito Tri-frequency electrosurgical instrument
US10143831B2 (en) 2013-03-14 2018-12-04 Cynosure, Inc. Electrosurgical systems and methods
US10492849B2 (en) 2013-03-15 2019-12-03 Cynosure, Llc Surgical instruments and systems with multimodes of treatments and electrosurgical operation
US11389226B2 (en) 2013-03-15 2022-07-19 Cynosure, Llc Surgical instruments and systems with multimodes of treatments and electrosurgical operation
US11051872B2 (en) 2017-12-04 2021-07-06 II Robert James Stanley Electrosurgical electrodes and systems and methods including same
US11819259B2 (en) 2018-02-07 2023-11-21 Cynosure, Inc. Methods and apparatus for controlled RF treatments and RF generator system
USD1005484S1 (en) 2019-07-19 2023-11-21 Cynosure, Llc Handheld medical instrument and docking base
USD1025356S1 (en) 2023-10-05 2024-04-30 Cynosure, Llc Handheld medical instrument and optional docking base

Similar Documents

Publication Publication Date Title
US3730188A (en) Electrosurgical apparatus for dental use
US3675655A (en) Method and apparatus for high frequency electric surgery
US4191188A (en) Variable crest factor high frequency generator apparatus
US3478744A (en) Surgical apparatus
US4038984A (en) Method and apparatus for high frequency electric surgery
US7094231B1 (en) Dual-mode electrosurgical instrument
US3699967A (en) Electrosurgical generator
AU731415B2 (en) Electrosurgical generator and system for underwater operation
US4473075A (en) Electrosurgical generator with improved rapid start capability
US4378801A (en) Electrosurgical generator
US1863118A (en) Surgeon's instrument
RU2304934C2 (en) Electron coagulative scalpel
Malis Electrosurgery
AU2014201216B2 (en) System and method for power control of electrosurgical resonant inverters
US6238388B1 (en) Low-voltage electrosurgical apparatus
US4727874A (en) Electrosurgical generator with high-frequency pulse width modulated feedback power control
US3929137A (en) Sonic warning for electrosurgical device
GB2317566A (en) Electrosurgery apparatus waveform generator
JPS6324933A (en) High frequency surgical instrument for thermally coagulating biological tissue
JPH07500514A (en) Method of using electrosurgical equipment and constant voltage
JP2014180539A (en) Crest-factor control of phase-shifted inverter
CA1091771A (en) High frequency-high voltage level electrosurgical unit
GB2090532A (en) An electrosurgical apparatus
US3987796A (en) Electrosurgical device
US4318409A (en) Electrosurgical generator