US3725898A - Temperature compensated multiple character electronic display - Google Patents

Temperature compensated multiple character electronic display Download PDF

Info

Publication number
US3725898A
US3725898A US00139945A US3725898DA US3725898A US 3725898 A US3725898 A US 3725898A US 00139945 A US00139945 A US 00139945A US 3725898D A US3725898D A US 3725898DA US 3725898 A US3725898 A US 3725898A
Authority
US
United States
Prior art keywords
character
matrix
temperature
voltage
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00139945A
Inventor
J Canton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Application granted granted Critical
Publication of US3725898A publication Critical patent/US3725898A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/2033Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature details of the sensing element
    • G05D23/2034Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature details of the sensing element the sensing element being a semiconductor

Definitions

  • ABSTRACT A temperature compensated multiple character electronic display is described. Each character cludes [22] Filed: May 3, 1971 position ina multielement matrix controlled by a The collectors of all transistors of all transistor.
  • each character is controlled separately to maintain a uniform display under varying operating temperatures by sampling the voltage of the base-emitter junction of a transistor of the enabled character as a mea- 29/5O6 sure of its temperature, and then applying power to ""219/506 the character during the following display cycle that is related to the sampled temperature.
  • This invention relates generally to electronic display systems, and more particularly relates to multicharacter electronic displays of the thermal type.
  • Temperature compensation is particularly important in multicharacter displays wherein, for example, a large number of character matrices are sequentially energized to print an entire line on a page.
  • the rate at which each particular character matrix is energized, the type of characters being printed, and the ambient temperature to a lesser extent all determine the temperature to which each matrix cools between print cycles. For example, the last few characters of a line may not be used as much as the first few characters when printing a page. If the same amount of power were to be applied to the printhead during a print cycle, the ultimate printing temperature of the matrix would be determined by the temperature at the beginning of the cycle. Of course, the beginning temperature increases sharply if the duty cycle of the character matrix increases.
  • the temperature of each character is sampled prior to the print cycle for the particular character, and the power that is applied to the character matrix during the print cycle is adjusted in such a manner as to achieve a predetermined temperature during the print cycle.
  • Another important advantage of the present invention is that the same circuitry used for selecting the character to be printed is used to select the temperature monitoring means at the character matrix.
  • FIG. 1 is a simplified plan view of a multicharacter electronic display in accordance with this invention.
  • FIG. 2 is an enlarged perspective view of a portion of the display device shown in FIG. 1;
  • FIG. 3 is a detailed circuit diagram of a temperature compensated electronic display in accordance with the present invention.
  • FIG. 4 is a simplified block diagram of the circuit of FIG. 3.
  • Each of the electronic display devices 10 includes four character matrices l2a-l2d.
  • Each matrix includes a 5 X 7 array of elements B 42 each of which is air isolated around its periphery and which is bonded to a ceramic slice 14 by a thermal insulating epoxy layer 16.
  • the ceramic slice 14 is mounted on a metal heat sink 17.
  • a transistor T,. with a series resistor R, in the collector branch is formed by a diffusion in the interior face of each of the elements E -E that is adjacent the epoxy layer 16, and thin film circuits disposed on the interior faces of the semiconductor device are used to interconnect the diffused devices into an integrated circuit.
  • element E, in each of the characters includes a transistor T, and a resistor R (see FIG. 3)
  • element E includes a transistor T and a resistor R
  • element E in each character includes transistor T and resistor R
  • the collectors of all of the transistors T -T of a particular character are connected through the respective resistors to a common collector voltage supply line 18.
  • All of the emitters of the transistors T -T of each of the characters 12a-12d are connected to separate common emitter supply lines 20a-20d.
  • Each of the character matrices 12 may then be separately enabled by selectively connecting the appropriate emitter supply line 20a-20d to ground. Only one of the emitter circuits 20a-20d of the three heads 10 is selected by a character select switch 22 at any one time, so that only one matrix is enabled at a time.
  • the base contacts of the transistors are of the corresponding elements of all characters in the device are also common.
  • the bases of transistors T, of characters l2a-l2d of all display devices 10 in the system are connected to a common control line C
  • the bases of all transistors T are connected to control line C
  • the bases of all transistors T are connected to a common control line C
  • the bases of all transistors T- T would be connected to corresponding control lines C -C (not illustrated).
  • the control lines C C extend to a character generator 24 which energizes those lines necessary to produce the desired character by turning selected elements in the enabled character matrix on.
  • the character select switch 22 would typically scan from the left-hand character matrix to the right-hand character matrix in sequence by connecting the common emitter line 20, of the successive character matrices to ground. Then during the period that a particular character is thus enabled, the character generator produces the positive voltage levels on the control lines C -C necessary to generate the desired character at the selected character position.
  • the positive voltage on the control line C for example, would turn transistor T, on thus causing element E, to be heated by the power dissipated in resistor R,.
  • control lines are at ground potential
  • transistor T of the enabled character, character 12a for example, remains off because the collector-base junctions of transistors T of all the other characters prevent current from flowing from the energized common collector supply voltage line 18 through the collector-base junction of the inactive transistors T to control line C and thus to the base of transistor T of the enabled character.
  • a constant current source 26 (see FIG. 4) is connected to control line C and supplies a constant current during a very short sample cycle that precedes the print cycle.
  • control line C passes along control line C and through the base-emitter diode of the transistor T of the character enabled by the character select switch 22.
  • the character select switch 22 connects common emitter line 20a of device b to ground so as to enable character matrix 12a of device 10b
  • the current injected on control line C by the constant current source 26 will pass through the base-emitter diode of transistor T of matrix 12a of device 10b because the emitter circuits of transistor T of all other matrices are opened by switch 22.
  • the voltage on control line C will then be related to the temperature of the baseemitter diode of transistor T and thus to the temperature of the enabled matrix.
  • the voltage of line C is amplified by amplifier 28 and the amplified voltage sampled and held by circuit 30.
  • the stored voltage is then applied to the noninverting input of an operational amplifier 32 during a print cycle pulse applied to terminal 36 immediately following the sample pulse.
  • a switch 38 turns a series regulator 40 on to apply a voltage to the common collector line 18 that has a magnitude in predetermined relation to the voltage stored by the sample and hold circuit 30 as a result of the feedback loop 41 to the inverting input of amplifier 32.
  • the character generator 24 is also activated during the print cycle to produce a positive voltage on the appropriate control lines C -C to cause the desired character to be generated by the enabled character matrix 12a.
  • the constant current source 26 includes a transistor 42 which is turned on and off by a switch 44. When conducting, transistor 42 supplies a constant current as a result of the voltage divider connected to the base so that the voltage on line C is determined by the offset voltage of the base-emitter diode of the enabled transistor T This voltage decreases with an increase in temperature at a rate of about 0.02V/ C.
  • the voltage on line C is applied to input 46 of the operational amplifier 28, the offset of which is set by variable resistor 48 in the conventional manner.
  • the output of the amplifier 28 is proportional to the voltage on control line C and is applied to the base of transistor 52 through resistor 50, and to the base of transistor 54 through resistor 50 and diode 55.
  • Transistors 52 and 54 form a complementary switching pair for charging and discharging storage capacitor 64 when turned on.
  • Diode 55 provides an offset voltage to eliminate the dead spot at the crossover voltage.
  • Transistors 52 and 54 are turned on by the complement of the sample pulse derived from the inverter 56 and applied to the base of switching transistor 58. This turns transistors 58, 60 and 62 off, enabling the complementary sampling transistors 52 and 54 so that the output voltage of the amplifier 28 will charge storage capacitor 64.
  • the voltage on capacitor 64 is then stored during the subsequent print cycle after the transistors 52 and 54 are off.
  • the voltage stored on capacitor 64 is applied to the 65 noninverting input of amplifier 32.
  • the output of am plifier 32 is passed through a Zener diode 66 and diode 68 and applied to the input base of a pair of transistors 70 and 72 of the series voltage regulator 40.
  • inverter 74 turns transistor 76 off," thus enabling transistors 70 and 72 to be turned on by the output of amplifier 32.
  • the voltage applied to the common collector supply line 18 is then maintained at a level in predetermined relationship to the voltage sample and stored on capacitor 64 as a result of the feedback network including resistors 78 and 80 to the noninverting input of amplifier 32.
  • the voltage, and hence the power, applied to those elements of the enabled character matrix selected by the character generator 24 is controlled in accordance with the temperature of the center element E of the matrix immediately preceding the print cycle so that a print pulse of predetermined length will result in a uniform temperature regardless of the temperature of the matrix before the print cycle. This procedure is repeated for each character matrix immediately preceding the print cycle for the respective character matrix.
  • each of said character matrices having a plurality of thermally separated elements each including a heating means
  • each character matrix includes at least one thermally separated element including a semiconductor diode junction in heat exchanging relationship with the heating means for sensing the temperature of the character matrix.
  • the diode junction is part of a transistor connected to control current through the resistive heating means
  • the temperature of the diode junction is selectively sensed by closing the circuit in which the diode is located.
  • the diode is the base-emitter junction of the transistor
  • the resistive heating means is connected in the collector circuit of the transistor.
  • the collectors of the transistors of the elements are completed through the resistive heating means of each character matrix to a common collector voltage supply line,
  • the emitters of the transistors are separately connectable to an emitter supply voltage.
  • circuit means for storing a voltage proportional to the temperature of a character matrix during a sample period
  • circuit means for applying power that is proportional to the stored voltage to the heating elements of said character matrix during a subsequent period.
  • first switching means for controlling the current through each individual heating element
  • temperature sensing means for each matrix for producing a signal representative of the temperature of the respective matrix
  • each character matrix including means for adjusting the supply voltage in response to a signal from a temperature sensing means
  • second switching means for selectively enabling each of the character matrices for printing by connecting the voltage supply means to the respective character matrices and respective temperature means
  • circuit means for decoding electrical data representative of characters and producing outputs for operating the switching means of the enabled matrix in a manner to heat the elements in a geometric pattern corresponding to the character represented by the character data.
  • At least one of the first switching means of each matrix comprises a transistor in heat exchange relationship with the heating element it controls, the heating element being connected in the collector circuit, and wherein the temperature of the respective matrix is sensed by passing a current through the base-emitter junction of the transistor and taking the offset voltage as a measure of the temperature of the matrix.
  • the second switching means are in the emitter circuits of the transistors used as temperature sensors.
  • each semiconductor element including a transistor formed in the element with a resistance in the collector circuit for heating the element when current is passed through the transistor,
  • switch means for selectively opening the emitter circuits of the transistors of each matrix to permit enabling of only one selected matrix at a time
  • the means for applying power is circuit means for adjusting the voltage applied across the resistances and corresponding transistors.

Abstract

A temperature compensated multiple character electronic display is described. Each character position includes a multielement matrix controlled by a transistor. The collectors of all transistors of all matrices are common. The emitters of all transistors of a single character matrix are common, and are selectively connectable to ground so that the characters can be sequentially enabled. The corresponding elements of all character matrices are connected to a common control line and are actuated by a single character generator. The power sequentially applied to each character is controlled separately to maintain a uniform display under varying operating temperatures by sampling the voltage of the base-emitter junction of a transistor of the enabled character as a measure of its temperature, and then applying power to the character during the following display cycle that is related to the sampled temperature.

Description

[ 51 Apr. 3, 1973 United States Patet 9] Canton Primary Examiner-John W. Caldwell Assistant Examiner-Marshall M. Curtis Attorney-Harold Levine, James 0. Dixon, Andrew Rene E. Grossman, Melvin Sharp,
Richards, Harris and Hubbard and V. Bryan Medlock,
[73] Assignee: Texas Instruments Incorporated,
Dallas, Tex.
[57] ABSTRACT A temperature compensated multiple character electronic display is described. Each character cludes [22] Filed: May 3, 1971 position ina multielement matrix controlled by a The collectors of all transistors of all transistor.
m a D n .m a m D. D. A ms u d 1 ..m 0' e R. m. p A l 1 2 [63] Continuation of Ser. No. 788,249, Dec. 31, 1968,
matrices are common. The emitters of all transistors of a single character matrix are common, and are abandoned.
selectively connectable to ground so that the characters can be sequentially enabled. The corresponding elements of all character matrices are connected to a 1 02 w w ne 4 3..., 2M B04 06% 4 u .0 n 4 n m h "c 0-! e "us I h C km .m.m UIF 11:] 2 8 555 [r.:l
common control line and are actuated by a single 219/506 178/30 89 haracter generator. The power sequential] y applied to each character is controlled separately to maintain a uniform display under varying operating temperatures by sampling the voltage of the base-emitter junction of a transistor of the enabled character as a mea- 29/5O6 sure of its temperature, and then applying power to ""219/506 the character during the following display cycle that is related to the sampled temperature.
m: m WM t .IPUN smm Emm m pw mfimm Wm M am H99 NHH Um 6O 77 m% 6 44 U 3 3 12 Claims, 4 Drawing Figures l l I l PATENTEDAPYM I975 725,898
SHEET 2 or 2 (ff/$1 [bl/,
ATTORNEY TEMPERATURE COMPENSATED MULTIPLE CHARACTER ELECTRONIC DISPLAY This application is a continuation of application Ser. No. 788,249, filed Dec. 31, 1968, now abandoned.
This invention relates generally to electronic display systems, and more particularly relates to multicharacter electronic displays of the thermal type.
In thermal type electronic displays, particularly those used to print on thermally sensitive paper, it has been found necessary to maintain a uniform temperature during successive display cycles in order to provide uniform printing density. Temperature compensation is particularly important in multicharacter displays wherein, for example, a large number of character matrices are sequentially energized to print an entire line on a page. In addition to variations in the ambient temperature, the rate at which each particular character matrix is energized, the type of characters being printed, and the ambient temperature to a lesser extent, all determine the temperature to which each matrix cools between print cycles. For example, the last few characters of a line may not be used as much as the first few characters when printing a page. If the same amount of power were to be applied to the printhead during a print cycle, the ultimate printing temperature of the matrix would be determined by the temperature at the beginning of the cycle. Of course, the beginning temperature increases sharply if the duty cycle of the character matrix increases.
In accordance with this invention, the temperature of each character is sampled prior to the print cycle for the particular character, and the power that is applied to the character matrix during the print cycle is adjusted in such a manner as to achieve a predetermined temperature during the print cycle. Another important advantage of the present invention is that the same circuitry used for selecting the character to be printed is used to select the temperature monitoring means at the character matrix.
The novel features believed characteristic of this invention are set forth in the appended claims. The invention itself, however, as well as other objects and advantages thereof, may best be understood by reference to the following detailed description of an illustrative embodiment, when read in conjunction with the accompanying drawings, wherein:
FIG. 1 is a simplified plan view of a multicharacter electronic display in accordance with this invention;
FIG. 2 is an enlarged perspective view of a portion of the display device shown in FIG. 1;
FIG. 3 is a detailed circuit diagram of a temperature compensated electronic display in accordance with the present invention; and
FIG. 4 is a simplified block diagram of the circuit of FIG. 3.
Referring now to the drawings, and in particular to FIG. 1, three four-character electronic display devices in accordance with the present invention are each indicated generally-by the reference numerals a, 10b and 100. Each of the electronic display devices 10 includes four character matrices l2a-l2d. Each matrix includes a 5 X 7 array of elements B 42 each of which is air isolated around its periphery and which is bonded to a ceramic slice 14 by a thermal insulating epoxy layer 16. The ceramic slice 14 is mounted on a metal heat sink 17.
As will presently be described, a transistor T,. with a series resistor R, in the collector branch is formed by a diffusion in the interior face of each of the elements E -E that is adjacent the epoxy layer 16, and thin film circuits disposed on the interior faces of the semiconductor device are used to interconnect the diffused devices into an integrated circuit. For example, element E, in each of the characters includes a transistor T, and a resistor R (see FIG. 3), element E includes a transistor T and a resistor R and element E in each character includes transistor T and resistor R The collectors of all of the transistors T -T of a particular character are connected through the respective resistors to a common collector voltage supply line 18. All of the emitters of the transistors T -T of each of the characters 12a-12d are connected to separate common emitter supply lines 20a-20d. Each of the character matrices 12 may then be separately enabled by selectively connecting the appropriate emitter supply line 20a-20d to ground. Only one of the emitter circuits 20a-20d of the three heads 10 is selected by a character select switch 22 at any one time, so that only one matrix is enabled at a time.
The base contacts of the transistors are of the corresponding elements of all characters in the device are also common. For example, the bases of transistors T, of characters l2a-l2d of all display devices 10 in the system are connected to a common control line C the bases of all transistors T are connected to control line C and the bases of all transistors T are connected to a common control line C Of course, it will be understood that the bases of all transistors T- T (not illustrated) would be connected to corresponding control lines C -C (not illustrated). The control lines C C, extend to a character generator 24 which energizes those lines necessary to produce the desired character by turning selected elements in the enabled character matrix on.
In the operation of such a system, the character select switch 22 would typically scan from the left-hand character matrix to the right-hand character matrix in sequence by connecting the common emitter line 20, of the successive character matrices to ground. Then during the period that a particular character is thus enabled, the character generator produces the positive voltage levels on the control lines C -C necessary to generate the desired character at the selected character position. The positive voltage on the control line C for example, would turn transistor T, on thus causing element E, to be heated by the power dissipated in resistor R,. Those elements on which control lines are at ground potential would remain turned off." For example, if control line C remains at ground potential, transistor T of the enabled character, character 12a for example, remains off because the collector-base junctions of transistors T of all the other characters prevent current from flowing from the energized common collector supply voltage line 18 through the collector-base junction of the inactive transistors T to control line C and thus to the base of transistor T of the enabled character.
In accordance with the present invention, a constant current source 26 (see FIG. 4) is connected to control line C and supplies a constant current during a very short sample cycle that precedes the print cycle. The
current passes along control line C and through the base-emitter diode of the transistor T of the character enabled by the character select switch 22. For example, if the character select switch 22 connects common emitter line 20a of device b to ground so as to enable character matrix 12a of device 10b, the current injected on control line C by the constant current source 26 will pass through the base-emitter diode of transistor T of matrix 12a of device 10b because the emitter circuits of transistor T of all other matrices are opened by switch 22. The voltage on control line C will then be related to the temperature of the baseemitter diode of transistor T and thus to the temperature of the enabled matrix.
When a short sample pulse is applied to input 34, the voltage of line C is amplified by amplifier 28 and the amplified voltage sampled and held by circuit 30. The stored voltage is then applied to the noninverting input of an operational amplifier 32 during a print cycle pulse applied to terminal 36 immediately following the sample pulse. During the print cycle pulse, a switch 38 turns a series regulator 40 on to apply a voltage to the common collector line 18 that has a magnitude in predetermined relation to the voltage stored by the sample and hold circuit 30 as a result of the feedback loop 41 to the inverting input of amplifier 32. The character generator 24 is also activated during the print cycle to produce a positive voltage on the appropriate control lines C -C to cause the desired character to be generated by the enabled character matrix 12a.
The circuit shown in the simplified block diagram of FIG. 4 is shown in greater detail in FIG. 3 wherein corresponding components are designated by the same reference characters. The constant current source 26 includes a transistor 42 which is turned on and off by a switch 44. When conducting, transistor 42 supplies a constant current as a result of the voltage divider connected to the base so that the voltage on line C is determined by the offset voltage of the base-emitter diode of the enabled transistor T This voltage decreases with an increase in temperature at a rate of about 0.02V/ C.
The voltage on line C is applied to input 46 of the operational amplifier 28, the offset of which is set by variable resistor 48 in the conventional manner. Thus, the output of the amplifier 28 is proportional to the voltage on control line C and is applied to the base of transistor 52 through resistor 50, and to the base of transistor 54 through resistor 50 and diode 55. Transistors 52 and 54 form a complementary switching pair for charging and discharging storage capacitor 64 when turned on. Diode 55 provides an offset voltage to eliminate the dead spot at the crossover voltage. Transistors 52 and 54 are turned on by the complement of the sample pulse derived from the inverter 56 and applied to the base of switching transistor 58. This turns transistors 58, 60 and 62 off, enabling the complementary sampling transistors 52 and 54 so that the output voltage of the amplifier 28 will charge storage capacitor 64. The voltage on capacitor 64 is then stored during the subsequent print cycle after the transistors 52 and 54 are off.
The voltage stored on capacitor 64 is applied to the 65 noninverting input of amplifier 32. The output of am plifier 32 is passed through a Zener diode 66 and diode 68 and applied to the input base of a pair of transistors 70 and 72 of the series voltage regulator 40. When the print cycle pulse is applied to input 36, inverter 74 turns transistor 76 off," thus enabling transistors 70 and 72 to be turned on by the output of amplifier 32. The voltage applied to the common collector supply line 18 is then maintained at a level in predetermined relationship to the voltage sample and stored on capacitor 64 as a result of the feedback network including resistors 78 and 80 to the noninverting input of amplifier 32.
Thus the voltage, and hence the power, applied to those elements of the enabled character matrix selected by the character generator 24 is controlled in accordance with the temperature of the center element E of the matrix immediately preceding the print cycle so that a print pulse of predetermined length will result in a uniform temperature regardless of the temperature of the matrix before the print cycle. This procedure is repeated for each character matrix immediately preceding the print cycle for the respective character matrix.
Although a preferred embodiment of the invention has been described in detail, it is to be understood that various changes, substitutions, and alterations can be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
What is claimed is:
'1. In a multiple character electronic display device,
the combination of:
a plurality of character matrices, each of said character matrices having a plurality of thermally separated elements each including a heating means,
means for sensing the temperature of each of the character matrices individually, and
means responsive to said sensing means of a character matrix for selectively applying power to the heating means of the elements of the character matrix at a voltage level related to the temperature of said character matrix.
2. The combination defined in claim 1 wherein:
each character matrix includes at least one thermally separated element including a semiconductor diode junction in heat exchanging relationship with the heating means for sensing the temperature of the character matrix.
3. The combination defined in claim 2 wherein:
the diode junction is part of a transistor connected to control current through the resistive heating means, and
the temperature of the diode junction is selectively sensed by closing the circuit in which the diode is located.
4. The combination defined in claim 3 wherein:
the diode is the base-emitter junction of the transistor, and
the resistive heating means is connected in the collector circuit of the transistor.
5. The combination defined in claim 4 wherein:
the collectors of the transistors of the elements are completed through the resistive heating means of each character matrix to a common collector voltage supply line,
the bases of the transistors of the elements are common, and
the emitters of the transistors are separately connectable to an emitter supply voltage.
6. The combination defined in claim 1 wherein said power applying means includes:
circuit means for storing a voltage proportional to the temperature of a character matrix during a sample period, and
circuit means for applying power that is proportional to the stored voltage to the heating elements of said character matrix during a subsequent period.
7. In a multi-character electronic display device, the
combination of: V
a plurality of character matrices each comprising a plurality of thermally separated elements each including a heating element,
first switching means for controlling the current through each individual heating element,
temperature sensing means for each matrix for producing a signal representative of the temperature of the respective matrix,
voltage supply means connected to each character matrix including means for adjusting the supply voltage in response to a signal from a temperature sensing means,
second switching means for selectively enabling each of the character matrices for printing by connecting the voltage supply means to the respective character matrices and respective temperature means, and
circuit means for decoding electrical data representative of characters and producing outputs for operating the switching means of the enabled matrix in a manner to heat the elements in a geometric pattern corresponding to the character represented by the character data.
8. The combination of claim 7 wherein:
at least one of the first switching means of each matrix comprises a transistor in heat exchange relationship with the heating element it controls, the heating element being connected in the collector circuit, and wherein the temperature of the respective matrix is sensed by passing a current through the base-emitter junction of the transistor and taking the offset voltage as a measure of the temperature of the matrix.
9. The combination of claim 8 wherein:
the second switching means are in the emitter circuits of the transistors used as temperature sensors.
10. In an electronic display, the combination of:
a plurality of matrices each comprised of a like number of semiconductor elements,
each semiconductor element including a transistor formed in the element with a resistance in the collector circuit for heating the element when current is passed through the transistor,
a separate control line common to the bases of the transistors of corresponding elements of the matrices,
switch means for selectively opening the emitter circuits of the transistors of each matrix to permit enabling of only one selected matrix at a time,
means for passing a current through one of the control lines and the base-emitter junction of the corresponding transistor of the enabled matrix to sense the temperature of the matrix, and
means for applying power that is related in magnitude to the magnitude of the sensed temperature to the enabled matrix.
11. The combination of claim 10 wherein:
the means for applying power is circuit means for adjusting the voltage applied across the resistances and corresponding transistors.
12. The combination of claim 11 wherein the means for applying power includes:
means for sampling the offset voltage of the baseemitter junction of the enabled transistor during a sample period and storing the voltage during a succeeding energizing period, and
means for regulating the voltage applied across the resistances and corresponding transistors in relation to the stored voltage during the energizing period.

Claims (12)

1. In a multiple character electronic display device, the combination of: a plurality of character matrices, each of said character matrices having a plurality of thermally separated elements each including a heating means, means for sensing the temperature of each of the character matrices individually, and means responsive to said sensing means of a character matrix for selectively applying power to the heating means of the elements of the character matrix at a voltage level related to the temperature of said character matrix.
2. The combination defined in claim 1 wherein: each character matrix includes at least one thermally separated element including a semiconductor diode junction in heat exchanging relationship with the heating means for sensing the temperature of the character matrix.
3. The combination defined in claim 2 wherein: the diode junction is part of a transistor connected to control current through the resistive heating means, and the temperature of the diode junction is selectively sensed by closing the circuit in which the diode is located.
4. The combination defined in claim 3 wherein: the diode is the base-emitter junction of the transistor, and the resistive heating means is connected in the collector circuit of the transistor.
5. The combination defined in claim 4 wherein: the collectors of the transistors of the elements are completed through the resistive heating means of each character matrix to a common collector voltage supply line, the bases of the transistors of the elements are common, and the emitters of the transistors are separately connectable to an emitter supply voltage.
6. The combination defined in claim 1 wherein said power applying means includes: circuit means for storing a voltage proportional to the temperature of a character matrix during a sample period, and circuit means for applying power that is proportional to the stored voltage to the heating elEments of said character matrix during a subsequent period.
7. In a multi-character electronic display device, the combination of: a plurality of character matrices each comprising a plurality of thermally separated elements each including a heating element, first switching means for controlling the current through each individual heating element, temperature sensing means for each matrix for producing a signal representative of the temperature of the respective matrix, voltage supply means connected to each character matrix including means for adjusting the supply voltage in response to a signal from a temperature sensing means, second switching means for selectively enabling each of the character matrices for printing by connecting the voltage supply means to the respective character matrices and respective temperature means, and circuit means for decoding electrical data representative of characters and producing outputs for operating the switching means of the enabled matrix in a manner to heat the elements in a geometric pattern corresponding to the character represented by the character data.
8. The combination of claim 7 wherein: at least one of the first switching means of each matrix comprises a transistor in heat exchange relationship with the heating element it controls, the heating element being connected in the collector circuit, and wherein the temperature of the respective matrix is sensed by passing a current through the base-emitter junction of the transistor and taking the offset voltage as a measure of the temperature of the matrix.
9. The combination of claim 8 wherein: the second switching means are in the emitter circuits of the transistors used as temperature sensors.
10. In an electronic display, the combination of: a plurality of matrices each comprised of a like number of semiconductor elements, each semiconductor element including a transistor formed in the element with a resistance in the collector circuit for heating the element when current is passed through the transistor, a separate control line common to the bases of the transistors of corresponding elements of the matrices, switch means for selectively opening the emitter circuits of the transistors of each matrix to permit enabling of only one selected matrix at a time, means for passing a current through one of the control lines and the base-emitter junction of the corresponding transistor of the enabled matrix to sense the temperature of the matrix, and means for applying power that is related in magnitude to the magnitude of the sensed temperature to the enabled matrix.
11. The combination of claim 10 wherein: the means for applying power is circuit means for adjusting the voltage applied across the resistances and corresponding transistors.
12. The combination of claim 11 wherein the means for applying power includes: means for sampling the offset voltage of the base-emitter junction of the enabled transistor during a sample period and storing the voltage during a succeeding energizing period, and means for regulating the voltage applied across the resistances and corresponding transistors in relation to the stored voltage during the energizing period.
US00139945A 1971-05-03 1971-05-03 Temperature compensated multiple character electronic display Expired - Lifetime US3725898A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13994571A 1971-05-03 1971-05-03

Publications (1)

Publication Number Publication Date
US3725898A true US3725898A (en) 1973-04-03

Family

ID=22489020

Family Applications (1)

Application Number Title Priority Date Filing Date
US00139945A Expired - Lifetime US3725898A (en) 1971-05-03 1971-05-03 Temperature compensated multiple character electronic display

Country Status (1)

Country Link
US (1) US3725898A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921162A (en) * 1972-04-06 1975-11-18 Matsushita Electric Ind Co Ltd Method of driving liquid crystal display device
US3934695A (en) * 1974-09-23 1976-01-27 Hewlett-Packard Company Method and apparatus for enhancing and maintaining character quality in thermal printers
US4045791A (en) * 1972-04-06 1977-08-30 Matsushita Electric Industrial Co., Ltd. Apparatus for driving liquid crystal display device wherein the signal applied thereto is varied in accordance with the temperature of the device
US4090060A (en) * 1977-01-31 1978-05-16 Barber-Colman Company Thermal printhead control circuit
US4156167A (en) * 1976-07-12 1979-05-22 Wilkins & Associates, Inc. Radiation emitting system with pulse width and frequency control
US4268827A (en) * 1979-09-21 1981-05-19 Dresser Industries, Inc. Operability verification for segmental electromagnetic display
US4294519A (en) * 1978-05-26 1981-10-13 Sharp Kabushiki Kaisha Color density stabilizer for electrochromic display
US4296562A (en) * 1978-03-07 1981-10-27 Sanborn George A Traveling light display
US4305080A (en) * 1979-07-18 1981-12-08 International Business Machines Corporation Compensating driver circuit for thermal print head
US4330786A (en) * 1979-06-18 1982-05-18 Mitsubishi Denki Kabushiki Kaisha Method of controlling thermally controlling a thermal printing head
US4350449A (en) * 1980-06-23 1982-09-21 International Business Machines Corporation Resistive ribbon printing apparatus and method
US4391535A (en) * 1981-08-10 1983-07-05 Intermec Corporation Method and apparatus for controlling the area of a thermal print medium that is exposed by a thermal printer
US4535340A (en) * 1983-06-21 1985-08-13 Fuji Xerox Co. Ltd. Method and apparatus for thermal printing
US4573058A (en) * 1985-05-24 1986-02-25 Ncr Canada Ltd - Ncr Canada Ltee Closed loop thermal printer for maintaining constant printing energy
US4717924A (en) * 1986-08-18 1988-01-05 Ncr Corporation Thermal printing control system
US4795999A (en) * 1986-07-18 1989-01-03 Shinko Electric Co., Ltd. Thermal transfer type printer
US4987289A (en) * 1988-07-21 1991-01-22 Rockwell International Corporation Liquid crystal display heating system
US5121135A (en) * 1989-08-25 1992-06-09 Sharp Kabushiki Kaisha Thermal head having integral analog drive compensation
US5600231A (en) * 1995-04-05 1997-02-04 Avery Dennison Corporation Device for testing and refreshing batteries
US5610511A (en) * 1993-05-07 1997-03-11 Avery Dennison Corporation Temperature responsive battery tester
US6260955B1 (en) 1996-03-12 2001-07-17 Array Printers Ab Printing apparatus of toner-jet type
US6278430B1 (en) * 1998-03-06 2001-08-21 Array Printers Ab Thermosensitive display device
US6406132B1 (en) 1996-03-12 2002-06-18 Array Printers Ab Printing apparatus of toner jet type having an electrically screened matrix unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3408476A (en) * 1966-03-21 1968-10-29 Hoover Ball & Bearing Co Apparatus for detecting failure of electrical heating elements
US3495070A (en) * 1967-05-29 1970-02-10 Murray H Zissen Thermal printing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3408476A (en) * 1966-03-21 1968-10-29 Hoover Ball & Bearing Co Apparatus for detecting failure of electrical heating elements
US3495070A (en) * 1967-05-29 1970-02-10 Murray H Zissen Thermal printing apparatus

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921162A (en) * 1972-04-06 1975-11-18 Matsushita Electric Ind Co Ltd Method of driving liquid crystal display device
US4045791A (en) * 1972-04-06 1977-08-30 Matsushita Electric Industrial Co., Ltd. Apparatus for driving liquid crystal display device wherein the signal applied thereto is varied in accordance with the temperature of the device
US3934695A (en) * 1974-09-23 1976-01-27 Hewlett-Packard Company Method and apparatus for enhancing and maintaining character quality in thermal printers
US4156167A (en) * 1976-07-12 1979-05-22 Wilkins & Associates, Inc. Radiation emitting system with pulse width and frequency control
US4090060A (en) * 1977-01-31 1978-05-16 Barber-Colman Company Thermal printhead control circuit
US4296562A (en) * 1978-03-07 1981-10-27 Sanborn George A Traveling light display
US4294519A (en) * 1978-05-26 1981-10-13 Sharp Kabushiki Kaisha Color density stabilizer for electrochromic display
US4330786A (en) * 1979-06-18 1982-05-18 Mitsubishi Denki Kabushiki Kaisha Method of controlling thermally controlling a thermal printing head
US4305080A (en) * 1979-07-18 1981-12-08 International Business Machines Corporation Compensating driver circuit for thermal print head
US4268827A (en) * 1979-09-21 1981-05-19 Dresser Industries, Inc. Operability verification for segmental electromagnetic display
US4350449A (en) * 1980-06-23 1982-09-21 International Business Machines Corporation Resistive ribbon printing apparatus and method
US4391535A (en) * 1981-08-10 1983-07-05 Intermec Corporation Method and apparatus for controlling the area of a thermal print medium that is exposed by a thermal printer
US4535340A (en) * 1983-06-21 1985-08-13 Fuji Xerox Co. Ltd. Method and apparatus for thermal printing
US4573058A (en) * 1985-05-24 1986-02-25 Ncr Canada Ltd - Ncr Canada Ltee Closed loop thermal printer for maintaining constant printing energy
US4795999A (en) * 1986-07-18 1989-01-03 Shinko Electric Co., Ltd. Thermal transfer type printer
US4717924A (en) * 1986-08-18 1988-01-05 Ncr Corporation Thermal printing control system
US4987289A (en) * 1988-07-21 1991-01-22 Rockwell International Corporation Liquid crystal display heating system
US5121135A (en) * 1989-08-25 1992-06-09 Sharp Kabushiki Kaisha Thermal head having integral analog drive compensation
US5610511A (en) * 1993-05-07 1997-03-11 Avery Dennison Corporation Temperature responsive battery tester
US5825174A (en) * 1993-05-07 1998-10-20 Robert Parker Temperature responsive battery tester
US5600231A (en) * 1995-04-05 1997-02-04 Avery Dennison Corporation Device for testing and refreshing batteries
US6260955B1 (en) 1996-03-12 2001-07-17 Array Printers Ab Printing apparatus of toner-jet type
US6406132B1 (en) 1996-03-12 2002-06-18 Array Printers Ab Printing apparatus of toner jet type having an electrically screened matrix unit
US6278430B1 (en) * 1998-03-06 2001-08-21 Array Printers Ab Thermosensitive display device

Similar Documents

Publication Publication Date Title
US3725898A (en) Temperature compensated multiple character electronic display
US3577137A (en) Temperature compensated electronic display
US3975707A (en) Device for controlling the density of printing characters
US5132709A (en) Apparatus and method for closed-loop, thermal control of printing head
US4573058A (en) Closed loop thermal printer for maintaining constant printing energy
US3495070A (en) Thermal printing apparatus
US3354817A (en) High speed thermal matrix printer
US4330786A (en) Method of controlling thermally controlling a thermal printing head
US4305080A (en) Compensating driver circuit for thermal print head
US3973111A (en) Calculator having thermal printing head
US3939687A (en) Temperature calibration system
US3877008A (en) Display drive matrix
GB1182215A (en) Thermal Printing System.
GB1275538A (en) Printing apparatus
KR880008615A (en) Method and apparatus for compensating record concentration
GB1284939A (en) Electronic thermal devices for producing thermal patterns representing characters
US5664893A (en) Thermal printer comprising a real time temperature estimation
US3975742A (en) Thermal printing-anti-stick mechanism
GB1011069A (en) Improvements in or relating to electrothermic printing or recording apparatus
US3492586A (en) Control apparatus
US3829653A (en) Multi-character electronic display
US3538303A (en) Method of extending the lifetime of thermal printing elements
JPH0383661A (en) Thermal head
Ayres et al. Programmed presentation of pure tones of different frequencies using a single oscillator
JPS62178362A (en) Drive unit for linear thermal head