US3725154A - Mesa burning gas generator propellant - Google Patents

Mesa burning gas generator propellant Download PDF

Info

Publication number
US3725154A
US3725154A US00265938A US3725154DA US3725154A US 3725154 A US3725154 A US 3725154A US 00265938 A US00265938 A US 00265938A US 3725154D A US3725154D A US 3725154DA US 3725154 A US3725154 A US 3725154A
Authority
US
United States
Prior art keywords
propellant
oxidizer
composition
propellants
mesa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00265938A
Inventor
Culloch C Mc
B Moy
T Randle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Application granted granted Critical
Publication of US3725154A publication Critical patent/US3725154A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/04Compositions characterised by non-explosive or non-thermic constituents for cooling the explosion gases including antifouling and flash suppressing agents
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/02Compositions or products which are defined by structure or arrangement of component of product comprising particles of diverse size or shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S149/00Explosive and thermic compositions or charges
    • Y10S149/11Particle size of a component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S149/00Explosive and thermic compositions or charges
    • Y10S149/11Particle size of a component
    • Y10S149/111Nitrated organic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S149/00Explosive and thermic compositions or charges
    • Y10S149/11Particle size of a component
    • Y10S149/113Inorganic oxygen-halogen salt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S149/00Explosive and thermic compositions or charges
    • Y10S149/11Particle size of a component
    • Y10S149/114Inorganic fuel

Definitions

  • ABSTRACT OF THE DISCLOSURE A gas generating composite propellant having plateau and mesa burning characteristics, and containing a primary oxidizer which can vary in size from about microns to about 20 microns and a coolant oxidizer which can vary in size from about 40 microns to about 600 microns.
  • propellant useful in rockets, torpedoes, inflation devices, etc.
  • the propellant can also contain a fuel and any other conventional additives such as plasticizers, curing agents, stabilizers, burning-rate additives, catalysts, etc.
  • r is the burning rate in inches per second
  • p is the combustion pressure in pounds per square inch
  • 0 is a constant which varies with the ambient grain temperature and the particular propellant
  • n is a constant known as the burning rate exponent and is characteristic of the particular propellant.
  • n is a positive value lying between 0 and 1.
  • n is a positive value lying between 0 and 1.
  • the mesa propellants exhibit advantages not possessed by plateau type propellants. For example, there is often an inherent tendency, in mesa type propellants, for overlapping of rate-pressure relationships at various temperatures as illustrated by logarithmic graphs of the relationships; that is, in certain regions of pressure, the burning rate of a propellant for firings at low temperature may be actually higher than the burning rate for firings at high temperature. Additionally, the variations in performance with change in temperature for mesa type propellants is negligible and in some cases, there is none at all. 'In light of the above enumerated advantages, it has now become desirable to formulate plateau and mesa burning propellants.
  • Another object of the instant invention is to provide a novel composition suitable in gas generators.
  • Another object of the present invention is to produce a propellant composition which has mesa or plateau burning characteristics.
  • a composite propellant composition which comprises, as the oxidizer thereof, a mixture of a primary oxidizer with a coolant oxidizer wherein the particles of oxidizer have certain critical size limitations.
  • the novel oxidizer combination of the instant composite propellant compositions comprises a mixture of a primary oxidizer and a coolant oxidizer wherein the primary oxidizer has a size which can range from about 5 to about 20 microns, preferably 10 to 20 microns, while the coolant oxidizer has a size which will vary from about 400 to about 600 microns.
  • the primary oxidizer is selected from the group consisting of ammonium perchlorate, cyclotrimethylene trinitramine, cyclotetramethylene tetranitramine and pentaerythritol tetranitrate, while the coolant oxidizer is selected from the group consisting of ammonium sulfate, ammonium phosphate, ammonium sulfite, ammonium selenate, ferrous ammonium sulfate, and sulfur.
  • the amount of combined oxidizer present in the propellant composition can vary between about 70 and about 88 percent by weight of the total propellant composition.
  • the amount of primary oxidizer can vary from about 50 weight percent to about 65 weight percent of the propellant composition while the amount of coolant oxidizer can vary between about 20 weight percent and about 30 weight percent by weight of the entire composition.
  • a preferable propellant composition would contain ammonium perchlorate and ammonium sulfate, preferably in the amounts of 55 percent and 22 percent, respec tively.
  • Any conventional binder may be utilized, such as polyurethanes, hydroxy and carboxy polybutadienes, poly 1,2-polybutadiene copolymerized with styrene or butyl acrylate oligomers, or any other Well known binder. Any other conventional ingredient may be added which has been heretofore added to composite propellants.
  • the fabricator of solid propellants often seeks to control the burning rate of a solid propellant by utilizing small amounts of burning rate catalyst, such as carbon black, copper chromite, copper sulfate, ferrocene, ferrocene derivatives, cuprammonia sulfate, ferric sulfate, ferric sulfide, and, more preferably, iron oxide or milori blue.
  • burning rate catalyst such as carbon black, copper chromite, copper sulfate, ferrocene, ferrocene derivatives, cuprammonia sulfate, ferric sulfate, ferric sulfide, and, more preferably, iron oxide or milori blue.
  • the amount of burning rate catalyst that is generally added to the propellant compositions can vary from about 0.05 percent to about 4 percent by weight of the propellant composition.
  • the amount of binder present in the propellant composition is determined by the amount of oxidant, catalyst and any other conventional ingredient present, as the binder comprises the balance
  • propellants of the instant invention are non-hygroscopic and require minimal atmospheric control. Moreover, they are more stable than ammonium nitrate based propellants as they begin to exotherm at a higher temperature. For example, a propellant containing ammonium perchlorate and ammonium sulfate has an exotherm which does not begin until 170 C.
  • the primary feature of the propellants of this invention is that they have either plateau or mesa burning characteristics. Thrust variations resulting from grain defects, inhibitor failure, nozzle erosion or nozzle buildup, are essentially self-compensating. Mechanical relief valves which are essential to gas generator systems with positive pressure exponents can be simplified or eliminated.
  • the particle sizes of the primary and coolant oxidizers are critical as only the indicated particle sizes will produce the unexpected results of the instant invention, namely, mesa or plateau burning characteristics.
  • the burning rates do not increase with decreasing particle size as one would expect, and a burning rate slower than would be expected enables better guidance of a rocket.
  • the larger the size of the coolant oxidizer the deeper and more pronounced the mesa effect and the dip in the burning rate-pressure.
  • a propellant composition was made up of the followmg:
  • TP 4040 is a 1,2-propylene oxide extended trimethylol propane having a molecular weight of about 4040 and containing about 1.6 percent by weight of HDI as a curative.
  • Burning rate 1000 p.s.i.a. (in./sec.):
  • a gas generating solid composite propellant composition comprising a conventional composite propellant binder and an oxidizer component; wherein said oxidizer component consists of a mixture of a primary oxidant selected from the group consisting of ammonium perchlorate, cyclotrimethylene trinitramine, cyclotetramethylene tetranitramine, and pentaerythritol tetranitrate, and a coolant oxidizer selected from the group consisting of ammonium sulfate, ammonium phosphate, ammonium sulfite, ammonium selenate, ferrous ammonium sulfate, and sulfur; and wherein the particles of said primary oxidizer can range in size from about 5 microns to about 20 microns while the particles of said coolant oxidizer can range in size from about 400 to about 600 microns.
  • a primary oxidant selected from the group consisting of ammonium perchlorate, cyclotrimethylene trinitramine,
  • composition of claim 1 wherein said primary oxidizer ranges in size from 10 to 20 microns.
  • composition of claim 3 wherein said oxidizer component comprises from about 70 to about 88 percent by weight of the total composition.
  • a composition according to claim 5 containing 55 weight percent of ammonium perchlorate and 22 weight percent of ammonium sulfate.

Abstract

A GAS GENERATINGG COMPOSITE PROPELLANT HAVING PLATEAU AND MESA BURNING CHARACTERISTICS, AND CONTAINING A PRIMARY OXIDIZER WHICH CAN VARY IN SIZE FROM ABOUT 5 MICRONS TO ABOUT 20 MICRONS AND A COOLANT OXIDIZER WHICH CAN VARY IN SIZE FROM ABOUT 40 MICRONS TO ABOUT 600 MICRONS.

Description

United States Patent 3,725,154 MESA BURNING GAS GENERATOR PROPELLANT Charles R. McCulloch and Bertram K. Moy, Shalimar, Fla., and Thomas C. Randle, Oxon Hill, Md., assignors to the United States of America as represented by the Secretary of the Navy No Drawing. Filed June 23, 1972, Ser. No. 265,938 Int. Cl. C06b 11/00 U.S. Cl. 149-21 10 Claims ABSTRACT OF THE DISCLOSURE A gas generating composite propellant having plateau and mesa burning characteristics, and containing a primary oxidizer which can vary in size from about microns to about 20 microns and a coolant oxidizer which can vary in size from about 40 microns to about 600 microns.
BACKGROUND OF THE INVENTION One principal type of solid gas generating propellant useful in rockets, torpedoes, inflation devices, etc., is the composite propellant type which comprises a binder and an oxidizer. The propellant can also contain a fuel and any other conventional additives such as plasticizers, curing agents, stabilizers, burning-rate additives, catalysts, etc.
One of the most important solid propellant parameters is the burning rate of the propellant. The basic solid propellant burning equation for restricted solid propellants, such as the type with which this invention is concerned, is expressed as:
where r is the burning rate in inches per second, p, is the combustion pressure in pounds per square inch, 0 is a constant which varies with the ambient grain temperature and the particular propellant, and n is a constant known as the burning rate exponent and is characteristic of the particular propellant.
In many instances, a propellant will be chosen such that n is a positive value lying between 0 and 1. However, relatively recently, a great deal of interest has emerged in the development of plateau and mesa type propellants, wherein the value of n is 0 and negative, respectively. The value of n is determined by the slope of the straight line produced by the logarithmic graph of the burning rate of propellant plotted against pressure, since the burning rate equation can be reexpressed as log r=n log p+log c. Thus, a plot of log r against log p for a conventional propellant gives a straight line which has a positive slope, representative of a progressive increase in burning rate for each increase in pressure. However, in the case of plateau type propellants, the pressure exponent n becomes zero in a certain region of pressure. Such propellants at a given temperature give a steady burning rate within the region and, consequently, a steady thrust. Since mesa propellants have a negative slope, the pressure stability of these propellants is even more favorable than for the plateau propellants and temperature dependency is also further improved.
There are a number of well known advantages to propellants exhibiting this plateau and mesa phenomena. For example, with many conventional propellants, pressures build up rapidly and a thick walled chamber is needed to contain the propellant tending to make rockets thus powered heavy and poor in ballistic performance. Pressure relief valves are commonly used in missile or guidance systems to prevent overpressurization of the unit and these valves are intricate in design, costly and easily clogged. If these valves are not in cluded, too great a pressure could lead to too great a "ice burning rate, and it could either blow up the rocket or prevent proper guidance, therefore aborting the mission. The disadvantages of normal burning propellants are overcome by the plateau and mesa type propellants. Moreover, the mesa propellants exhibit advantages not possessed by plateau type propellants. For example, there is often an inherent tendency, in mesa type propellants, for overlapping of rate-pressure relationships at various temperatures as illustrated by logarithmic graphs of the relationships; that is, in certain regions of pressure, the burning rate of a propellant for firings at low temperature may be actually higher than the burning rate for firings at high temperature. Additionally, the variations in performance with change in temperature for mesa type propellants is negligible and in some cases, there is none at all. 'In light of the above enumerated advantages, it has now become desirable to formulate plateau and mesa burning propellants.
Furthermore, many presently available composite type gas generating propellants are currently based on ammonium nitrate as the oxidizer. However, these systems give too low and too limited a range of burning rates and in addition are hydroscopic and require stringent atmospheric controls. Systems based upon cyclotetramethylene tetranitramine as the oxidizer are also relatively slow burning and have high burning rate pressure exponents. Those systems based on perchlorate or dihydroxy glyoxime exotherm at C. and are therefore not as stable as one would desire. In addition, the latter type propellants all burn to yield pressure exponents of 0.20 to 0.80.
SUMMARY OF THE INVENTION It is an object of this invention to provide novel com posite solid rocket propellants.
Another object of the instant invention is to provide a novel composition suitable in gas generators.
Another object of the present invention is to produce a propellant composition which has mesa or plateau burning characteristics.
It is still another object of this invention to produce a propellant which is non-hygroscopic.
It is yet another object of the instant invention to formulate a propellant having satisfactorily high burning rates.
It is even another object of the instant invention to produce a propellant which is stable.
These and other objects are accomplished by a composite propellant composition which comprises, as the oxidizer thereof, a mixture of a primary oxidizer with a coolant oxidizer wherein the particles of oxidizer have certain critical size limitations.
DESCRIPTION OF THE PREFERRED EMBODIMENT It has been found that a mesa or plateau burning propellant can be obtained by utilizing a certain oxidizer combination in a conventional composite propellant comprising an oxidizer and binder.
The novel oxidizer combination of the instant composite propellant compositions comprises a mixture of a primary oxidizer and a coolant oxidizer wherein the primary oxidizer has a size which can range from about 5 to about 20 microns, preferably 10 to 20 microns, while the coolant oxidizer has a size which will vary from about 400 to about 600 microns. The primary oxidizer is selected from the group consisting of ammonium perchlorate, cyclotrimethylene trinitramine, cyclotetramethylene tetranitramine and pentaerythritol tetranitrate, while the coolant oxidizer is selected from the group consisting of ammonium sulfate, ammonium phosphate, ammonium sulfite, ammonium selenate, ferrous ammonium sulfate, and sulfur. The amount of combined oxidizer present in the propellant composition can vary between about 70 and about 88 percent by weight of the total propellant composition. The amount of primary oxidizer can vary from about 50 weight percent to about 65 weight percent of the propellant composition while the amount of coolant oxidizer can vary between about 20 weight percent and about 30 weight percent by weight of the entire composition. A preferable propellant composition would contain ammonium perchlorate and ammonium sulfate, preferably in the amounts of 55 percent and 22 percent, respec tively.
Any conventional binder may be utilized, such as polyurethanes, hydroxy and carboxy polybutadienes, poly 1,2-polybutadiene copolymerized with styrene or butyl acrylate oligomers, or any other Well known binder. Any other conventional ingredient may be added which has been heretofore added to composite propellants. For example, the fabricator of solid propellants often seeks to control the burning rate of a solid propellant by utilizing small amounts of burning rate catalyst, such as carbon black, copper chromite, copper sulfate, ferrocene, ferrocene derivatives, cuprammonia sulfate, ferric sulfate, ferric sulfide, and, more preferably, iron oxide or milori blue. The amount of burning rate catalyst that is generally added to the propellant compositions can vary from about 0.05 percent to about 4 percent by weight of the propellant composition. The amount of binder present in the propellant composition is determined by the amount of oxidant, catalyst and any other conventional ingredient present, as the binder comprises the balance of the composition.
These propellants of the instant invention are non-hygroscopic and require minimal atmospheric control. Moreover, they are more stable than ammonium nitrate based propellants as they begin to exotherm at a higher temperature. For example, a propellant containing ammonium perchlorate and ammonium sulfate has an exotherm which does not begin until 170 C. The primary feature of the propellants of this invention is that they have either plateau or mesa burning characteristics. Thrust variations resulting from grain defects, inhibitor failure, nozzle erosion or nozzle buildup, are essentially self-compensating. Mechanical relief valves which are essential to gas generator systems with positive pressure exponents can be simplified or eliminated.
The particle sizes of the primary and coolant oxidizers are critical as only the indicated particle sizes will produce the unexpected results of the instant invention, namely, mesa or plateau burning characteristics. In addition, it has been found that the burning rates do not increase with decreasing particle size as one would expect, and a burning rate slower than would be expected enables better guidance of a rocket. In addition, it is noted that the larger the size of the coolant oxidizer, the deeper and more pronounced the mesa effect and the dip in the burning rate-pressure.
As exemplary of the invention and advantages to be obtained thereby, the following example is set forth. This example is not intended to limit the invention as the invention is susceptible to different modifications which will be recognized by one of ordinary skill in the art.
A propellant composition was made up of the followmg:
TP 4040 is a 1,2-propylene oxide extended trimethylol propane having a molecular weight of about 4040 and containing about 1.6 percent by weight of HDI as a curative.
4 The following data was obtained for the above formulation:
Ballistics:
Impulse, sec. (shifting) 1000/ 14.7 183.2 F. 2022 T,, F. 981 Density, lb./in. 0057 Gas, mol, chamber 4.625 Gas, mol, exhaust 4.220 C ft. sec. (shifting) 3670 Ht. of explosion, caL/grm. 780
Burning rate (1000 p.s.i.a.) (in./sec.):
Temp, F.:
165 0.173 77 0.114 =65 0.077 17 percent/ F 0.33 Pressure exponent (5001500 p.s.i.) 0
DTA F.):
Onset of autoignition 338 Autoignition 403 Safety data:
Impact:
5 kg wt. (3 consec posit.) mm 2 kg. Wt. 20 til. mm 262 Sliding friction, 8 ft./sec., 20 til lb 960 Electrostatic, 5K volts, 20 til. joules 12.5
Exhaust gas composition (mol percent):
H O 25.62 CO 19.57 H 21.48 HCl 11.10 N 9.5 CH 4.90 CO 3.88 H S 3.87
1 No particulate exhaust.
Various modifications and alterations of this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention; and it is to be understood that the foregoing discussion merely represents preferred embodiments which do not unduly limit this invention.
We claim:
1. A gas generating solid composite propellant composition comprising a conventional composite propellant binder and an oxidizer component; wherein said oxidizer component consists of a mixture of a primary oxidant selected from the group consisting of ammonium perchlorate, cyclotrimethylene trinitramine, cyclotetramethylene tetranitramine, and pentaerythritol tetranitrate, and a coolant oxidizer selected from the group consisting of ammonium sulfate, ammonium phosphate, ammonium sulfite, ammonium selenate, ferrous ammonium sulfate, and sulfur; and wherein the particles of said primary oxidizer can range in size from about 5 microns to about 20 microns while the particles of said coolant oxidizer can range in size from about 400 to about 600 microns.
2. The composition of claim 1 wherein said primary oxidizer ranges in size from 10 to 20 microns.
3. A composition according to claim 2 wherein said primary oxidizer is present in amounts that can vary from about 50 to about 65 percent by weight of the total propellant composition and said secondary oxidizer can vary from about 20 to about 30 weight percent of the total propellant composition.
4. The composition of claim 3 wherein said oxidizer component comprises from about 70 to about 88 percent by weight of the total composition.
5. The composition of claim 4 wherein said primary oxidizer is ammonium perchlorate and said coolant oxidizer is ammonium sulfate.
6. A composition according to claim 5, containing 55 weight percent of ammonium perchlorate and 22 weight percent of ammonium sulfate.
7. The composition of claim 1 wherein said primary oxidizer is ammonium perchlorate and said coolant oxidizer is ammonium sulfate.
8. The composition of claim 2 wherein said primary oxidizer is ammonium perchlorate and said coolant oxidizer is ammonium sulfate.
9. The composition of claim 7 wherein said ammonium perchlorate is present in amounts that can vary from about 50 to about 65 percent by weight of the total propellant composition and said ammonium sulfate can vary from about 20 to about 30 weight percent of the total propellant composition.
10. The composition of claim 8 wherein said ammonium perchlorate is present in amounts that can vary from about to about percent by weight of the total propellant composition and said ammonium sulfate can vary from about 20 to about 30 weight percent of the total propellant composition.
References Cited UNITED STATES PATENTS
US00265938A 1972-06-23 1972-06-23 Mesa burning gas generator propellant Expired - Lifetime US3725154A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US26593872A 1972-06-23 1972-06-23

Publications (1)

Publication Number Publication Date
US3725154A true US3725154A (en) 1973-04-03

Family

ID=23012497

Family Applications (1)

Application Number Title Priority Date Filing Date
US00265938A Expired - Lifetime US3725154A (en) 1972-06-23 1972-06-23 Mesa burning gas generator propellant

Country Status (1)

Country Link
US (1) US3725154A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019933A (en) * 1973-07-27 1977-04-26 The United States Of America As Represented By The Secretary Of The Army Pot life extension of isocyanate cured propellants by aziridine compounds
US4180424A (en) * 1973-01-17 1979-12-25 The United States Of America As Represented By The Secretary Of The Army Control of burning rate and burning rate exponent by particle size in gun propellants
US4239073A (en) * 1973-01-17 1980-12-16 Thiokol Corporation Propellants in caseless ammunition
US4263070A (en) * 1973-01-17 1981-04-21 Thiokol Corporation Thermally stable gun and caseless cartridge propellants
US4283237A (en) * 1973-01-17 1981-08-11 Thiokol Corporation Method of making a gun propellant composition
US4632715A (en) * 1985-12-10 1986-12-30 The United States As Represented By The Secretary Of The Navy Low burn rate motor propellant
US4681643A (en) * 1980-12-29 1987-07-21 Colgate Stirling A Fast burning propellants
EP0393860A2 (en) * 1989-04-10 1990-10-24 Imperial Chemical Industries Plc Water/melt-in-oil emulsion explosive composition
US5034073A (en) * 1990-10-09 1991-07-23 Aerojet General Corporation Insensitive high explosive
EP0589042A1 (en) * 1991-06-17 1994-03-30 Asahi Kasei Kogyo Kabushiki Kaisha Gas generator for air bag
EP0625495A1 (en) * 1993-05-17 1994-11-23 Rockwell International Corporation non-deflagrating reactive armor
WO1998017607A1 (en) * 1996-10-22 1998-04-30 Trw Airbag Systems Gmbh & Co. Kg Azide-free, gas-generating solid mixture
US20040226639A1 (en) * 1991-06-21 2004-11-18 Klaus Redecker Propellant for gas generators
WO2006109304A3 (en) * 2005-04-12 2006-12-14 Rafael Armament Dev Authority Extremely insensitive detonating substance and method for its manufacture

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180424A (en) * 1973-01-17 1979-12-25 The United States Of America As Represented By The Secretary Of The Army Control of burning rate and burning rate exponent by particle size in gun propellants
US4239073A (en) * 1973-01-17 1980-12-16 Thiokol Corporation Propellants in caseless ammunition
US4263070A (en) * 1973-01-17 1981-04-21 Thiokol Corporation Thermally stable gun and caseless cartridge propellants
US4283237A (en) * 1973-01-17 1981-08-11 Thiokol Corporation Method of making a gun propellant composition
US4019933A (en) * 1973-07-27 1977-04-26 The United States Of America As Represented By The Secretary Of The Army Pot life extension of isocyanate cured propellants by aziridine compounds
US4681643A (en) * 1980-12-29 1987-07-21 Colgate Stirling A Fast burning propellants
US4632715A (en) * 1985-12-10 1986-12-30 The United States As Represented By The Secretary Of The Navy Low burn rate motor propellant
EP0393860A3 (en) * 1989-04-10 1992-05-20 Imperial Chemical Industries Plc Water/melt-in-oil emulsion explosive composition
EP0393860A2 (en) * 1989-04-10 1990-10-24 Imperial Chemical Industries Plc Water/melt-in-oil emulsion explosive composition
US5034073A (en) * 1990-10-09 1991-07-23 Aerojet General Corporation Insensitive high explosive
EP0589042A1 (en) * 1991-06-17 1994-03-30 Asahi Kasei Kogyo Kabushiki Kaisha Gas generator for air bag
EP0589042A4 (en) * 1991-06-17 1994-08-31 Asahi Kasei Kogyo Kabushiki Kaisha
US20040226639A1 (en) * 1991-06-21 2004-11-18 Klaus Redecker Propellant for gas generators
EP0625495A1 (en) * 1993-05-17 1994-11-23 Rockwell International Corporation non-deflagrating reactive armor
WO1998017607A1 (en) * 1996-10-22 1998-04-30 Trw Airbag Systems Gmbh & Co. Kg Azide-free, gas-generating solid mixture
WO2006109304A3 (en) * 2005-04-12 2006-12-14 Rafael Armament Dev Authority Extremely insensitive detonating substance and method for its manufacture
AU2006233930B2 (en) * 2005-04-12 2012-02-23 Rafael Advanced Defense Systems Ltd Extremely insensitive detonating substance and method for its manufacture
US8277584B2 (en) 2005-04-12 2012-10-02 Rafael Advanced Defense Systems Ltd. Extremely insensitive detonating substance and method for its manufacture

Similar Documents

Publication Publication Date Title
US3725154A (en) Mesa burning gas generator propellant
US3924405A (en) Solid propellants with stability enhanced additives of particulate refractory carbides or oxides
US3898112A (en) Solid 5-aminotetrazole nitrate gas generating propellant with block copolymer binder
US4938813A (en) Solid rocket fuels
US6576072B2 (en) Insensitive high energy booster propellant
US6024810A (en) Castable double base solid rocket propellant containing ballistic modifier pasted in an inert polymer
US4234363A (en) Solid propellant hydrogen generator
Koch Insensitive high explosives: V. Ballistic properties and vulnerability of nitroguanidine based propellants
US4131499A (en) Low smoke propellant
Zhang et al. Effect of hexanitroethane (HNE) and hydrazinium nitroformate (HNF) on energy characteristics of composite solid propellants
US3953259A (en) Pressure exponent suppressants
US3111439A (en) High explosive mixtures
US3718094A (en) Gas generator charge with decreased temperature sensitivity
US3834956A (en) Solid propellant composition containing lead and lead compounds
CN114196454B (en) Solid fuel containing high nitrogen compound
US3755019A (en) Solid propellant compositions containing plasticized nitrocellulose and aluminum hydride
US3969166A (en) Anti-erosive, solid rocket propellant compositions
US4239073A (en) Propellants in caseless ammunition
US3730789A (en) Monopropellant composition including hydroxylamine perchlorate
US3383860A (en) Low flame temperature gas generant containing ammonium iodate and methode of operatin a gas generator
US3979236A (en) Anti-erosive, solid rocket double-base propellant compositions
US3775199A (en) Nitrogen generator
US3722421A (en) Solid bipropellant
US3963545A (en) Energetic double base propellant composition
US3698191A (en) Nonsustaining hybrid propellant grain