US3718181A - Plastic heat exchange apparatus - Google Patents

Plastic heat exchange apparatus Download PDF

Info

Publication number
US3718181A
US3718181A US00064221A US3718181DA US3718181A US 3718181 A US3718181 A US 3718181A US 00064221 A US00064221 A US 00064221A US 3718181D A US3718181D A US 3718181DA US 3718181 A US3718181 A US 3718181A
Authority
US
United States
Prior art keywords
plastic
filler particles
filaments
thermal conductivity
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
US00064221A
Inventor
R Smith
T Reilly
C Reitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ametek Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Application granted granted Critical
Publication of US3718181A publication Critical patent/US3718181A/en
Assigned to AMETEK, INC., A CORP. OF DE. reassignment AMETEK, INC., A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: E.I. DU PONT DE NEMOURS AND COMPANY
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/224Longitudinal partitions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/355Heat exchange having separate flow passage for two distinct fluids
    • Y10S165/40Shell enclosed conduit assembly
    • Y10S165/427Manifold for tube-side fluid, i.e. parallel

Definitions

  • ..l65/l80X take advantage of the high thermal conductivity of 3,272,260 9/1966 Raub et al. ..l65/ 164 such a dispersion.
  • a heat exchange ap- 5 specifically still, it relates to hollow fluid-tight filaments for use in a heat exchange apparatus and a method for producing such filaments in a manner such that they have high thermal conductivity and appreciable mechanical strength.
  • Plastic heat exchangers particularly those made from polyfluorinated plastics, such as tetrafluoroethylene or copolymers of tetrafluoroethylene and hexafluoropropylene, have become a useful addition to the array of heat exchanges developed over the past few years, especially in those circumstances where one of the heat exchange media is a corrosive fluid.
  • Plastics, in particular polyfluorinated plastics have a thermal conductivity which is so low that heat exchange devices made from tliem are not highly efficient.
  • an object of the present invention to provide a hollow filament made from a filled plastic composition having a thermal conductivity substantially greater than that of the plastic, and yet having a durability large enough so that such a structure can be used in a conventional heat exchange device. It is a further object of the present invention to provide a method for incorporating thermally conductive fillers into plastic compositions and to produce hollow filaments from such mixtures which have appreciably increased thermal conductivity and appreciable mechanical strength.
  • a heat exchanger of the type having a casing member, a plurality of hollow plastic filaments, means for securing the ends of the filaments in a fixed relationship with the casing member, means for passing a first fluid through the interior of the filaments, and means for passing a second fluid through the casing member in intimate contact with the outer surface of the filaments.
  • the filaments comprise a plastic composition containing 5 to 45 percent by weight of filler particles having a thermal conductivity substantially greater than the thermal conductivity of the plastic.
  • Substantially all of the filler particles have a diameter greater than 2 microns, and the ratio of the diameter of the filler particles to the wall thickness of the filaments is between 0.001 to 0.5.
  • the filler particles are distributed homogeneously enough in the plastic so that the filaments have a tensile strength greater than 1,000 psi and an elongation to failure of greater than 25 percent, both as measured at room temperature, and heterogeneously enough so that the filaments have a thermal conductivity greater than one and a half times the thermal conductivity of the plastic.
  • the plastic is a polyfluorinated plastic such as a polymer of tetrafluoroethylene or a copolymer of tetrafluoroethylene and hexafluoropropylene
  • the filler particles are graphite filler particles and the percentage of filler particles in the plastic composition is between 10 and 25 percent by weight.
  • One process whereby filaments for use in such structures comprises: dry mixing pellets of polyfluorinated polymers and particles of graphite, substantially all of which have a diameter greater than 2.0 microns, to form a dry mixture comprising 5 to 45 percent by weight of the graphite; forcing the dry mixture into a high energy low temperature, mechanical mixing region, wherein the mixture can be mechanically milled; mixing the dry mixture in the mixing region while maintaining the bulk temperature of the mixture below the melt point of the polymer, until a semisolid, flowable mixture is formed; forcing the flowable mixture into a melting region where the bulk temperature of the mixture is maintained at not more than 50 F.- above the melt point of the polymer; melting the mixture until an extrudable mixture is formed; and extruding the extrudable mixture into hollow filaments in which the ratio of the diameter of the tiller particles to the wall thickness of the filaments is between 0.001 to 0.5.
  • the dry mixture contains to 25 percent by weight of the graphite and the mixing region is formed between two co-rotating screws, having varying cross sections which divide the mixing region into a plurality of mixing zones adapted to impart varying degrees of energy to the mixing process.
  • FIG. 1 is a plot of the increase in thermal conductivity of a filled plastic as a function of the percentage of filler contained in the plastic for both the situations where the filler is dispersed perfectly homogeneously within the plastic and the situations where the filler is dispersed perfectly heterogeneously within the plastic;
  • FIG. 2 is an elevation view in section of one embodiment of the heat exchange structure of the present invention.
  • FIG. 3 is an end view of a terminal portion of one embodiment of the tube bundle of the present invention in which the individual filaments have been honeycombed together;
  • FIG. 4 is a cut away view of a second embodiment of the heat exchange structure of the present invention in which the terminal arrangement of FIG. 3 has been utilized.
  • the key to the present invention is the realization that a significant increase in the thermal conductivity of the system can be achieved by using a mixture containing only a small percentage of the filler, 5 to 45 percent by weight, if the proper distribution of the filler in the plastic is used. Such a distribution would have to be homogeneous enough to give reasonable mechanical durability, and heterogeneous enough to give a reasonable increase in conductivity.
  • a filament For use in heat exchangers, such as those shown in FIGS. 2 and 4, a filament must have a tensile strength of at least 1,000 psi and an elongation to break of at least 25 percent, both as measured at room temperature, so that it will have sufficient burst strength and flex life to withstand the stresses that variations in line pressure and external vibrations exert on the system.
  • any increase in the conductivity is useful, but before such a filament becomes practical an increase of at least 50 percent over the conductivity of the plastic is needed.
  • Blenders of filled plastic have previously ignored particle size as a factor to be considered, for several reasons. First, they have generally not been interested in increasing the thermal conductivity of the material. Second, if such was their intent, the structures they were concerned with had such a large ratio of particle diameter, d,,, to wall thickness, t, that no matter what they did, they could not depart significantly from the homogeneous model.
  • the distribution of particles is generally homogeneous enough to yield the desired strength, and heterogeneous enough to yield the desired conductivity.
  • particles having a diameter much smaller than this or having such that the ratio (d /t) is much less than this inherently produces a homogeneous product, which will have a low conductivity.
  • (d /t) is too high, the structure will not have the desired mechanical strength.
  • polyfluorinated plastics particularly polymers of tetrafluoroethylene and copolymers of tetrafluoroethylene and hexafluoropropylene, sold under the tradename Teflon by E. I. du Pont de Nemours and Co., and with carbon, or more specifically graphite, as the filler.
  • Teflon by E. I. du Pont de Nemours and Co.
  • carbon or more specifically graphite
  • the extruder had ten zones some of which are used for mechanical milling and some of which are used to pump and melt the mixture.
  • the first two zones of the extruder were used to dry mix the ingredients.
  • the mixture was mechanically milled between the two co-rotating screws until a semisolid, flowable mixture was produced.
  • the bulk temperature of the mixture was kept below the melting point of the polymer. Since the mechanical milling imparts heat to the mixture, heat had to be removed by some cooling means located at about the middle of the mixing region; in this case between the fifth and sixth zone.
  • the last two zones were pumping and melting zones in which the bulk temperature of the mixture was raised to about 50 F. above the melting point of the polymer.
  • the extrudable melt was pumped from the extruder through a pelletizing die and cutter and the resulting pellets were processed in a single-screw extruder to make the tubing.
  • the two processes can, however, be incorporated into a single operation performed by a single extruder rather than two extruders.
  • the tubing was drawn about 2X, but this step is not necessary and can be dispensed with, if desired.
  • the individual filaments 10 are gathered into a tube bundle 20, the terminal portions of which are securely bonded to header plates 15.
  • a cylindrical shell, or casing, 30, having a fluid inlet means 28 and a fluid outlet means 29 is provided, and the headers are sealed between end caps 17 and 18 and shell 30 in a fixed leak-tight relationship.
  • An inlet 31 and an outlet 32 is provided in end caps 17 and 18 to provide a means for passing a first fluid through the interior of the filaments 10.
  • a second fluid is then introduced into inlet 28 and allowed to come into intimate contact with the outer surface of the individual filaments.
  • One of the two fluids is hotter than the other, and depending on the needs involved, the cooler fluid can be used to cool the hotter fluid or the hotter fluid can be used to heat the cooler fluid.
  • Spacers 16 are provided to keep the individual filaments in reasonably constant spaced apart relationship, both with respect to other filaments and with respect to the walls.
  • a tube bundle of substantially parallel filaments 10 into a rigid sleeve 21, which is integrally lined with an internal liner of the same material from which the filaments are made or a material similar to it, and then heating the entire structure until the walls of the individual filaments bond together and to the walls of the sleeve, forming a leak-tight front surface with a plurality of openings 34 leading into each filament.
  • the individual tubes are held together over their length between the headers by strap 33.
  • FIG. 4 illustrates a second embodiment where the casing 11 is an open tank having an inlet 12 and an outlet 13 for the second heat exchanger fluid.
  • the tube bundle 20, with the terminal portions thereof securely bonded into sleeves 21, as shown in FIG. 3, is then supported in the tank by brackets 19 so that the bundle droops in a U- shaped loop into the tank, with the bundle portion, but not the terminal portions thereof, below the level 14 of the second heat exchanger fluid in the tank.
  • the interior of the tube bundle is connected to inlet 24 and outlet 26 by elbows and connectors 23 which attach to sleeve portion 21.
  • An improved heat exchanger of the type comprising: a casing member; a plurality of hollow, flexible fluid-tight plastic filaments; means for securing the end of said filaments in fixed relationship with said casing member, means for passing a first fluid through the interior of said filaments and meansfor passin a second fluid through said casing member into mttma e contact with the outer surface of said filaments; the improvement wherein said filaments comprise a plastic composition containing 5 to 45 percent by weight of filler particles having a thermal conductivity substantially greater than the thermal conductivity of the plastic, substantially all of said filler particles having a diameter greater than 2.0 microns and the ratio of the diameter of said filler particles to the wall thickness of said filaments being 0.001 to 0.5, said filler particles having a distribution in said plastic composition which is homogeneous enough so that said filaments have a tensile strength greater than 1,000 psi and an elongation to failure of greater than 25 percent at room temperature and heterogeneous enough so that said filaments have a
  • said polyfluorinated plastic is a polyfluorinated plastic selected from the group consisting of polymers of tetrafluoroethylene and copolymers of tetrafluoroethylene and hexafluoropropylene and said carbon filler particles are graphite filler particles.
  • said filaments comprise a plastic composition containing 5 to 25 percent by weight of said filler particles, and wherein said filaments have a thermal conductivity greater than one and a half times the thermal conductivity of the plastic.
  • said filaments comprise a plastic composition containing 10 to 20 percent by weight of said filler particles, and wherein said filaments have a thermal conductivity of greater than one and a half times the thermal conductivity of the plastic.
  • said polyfluorinated plastic is a polyfluorinated plastic selected from the group consisting of polymers of tetrafluoroethylene and copolymers of tetrafluoroethylene and hexafluoropropylene.

Abstract

Hollow plastic filaments, useful in heat exchange systems, which are made from plastic compositions containing 5 to 45 percent by weight of filler particles having substantially higher thermal conductivity than the plastic and a diameter greater than 2.0 microns, will have high thermal conductivity and appreciable mechanical strength if the particles are chosen such that the ratio of the particle diameter to the wall thickness of the filament is between 0.001 and 0.5 and if the particles are dispersed within the plastic homogeneously enough to produce the desired mechanical stability and heterogeneously enough to take advantage of the high thermal conductivity of such a dispersion.

Description

United States Patent Reilly et al. 51 Feb. 27, 1973 PLASTIC HEAT EXCHANGE FOREIGN PATENTS OR APPLICATIONS APPARATUS 775,820 12/1959 Germany 1 65/180 [75] Inventors: Thomas A. Reilly, Reading, Pa.; 531,112 l2/l940 Great Britain ..|65/ 180 Charles F. Reitz; Robert D. Smith, both of Wilmington, Del.
Primary Examiner-William F. ODea Assistant Examiner-William C. Anderson [73] Assignee: E. I. du Pont de Nemours and Company, Wilmington DeL Attorney-Wflkm E. Thomas. Jr.
[22] Filed: Aug. 17, 1970 [57] ABSTRACT [21] Appl 64,221 Hollow plastic filaments, useful in heat exchange systems, which are made from plastic compositions [52] 0.8. CI ..l65/l80 Containing 5 to 45 percent by weight of filler particles [51] Int. Cl. ..F28t 21/06 having su n i lly higher thermal conductivity than [58] Field of Search .....16S/l58, 180, 46; 260/921 S the plastic and a diameter greater than 2.0 microns, will have high thermal conductivity and appreciable mechanical strength if the particles are chosen such 5 References Cited that the ratio of the particle diameter to the wall thickness of the filament is between 0.001 and 0.5 and UNITED STATES PATENTS if the particles are dispersed within the plastic 2,878,353 3/1969 Ely etal. ..201/63 hmgeneusly enough Pwduce the desiled 3,473,087 10/1969 Slade ..317/2 mechanical Stability and heterogeneously enough to 3,228,456 1/1966 Brown et a]. ..l65/l80X take advantage of the high thermal conductivity of 3,272,260 9/1966 Raub et al. ..l65/ 164 such a dispersion.
11 Claims, 4 Drawing Figures He p k k soo 5* k (Tgl J PATENTIED $718,181
SHEETIUFZ FIG.
k He J V y l 00 INVENTORS THOMAS A. REILLY CHARLES F. REITZ ROBERT D. SMITH AGENT Pmminrtaz m SHEET 2 BF 2 INVENTORS THOMAS A. REILLY CHARLES F. REITZ ROBERT D. SMITH wwgww AGENT PLASTIC HEAT EXCHANGE APPARATUS BACKGROUND OF THE INVENTION This invention relates to a heat exchange apparatus.
More specifically, it relates to a heat exchange ap- 5 specifically still, it relates to hollow fluid-tight filaments for use in a heat exchange apparatus and a method for producing such filaments in a manner such that they have high thermal conductivity and appreciable mechanical strength.
Plastic heat exchangers, particularly those made from polyfluorinated plastics, such as tetrafluoroethylene or copolymers of tetrafluoroethylene and hexafluoropropylene, have become a useful addition to the array of heat exchanges developed over the past few years, especially in those circumstances where one of the heat exchange media is a corrosive fluid. Plastics, in particular polyfluorinated plastics, however, have a thermal conductivity which is so low that heat exchange devices made from tliem are not highly efficient. This defect can and has been overcome in part by using a large number of small diameter hollow plastic filaments which are incorporated into a heat exchange bundle having a total surface area large enough so that the heat transfer between the fluid flowing through the interior of the individual filaments and the fluid flowing around the tube bundle is large enough to provide sufficient cooling.
The efficiency of such heat exchange units is still relatively low, however, so there is a need for an improved material for use in such structures which has both the imperviousness to corrosive fluids of the polyfluorinated plastics and increased conductivity. Structures made from polyfluorinated plastics filled with graphite would be expected to have such characteristics, and indeed such structures have been proposed and built. Generally they consist of a very high percentage of graphite, between 70 and 90 percent, with a small amount of a polyfluorinated plastic used as a binder to hold the graphite together. Such structures are mechanically rigid blocks, similar to a block of pure carbon, with holes drilled through them through which a first heat exchange fluid can pass. They are brittle and the surface area exposed to the second heat exchange fluid is generally small, so that even with the improved conductivity of the material, the efficiency of the structure is relatively low.
There is, therefore, a need for an improved combination of polyfluorinated plastics and graphite fillers which can be made into more flexible structures, such as filaments having a high surface area, which in turn can be incorporated into heat exchange structures, such as the one illustrated in U.S. Pat. No. 3,228,456 for a Method and Apparatus Employing Hollow Polyfluorinated Plastic Filaments for Heat Exchange, which issued to P. F. Brown et al. on Jan. 11, 1966. Attempts to formulate flexible filaments from such a combination have, however, run into two related problems which have to date frustrated all attempts to produce useful products. It has been a generally accepted proposition that before the thermal conductivity of the filled plastics can be increased significantly, large amounts of filler would have to be incorporated into them. Once large amounts of filler are used, however, the flexibility and the mechanical durability of the filaments decreases to a point where they are no better, mechanically, than the block structures discussed above.
It is, therefore, an object of the present invention to provide a hollow filament made from a filled plastic composition having a thermal conductivity substantially greater than that of the plastic, and yet having a durability large enough so that such a structure can be used in a conventional heat exchange device. It is a further object of the present invention to provide a method for incorporating thermally conductive fillers into plastic compositions and to produce hollow filaments from such mixtures which have appreciably increased thermal conductivity and appreciable mechanical strength.
SUMMARY OF THE INVENTION These and other objects of the present invention have been achieved by providing a heat exchanger of the type having a casing member, a plurality of hollow plastic filaments, means for securing the ends of the filaments in a fixed relationship with the casing member, means for passing a first fluid through the interior of the filaments, and means for passing a second fluid through the casing member in intimate contact with the outer surface of the filaments. The filaments comprise a plastic composition containing 5 to 45 percent by weight of filler particles having a thermal conductivity substantially greater than the thermal conductivity of the plastic. Substantially all of the filler particles have a diameter greater than 2 microns, and the ratio of the diameter of the filler particles to the wall thickness of the filaments is between 0.001 to 0.5. The filler particles are distributed homogeneously enough in the plastic so that the filaments have a tensile strength greater than 1,000 psi and an elongation to failure of greater than 25 percent, both as measured at room temperature, and heterogeneously enough so that the filaments have a thermal conductivity greater than one and a half times the thermal conductivity of the plastic. In the preferred embodiment, the plastic is a polyfluorinated plastic such as a polymer of tetrafluoroethylene or a copolymer of tetrafluoroethylene and hexafluoropropylene, the filler particles are graphite filler particles and the percentage of filler particles in the plastic composition is between 10 and 25 percent by weight.
One process whereby filaments for use in such structures can be produced comprises: dry mixing pellets of polyfluorinated polymers and particles of graphite, substantially all of which have a diameter greater than 2.0 microns, to form a dry mixture comprising 5 to 45 percent by weight of the graphite; forcing the dry mixture into a high energy low temperature, mechanical mixing region, wherein the mixture can be mechanically milled; mixing the dry mixture in the mixing region while maintaining the bulk temperature of the mixture below the melt point of the polymer, until a semisolid, flowable mixture is formed; forcing the flowable mixture into a melting region where the bulk temperature of the mixture is maintained at not more than 50 F.- above the melt point of the polymer; melting the mixture until an extrudable mixture is formed; and extruding the extrudable mixture into hollow filaments in which the ratio of the diameter of the tiller particles to the wall thickness of the filaments is between 0.001 to 0.5. In the preferred embodiment, the dry mixture contains to 25 percent by weight of the graphite and the mixing region is formed between two co-rotating screws, having varying cross sections which divide the mixing region into a plurality of mixing zones adapted to impart varying degrees of energy to the mixing process.
The details of the present invention can best be described with reference to the following figures, wherein:
FIG. 1 is a plot of the increase in thermal conductivity of a filled plastic as a function of the percentage of filler contained in the plastic for both the situations where the filler is dispersed perfectly homogeneously within the plastic and the situations where the filler is dispersed perfectly heterogeneously within the plastic;
FIG. 2 is an elevation view in section of one embodiment of the heat exchange structure of the present invention;
FIG. 3 is an end view of a terminal portion of one embodiment of the tube bundle of the present invention in which the individual filaments have been honeycombed together; and
FIG. 4 is a cut away view of a second embodiment of the heat exchange structure of the present invention in which the terminal arrangement of FIG. 3 has been utilized.
DETAILED DESCRIPTION OF THE FIGURES Faced with the problem of incorporating filler particles into plastic in a manner such that the mechanical characteristicsof the plastic are retained, one instinctively thinks of a homogeneous distribution of fillers in the plastic. Assuming that the thermal conductivity of the filler, k,,, is 1,500 times the thermal conductivity of the plastic, k,,, so that k Ik 1,500,- (which is substantially the situation when the tiller is graphite and the plastic is a polyfluorinated plastic), the gain in thermal conductivity of the homogeneous mixture, (k,,,/k,,),,,, can be completely defined by:
where r,,,, r,, and r, are the thermal resistance of the mixture, the plastic and the filler, respectively, and V, and V, are the volume percent of the plastic and the filler present in the mixture, respectively. So:
where the subscript Ho stands for homogeneous mixture, or since Values of (k,,,/k,,),,,, and its reciprocal (k,,,/k,,),,,, for various filler levels are given in Table I and plotted on FIG. 1 as the unbroken line.
TABLE 1 n/ 9), m/ l)", l 0.99 l.0l l0 0.90 l .l l 20 0.80 L25 25 0.75 1.34 30 0.70 1.42 45 0.65 1.54 50 0.50 2.00 0.30 3.30 100 0.0007 I500 To achieve any appreciable increase in thermal conductivity using a homogeneous distribution of filler in the plastic, therefore, a large percentage filler, in the range of from 70 to percent, is needed.
If instead of a homogeneous mixture, a completely heterogeneous mixture is sought, a different set of equations would define the mixture. Assuming the system is a slab having a surface area A and thickness AT, and the filler is a plug having a surface area A, and thickness AT running through the slab, so that the plastic has a surface area A, and a thickness AT; then the mixture would be described by the heat balance equation where q, and q, are the heat transferred through the filler material and the plastic, respectively, and Q,, is the heat transferred through the entire system; or
where the subscript He stands for heteregeneous mixture. Since A, =A A, and since (A AT/AAT) V,, then m/ n)! zl n) a: 1), or
(k /k 1,500 V;- (I V Values of (k /k for various filler levels are given in Table II and plotted on FIG. 1 as the dashed line.
TABLE II m/ ,)He l 15.99 10 150.9 20 300.8 50 750.5 1500 Naturally, the normal situation of a non-homogeneous, nonheterogeneous mixture falls somewhere between the two, with the norm for any reasonable mixing" process falling closer to the line for a homogeneous mixture than the line for a heterogeneous mixture.
For flexible heat exchange filaments, completely heterogeneous mixtures are not useful. Structures made from such a mixture would be brittle in the regions occupied only by the filler, and would most likely be permeable to one of the heat exchange fluids. 0n the other hand, filaments made from a completely homogeneous mixture are also impractical because some 70 percent by volume of filler would be needed before an appreciable increase in thermal conductivity could be realized. In terms of the mechanical durability of the filament, this would lead to the same result as obtained with a completely heterogeneous mixture.
The key to the present invention is the realization that a significant increase in the thermal conductivity of the system can be achieved by using a mixture containing only a small percentage of the filler, 5 to 45 percent by weight, if the proper distribution of the filler in the plastic is used. Such a distribution would have to be homogeneous enough to give reasonable mechanical durability, and heterogeneous enough to give a reasonable increase in conductivity. For use in heat exchangers, such as those shown in FIGS. 2 and 4, a filament must have a tensile strength of at least 1,000 psi and an elongation to break of at least 25 percent, both as measured at room temperature, so that it will have sufficient burst strength and flex life to withstand the stresses that variations in line pressure and external vibrations exert on the system. Naturally, any increase in the conductivity is useful, but before such a filament becomes practical an increase of at least 50 percent over the conductivity of the plastic is needed.
The key to achieving such a balance of properties is to be found in the choice of the particle size of the tiller used and/or in the process used to incorporate the filler into the plastic composition. Blenders of filled plastic have previously ignored particle size as a factor to be considered, for several reasons. First, they have generally not been interested in increasing the thermal conductivity of the material. Second, if such was their intent, the structures they were concerned with had such a large ratio of particle diameter, d,,, to wall thickness, t, that no matter what they did, they could not depart significantly from the homogeneous model. We have found that if the particle size is kept above 2.0 microns and the ratio of particle diameter to wall thickness of the filament (d /t) is kept between 0.00] and 0.5, or preferably 0.001 to 0.1 the distribution of particles is generally homogeneous enough to yield the desired strength, and heterogeneous enough to yield the desired conductivity. To use particles having a diameter much smaller than this or having such that the ratio (d /t) is much less than this, inherently produces a homogeneous product, which will have a low conductivity. On the other hand, if (d /t) is too high, the structure will not have the desired mechanical strength. It should be noted, however, that small particles which have agglomerated together to form an aggregate particle having a diameter greater than 2.0 microns will also produce the desired result and are to be included in the meaning of particles having a diameter of greater than 2.0 microns. It should also be noted that over mixing of particles having diameters within the optimum range may destroy any advantage that might be expected from the use of such particles, because the mixture so form ed becomes too homogeneous.
In the discussion that follows, we will deal with polyfluorinated plastics, particularly polymers of tetrafluoroethylene and copolymers of tetrafluoroethylene and hexafluoropropylene, sold under the tradename Teflon by E. I. du Pont de Nemours and Co., and with carbon, or more specifically graphite, as the filler. These substances are particularly important because of their imperviousness to corrosive fluids, but it should be noted that when noncorrodability is not important, this invention is equally applicable to any plastic and to any filler with a thermal conductivity substantially greater than that of the plastic.
EXAMPLES I IV Using two metering hoppers, graphite particles and pellets of Teflon FEP were fed into a Werner & Pfleiderer ZSK extruder. This extruder consists of two co-rotating screws having varying cross sections to define a plurality of separate zones adapted to impart varying degrees of energy to the mixing process. In this.
case, the extruder had ten zones some of which are used for mechanical milling and some of which are used to pump and melt the mixture. In the present process, the first two zones of the extruder were used to dry mix the ingredients. In the next six zones, the mixture was mechanically milled between the two co-rotating screws until a semisolid, flowable mixture was produced. During this operation, the bulk temperature of the mixture was kept below the melting point of the polymer. Since the mechanical milling imparts heat to the mixture, heat had to be removed by some cooling means located at about the middle of the mixing region; in this case between the fifth and sixth zone. The last two zones were pumping and melting zones in which the bulk temperature of the mixture was raised to about 50 F. above the melting point of the polymer. In actual operation, the extrudable melt was pumped from the extruder through a pelletizing die and cutter and the resulting pellets were processed in a single-screw extruder to make the tubing. The two processes can, however, be incorporated into a single operation performed by a single extruder rather than two extruders. For reasons of economics, the tubing was drawn about 2X, but this step is not necessary and can be dispensed with, if desired.
Generally, graphite particles having a diameter of between 2.5 and 44 microns were used, at filling percentages of between 5 to 30 percent by weight. The experimental work was confined to these values because the present interest is in small diameter tubes having wall thickness ranging from 10 to 30 mils, which are more sensitive to particle size and filler percentage than larger tubes. Nothing in the results indicated that larger particles and filler percentages up to 45 percent could not be used, especially if the diameter of the tubing is increased up to 50 mils and if the drawing step is not needed. The best results, however, were obtained with the 2.5 micron particles in a filler range between 10 to 20 percent by weight. These products had a thermal conductivity of about three times the thermal conductivity of the particles, and had tensile strengths above 6,000 psi and elongation to failure of about 400 percent, as measured at room temperature. Similar products formed using the 44 micron filler particles tended to have a number of voids. It is believed this was due to the fact that the Teflon did not wet the graphite and that the voids, which were only noticeable when the larger particles were used, were present in all samples. In any case, the presence of voids was accentuated by the drawing step. The results of tests run on four of the best samples are given in Table III below. i
TABLE III percent elongation tensile Sample d V, t (d lt) to break strength (microns) (microns) (96) (psi) I 2.5 20 425 .0059 390 6,200 II 2.5 20 413 .0061 405 6,700 III 2.5 17 417 .0060 380 6,500 IV 2.5 17 405 .0062 380 6,400
Referring to FIG. 2, the individual filaments 10 are gathered into a tube bundle 20, the terminal portions of which are securely bonded to header plates 15. A cylindrical shell, or casing, 30, having a fluid inlet means 28 and a fluid outlet means 29 is provided, and the headers are sealed between end caps 17 and 18 and shell 30 in a fixed leak-tight relationship. An inlet 31 and an outlet 32 is provided in end caps 17 and 18 to provide a means for passing a first fluid through the interior of the filaments 10. A second fluid is then introduced into inlet 28 and allowed to come into intimate contact with the outer surface of the individual filaments. One of the two fluids is hotter than the other, and depending on the needs involved, the cooler fluid can be used to cool the hotter fluid or the hotter fluid can be used to heat the cooler fluid. Spacers 16 are provided to keep the individual filaments in reasonably constant spaced apart relationship, both with respect to other filaments and with respect to the walls.
The critical feature of such a heat exchanger is that the individual filaments 10 must all be secured in a leak-tight manner to the headers 15. One way in which this can be accomplished is shown in FIG. 3 in which the individual filaments 10 are honeycombed together into a sleeve 21. This type of terminal portion, and the method of producing it, is described in U.S. Pat. No. 3,315,740, for a Flexible Plastic Tube Bundle and Method of Making, issued to M. S. Withers on Apr. 25, 1967. Briefly it consists of placing the terminal portions of a tube bundle of substantially parallel filaments 10 into a rigid sleeve 21, which is integrally lined with an internal liner of the same material from which the filaments are made or a material similar to it, and then heating the entire structure until the walls of the individual filaments bond together and to the walls of the sleeve, forming a leak-tight front surface with a plurality of openings 34 leading into each filament. The individual tubes are held together over their length between the headers by strap 33.
The tube and shell heat exchanger of FIG. 2 is only one embodiment of the present invention. FIG. 4 illustrates a second embodiment where the casing 11 is an open tank having an inlet 12 and an outlet 13 for the second heat exchanger fluid. The tube bundle 20, with the terminal portions thereof securely bonded into sleeves 21, as shown in FIG. 3, is then supported in the tank by brackets 19 so that the bundle droops in a U- shaped loop into the tank, with the bundle portion, but not the terminal portions thereof, below the level 14 of the second heat exchanger fluid in the tank. The interior of the tube bundle is connected to inlet 24 and outlet 26 by elbows and connectors 23 which attach to sleeve portion 21.
Although certain preferred embodiments of the invention have been described in detail, many variations and modifications within the scope of the invention will be obvious to one skilled in the art and all such are intended to fall within the scope of the following claims.
What is claimed is:
1. An improved heat exchanger of the type comprising: a casing member; a plurality of hollow, flexible fluid-tight plastic filaments; means for securing the end of said filaments in fixed relationship with said casing member, means for passing a first fluid through the interior of said filaments and meansfor passin a second fluid through said casing member into mttma e contact with the outer surface of said filaments; the improvement wherein said filaments comprise a plastic composition containing 5 to 45 percent by weight of filler particles having a thermal conductivity substantially greater than the thermal conductivity of the plastic, substantially all of said filler particles having a diameter greater than 2.0 microns and the ratio of the diameter of said filler particles to the wall thickness of said filaments being 0.001 to 0.5, said filler particles having a distribution in said plastic composition which is homogeneous enough so that said filaments have a tensile strength greater than 1,000 psi and an elongation to failure of greater than 25 percent at room temperature and heterogeneous enough so that said filaments have a thermal conductivity greater than twice the thermal conductivity of said plastic.
2. The heat exchanger of claim 1 wherein said plastic is a polyfluorinated plastic and said filler particles are filler particles which are substantially impervious to corrosive fluids.
3. The heat exchanger of claim 1 wherein the ratio of said diameter to the wall thickness of said filament is 0.001 to 0.1.
4. The heat exchanger of claim 1 wherein said plastic is a polyfluorinated plastic and said filler particles are carbon filler particles.
5. The heat exchanger of claim 4 wherein said polyfluorinated plastic is a polyfluorinated plastic selected from the group consisting of polymers of tetrafluoroethylene and copolymers of tetrafluoroethylene and hexafluoropropylene and said carbon filler particles are graphite filler particles.
6. The heat exchanger of claim 1 wherein said filaments comprise a plastic composition containing 5 to 25 percent by weight of said filler particles, and wherein said filaments have a thermal conductivity greater than one and a half times the thermal conductivity of the plastic.
7. The heat exchanger of claim 6 wherein said plastic is a polyfluorinated plastic and said filler particles are graphite filler particles.
8. The heat exchanger of claim 7 wherein said filler particles have a diameter of 2.0 to 50 microns.
9. The heat exchanger of claim 1 wherein said filaments comprise a plastic composition containing 10 to 20 percent by weight of said filler particles, and wherein said filaments have a thermal conductivity of greater than one and a half times the thermal conductivity of the plastic.
10. The heat exchanger of claim 9 wherein said plastic is a polyfluorinated plastic and said filler particles are graphite filler particles having a diameter of 2.0 to 50 microns.
11. The heat exchanger of claim 10 wherein said polyfluorinated plastic is a polyfluorinated plastic selected from the group consisting of polymers of tetrafluoroethylene and copolymers of tetrafluoroethylene and hexafluoropropylene.

Claims (10)

  1. 2. The heat exchanger of claim 1 wherein said plastic is a polyfluorinated plastic and said filler particles are filler particles which are substantially impervious to corrosive fluids.
  2. 3. The heat exchanger of claim 1 wherein the ratio of said diameter to the wall thickness of said filament is 0.001 to 0.1.
  3. 4. The heat exchanger of claim 1 wherein said plastic is a polyfluorinated plastic and said filler particles are carbon filler particles.
  4. 5. The heat exchanger of claim 4 wherein said polyfluorinated plastic is a polyfluorinated plastic selected from the group consisting of polymers of tetrafluoroethylene and copolymers of tetrafluoroethylene and hexafluoropropylene and said carbon filler particles are graphite filler particles.
  5. 6. The heat exchanger of claim 1 wherein said filaments comprise a plastic composition containing 5 to 25 percent by weight of said filler particles, and wherein said filaments have a thermal conductivity greater than one and a half times the thermal conductivity of the plastic.
  6. 7. The heat exchanger of claim 6 wherein said plastic is a polyfluorinated plastic and said filler particles are graphite filler particles.
  7. 8. The heat exchanger of claim 7 wherein said filler particles have a diameter of 2.0 to 50 microns.
  8. 9. The heat exchanger of claim 1 wherein said filaments comprise a plastic composition containing 10 to 20 percent by weight of said filler particles, and wherein said filaments have a thermal conductivity of greater than one and a half times the thermal conductivity of tHe plastic.
  9. 10. The heat exchanger of claim 9 wherein said plastic is a polyfluorinated plastic and said filler particles are graphite filler particles having a diameter of 2.0 to 50 microns.
  10. 11. The heat exchanger of claim 10 wherein said polyfluorinated plastic is a polyfluorinated plastic selected from the group consisting of polymers of tetrafluoroethylene and copolymers of tetrafluoroethylene and hexafluoropropylene.
US00064221A 1970-08-17 1970-08-17 Plastic heat exchange apparatus Ceased US3718181A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US6422170A 1970-08-17 1970-08-17

Publications (1)

Publication Number Publication Date
US3718181A true US3718181A (en) 1973-02-27

Family

ID=22054390

Family Applications (1)

Application Number Title Priority Date Filing Date
US00064221A Ceased US3718181A (en) 1970-08-17 1970-08-17 Plastic heat exchange apparatus

Country Status (10)

Country Link
US (1) US3718181A (en)
JP (1) JPS5517319B1 (en)
BE (1) BE771402A (en)
CA (1) CA940115A (en)
DE (1) DE2141019C3 (en)
FR (1) FR2102305B1 (en)
GB (1) GB1305336A (en)
IT (1) IT940439B (en)
NL (1) NL7111306A (en)
SE (3) SE393766B (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985002144A1 (en) * 1983-11-15 1985-05-23 Uponor Ab Single-wall pipe of plastics or other mouldable material and method and apparatus for continuously extruding such pipes
EP0181614A1 (en) * 1984-11-07 1986-05-21 Ametek, Inc. Gas-liquid heat exchange process and apparatus
US4643244A (en) * 1984-11-07 1987-02-17 E. I. Du Pont De Nemours And Company Gas-liquid heat exchange process and apparatus
US4816331A (en) * 1987-01-02 1989-03-28 Ppg Industries, Inc. Electrostatic coating of pultruded articles
US4834930A (en) * 1986-04-28 1989-05-30 Akzo N.V. Method for the manufacture of apparatus for the transfer of heat and/or mass
US4867233A (en) * 1986-04-28 1989-09-19 Akzo N.V. Heat exchanger and method of making heat exchangers
US4975321A (en) * 1988-06-20 1990-12-04 E. I. Du Pont De Nemours And Company Structural composites of fluoropolymers reinforced with continuous filament fibers
US5069959A (en) * 1988-06-20 1991-12-03 E. I. Du Pont De Nemours And Company Structural composites of fluoropolymers reinforced with continuous filament fibers
US5902755A (en) * 1993-05-03 1999-05-11 Tox-Wastech, Inc. High Strength composite materials
US6343646B1 (en) * 1999-04-29 2002-02-05 Valeo Thermique Moteur Heat exchanger with flexible tubes especially for a motor vehicle
EP1544566A2 (en) * 2003-12-18 2005-06-22 Robert Bosch Gmbh Heat exchange element
US20050168222A1 (en) * 2002-05-02 2005-08-04 Winfried Arz Gradient coil system for a magnetic resonance tomography device having a more effective cooling
US20110011558A1 (en) * 2009-07-15 2011-01-20 Don Dorrian Thermal conductivity pipe for geothermal applications
US20120131934A1 (en) * 2010-05-25 2012-05-31 7Ac Technologies, Inc. Water recovery methods and systems
US20140238649A1 (en) * 2007-07-12 2014-08-28 Heatmatrix Group B.V. Heat exchanger
US9101875B2 (en) 2012-06-11 2015-08-11 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US9470426B2 (en) 2013-06-12 2016-10-18 7Ac Technologies, Inc. In-ceiling liquid desiccant air conditioning system
US9506697B2 (en) 2012-12-04 2016-11-29 7Ac Technologies, Inc. Methods and systems for cooling buildings with large heat loads using desiccant chillers
US9631848B2 (en) 2013-03-01 2017-04-25 7Ac Technologies, Inc. Desiccant air conditioning systems with conditioner and regenerator heat transfer fluid loops
US20170194679A1 (en) * 2015-12-30 2017-07-06 GM Global Technology Operations LLC Composite Heat Exchanger for Batteries and Method of Making Same
US9709285B2 (en) 2013-03-14 2017-07-18 7Ac Technologies, Inc. Methods and systems for liquid desiccant air conditioning system retrofit
US10024558B2 (en) 2014-11-21 2018-07-17 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
US10323867B2 (en) 2014-03-20 2019-06-18 7Ac Technologies, Inc. Rooftop liquid desiccant systems and methods
US10619867B2 (en) 2013-03-14 2020-04-14 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
US10921001B2 (en) 2017-11-01 2021-02-16 7Ac Technologies, Inc. Methods and apparatus for uniform distribution of liquid desiccant in membrane modules in liquid desiccant air-conditioning systems
US10941948B2 (en) 2017-11-01 2021-03-09 7Ac Technologies, Inc. Tank system for liquid desiccant air conditioning system
US11022330B2 (en) 2018-05-18 2021-06-01 Emerson Climate Technologies, Inc. Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2603506A1 (en) * 1976-01-30 1977-08-11 Jenaer Glaswerk Schott & Gen AREA SOLAR ENERGY COLLECTORS WITH ABSORBER PLATES MADE OF SOLID GLASS FIBER
DE2856642A1 (en) * 1978-12-29 1980-07-10 Akzo Gmbh THIN-WALLED HOSE MADE FROM A MELT SPINNABLE SYNTHETIC POLYMER AND ITS USE IN A DEVICE FOR TRANSMITTING HEAT
GB2047874B (en) * 1979-03-17 1983-12-21 Akzo Nv Apparatus in which heat is transferred through hollow threads as well as hollow threads suitable for this purpose
SE9300209L (en) * 1993-01-23 1994-07-24 Klaus Lorenz Heat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB531112A (en) * 1939-07-12 1940-12-30 Walter Engel Improvement in or relating to the manufacture of heat exchange units
US2878353A (en) * 1954-12-16 1959-03-17 Du Pont Electrical resistors
US3228456A (en) * 1965-03-01 1966-01-11 Du Pont Method and apparatus employing hollow polyfluorinated plastic filaments for heat exchange
US3272260A (en) * 1961-08-11 1966-09-13 Union Carbide Corp Corrosion resistant heat exchanger
US3473087A (en) * 1962-05-22 1969-10-14 Raybestos Manhattan Inc Electrically conductive polytetrafluoroethylene tubing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB816965A (en) * 1956-10-24 1959-07-22 Plessey Co Ltd Improvements in or relating to electrically resistive or conductive filaments
US2683669A (en) * 1950-04-15 1954-07-13 Myron A Coler Conductive plastics and method of making the same
BE504311A (en) * 1950-06-30 1900-01-01
US2961712A (en) * 1957-07-10 1960-11-29 Polymer Corp Method of making filled polytetrafluoroethylene articles
NL151792C (en) * 1965-01-14
GB1202301A (en) * 1967-07-29 1970-08-12 Werner & Pfleiderer A machine for continuously mixing blending and plasticising synthetic plastics compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB531112A (en) * 1939-07-12 1940-12-30 Walter Engel Improvement in or relating to the manufacture of heat exchange units
US2878353A (en) * 1954-12-16 1959-03-17 Du Pont Electrical resistors
US3272260A (en) * 1961-08-11 1966-09-13 Union Carbide Corp Corrosion resistant heat exchanger
US3473087A (en) * 1962-05-22 1969-10-14 Raybestos Manhattan Inc Electrically conductive polytetrafluoroethylene tubing
US3228456A (en) * 1965-03-01 1966-01-11 Du Pont Method and apparatus employing hollow polyfluorinated plastic filaments for heat exchange

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985002144A1 (en) * 1983-11-15 1985-05-23 Uponor Ab Single-wall pipe of plastics or other mouldable material and method and apparatus for continuously extruding such pipes
EP0181614A1 (en) * 1984-11-07 1986-05-21 Ametek, Inc. Gas-liquid heat exchange process and apparatus
US4643244A (en) * 1984-11-07 1987-02-17 E. I. Du Pont De Nemours And Company Gas-liquid heat exchange process and apparatus
US4834930A (en) * 1986-04-28 1989-05-30 Akzo N.V. Method for the manufacture of apparatus for the transfer of heat and/or mass
US4867233A (en) * 1986-04-28 1989-09-19 Akzo N.V. Heat exchanger and method of making heat exchangers
US4816331A (en) * 1987-01-02 1989-03-28 Ppg Industries, Inc. Electrostatic coating of pultruded articles
US4975321A (en) * 1988-06-20 1990-12-04 E. I. Du Pont De Nemours And Company Structural composites of fluoropolymers reinforced with continuous filament fibers
US5069959A (en) * 1988-06-20 1991-12-03 E. I. Du Pont De Nemours And Company Structural composites of fluoropolymers reinforced with continuous filament fibers
US5902755A (en) * 1993-05-03 1999-05-11 Tox-Wastech, Inc. High Strength composite materials
US6343646B1 (en) * 1999-04-29 2002-02-05 Valeo Thermique Moteur Heat exchanger with flexible tubes especially for a motor vehicle
US20050168222A1 (en) * 2002-05-02 2005-08-04 Winfried Arz Gradient coil system for a magnetic resonance tomography device having a more effective cooling
US7154270B2 (en) * 2002-05-02 2006-12-26 Siemens Aktiengesellschaft Gradient coil system for a magnetic resonance tomography device having a more effective cooling
EP1544566A2 (en) * 2003-12-18 2005-06-22 Robert Bosch Gmbh Heat exchange element
EP1544566A3 (en) * 2003-12-18 2008-12-10 Robert Bosch Gmbh Heat exchange element
US20140238649A1 (en) * 2007-07-12 2014-08-28 Heatmatrix Group B.V. Heat exchanger
US20110011558A1 (en) * 2009-07-15 2011-01-20 Don Dorrian Thermal conductivity pipe for geothermal applications
US9377207B2 (en) * 2010-05-25 2016-06-28 7Ac Technologies, Inc. Water recovery methods and systems
US9709286B2 (en) 2010-05-25 2017-07-18 7Ac Technologies, Inc. Methods and systems for desiccant air conditioning
US8800308B2 (en) * 2010-05-25 2014-08-12 7Ac Technologies, Inc. Methods and systems for desiccant air conditioning with combustion contaminant filtering
US20120131939A1 (en) * 2010-05-25 2012-05-31 7Ac Technologies, Inc. Methods and systems for desiccant air conditioning
US8943850B2 (en) 2010-05-25 2015-02-03 7Ac Technologies, Inc. Desalination methods and systems
US9000289B2 (en) 2010-05-25 2015-04-07 7Ac Technologies, Inc. Photovoltaic-thermal (PVT) module with storage tank and associated methods
US20150184876A1 (en) * 2010-05-25 2015-07-02 7Ac Technologies, Inc. Methods and systems for desiccant air conditioning
US9086223B2 (en) * 2010-05-25 2015-07-21 7Ac Technologies, Inc. Methods and systems for desiccant air conditioning
US11624517B2 (en) 2010-05-25 2023-04-11 Emerson Climate Technologies, Inc. Liquid desiccant air conditioning systems and methods
US10753624B2 (en) 2010-05-25 2020-08-25 7Ac Technologies, Inc. Desiccant air conditioning methods and systems using evaporative chiller
US9243810B2 (en) 2010-05-25 2016-01-26 7AC Technologies Methods and systems for desiccant air conditioning
US9273877B2 (en) 2010-05-25 2016-03-01 7Ac Technologies, Inc. Methods and systems for desiccant air conditioning
US20120131940A1 (en) * 2010-05-25 2012-05-31 7Ac Technologies, Inc. Methods and systems for desiccant air conditioning with combustion contaminant filtering
US20120131934A1 (en) * 2010-05-25 2012-05-31 7Ac Technologies, Inc. Water recovery methods and systems
US9429332B2 (en) 2010-05-25 2016-08-30 7Ac Technologies, Inc. Desiccant air conditioning methods and systems using evaporative chiller
US10168056B2 (en) 2010-05-25 2019-01-01 7Ac Technologies, Inc. Desiccant air conditioning methods and systems using evaporative chiller
US10006648B2 (en) * 2010-05-25 2018-06-26 7Ac Technologies, Inc. Methods and systems for desiccant air conditioning
US9631823B2 (en) 2010-05-25 2017-04-25 7Ac Technologies, Inc. Methods and systems for desiccant air conditioning
US10443868B2 (en) 2012-06-11 2019-10-15 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US9835340B2 (en) 2012-06-11 2017-12-05 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US9101875B2 (en) 2012-06-11 2015-08-11 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US11098909B2 (en) 2012-06-11 2021-08-24 Emerson Climate Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US9308490B2 (en) 2012-06-11 2016-04-12 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US9101874B2 (en) 2012-06-11 2015-08-11 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US9506697B2 (en) 2012-12-04 2016-11-29 7Ac Technologies, Inc. Methods and systems for cooling buildings with large heat loads using desiccant chillers
US10024601B2 (en) 2012-12-04 2018-07-17 7Ac Technologies, Inc. Methods and systems for cooling buildings with large heat loads using desiccant chillers
US9631848B2 (en) 2013-03-01 2017-04-25 7Ac Technologies, Inc. Desiccant air conditioning systems with conditioner and regenerator heat transfer fluid loops
US10760830B2 (en) 2013-03-01 2020-09-01 7Ac Technologies, Inc. Desiccant air conditioning methods and systems
US10619867B2 (en) 2013-03-14 2020-04-14 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
US9709285B2 (en) 2013-03-14 2017-07-18 7Ac Technologies, Inc. Methods and systems for liquid desiccant air conditioning system retrofit
US10619868B2 (en) 2013-06-12 2020-04-14 7Ac Technologies, Inc. In-ceiling liquid desiccant air conditioning system
US9470426B2 (en) 2013-06-12 2016-10-18 7Ac Technologies, Inc. In-ceiling liquid desiccant air conditioning system
US10619895B1 (en) 2014-03-20 2020-04-14 7Ac Technologies, Inc. Rooftop liquid desiccant systems and methods
US10323867B2 (en) 2014-03-20 2019-06-18 7Ac Technologies, Inc. Rooftop liquid desiccant systems and methods
US10731876B2 (en) 2014-11-21 2020-08-04 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
US10024558B2 (en) 2014-11-21 2018-07-17 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
US20170194679A1 (en) * 2015-12-30 2017-07-06 GM Global Technology Operations LLC Composite Heat Exchanger for Batteries and Method of Making Same
US10921001B2 (en) 2017-11-01 2021-02-16 7Ac Technologies, Inc. Methods and apparatus for uniform distribution of liquid desiccant in membrane modules in liquid desiccant air-conditioning systems
US10941948B2 (en) 2017-11-01 2021-03-09 7Ac Technologies, Inc. Tank system for liquid desiccant air conditioning system
US11022330B2 (en) 2018-05-18 2021-06-01 Emerson Climate Technologies, Inc. Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture

Also Published As

Publication number Publication date
NL7111306A (en) 1972-02-21
DE2141019C3 (en) 1986-07-31
SE7406091L (en) 1974-05-07
FR2102305B1 (en) 1975-07-11
DE2141019A1 (en) 1972-02-24
CA940115A (en) 1974-01-15
BE771402A (en) 1972-02-17
IT940439B (en) 1973-02-10
GB1305336A (en) 1973-01-31
FR2102305A1 (en) 1972-04-07
SE393766B (en) 1977-05-23
SE369442B (en) 1974-08-26
JPS5517319B1 (en) 1980-05-10
DE2141019B2 (en) 1980-02-07

Similar Documents

Publication Publication Date Title
US3718181A (en) Plastic heat exchange apparatus
US3848660A (en) Plastic heat exchange apparatus and a method for making
US2515250A (en) Method of making and storing compositions comprising thermoplastic resins and normally gaseous solvents
FI82550C (en) Procedure for manufacturing a disc heat exchanger
CN110951142B (en) High-thermal-conductivity radiation crosslinked polyethylene pipe and preparation method and application thereof
JPS6327637B2 (en)
WO2004074371A1 (en) Fluororesin composite compositions
TW201008749A (en) An apparatus and method for the introduction of a foaming agent
CN112322039B (en) High-thermal-conductivity reinforced polyphenylene sulfide composite material and preparation method thereof
JP3936556B2 (en) Antistatic fluoropolymer tube for flammable fluids
USRE31732E (en) Plastic heat exchange apparatus
CN105086378A (en) Liquid crystal polymer in-situ composite material and preparation method therefor
CN104262965B (en) A kind of polyphenyl thioether composite material and preparation method thereof
US3486193A (en) Apparatus for extruding thermoplastic material
CN207327557U (en) A kind of parallel double-screw extruder for masterbatch processing
CN207327558U (en) A kind of parallel double-screw extruder
JP2601336B2 (en) Kneading extruder
JPS5824426A (en) Method for extrusion molding of polyamideimide resin
JPH01127322A (en) Molded product for heat exchanger containing carbon fiber
CN208745313U (en) The double-screw structure of fibre reinforced PC material extruder
CN107163605A (en) A kind of high heat conduction wood moulding and preparation method thereof
US4560334A (en) Apparatus for extruding thermoplastic compositions
CN209409268U (en) A kind of polymer foaming processing cooling cylinder of extruder
JPS63194195A (en) Plastic tube heat exchanger
DE2830026A1 (en) MIXED EXTRUDERS

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMETEK, INC., 410 PARK AVENUE, NEW YORK, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:E.I. DU PONT DE NEMOURS AND COMPANY;REEL/FRAME:004589/0577

Effective date: 19860602