US3714712A - Cutting or grooving tool - Google Patents

Cutting or grooving tool Download PDF

Info

Publication number
US3714712A
US3714712A US00116431A US3714712DA US3714712A US 3714712 A US3714712 A US 3714712A US 00116431 A US00116431 A US 00116431A US 3714712D A US3714712D A US 3714712DA US 3714712 A US3714712 A US 3714712A
Authority
US
United States
Prior art keywords
pipe
cutting
tubular housing
cutting means
carriage arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00116431A
Inventor
J Hoffman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TE Connectivity Corp
Original Assignee
AMP Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMP Inc filed Critical AMP Inc
Application granted granted Critical
Publication of US3714712A publication Critical patent/US3714712A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D21/00Machines or devices for shearing or cutting tubes
    • B23D21/06Hand-operated tube-cutters
    • B23D21/10Hand-operated tube-cutters with other cutting blades or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D21/00Machines or devices for shearing or cutting tubes
    • B23D21/06Hand-operated tube-cutters
    • B23D21/08Hand-operated tube-cutters with cutting wheels

Definitions

  • a tool provided with a plurality of cutting blades received in a carriage which is pivotally mounted to the tool for engaging and disengaging the cutting blades on a pipe.
  • a compressed coil spring forcefully urges the cutting blades to penetrate into the pipe and a stop means is provided to limit penetration of the cutting blades.
  • the tool is further provided with a removable cradle which adapts the tool for use with pipes of varying diameters.
  • the present invention relates to a grooving or cutting tool, and more specifically, to a portable, light-weight and manually operated tool for cutting pipe or providing grooves in pipe.
  • the tool is provided with locating apparatus for positively positioning the tool on a pipe to be cut or provided with grooves.
  • the cutting blade or, alternatively, a plurality of groove cutting blades are mounted on extended arms of a carriage which is pivotally mounted on the tool.
  • a compressed coil spring forcefully pivots the carriage thereby engaging the cutting blade or groove cutting blades into engagement on the pipe.
  • the tool is then rotated over the surface of the pipe, with the stored energy of the compressed coil spring supplying pressure between the cutting blades and the pipe.
  • the preferred embodiment provides either pipe severing or a groove of precisely controlled depth in a pipe sidewall.
  • Another object of the present invention is to provide a portable and manually operated tool for providing at least one groove of precisely controlled depth in a pipe sidewall.
  • Yet another object of the present invention is to provide a portable and manually operated cutting or grooving tool for pipe with a cradle apparatus for adapting the tool for use with pipes of different diameters.
  • Yet another object of the present invention isto provide a portable and manually operated pipe grooving tool with locating structure for positively positioning the tool into position on a pipe which is to be cut or provided with at least one groove.
  • Another object of the present invention is to provide a pipe grooving tool with a compressed resilient spring for supplying cutting pressure to the cutting pressure to the cutting blade of the tool and camming structure for pivoting and disengaging the blade from the pipe and allowing removal of the tool therefrom.
  • FIG. 1 is an exploded perspective of a preferred embodiment of a portable and manually actuated grooving
  • FIG. 2 is a fragmentary elevation with parts in section illustrating a portion of a pipe provided with a series of grooves, together with fragmentary portions of a series of spaced groove cutting blades according to the preferred embodiment as-shown in FIG. 1;
  • FIG. 3 is an elevation of one end of the 'preferredembodiment as shown in FIG. 1, with parts broken away and with parts in section, illustrating the plurality of cutting blades according to the preferred embodiment as shown in FIG. 2 pivotally displaced to allow either positioning of the tool on a pipe to be cut, or removal of FIG. 4 is an enlarged detail section taken generally along the line 44 of FIG. 3;
  • FIG. 5 is an enlarged elevation of the preferred embodiment as shown in FIG. 3 illustrating the cutting blades pivotally displaced to engage and penetrate into a pipe sidewall, and a compressed coil spring for supplying such pivotal displacement and cutting pressure to the blades, together with stop means for limiting expansion of the compressed coil spring and penetration of the cutting blades;
  • FIG. 6 is an enlarged fragmentary detail section taken along the line 6-6 of FIG. 5.
  • a portable and manually operated lightweight tool for grooving pipe is indicated generally at 1 and includes a generally cylindricalhousing 2, having an inner diameter 3.
  • a plurality of circumferentially spaced grooves 4 generally of L-shaped cross section and extending generally parallel with the longitudinal axis of the cylindrical housing 2.
  • the portions of the cylindrical housing between adjacent circumferentially spaced grooves 4 are provided with aligne'd arcuate grooves 6 for receiving a single circular wire ring 8 which, for example, is resiliently snapped into place within the grooves 6 Further with reference to FIG.
  • the other end 10 of the cylindrical housing 2 includes a portion partially cut away and defined by, a pair of sidewalls 12 extending longitudinally of the cylindrical housing 2 and a radial sidewall 14 intersecting the sidewalls 12 and further defining the partially removed away portion.
  • One of the sidewalls 12 is generally beveled and provided thereover with an elongated generally rectangular bar 16 overlying and attached to the beveled surface the tool from a pipe without interference with the cutting blades;
  • the bar 16 extends between and joins together a pair of laterally spaced elbow-shaped flanges l8 and 20 fixedly attached to the beveled surface 12 of the cylindrical housing 2 by weldments, one of which is shown at 22. Accordingly, the bar 16 and the laterally spaced elbow-shaped flanges 18 and 20 are fixedly secured to the housing 2.
  • the end portion of the elbow-shaped flanges 18 and 20, that are spacedfrom the housing 2. and also from .the'bar 16, receive the end portions of a generally cylindrical pin 24 which extends therebetween.
  • a pair of laterally spaced elbow-shaped arms 26 and 28 are pivotally received over the pin 24, with the arms 26 and 28 betweenthe fixed exterior flanges 18 and 20.
  • the arms 28 and 26 are joined together by a generally planar sidewall 30 to define a carriage pivotally mounted on the pin 24.
  • the sidewall 30 is in spaced opposed relationship from the bar 16, and is provided therethrough with an aperture 32 freely receiving the threaded stem of a set screw 34 having an enlarged head.
  • An enlarged diameter bearing plate 36 having aprojecting reduced diameter boss 38' thereon, is secured to the planar surface of the bar 16, between the bar 16 and the opposed sidewall 30.
  • the stem of the set screw 34 is adjustable threadably received into the surface of the reduced diameter boss 38.
  • a compressed coil spring 40 isreceived over the stem of the set screw 34, with one end of said spring bearing in compression against the planar surface of the sidewall 30', and the other end of said spring encircling the reduced diameter boss 38 and bearing in compression against the surface of the enlarged diameter plate 36.
  • the coil spring 40 is compressibly retained between the bar 16 and the sidewall 30, and upon compression of the spring, the sidewall 30 will'be displaced toward the fixedly secured bar 16 in order to cause pivotal displacement of the arms 26 and 28 about the pin 24 in the direction shown by the arrow 42.
  • the pivotally mounted arms 26 and 28 of the carriage are provided with extended end portions 44 and 46, respectively. Disposed between the end portions 44 and 46 are a plurality of generally circular cutting blades 48, together with a spaced enlarged diameter, generally disc-shaped stop 50 adjacent to the end portion 44.
  • the blades 48 and the stop 50 are carried on the stern of an elongated fastener 52 bridging between the end portions of the pivotally mounted arms 26 and 28. As shown in FIG. 1,
  • the blades 48 and the stop 50 are disposed adjacent to the partially cut away portion of the housing 2 that is defined by the surfaces 12 and 14.
  • each of the blades 48 and the stop 50 is provided with a generally inverted L-shaped cut away portion 54, which provides a generally radially projecting cutting tip 48 on each of the blades 48, and a similar radially projecting tip 50' on the locating disc 50.
  • the projecting tip 48' of each cutting blade will I be pivoted generally clockwise about the pin 24 such that the radially projecting cutting tips 48- do not project beyond the inner diametrical sidewall 3 of the housing 2.
  • the projecting tip 50' of the locating disc 50 does protrude into the housing diameter formed by the sidewall 3.
  • the sidewall 30 will be displaced from the fixed bar 16 thereby pivoting the blades 48 and the stop 50 counterclockwise about the pin 24.
  • the radially projecting cutting tips 48' of the blades 48, as well as the radially projecting tip 50 of the locating disc 50 will protrude into the inner diameter of the housing formed by the inner diametrical sidewall 3.
  • FIGS. 3 and 4 taken in conjunction with'FlG. 1, the details of a cam structure for retaining the spring 40 in compressed condition will be explained in detaiLThus, as shown in FIGS. 1 and 4, the carriage arm 26 has attached thereto a generally L-shaped flange .56, with a shorter leg secured at one end thereof to the intersection of the arm .26 and the sidewall 30 by a weldment 58.
  • the longer leg of the L-shaped flange 56 is in'parallel spaced relationship with respect to the arm 26, with a portion of the stationary flange l8 slidably received therebetween.
  • a generally cylindrical, relatively enlarged diameter cam 60 is rotatably received in suitable aligned apertures of the arms 26 and 56.
  • the cam 60 is provided with a generally central, reduced diameter, offset cylindrical portion 62 received in an enlarged diameter aperture 64 provided in the fixed arm 18.
  • the cam is provided with a generally axially aligned enand 4, the tool 1, is received in a ratchet wrench and received over a pipe, the end portion of which is shown at 70 in FIG. 3 inserted into the inner diameter portion 3 of the housing 2.
  • the radially projecting cutting edges 48 of the blades 48 will not protrude into the inner diametrical portion of the housing 2 freely allowing insertion or removal of the pipe 70.
  • the tip 50 of the locating disc 50 will protrude into the housing and the pipe end portion 70 will abut .thereagainst to properly position the pipe with respect to the cutting blades 48.
  • FIGS. 5 and 6 With the pipe end portion properly positioned as described, reference will be made to FIGS. 5 and 6 wherein the cutting operation will be described in detail.
  • the handle rod 68 is pivoted to its position as shown in FIGS. 5 and 6. Such action rotates the offset cam portion 62 to-its position shown in FIG. 6, thereby allowing the aperture 64 of the fixedly secured arm 18 to become misaligned from the apertures-0f the carriage arm 26 and the flange 56. Such action releases the sidewall 30 of the carriage and pennits expansion of the coil spring 40. Such action pivots the cutting blades 48, counterclockwise about the pin 24 as shown in FIG. 5.
  • the cutting tips 48' of the cutting blades 48 thus radially engage the circumference of the pipe as the end portion 70 of which is retained in the housing 2 and against the tip of the locating disc 50.
  • the end portion of the housing adjacent to the wire ring 8 is received in the commercially available ratchet wrench, not shown.
  • the teeth of the ratchet wrench are received respectively in the grooves 4 of the housing and the wire ring 8 retains the wrench in position of the housing end portion.
  • the pipe end portion 70 remains fixed while the ratchet wrench is pivotally actuated manually in the well known manner, causing the tool housing 2 to be rotated in a single direction, as shown by the arrow 72 in FIG. 5, generally clockwise over the cylindrical surface of the pipe end portion.
  • the compressed coil spring will continue to expand, as the tool is rotated aboutthe pipe, in order to supply cutting pres- .sure to the cutting blade tips 48'.
  • the cutting pressure supplied by expansion of the compressed coil spring 40 causes the cutting blade tips 48to cut continuous grooves 74 in the circumference of the pipe end portion 70.
  • the locating disc 50 may also'include a cutting edge 76 which provides a chamfer 78 on the 7 terminal end portion of the pipe 70.
  • the depths of the grooves 74 and of the chamfer 78 may be precisely controlled by threadably adjusting the exposed length of the set screw stem.
  • the coil spring 40 will continue to expand and supply cutting pressure until expansion of the spring 40 displaced the sidewall 30 into stopped engagement against the enlarged head of the set screw 34. When this occurs, the sidewall 30 will be stopped against the enlarged set screw head to prevent continued expansion of the compressed coil spring 40 and the continued application of cutting pressure.
  • the cutting depths of the blade tips 48' may be precisely limited, thereby limiting cutting of the grooves 74 beyond a precisely controlled depth. Continued rotation of the tool would not produce a cutting action since the cutting pressure is removed as described.
  • an operator need only pivot the handle 68 from its position shown in FIGS. 5 and 6 to the position shown in FIGS. 3 and 4. Such pivotal motion will return the offset cam surface 62 from its position shown in FIG. 6 to its position shown in FIG. 4, thereby compressing the coil spring 40 and pivoting the cutting blade tips 48' out of engagement with the pipe end portion 70. Additionally, the blade tips 48 will no longer protrude into the inner diametrical portion of the housing 2 thereby, permitting free withdrawal of the housing from the pipe end portion 70 without interference with the blade tips 48.
  • an adapted cradle shown generally at 79, is provided with a first set of generally C-shaped laminated plates 80 and a second set of laminated plates 82, laterally spaced from the first set by a generally arcuate flange spacer 84-.
  • the laminates are retained in stacked relationship by connecting rods, one of which is shown at 85.
  • the end of the set of plates 80 is provided with a depending loop locating pin 86.
  • the cradle 79 is removably inserted in the housing 2, with the plates 80 disposed slong the housing inner diametrical sidewall 3 in spaced opposed relationship from the cutting blades 48, andlwith the pin 86in registration with a complimentary notch 88 provided in the end of the housing 2.
  • the cradle thus adapts the inner diametrical portion 3 of the housing to accept pipes of different diameters.
  • a cutting tool for rotation over the circumference of a pipe comprising: a tubular housing encircling and slidably receiving said pipe therein, cutting means pivotally mounted on said tubular housing for engaging said pipe and for selectively cutting or grooving said pipe,
  • disengaging means for rotating said cutting means relative to said tubular housing, pivoting said cutting means away from said pipe, disengaging said cutting means from said pipe and allowing removal of said pipe from said tubular housing,
  • biasing means for biasing said cutting means in a direction for engagement with and penetration into said pipe
  • stopmeans extending from said tubular housing into the rotational path of said cutting means for limiting penetration of said cutting means into said pipe when grooving said pipe.
  • cam means for association with said disengaging means fordisplacingsaid carriage means and for disengaging said cutting means from said pipe.
  • an elongated, C-shaped cradle adapted to be removably positioned within said tubular housing with the opening in said-cradle adjacent to said cutting means whereby said cradle permits said tubular housing to receive a pipe of a diameter smaller than a pipe received by said tubular housing without said cradle.
  • a cutting tool for rotation over the circumference of a pipe comprising: 4 p
  • disengaging means for moving said carriage arm relative to said tubular housing in opposition to said biasing means'to pivot said cutting means away from said pipe, disengage said pipe, and allow removal of said pipe from said tubularhousing.
  • tubular housing havingan outer surface adapted-to receive means adapted for rotating said tubular housing around said pipe.
  • tubular housing includes an lateral extension thereon;
  • said disengaging means including a cam pivotally mounted on said carriage arm and having a cam surface which acts on said extension of said tubular housing, said cam being rotatable ,to a positionwith the opening of said cradle adjacent to said cutting means whereby said cradle permits said tubular housing to receive a pipe of a diameter smaller than a pipe received by said tubular housing without said cradle.
  • a cutting tool as set forth in claim including:
  • said cutting means having at least one cutting or grooving blade selectively positioned axially relative to said tubular housing
  • adjustable stop means extending from said tubular housing into the rotational path of said carriage arm for stopping the biased rotation of said carriage arm and for limiting the penetration of said cutting means into said pipe when grooving said pipe.
  • a cutting tool as set forth in claim 9 including:
  • a locating member extending from said carriage arm toward said pipe to limit the insertion of said pipe into said tubular housing and to locate said pipe in a desired relationship with respect to said cutting means.
  • said locating member including a cutting edge to chamfer the end of said pipe.
  • a cuttingtool for rotation over the circumference of a pipe comprising:
  • said cutting means extending from a carriage arm which is pivotally mounted on said tubular housing to produce substantially radial movement of said cutting means with respect to said pipe,
  • biasing means between said tubular housing and said carriage arm for biasing said' carriage arm in a direction for engagement of said cutting means with said pipe
  • a cam pivotally mounted on said carriage arm and having a cam surface acting on said extension of said tubular housing, said cam being rotatable to a position to cause said carriage arm to move in opposition to said biasing means
  • adjustable stop means extending from said tubular housing into the rotational path of said carriage arm for stopping the biased rotation of said c'arria ge arm and for limiting the penetration of said cutting means into said pipe when grooving said p p a locating member extending from said carriage arm toward said pipe to limit the insertion of said pipe into said tubular housing and to locate said pipe in a desired relationship with respect to said cutting means
  • said locating member including a cutting edge to chamfer the end of said pipe.
  • a cutting tool as set forth in claim 12 including:
  • an elongated C-shaped cradle adapted to be removably positioned within said tubular housing with the ogenin of saidcradle adjacent to said cutting me ns w ereby said cradle permits said tubular housing to receive a pipe of a diameter smaller than a pipe received by said tubular housing without said cradle.

Abstract

A tool provided with a plurality of cutting blades received in a carriage which is pivotally mounted to the tool for engaging and disengaging the cutting blades on a pipe. A compressed coil spring forcefully urges the cutting blades to penetrate into the pipe and a stop means is provided to limit penetration of the cutting blades. The tool is further provided with a removable cradle which adapts the tool for use with pipes of varying diameters.

Description

Un ted States Patent [1 1 [111 3,714,712 Hoffman Feb. 6, 1973 CUTTING OR GROOVING TOOL FOREIGN PATENTS OR APPLICATIONS Inventorl J p Willard Hoffman, Liverpool, 725,359 1/1966 Canada ..30/99 [73] Assignee: AMP Incorporated, Harrisburg, Pa. Primary Examiner-Robert Riordon Assistant Examiner,l. C. Peters [22] Filed: Feb. 18, 1971 App]. No.: 1 16,431
[52] U.S. Cl ..30/95 [51] Int. Cl. ..B23d 21/04 [58] Field of Search ..30/92, 94, 95, 96, 97, 98, 30/99 [56] References Cited UNITED STATES PATENTS 2,346,314 4/1944 Lembitz ..30/95 X 2,448,578 9/1948 Condonm. ..30/95 3,098,296 7/1963 Petersen... ...30/95 3,357,100 12/1967 Lennon ...30/98 3,408,738 11/1968 Schade ..30/95 Att0rney-William J. Keating, Ronald D. Grefe, Gerald K. Kita, Frederick W. Raring, Jay L. Seitchik and John P. Vanderburg 57 ABSTRACT A tool provided with a plurality of cutting blades received in a carriage which is pivotally mounted to the tool for engaging and disengaging the cutting blades on a pipe. A compressed coil spring forcefully urges the cutting blades to penetrate into the pipe and a stop means is provided to limit penetration of the cutting blades. The tool is further provided with a removable cradle which adapts the tool for use with pipes of varying diameters.
13 Claims, 6 Drawing Figures PATENTEU FEB 6 I975 SHEET 10F 2 INVENTOR JOSEPH WILLARD HOFFMAN BY GERALD K. KITA PATENTEU FEB 8 I973 SHEET 2 0F 2 tool and an adapted therefor;
CUTTING R GROOVING TOOL The present invention relates to a grooving or cutting tool, and more specifically, to a portable, light-weight and manually operated tool for cutting pipe or providing grooves in pipe. According to a preferred embodiment of the present invention, the tool is provided with locating apparatus for positively positioning the tool on a pipe to be cut or provided with grooves. The cutting blade or, alternatively, a plurality of groove cutting blades, are mounted on extended arms of a carriage which is pivotally mounted on the tool. A compressed coil spring forcefully pivots the carriage thereby engaging the cutting blade or groove cutting blades into engagement on the pipe. The tool is then rotated over the surface of the pipe, with the stored energy of the compressed coil spring supplying pressure between the cutting blades and the pipe. Rotation of the tool about the pipe is continued until the pipe sidewall is completely out therethrough. Alternatively, an adjustable stop is provided to limit penetration of the cutting blades into the pipe sidewall. Thus, the preferred embodiment provides either pipe severing or a groove of precisely controlled depth in a pipe sidewall.
It is therefore an object of the present invention to provide a portable and manually operated pipe cutting and grooving tool.
Another object of the present invention is to provide a portable and manually operated tool for providing at least one groove of precisely controlled depth in a pipe sidewall.
Yet another object of the present invention is to provide a portable and manually operated cutting or grooving tool for pipe with a cradle apparatus for adapting the tool for use with pipes of different diameters.
Yet another object of the present invention isto provide a portable and manually operated pipe grooving tool with locating structure for positively positioning the tool into position on a pipe which is to be cut or provided with at least one groove.
Another object of the present invention is to provide a pipe grooving tool with a compressed resilient spring for supplying cutting pressure to the cutting pressure to the cutting blade of the tool and camming structure for pivoting and disengaging the blade from the pipe and allowing removal of the tool therefrom.
Other objects and many attendant advantages of the present invention will become apparent upon perusal of the following detailed description taken in conjunction with the accompanying drawings, wherein:
FIG. 1 is an exploded perspective of a preferred embodiment of a portable and manually actuated grooving FIG. 2 is a fragmentary elevation with parts in section illustrating a portion of a pipe provided with a series of grooves, together with fragmentary portions of a series of spaced groove cutting blades according to the preferred embodiment as-shown in FIG. 1;
FIG. 3 is an elevation of one end of the 'preferredembodiment as shown in FIG. 1, with parts broken away and with parts in section, illustrating the plurality of cutting blades according to the preferred embodiment as shown in FIG. 2 pivotally displaced to allow either positioning of the tool on a pipe to be cut, or removal of FIG. 4 is an enlarged detail section taken generally along the line 44 of FIG. 3;
FIG. 5 is an enlarged elevation of the preferred embodiment as shown in FIG. 3 illustrating the cutting blades pivotally displaced to engage and penetrate into a pipe sidewall, and a compressed coil spring for supplying such pivotal displacement and cutting pressure to the blades, together with stop means for limiting expansion of the compressed coil spring and penetration of the cutting blades; and
FIG. 6 is an enlarged fragmentary detail section taken along the line 6-6 of FIG. 5.
With more particular reference to the drawings, a portable and manually operated lightweight tool for grooving pipe is indicated generally at 1 and includes a generally cylindricalhousing 2, having an inner diameter 3. One end portion of which housing is encircled by a plurality of circumferentially spaced grooves 4 generally of L-shaped cross section and extending generally parallel with the longitudinal axis of the cylindrical housing 2. The portions of the cylindrical housing between adjacent circumferentially spaced grooves 4 are provided with aligne'd arcuate grooves 6 for receiving a single circular wire ring 8 which, for example, is resiliently snapped into place within the grooves 6 Further with reference to FIG. 1, the other end 10 of the cylindrical housing 2 includes a portion partially cut away and defined by, a pair of sidewalls 12 extending longitudinally of the cylindrical housing 2 and a radial sidewall 14 intersecting the sidewalls 12 and further defining the partially removed away portion. One of the sidewalls 12 is generally beveled and provided thereover with an elongated generally rectangular bar 16 overlying and attached to the beveled surface the tool from a pipe without interference with the cutting blades;
12 by a weldment, for example. The bar 16 extends between and joins together a pair of laterally spaced elbow-shaped flanges l8 and 20 fixedly attached to the beveled surface 12 of the cylindrical housing 2 by weldments, one of which is shown at 22. Accordingly, the bar 16 and the laterally spaced elbow- shaped flanges 18 and 20 are fixedly secured to the housing 2. The end portion of the elbow- shaped flanges 18 and 20, that are spacedfrom the housing 2. and also from .the'bar 16, receive the end portions of a generally cylindrical pin 24 which extends therebetween.
With more particular reference to FIGS. 1 and 3, a pair of laterally spaced elbow- shaped arms 26 and 28 are pivotally received over the pin 24, with the arms 26 and 28 betweenthe fixed exterior flanges 18 and 20. The arms 28 and 26are joined together by a generally planar sidewall 30 to define a carriage pivotally mounted on the pin 24.
With more particular reference to FIG. 3, the sidewall 30 is in spaced opposed relationship from the bar 16, and is provided therethrough with an aperture 32 freely receiving the threaded stem of a set screw 34 having an enlarged head. An enlarged diameter bearing plate 36, having aprojecting reduced diameter boss 38' thereon, is secured to the planar surface of the bar 16, between the bar 16 and the opposed sidewall 30. The stem of the set screw 34 is adjustable threadably received into the surface of the reduced diameter boss 38. A compressed coil spring 40 isreceived over the stem of the set screw 34, with one end of said spring bearing in compression against the planar surface of the sidewall 30', and the other end of said spring encircling the reduced diameter boss 38 and bearing in compression against the surface of the enlarged diameter plate 36. Accordingly, the coil spring 40 is compressibly retained between the bar 16 and the sidewall 30, and upon compression of the spring, the sidewall 30 will'be displaced toward the fixedly secured bar 16 in order to cause pivotal displacement of the arms 26 and 28 about the pin 24 in the direction shown by the arrow 42.
With reference again to FIGS. 1 and 3, the pivotally mounted arms 26 and 28 of the carriage are provided with extended end portions 44 and 46, respectively. Disposed between the end portions 44 and 46 are a plurality of generally circular cutting blades 48, together with a spaced enlarged diameter, generally disc-shaped stop 50 adjacent to the end portion 44. The blades 48 and the stop 50 are carried on the stern of an elongated fastener 52 bridging between the end portions of the pivotally mounted arms 26 and 28. As shown in FIG. 1,
the blades 48 and the stop 50 are disposed adjacent to the partially cut away portion of the housing 2 that is defined by the surfaces 12 and 14.
As shown in FIG. 3, taken in conjunction with FIG. 5, each of the blades 48 and the stop 50 is provided with a generally inverted L-shaped cut away portion 54, which provides a generally radially projecting cutting tip 48 on each of the blades 48, and a similar radially projecting tip 50' on the locating disc 50. Thus, as shown in FIG. 3, when the coil spring 40 is compressed, the projecting tip 48' of each cutting blade will I be pivoted generally clockwise about the pin 24 such that the radially projecting cutting tips 48- do not project beyond the inner diametrical sidewall 3 of the housing 2. However, the projecting tip 50' of the locating disc 50 does protrude into the housing diameter formed by the sidewall 3. Y
As shown in FIG. 5, with the compressed coil spring 40 in generally partially expanded condition, the sidewall 30 will be displaced from the fixed bar 16 thereby pivoting the blades 48 and the stop 50 counterclockwise about the pin 24. As a result, the radially projecting cutting tips 48' of the blades 48, as well as the radially projecting tip 50 of the locating disc 50 will protrude into the inner diameter of the housing formed by the inner diametrical sidewall 3.
v With more particular reference to FIGS. 3 and 4, taken in conjunction with'FlG. 1, the details of a cam structure for retaining the spring 40 in compressed condition will be explained in detaiLThus, as shown in FIGS. 1 and 4, the carriage arm 26 has attached thereto a generally L-shaped flange .56, with a shorter leg secured at one end thereof to the intersection of the arm .26 and the sidewall 30 by a weldment 58. The longer leg of the L-shaped flange 56 is in'parallel spaced relationship with respect to the arm 26, with a portion of the stationary flange l8 slidably received therebetween. A generally cylindrical, relatively enlarged diameter cam 60 is rotatably received in suitable aligned apertures of the arms 26 and 56. The cam 60 is provided with a generally central, reduced diameter, offset cylindrical portion 62 received in an enlarged diameter aperture 64 provided in the fixed arm 18. The cam is provided with a generally axially aligned enand 4, the tool 1, is received in a ratchet wrench and received over a pipe, the end portion of which is shown at 70 in FIG. 3 inserted into the inner diameter portion 3 of the housing 2. The radially projecting cutting edges 48 of the blades 48 will not protrude into the inner diametrical portion of the housing 2 freely allowing insertion or removal of the pipe 70. However, the tip 50 of the locating disc 50 will protrude into the housing and the pipe end portion 70 will abut .thereagainst to properly position the pipe with respect to the cutting blades 48.
With the pipe end portion properly positioned as described, reference will be made to FIGS. 5 and 6 wherein the cutting operation will be described in detail. To begin the cutting procedure, the handle rod 68 is pivoted to its position as shown in FIGS. 5 and 6. Such action rotates the offset cam portion 62 to-its position shown in FIG. 6, thereby allowing the aperture 64 of the fixedly secured arm 18 to become misaligned from the apertures-0f the carriage arm 26 and the flange 56. Such action releases the sidewall 30 of the carriage and pennits expansion of the coil spring 40. Such action pivots the cutting blades 48, counterclockwise about the pin 24 as shown in FIG. 5. The cutting tips 48' of the cutting blades 48 thus radially engage the circumference of the pipe as the end portion 70 of which is retained in the housing 2 and against the tip of the locating disc 50. To begin the cutting operation, the end portion of the housing adjacent to the wire ring 8 is received in the commercially available ratchet wrench, not shown. The teeth of the ratchet wrench are received respectively in the grooves 4 of the housing and the wire ring 8 retains the wrench in position of the housing end portion. Generally, the pipe end portion 70 remains fixed while the ratchet wrench is pivotally actuated manually in the well known manner, causing the tool housing 2 to be rotated in a single direction, as shown by the arrow 72 in FIG. 5, generally clockwise over the cylindrical surface of the pipe end portion. Yet with reference to FIG. 5, the compressed coil spring will continue to expand, as the tool is rotated aboutthe pipe, in order to supply cutting pres- .sure to the cutting blade tips 48'. With reference. to
FIGS. 5 and 2, the cutting pressure supplied by expansion of the compressed coil spring 40 causes the cutting blade tips 48to cut continuous grooves 74 in the circumference of the pipe end portion 70. Additionally as shown in FIG. 2, the locating disc 50 may also'include a cutting edge 76 which provides a chamfer 78 on the 7 terminal end portion of the pipe 70.
As shown in FIGS. 5 and 6, the depths of the grooves 74 and of the chamfer 78 may be precisely controlled by threadably adjusting the exposed length of the set screw stem. The coil spring 40 will continue to expand and supply cutting pressure until expansion of the spring 40 displaced the sidewall 30 into stopped engagement against the enlarged head of the set screw 34. When this occurs, the sidewall 30 will be stopped against the enlarged set screw head to prevent continued expansion of the compressed coil spring 40 and the continued application of cutting pressure. Thus, the cutting depths of the blade tips 48' may be precisely limited, thereby limiting cutting of the grooves 74 beyond a precisely controlled depth. Continued rotation of the tool would not produce a cutting action since the cutting pressure is removed as described.
To remove the tool, an operator need only pivot the handle 68 from its position shown in FIGS. 5 and 6 to the position shown in FIGS. 3 and 4. Such pivotal motion will return the offset cam surface 62 from its position shown in FIG. 6 to its position shown in FIG. 4, thereby compressing the coil spring 40 and pivoting the cutting blade tips 48' out of engagement with the pipe end portion 70. Additionally, the blade tips 48 will no longer protrude into the inner diametrical portion of the housing 2 thereby, permitting free withdrawal of the housing from the pipe end portion 70 without interference with the blade tips 48.
With reference to FIG. 1, an adapted cradle, shown generally at 79, is provided with a first set of generally C-shaped laminated plates 80 and a second set of laminated plates 82, laterally spaced from the first set by a generally arcuate flange spacer 84-. The laminates are retained in stacked relationship by connecting rods, one of which is shown at 85. The end of the set of plates 80 is provided with a depending loop locating pin 86. The cradle 79 is removably inserted in the housing 2, with the plates 80 disposed slong the housing inner diametrical sidewall 3 in spaced opposed relationship from the cutting blades 48, andlwith the pin 86in registration with a complimentary notch 88 provided in the end of the housing 2. The cradle thus adapts the inner diametrical portion 3 of the housing to accept pipes of different diameters.
An obvious modification not specifically shown in the drawings is the replacement of the cutting blades 48 and the locating disc 50 with a single cutting blade. This can be accomplished by removal of the threaded fastener 52 to remove the cutting blade 48 and the locating disc 50. The single cutting blade may then be mounted to the carriage arms 26 and 28 by the threaded fastener 52. Thus, upon operation of the cutting procedure as above described, the single blade may be utilized to cut entirely through the cylindricalcircumference'of a pipe located within the tool, provided that the set screw 34 is properly adjusted to permit a depth of cut entirely through the sidewall of the pipe.
Thus, what has been described are preferred embodiments of the invention. However, the-spirit and scope of ,the present invention are not to be limited by description of the specific embodiments, but additional modifications and embodiments will become obvious to one having ordinary skill in the art without departure from the spirit and scope of the appended claims, wherein:
What is claimed is: 1. A cutting tool for rotation over the circumference of a pipe, comprising: a tubular housing encircling and slidably receiving said pipe therein, cutting means pivotally mounted on said tubular housing for engaging said pipe and for selectively cutting or grooving said pipe,
disengaging means for rotating said cutting means relative to said tubular housing, pivoting said cutting means away from said pipe, disengaging said cutting means from said pipe and allowing removal of said pipe from said tubular housing,
biasing means for biasing said cutting means in a direction for engagement with and penetration into said pipe, and
stopmeans extending from said tubular housing into the rotational path of said cutting means for limiting penetration of said cutting means into said pipe when grooving said pipe.
2. The structure as recited in claim 1 and further including:
carriage means receiving said cutting means, and
cam means for association with said disengaging means fordisplacingsaid carriage means and for disengaging said cutting means from said pipe.
3. The structure as recited in'claim .1 and further including:
. an elongated, C-shaped cradle adapted to be removably positioned within said tubular housing with the opening in said-cradle adjacent to said cutting means whereby said cradle permits said tubular housing to receive a pipe of a diameter smaller than a pipe received by said tubular housing without said cradle.
4. The structure as recited in claim 1, and further including: locating means associated with said cutting means for locating said pipe in a desired relationship with respect to said cutting means.
S. A cutting tool for rotation over the circumference of a pipe, comprising: 4 p
a tubular housing encircling and slidably receiving said pipe therein,
cutting means for engaging and cutting said pipe,
a carriage arm having said cutting means extending therefrom pivotally mounted on said tubular housing and operable to produce substantially radial 'movement of said cutting means with respect to said pipe,
- biasing means between said tubular housing and said carriage arm for biasing said carriage arm in a direction for engagement of said cutting means with said pipe, and
disengaging means for moving said carriage arm relative to said tubular housing in opposition to said biasing means'to pivot said cutting means away from said pipe, disengage said pipe, and allow removal of said pipe from said tubularhousing.
6. A cutting tool as set forth in claim 5, said tubular housing havingan outer surface adapted-to receive means adapted for rotating said tubular housing around said pipe. g
7. A cutting tool asset forth in claim 5, wherein:
a. said tubular housing includes an lateral extension thereon; and
b. said disengaging means including a cam pivotally mounted on said carriage arm and having a cam surface which acts on said extension of said tubular housing, said cam being rotatable ,to a positionwith the opening of said cradle adjacent to said cutting means whereby said cradle permits said tubular housing to receive a pipe of a diameter smaller than a pipe received by said tubular housing without said cradle.
9; A cutting tool as set forth in claim including:
said cutting means having at least one cutting or grooving blade selectively positioned axially relative to said tubular housing,
adjustable stop means extending from said tubular housing into the rotational path of said carriage arm for stopping the biased rotation of said carriage arm and for limiting the penetration of said cutting means into said pipe when grooving said pipe.
10. A cutting tool as set forth in claim 9 including:
a locating member extending from said carriage arm toward said pipe to limit the insertion of said pipe into said tubular housing and to locate said pipe in a desired relationship with respect to said cutting means.
11. A cutting tool as set forth in claim 10, said locating member including a cutting edge to chamfer the end of said pipe.
12. A cuttingtool for rotation over the circumference of a pipe, comprising:
said cutting means extending from a carriage arm which is pivotally mounted on said tubular housing to produce substantially radial movement of said cutting means with respect to said pipe,
biasing means between said tubular housing and said carriage arm for biasing said' carriage arm in a direction for engagement of said cutting means with said pipe,
a cam pivotally mounted on said carriage arm and having a cam surface acting on said extension of said tubular housing, said cam being rotatable to a position to cause said carriage arm to move in opposition to said biasing means,
adjustable stop means extending from said tubular housing into the rotational path of said carriage arm for stopping the biased rotation of said c'arria ge arm and for limiting the penetration of said cutting means into said pipe when grooving said p p a locating member extending from said carriage arm toward said pipe to limit the insertion of said pipe into said tubular housing and to locate said pipe in a desired relationship with respect to said cutting means, and
said locating member including a cutting edge to chamfer the end of said pipe.
13. A cutting tool as set forth in claim 12 including:
an elongated C-shaped cradle adapted to be removably positioned within said tubular housing with the ogenin of saidcradle adjacent to said cutting me ns w ereby said cradle permits said tubular housing to receive a pipe of a diameter smaller than a pipe received by said tubular housing without said cradle.

Claims (13)

1. A cutting tool for rotation over the circumference of a pipe, comprising: a tubular housing encircling and slidably receiving said pipe therein, cutting means pivotally mounted on said tubular housing for engaging said pipe and for selectively cutting or grooving said pipe, disengaging means for rotating said cutting means relative to said tubular housing, pivoting said cutting means away from said pipe, disengaging said cutting means from said pipe and allowing removal of said pipe from said tubular housing, biasing means for biasing said cutting means in a direction for engagement with and penetration into said pipe, and stop means extending from said tubular housing into the rotational path of said cutting means for limiting penetration of said cutting means into said pipe when grooving said pipe.
1. A cutting tool for rotation over the circumference of a pipe, comprising: a tubular housing encircling and slidably receiving said pipe therein, cutting means pivotally mounted on said tubular housing for engaging said pipe and for selectively cutting or grooving said pipe, disengaging means for rotating said cutting means relative to said tubular housing, pivoting said cutting means away from said pipe, disengaging said cutting means from said pipe and allowing removal of said pipe from said tubular housing, biasing means for biasing said cutting means in a direction for engagement with and penetration into said pipe, and stop means extending from said tubular housing into the rotational path of said cutting means for limiting penetration of said cutting means into said pipe when grooving said pipe.
2. The structure as recited in claim 1 and further including: carriage means receiving said cutting means, and cam means for association with said disengaging means for displacing said carriage means and for disengaging said cutting means from said pipe.
3. The structure as recited in claim 1 and further including: an elongated, C-shaped cradle adapted to be removably positioned within said tubular housing with the opening in said cradle adjacent to said cutting means whereby said cradle permits said tubular housing to receive a pipe of a diameter smaller than a pipe received by said tubular housing without said cradle.
4. The structure as recited in claim 1, and further including: locating means associated with said cutting means for locating said pipe in a desired relationship with respect to said cutting means.
5. A cutting tool for rotation over the circumference of a pipe, comprising: a tubular housing encircling and slidably receiving said pipe therein, cutting means for engaging and cutting said pipe, a carriage arm having said cutting means extending therefrom pivotally mounted on said tubular housing and operable to produce substantially radial movement of said cutting means with respect to said pipe, biasing means between said tubular housing and said carriage arm for biasing said carriage arm in a direction For engagement of said cutting means with said pipe, and disengaging means for moving said carriage arm relative to said tubular housing in opposition to said biasing means to pivot said cutting means away from said pipe, disengage said pipe, and allow removal of said pipe from said tubular housing.
6. A cutting tool as set forth in claim 5, said tubular housing having an outer surface adapted to receive means adapted for rotating said tubular housing around said pipe.
7. A cutting tool as set forth in claim 5, wherein: a. said tubular housing includes an lateral extension thereon; and b. said disengaging means including a cam pivotally mounted on said carriage arm and having a cam surface which acts on said extension of said tubular housing, said cam being rotatable to a position to cause said carriage arm to move in opposition to said biasing means.
8. A cutting tool as set forth in claim 5 including: an elongated, C-shaped cradle adapted to be removably positioned within said tubular housing with the opening of said cradle adjacent to said cutting means whereby said cradle permits said tubular housing to receive a pipe of a diameter smaller than a pipe received by said tubular housing without said cradle.
9. A cutting tool as set forth in claim 5 including: said cutting means having at least one cutting or grooving blade selectively positioned axially relative to said tubular housing, adjustable stop means extending from said tubular housing into the rotational path of said carriage arm for stopping the biased rotation of said carriage arm and for limiting the penetration of said cutting means into said pipe when grooving said pipe.
10. A cutting tool as set forth in claim 9 including: a locating member extending from said carriage arm toward said pipe to limit the insertion of said pipe into said tubular housing and to locate said pipe in a desired relationship with respect to said cutting means.
11. A cutting tool as set forth in claim 10, said locating member including a cutting edge to chamfer the end of said pipe.
12. A cutting tool for rotation over the circumference of a pipe, comprising: a tubular housing encircling and slidably receiving said pipe therein and having an outer surface adapted to receive a wrench for rotating said tubular housing around said pipe, said tubular housing further having a lateral extension thereon, cutting means for engaging and for cutting or grooving said pipe and having at least one cutting or grooving blade selectively positioned axially relative to said tubular housing, said cutting means extending from a carriage arm which is pivotally mounted on said tubular housing to produce substantially radial movement of said cutting means with respect to said pipe, biasing means between said tubular housing and said carriage arm for biasing said carriage arm in a direction for engagement of said cutting means with said pipe, a cam pivotally mounted on said carriage arm and having a cam surface acting on said extension of said tubular housing, said cam being rotatable to a position to cause said carriage arm to move in opposition to said biasing means, adjustable stop means extending from said tubular housing into the rotational path of said carriage arm for stopping the biased rotation of said carriage arm and for limiting the penetration of said cutting means into said pipe when grooving said pipe, a locating member extending from said carriage arm toward said pipe to limit the insertion of said pipe into said tubular housing and to locate said pipe in a desired relationship with respect to said cutting means, and said locating member including a cutting edge to chamfer the end of said pipe.
US00116431A 1971-02-18 1971-02-18 Cutting or grooving tool Expired - Lifetime US3714712A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11643171A 1971-02-18 1971-02-18

Publications (1)

Publication Number Publication Date
US3714712A true US3714712A (en) 1973-02-06

Family

ID=22367166

Family Applications (1)

Application Number Title Priority Date Filing Date
US00116431A Expired - Lifetime US3714712A (en) 1971-02-18 1971-02-18 Cutting or grooving tool

Country Status (15)

Country Link
US (1) US3714712A (en)
JP (1) JPS5516767B1 (en)
AT (1) AT319704B (en)
AU (1) AU449777B2 (en)
BE (1) BE779453A (en)
BR (1) BR7200872D0 (en)
CA (1) CA942938A (en)
DE (1) DE2206348A1 (en)
ES (1) ES399729A1 (en)
FR (1) FR2125985A5 (en)
GB (1) GB1338846A (en)
HK (1) HK7279A (en)
IT (1) IT946913B (en)
NL (1) NL7201979A (en)
SE (1) SE377436B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146959A (en) * 1977-06-02 1979-04-03 Hopper Thomas P Device for cutting a cylindrical article
US4247234A (en) * 1979-10-02 1981-01-27 Amp Incorporated Pipe grooving tool
US4691600A (en) * 1985-11-20 1987-09-08 Carlson Larry M Pipe shaver
US5206996A (en) * 1992-04-01 1993-05-04 Mcdaniel William A Tubing cutters
GB2288353A (en) * 1994-04-16 1995-10-18 Monument Tools Ltd Hand tool
US5475924A (en) * 1995-05-02 1995-12-19 Mcdaniel; William A. Tubing cutter
US20020062723A1 (en) * 1999-07-23 2002-05-30 Norbert Marocco Blind cut down machine
US6581981B2 (en) * 2000-04-26 2003-06-24 Gary W. Cooper Pipe-fitting with flexible sleeve and cinching nut
EP1361007A2 (en) * 2002-05-08 2003-11-12 Hazet-Werk Hermann Zerver GmbH & Co. KG Groove forming tool
USRE40605E1 (en) 1997-12-18 2008-12-16 Springs Window Fashions, Llc Cutting apparatus for window coverings and methods therefor
US20100037743A1 (en) * 1999-07-23 2010-02-18 Shade-O-Matic Limited Blind cut down machine
US20100223970A1 (en) * 2009-03-06 2010-09-09 Victaulic Company Pipe Processing Device Having Floating Drive Roller
CH704520A1 (en) * 2011-02-24 2012-08-31 Rdi Nov Sarl Hand tool for machining groove in portion of e.g. PVC domestic wastewater flow pipe connecting kitchen sink to main flow pipe fixed to building wall, has handlever displacing cutter till position at which blade defines maximum groove depth
US20140260885A1 (en) * 2013-03-16 2014-09-18 Dennis R. Salazar Apparatus and method for connecting pipe systems
US20220069552A1 (en) * 2020-08-27 2022-03-03 TE Connectivity Services Gmbh Cutting arm for a cable preparation machine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2307632A1 (en) * 1975-04-16 1976-11-12 Faeam PROCESS FOR FORMING TUBE ENDS, AS WELL AS APPLICATION DEVICE
CH641996A5 (en) * 1979-09-11 1984-03-30 Von Roll Ag DEVICE FOR MECHANICALLY REMOVING THE OXIDE LAYER FROM THE EXTERNAL SURFACE OF POLYOLEFINIC PIPING END.
GB2377196A (en) * 1999-03-24 2003-01-08 Rivermill Construction Ltd Pipe trimming tool
GB0005782D0 (en) * 2000-03-11 2000-05-03 Imi Yorkshire Fittings Tube preparation device
CN114393327A (en) * 2022-03-07 2022-04-26 山东信息职业技术学院 Machining pipe fitting cutting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2346314A (en) * 1943-03-27 1944-04-11 Western Electric Co Insulation cutting apparatus
US2448578A (en) * 1946-10-02 1948-09-07 Ernest E Condon Tube cutter
US3098296A (en) * 1962-05-31 1963-07-23 Reed Mfg Co Pipe cutter
CA725359A (en) * 1966-01-11 G. Braun Jean Pipe cutter
US3357100A (en) * 1966-03-04 1967-12-12 Crawford Fitting Co Tube cutting tool
US3408738A (en) * 1967-06-08 1968-11-05 Eugene L Turner Pipe cutter having a raker-type cutter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA725359A (en) * 1966-01-11 G. Braun Jean Pipe cutter
US2346314A (en) * 1943-03-27 1944-04-11 Western Electric Co Insulation cutting apparatus
US2448578A (en) * 1946-10-02 1948-09-07 Ernest E Condon Tube cutter
US3098296A (en) * 1962-05-31 1963-07-23 Reed Mfg Co Pipe cutter
US3357100A (en) * 1966-03-04 1967-12-12 Crawford Fitting Co Tube cutting tool
US3408738A (en) * 1967-06-08 1968-11-05 Eugene L Turner Pipe cutter having a raker-type cutter

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146959A (en) * 1977-06-02 1979-04-03 Hopper Thomas P Device for cutting a cylindrical article
US4247234A (en) * 1979-10-02 1981-01-27 Amp Incorporated Pipe grooving tool
US4691600A (en) * 1985-11-20 1987-09-08 Carlson Larry M Pipe shaver
US5206996A (en) * 1992-04-01 1993-05-04 Mcdaniel William A Tubing cutters
GB2288353B (en) * 1994-04-16 1996-11-27 Monument Tools Ltd Hand tool
US5903980A (en) * 1994-04-16 1999-05-18 Monument Tools Ltd. Hand tool
GB2288353A (en) * 1994-04-16 1995-10-18 Monument Tools Ltd Hand tool
US5475924A (en) * 1995-05-02 1995-12-19 Mcdaniel; William A. Tubing cutter
USRE40605E1 (en) 1997-12-18 2008-12-16 Springs Window Fashions, Llc Cutting apparatus for window coverings and methods therefor
US20100037743A1 (en) * 1999-07-23 2010-02-18 Shade-O-Matic Limited Blind cut down machine
US20020062723A1 (en) * 1999-07-23 2002-05-30 Norbert Marocco Blind cut down machine
US7918150B2 (en) 1999-07-23 2011-04-05 Shade-O-Matic Limited Blind cut down machine
US7017459B2 (en) 1999-07-23 2006-03-28 Shade-O-Matic Limited Blind cut down machine
US6581981B2 (en) * 2000-04-26 2003-06-24 Gary W. Cooper Pipe-fitting with flexible sleeve and cinching nut
EP1361007A2 (en) * 2002-05-08 2003-11-12 Hazet-Werk Hermann Zerver GmbH & Co. KG Groove forming tool
EP1361007A3 (en) * 2002-05-08 2004-01-14 Hazet-Werk Hermann Zerver GmbH & Co. KG Groove forming tool
US20100223970A1 (en) * 2009-03-06 2010-09-09 Victaulic Company Pipe Processing Device Having Floating Drive Roller
US8302514B2 (en) 2009-03-06 2012-11-06 Victaulic Company Pipe processing device having floating drive roller
CH704520A1 (en) * 2011-02-24 2012-08-31 Rdi Nov Sarl Hand tool for machining groove in portion of e.g. PVC domestic wastewater flow pipe connecting kitchen sink to main flow pipe fixed to building wall, has handlever displacing cutter till position at which blade defines maximum groove depth
US20140260885A1 (en) * 2013-03-16 2014-09-18 Dennis R. Salazar Apparatus and method for connecting pipe systems
US20220069552A1 (en) * 2020-08-27 2022-03-03 TE Connectivity Services Gmbh Cutting arm for a cable preparation machine

Also Published As

Publication number Publication date
CA942938A (en) 1974-03-05
HK7279A (en) 1979-02-16
BR7200872D0 (en) 1973-04-26
ES399729A1 (en) 1975-06-01
IT946913B (en) 1973-05-21
FR2125985A5 (en) 1972-09-29
DE2206348A1 (en) 1972-08-31
AU3820972A (en) 1973-07-26
JPS5516767B1 (en) 1980-05-07
AU449777B2 (en) 1974-06-20
SE377436B (en) 1975-07-07
GB1338846A (en) 1973-11-28
AT319704B (en) 1975-01-10
NL7201979A (en) 1972-08-22
BE779453A (en) 1972-08-16

Similar Documents

Publication Publication Date Title
US3714712A (en) Cutting or grooving tool
US3999452A (en) Tool for preparing tube ends for welding
US4831732A (en) Pipe cutter
US5099721A (en) Steeling apparatus for annular rotary knife blades
US2747274A (en) Power operated pipe cutter
US3240088A (en) Deburring device
US6244938B1 (en) Drill grinder
JPH0123251B2 (en)
DE59100826D1 (en) Deburring tool with tilting knife.
US3118227A (en) Tube cutting device
US2793433A (en) Apparatus for severing cast iron pipe and the like
US20090090008A1 (en) Cutter
US5592741A (en) Tube cutter
JP2000084770A (en) Work positioning device
US3938411A (en) Pipe and tube end preparation apparatus
JP2002018636A (en) Ratchet-type pipe cutter
JP2017030133A (en) Pipe cutter
US2309218A (en) Welding flash trimmer
US4083106A (en) Adjustable polyethylene pipe outside bead remover
JP2023003936A (en) Marking-off jig, and stamping method of marking-off line
US2513842A (en) Pipe cutter
KR101920873B1 (en) Portable cutting machine
US3108373A (en) Cable cutter
JPS61203213A (en) Pipe cutter
WO1989000904A1 (en) Cutting tool