US3693717A - Reproducible shot hole - Google Patents

Reproducible shot hole Download PDF

Info

Publication number
US3693717A
US3693717A US82907A US3693717DA US3693717A US 3693717 A US3693717 A US 3693717A US 82907 A US82907 A US 82907A US 3693717D A US3693717D A US 3693717DA US 3693717 A US3693717 A US 3693717A
Authority
US
United States
Prior art keywords
liner
hole
casing
string
formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US82907A
Inventor
Paul C Wuenschel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Gulf Research and Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gulf Research and Development Co filed Critical Gulf Research and Development Co
Application granted granted Critical
Publication of US3693717A publication Critical patent/US3693717A/en
Assigned to CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A CORP. OF DE. reassignment CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GULF RESEARCH AND DEVELOPMENT COMPANY, A CORP. OF DE.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices, or the like
    • E21B33/14Methods or devices for cementing, for plugging holes, crevices, or the like for cementing casings into boreholes

Definitions

  • ABSTRACT A reproducible shot hole for geophysical use wherein a deformable metal liner, such as aluminum, of predetermined diameter, wall thickness, and alloy is selected, and the annulus between the liner and the hole filled with sand-cement under pressure, so that the lined hole will withstand repeated explosions by expanding.
  • the hole, or the part of the hole where the shot is detonated, is destroyed in the process, so'that a shallower level in the same hole must be used, or a new hole must be drilled for the next shot, if a repeat shot is desired. It would be very much preferred to have the ability to fire many charges from one hole at the. same depth, with assurance that the waves produced will be substantially the same from shot to shot, while moving a much smaller array of detectors about the area to be explored.
  • the invention provides steps and apparatus to provide a lined shot hole which will expand upon repeated firings of charges while maintaining substantially constant good wave radiation. qualities, and yet maintaining freedom of passage so that the next charge can be put in place.
  • the invention is not to be confused with the many different kinds of surface seismic sources which are presently in use.
  • Such .surface types have many advantages, including claimed reproducibility, but all suffer nevertheless from the disadvantage that the waves produced must pass from the surface device, through the weathered layer before passing through the deeper areas of interest.
  • Such surface sources include vehicles which drop heavy weights on the ground, means which vibrate the ground, or means which set off small charges of gas in a bomb or other strong enclosure which is in contact with the surface.
  • the weathered layer is the topmost part of the crust of the earth, varying in thickness according to location, and is highly variable in its ability to transmit elastic waves.
  • the present invention like conventional seismic exploration, utilizes a short hole drilled to below the weathered layer which overcomes this disadvantage in surface types in that the source, the explosive charge, is fired at a location below the weathered layer.
  • Another advantage of the use of dynamite as a seismic source is the ability to excite a specific band of frequencies by the choice of the appropriate charge size and shooting medium.
  • the present invention will apply to a wide range of shooting media consisting of loosely consolidated gravel at one end of the range to a well cemented shale at the other end of the range, and
  • the invention requires that only one shot hole be drilled, thereby not substantially increasing the cost of the method of the invention as-compared to conventional seismic exploration.
  • the method of the invention entails a balancing of many different parameters to achieve the final reproducible shot hole. Examples are set forth in detail in the specification below, but generally the method requires balancing the degree of rigidity, consolidation on hardness of the surrounding formation with the diameter of and ductility of the liner used to case the shot hole.
  • the apparatus of the invention includes a liner consisting'of certain grades of aluminum, and means to protect the junction of the aluminum pipe with the normal steel well casing used to lower the aluminum liner to the area to which the explosions will be detonated.
  • the means of supporting .a ductile pipe, such as aluminum, along with means to prevent shearing of the pipe at its ends, are important parts, along with others set forth below, of the method and apparatus of the invention.
  • the liner can be made of materials other than aluminum. Steel, for example, can be used, but the diameters required when shooting in a soft formation would be prohibitive. Aluminum, because of its ductility can be of reasonable dimensions and this is the reason for the preference for liners of the more ductile materials.
  • FIG. 1 is across-sectional view through a portion of the earth showing a completed but unfired reproducible shot hole of the invention in place;
  • FIG. 2 is an enlarged view of part of the apparatus of the invention
  • FIG. 3 is a composite diagrammatic showing of the reproducible shot hole of the invention after a number of shots have been fired and illustrating the configuration of the hole when certain steps in the method are omitted; and I FIG. 4 is an accurate chart which summarizes a large amount of experimental work and which can be used in practicing the invention.
  • FIG. 1 there is shown a cross-section of the earth 10 in which the shots are to be fired.
  • the method of the invention will be set forth below in conjunction with the description of FIG. 1, it being understood thatFIG. 1 shows conditions after the hole has been prepared and is ready to have the first shot fired.
  • the first step is to determine the nature of formation 10, specifically the rigidity of the rock. This can be determined from previous experience or by drilling a small diameter hole, studying the samples obtained while drilling, observing the drilling rate, and running logs in the hole after drilling. With this information and with knowledge of the seismic frequency band desired, one skilled in the art will known the linear charge density of the explosive required. The linear charge density and the rigidity of the rock together in turn determine the selection of the material for the diameter of the liner 14 which, of course, in turn determines the final hole diameter 12. It is desired to have the liner as snugly fitted in the hole 12 as possible, so that the liner will be supported by the formation. 7
  • the general considerations in selecting the liner 14 include that its ductility should be inversely proportional to the degree of consolidation. Restated, the softer the formation, the more ductile the material of the liner. The reason for this relationship is that the liner 14 will expand more against a softer formation than it will against a harder formation.
  • the invention accommodates to this fact by'providing the ability to expand rather than by trying the make the liner so strong that it cannot expand. I-leretofore, and in preliminary tests run in conjunction with development of the present invention, it was found that less ductile materials, such as various grades of steel, promptly burst after one or two explosions because they did not have the ability to expand in response to the explosive force. As is evident, once the liner is burst, the hole quickly fills with debris which enters the hole via the fissure, thus precluding further access to that depth.
  • Wall thickness of the liner is not crucial whenthe pipe is supported by a formation, but should be in ratio to the pipe diameter at about 3:100. If the wall is too thin, the pipe will break due to small irregularities in the supporting medium. If it is too thick the stiffness will limit the radiation efficiency of the explosion. The tolerance on the value given above is believed quite large but has not as yet been established by experiment.
  • the next step comprises assembling liner 14 into a string of conventional steel casing 16 which will be used to lower liner 14 to the specific depth at which the charges are to be detonated.
  • Means 18 are provided to protect the joints between liner l4 and easing string 16. Protection means 18 will be described in detail below in conjunctionwith the description of FIG. 2.
  • the invention comprises the use of a sand-cement mixture 20 filling the annulus between the liner 14, and casing 16 and the borehole 12.
  • a sand-cement mixture 20 filling the annulus between the liner 14, and casing 16 and the borehole 12.
  • Such local discontinuities are caused by, for example, gravel streaks in formation 10, sand, and the like.
  • Such a weak place is indicated in FIG. 1 by reference numeral 22, and is shown after the squeezing of sand-cement 20 as being filled with mixture 20. After setting, the strength of the support around liner 14 will be uniform.
  • the final step is locating the charge assembly 24 in the completed reproducible shot hole.
  • Charge assembly 24 comprises, starting at the lower end, a weight 26 to pull the remainder of the assembly 24 down the hole with the aid of gravity.
  • a cable or other suitable means 28 interconnects weight 26 with the charge 30.
  • the charge 30 may be any explosive normally used in seismic exploration, one such explosive being a type of dynamite sold under the DuPont registered trademark Nitramon" having a strength of 2 pounds per foot.
  • the legends on FIG. 4 indicate the tradenames and strengths of other charges which may be used.
  • the top of charge 30 is connected by a cable 32 to a centralizing sub-assembly 34 comprising upper and lower bow springs 36 interconnected by a support member 38.
  • the cable 32 bridges across the sub-assembly 34 to deliver electricity to the charge.
  • the supporting member 38 is preferably made of wood or other light material since it is desired that it remain intact as it is frequently shot out of the hole upon explosion of charge 30. It is desired that sub-assembly 34 remain intact so that it can be removed and reused and not hinder placement of the next shot. Further, a hard wood such as maple is preferred to a soft wood such as pine because the latter tends to shatter and the hard wood does not.
  • the use of centralizer sub-assembly 34, or other means to centralize the charge 30 in the hole, is important to successful use of the invention in that if the charge be very much closer to one side of the hole than to the other, that side is more susceptible to bursting. ,As is conventional, the entire hole may be filled with water to couple the explosive force to the borehole. Water is readily available and inexpensive, but other fluids such as drilling mud could be used in other circumstances.
  • the joint protection means 18 are shown in detail.
  • the essence of the manner of protection of the joint between the soft aluminum liner 14 and the hard steel casing 16 is the provision of a tapered sleeve 40 extending from the joint in closely spaced relation to an end of the liner 14 to provide a differential and increasing force from the end of the sleeve towards the joint tending to resist expansion of the liner.
  • the liner 14 is supported only by the sand-cement mixture 20 and the formation 10.
  • the casing string 16 is joined to the liner by means of casing couplings 42.
  • the coupling 42 at each end of the liner 14 is modified for cooperation with the liner by cutting away part of one set of threads as at 44 and by undercutting the outside of the coupling opposite cut-out 44 as at 46.
  • a taper 47 is provided at the end of undercut 44.
  • an annular flange 48 is formed between cut-out 44 and undercut 46.
  • a shoulder 50 is formed at the inner end of cut-out 44 against which an end of the liner 14 seats.
  • the thick end of sleeve 40 fits in undercut 46 on the outside of flange 48 and is fixed thereto by suitable means such as a bead of welding 52.
  • sleeve 40 The assembly of sleeve 40, flange 48, and liner 14 is finally secured together by a row of bolts 54 provided in mating openings in these three members and threaded into the liner 14.
  • the heads of the bolts are preferably of the socket type so that a minimum obstruction is provided on the outside of the sleeve 40.
  • the inside surface 56 of the sleeve is cylindrical, and the outside surface 58 thereof tapers towards surface 56 to provide a thinest portion of the sleeve at the end thereof furthest from bolts 54.
  • a clearance space of roughly the thickness of flange 48, is provided between sleeve 40 and liner 14.
  • the joint between the casing string 16 and the liner 14 is protected by virtue of the tapered sleeve 40 in that the liner will have very little additional resistance to expansion opposite the thin end of the sleeve, but that such resistance will gradually increase moving towards the bolts 54. As will appear more clearly below, absent the sleeve, the liner would simply shear off the coupling on the lower end of casing 16.
  • the ordinate in FIG. 4 is the pipe diameter required to permit the desired number of repeat shots at various linear charge densities as given by the abscissa and identified by DuPont tradenames and corresponding weights for a total strain of 180 percent.
  • the parameters used'in FIG. 4 are the supporting medium. Loosely consolidated gravel provides the least support while hard rock provides the most support. An intermediate medium of moderately. packed gravel lies in between these two curves, Other media such as clay, shale, porous limestone, etc., will yield curves falling between the moderately packed gravel and the hard rock.
  • the curves of FIG. 4 are applicable for a strain of 180 percent and pertain to ductile materials like aluminum. Similar curves can be made for other strains and thereby be applicable to other materials.
  • the liner will burst when the strain exceeds a critical value which depends on. the metal used, for aluminum this valve is about 180 percent.
  • Thefinal dot-dash line 64 shows the effect of the protection means 18 and the tapered sleeve 40. Absent sleeve 40, the liner promptly shears at its joints with the casing 16. Note the gradual and gentle expansion of the liner over the outer half of each sleeve. As fabricated in the successfully used and tested embodiments of the invention, the sleeve 40 had a length of about 3 feet tapered over only its outer half. The liner 40 had a length of about feet in all tests.
  • a method of making a reproducible shot hole in the earth comprising the steps of determining the nature of the formation at the depth at which shots are to be fired, drilling a hole in the earth of a predetermined diameter to below the weathered layer, wherein said predetermined diameter is determined from said nature of the formation determination, assembling a string of casing which includes a length of shot hole liner to be positioned at the depth at which shots are to be'fired with means at the joints of the ends of said liner and the casing string to protect the ends of said liner at said joints from shearing off from the remainder of said string of easing; selecting a wall thickness of said liner based on said predetermined diameter, selecting a material of said liner dependent upon the nature of said formation at which shots are to be fired according to the relationships that wall thickness and ductility of the material of said liner are inversely proportional to degree of consolidation, and inserting a sand-cement mixture under pressure in the annulus between said string of easing with the liner therein and the borehole wall.

Abstract

A reproducible shot hole for geophysical use wherein a deformable metal liner, such as aluminum, of predetermined diameter, wall thickness, and alloy is selected, and the annulus between the liner and the hole filled with sand-cement under pressure, so that the lined hole will withstand repeated explosions by expanding.

Description

United States Patent Wuenschel [451 Sept. 26, 1972 [54] REPRODUCIBLE SHOT HOLE [72] Inventor: Paul C. Wuenschel, Glenshaw, Pa.
[73] Assignee: Gulf Research & Development Company, Pittsburgh, Pa.
[22] Filed: Oct. 22, 1970 [21] Appl. No.: 82,907
[52] U.S. Cl ..166/285, 166/297 [51] Int. Cl. ..E21b 33/13 [58] Field of Search ..166/285, 297, 299, 207; 175/1; 102/21, 23
[56] References Cited UNlTED STATES PATENTS 1,746,848 2/1930 Bates .6166/299 X 1,834,946 12/1931 l-lalliburton ..166/285 2,214,227 9/1940 English ..166/299 X Harkness ..166/299 X 2,669,431 2/1954 Crowell ..175/l 3,179,168 4/1965 Vincent ..l66/285 X 3,367,442 2/1968 Setser 166/299 X 3,389,752 6/1968 Lebourg ..166/285 Primary ExaminerDavid H. Brown Attorney-Meyer Neishloss, Deane E. Keith and William Kovensky 57] ABSTRACT A reproducible shot hole for geophysical use wherein a deformable metal liner, such as aluminum, of predetermined diameter, wall thickness, and alloy is selected, and the annulus between the liner and the hole filled with sand-cement under pressure, so that the lined hole will withstand repeated explosions by expanding.
3 Claims, 4 Drawing Figures VKTEN'TEDSMB m2 sum 1 0F 3 v INVENTOR. PAUL C. WUE/VSCHH.
P'ATENTED EPZBM 3.693317 SHEET 2 OF 3 I NVE N TOR. PAUL c. WUfA/SCHEL REPRODUCIBLE SHOT HOLE This invention pertains to geophysical exploration, particularly seismic exploration. In seismic exploration a reproducible source of elastic waves in the earth, such as is generated by the detonation of a charge of explosives, is highly desirable. In conventional seismic exploration, a hole is drilled, explosives put in the hole, a relatively large array of detectors are placed about the area, and the shot fired. The hole, or the part of the hole where the shot is detonated, is destroyed in the process, so'that a shallower level in the same hole must be used, or a new hole must be drilled for the next shot, if a repeat shot is desired. It would be very much preferred to have the ability to fire many charges from one hole at the. same depth, with assurance that the waves produced will be substantially the same from shot to shot, while moving a much smaller array of detectors about the area to be explored.
I-Ieretofore, a reproducible shot hole of the character described was completely unknown in the art. If the liner or pipe used to protect the hole was made sufficientlyzstrong to resist'expansion from the explosions,
then it was found to restrict the radiation of the elastic waves and hence would be a poor source. On the other hand, heretofore, if the pipe or liner or made so that it was a good wave radiator, it was not strong enough to stand more than one or a very few shots. The invention provides steps and apparatus to provide a lined shot hole which will expand upon repeated firings of charges while maintaining substantially constant good wave radiation. qualities, and yet maintaining freedom of passage so that the next charge can be put in place.
The invention is not to be confused with the many different kinds of surface seismic sources which are presently in use. Such .surface types have many advantages, including claimed reproducibility, but all suffer nevertheless from the disadvantage that the waves produced must pass from the surface device, through the weathered layer before passing through the deeper areas of interest. Such surface sources include vehicles which drop heavy weights on the ground, means which vibrate the ground, or means which set off small charges of gas in a bomb or other strong enclosure which is in contact with the surface. The weathered layer is the topmost part of the crust of the earth, varying in thickness according to location, and is highly variable in its ability to transmit elastic waves. The present invention, like conventional seismic exploration, utilizes a short hole drilled to below the weathered layer which overcomes this disadvantage in surface types in that the source, the explosive charge, is fired at a location below the weathered layer.
Another advantage of the use of dynamite as a seismic source is the ability to excite a specific band of frequencies by the choice of the appropriate charge size and shooting medium. The present invention will apply to a wide range of shooting media consisting of loosely consolidated gravel at one end of the range to a well cemented shale at the other end of the range, and
it will accommodate linear charge densities of virtually very large array of many hundreds of detectors. Such a large array, as a practical matter, is impossible, and in any case would be prohibitively expensive. The invention requires that only one shot hole be drilled, thereby not substantially increasing the cost of the method of the invention as-compared to conventional seismic exploration.
The method of the invention entails a balancing of many different parameters to achieve the final reproducible shot hole. Examples are set forth in detail in the specification below, but generally the method requires balancing the degree of rigidity, consolidation on hardness of the surrounding formation with the diameter of and ductility of the liner used to case the shot hole. The apparatus of the invention includes a liner consisting'of certain grades of aluminum, and means to protect the junction of the aluminum pipe with the normal steel well casing used to lower the aluminum liner to the area to which the explosions will be detonated. The means of supporting .a ductile pipe, such as aluminum, along with means to prevent shearing of the pipe at its ends, are important parts, along with others set forth below, of the method and apparatus of the invention.
The liner can be made of materials other than aluminum. Steel, for example, can be used, but the diameters required when shooting in a soft formation would be prohibitive. Aluminum, because of its ductility can be of reasonable dimensions and this is the reason for the preference for liners of the more ductile materials.
The above and other advantages of the invention will be pointed out or will become evident in the following detailed description and claims, and in the accompanying drawing also forming a part of the disclosure, in which: 7
FIG. 1 is across-sectional view through a portion of the earth showing a completed but unfired reproducible shot hole of the invention in place;
FIG. 2 is an enlarged view of part of the apparatus of the invention;
FIG. 3 is a composite diagrammatic showing of the reproducible shot hole of the invention after a number of shots have been fired and illustrating the configuration of the hole when certain steps in the method are omitted; and I FIG. 4 is an accurate chart which summarizes a large amount of experimental work and which can be used in practicing the invention.
Referring now to the drawings and in particular to FIG. 1, there is shown a cross-section of the earth 10 in which the shots are to be fired. The method of the invention will be set forth below in conjunction with the description of FIG. 1, it being understood thatFIG. 1 shows conditions after the hole has been prepared and is ready to have the first shot fired.
The first step is to determine the nature of formation 10, specifically the rigidity of the rock. This can be determined from previous experience or by drilling a small diameter hole, studying the samples obtained while drilling, observing the drilling rate, and running logs in the hole after drilling. With this information and with knowledge of the seismic frequency band desired, one skilled in the art will known the linear charge density of the explosive required. The linear charge density and the rigidity of the rock together in turn determine the selection of the material for the diameter of the liner 14 which, of course, in turn determines the final hole diameter 12. It is desired to have the liner as snugly fitted in the hole 12 as possible, so that the liner will be supported by the formation. 7
The general considerations in selecting the liner 14 include that its ductility should be inversely proportional to the degree of consolidation. Restated, the softer the formation, the more ductile the material of the liner. The reason for this relationship is that the liner 14 will expand more against a softer formation than it will against a harder formation. The invention accommodates to this fact by'providing the ability to expand rather than by trying the make the liner so strong that it cannot expand. I-leretofore, and in preliminary tests run in conjunction with development of the present invention, it was found that less ductile materials, such as various grades of steel, promptly burst after one or two explosions because they did not have the ability to expand in response to the explosive force. As is evident, once the liner is burst, the hole quickly fills with debris which enters the hole via the fissure, thus precluding further access to that depth.
Wall thickness of the liner is not crucial whenthe pipe is supported by a formation, but should be in ratio to the pipe diameter at about 3:100. If the wall is too thin, the pipe will break due to small irregularities in the supporting medium. If it is too thick the stiffness will limit the radiation efficiency of the explosion. The tolerance on the value given above is believed quite large but has not as yet been established by experiment.
The next step comprises assembling liner 14 into a string of conventional steel casing 16 which will be used to lower liner 14 to the specific depth at which the charges are to be detonated. Means 18 are provided to protect the joints between liner l4 and easing string 16. Protection means 18 will be described in detail below in conjunctionwith the description of FIG. 2.
Once the liner 14 is located at the depth of interest, it is necessary to stabilize the borehole 12 in the vicinity of the explosions and to support the liner 14 with respect to the borehole. Conventional well cement has been found to be not satisfactory in that it does not have sufficient strength. Accordingly, the invention comprises the use of a sand-cement mixture 20 filling the annulus between the liner 14, and casing 16 and the borehole 12. For the same reason, i.e., stabilizing the borehole, it has been advantageous to squeeze the sand-cement 20 into the annulus. The reason for pressurizing the sand-cement during its placement is to assure that any voids, or small local unconsolidated regions, are filled to provide a uniform strength around liner 14. Such local discontinuities, are caused by, for example, gravel streaks in formation 10, sand, and the like. Such a weak place is indicated in FIG. 1 by reference numeral 22, and is shown after the squeezing of sand-cement 20 as being filled with mixture 20. After setting, the strength of the support around liner 14 will be uniform.
The final step is locating the charge assembly 24 in the completed reproducible shot hole. Charge assembly 24 comprises, starting at the lower end, a weight 26 to pull the remainder of the assembly 24 down the hole with the aid of gravity. A cable or other suitable means 28 interconnects weight 26 with the charge 30. The charge 30 may be any explosive normally used in seismic exploration, one such explosive being a type of dynamite sold under the DuPont registered trademark Nitramon" having a strength of 2 pounds per foot. The legends on FIG. 4 indicate the tradenames and strengths of other charges which may be used. The top of charge 30 is connected by a cable 32 to a centralizing sub-assembly 34 comprising upper and lower bow springs 36 interconnected by a support member 38. The cable 32 bridges across the sub-assembly 34 to deliver electricity to the charge. The supporting member 38 is preferably made of wood or other light material since it is desired that it remain intact as it is frequently shot out of the hole upon explosion of charge 30. It is desired that sub-assembly 34 remain intact so that it can be removed and reused and not hinder placement of the next shot. Further, a hard wood such as maple is preferred to a soft wood such as pine because the latter tends to shatter and the hard wood does not. The use of centralizer sub-assembly 34, or other means to centralize the charge 30 in the hole, is important to successful use of the invention in that if the charge be very much closer to one side of the hole than to the other, that side is more susceptible to bursting. ,As is conventional, the entire hole may be filled with water to couple the explosive force to the borehole. Water is readily available and inexpensive, but other fluids such as drilling mud could be used in other circumstances.
Referring now to FIG. 2, the joint protection means 18 are shown in detail. The essence of the manner of protection of the joint between the soft aluminum liner 14 and the hard steel casing 16 is the provision of a tapered sleeve 40 extending from the joint in closely spaced relation to an end of the liner 14 to provide a differential and increasing force from the end of the sleeve towards the joint tending to resist expansion of the liner. Thus, at the joint virtually no expansion of the liner occurs while between the ends of the two sleeves 40, the liner 14 is supported only by the sand-cement mixture 20 and the formation 10.
Referring in detail to FIG. 2, the casing string 16 is joined to the liner by means of casing couplings 42. The coupling 42 at each end of the liner 14 is modified for cooperation with the liner by cutting away part of one set of threads as at 44 and by undercutting the outside of the coupling opposite cut-out 44 as at 46. A taper 47 is provided at the end of undercut 44. Thus, an annular flange 48 is formed between cut-out 44 and undercut 46. A shoulder 50 is formed at the inner end of cut-out 44 against which an end of the liner 14 seats. The thick end of sleeve 40 fits in undercut 46 on the outside of flange 48 and is fixed thereto by suitable means such as a bead of welding 52. The assembly of sleeve 40, flange 48, and liner 14 is finally secured together by a row of bolts 54 provided in mating openings in these three members and threaded into the liner 14. The heads of the bolts are preferably of the socket type so that a minimum obstruction is provided on the outside of the sleeve 40. The inside surface 56 of the sleeve is cylindrical, and the outside surface 58 thereof tapers towards surface 56 to provide a thinest portion of the sleeve at the end thereof furthest from bolts 54. A clearance space, of roughly the thickness of flange 48, is provided between sleeve 40 and liner 14.
Thus, the joint between the casing string 16 and the liner 14 is protected by virtue of the tapered sleeve 40 in that the liner will have very little additional resistance to expansion opposite the thin end of the sleeve, but that such resistance will gradually increase moving towards the bolts 54. As will appear more clearly below, absent the sleeve, the liner would simply shear off the coupling on the lower end of casing 16.
During the development of the present invention a relatively large number of tests were run. Initially, these tests were in the nature of feasibility studies to see if a reproducible shot hole could actually be made and to verify that the deformation produced by several small charges is equivalent to the deformation produced by one large charge whose magnitude is the sum of the small charges. This was found to be true for unsupported pipes by Johnson, et al. and it was necessary to establish the same relationship for supported pipes. This work is reported in a paper entitled The Explosive Expansion of Unrestrained Tubes by W. Johnson, E. Doege, and F. W. Travis, in the 1964-5 Proceedings of the Institution of Mechanical Engineers, Vol. 179, Part 1, No. 7, pages 240-256.
After this initial work was successfully completed it was then necessary to evaluate the support provided by various types of wall rock. Two extreme cases as to rigidity were chosen, a loosely consolidated gravel and a well silicified shale whose compressional velocity is 12,000 feet per second. An aluminum pipe of alloy 3003-0 with a wall thickness to diameter ratio of 0.03 was foundto withstand a strain of 180 percent before breaking when expanded with gravel support and was emplaced according to the invention. With this knowledge and data obtained from all experiments conducted in gravel and hard rock it became possible to summarize the design parameters for a viable tool in a single graph, as is reproduced in FIG. 4.
The ordinate in FIG. 4 is the pipe diameter required to permit the desired number of repeat shots at various linear charge densities as given by the abscissa and identified by DuPont tradenames and corresponding weights for a total strain of 180 percent. The parameters used'in FIG. 4 are the supporting medium. Loosely consolidated gravel provides the least support while hard rock provides the most support. An intermediate medium of moderately. packed gravel lies in between these two curves, Other media such as clay, shale, porous limestone, etc., will yield curves falling between the moderately packed gravel and the hard rock.
The curves of FIG. 4 are applicable for a strain of 180 percent and pertain to ductile materials like aluminum. Similar curves can be made for other strains and thereby be applicable to other materials.
Several general principles can be drawn from the specific data presented in FIG. 4, as well as from other tests not included in drawing the curves. Two of these principles are illustrated in the showing of FIG. 3. After each shot or each few shots the borehole diameter was physically measured with the use of hole calipering tools. The data presented in diagrammatic form in FIG. 3 was taken from these caliper logs. The solid line labeled 60 shows the measured condition of the borehole when the invention was used in a preferred form. The dotted line 62 was run with all conditions the same as in the test indicated by the line 60 with the exception that the sand-cement was not put in under pressure. Note that the liner 14 was pushed deep into the loosely consolidated portions of the formation. The liner will burst when the strain exceeds a critical value which depends on. the metal used, for aluminum this valve is about 180 percent. Thefinal dot-dash line 64 shows the effect of the protection means 18 and the tapered sleeve 40. Absent sleeve 40, the liner promptly shears at its joints with the casing 16. Note the gradual and gentle expansion of the liner over the outer half of each sleeve. As fabricated in the successfully used and tested embodiments of the invention, the sleeve 40 had a length of about 3 feet tapered over only its outer half. The liner 40 had a length of about feet in all tests.
While the invention has been described in detail above, it is to be understood that this detailed description is by way of example only, and the protection granted is to be limited only within the spirit of the invention and the scope of the following claims.
I claim:
1. A method of making a reproducible shot hole in the earth comprising the steps of determining the nature of the formation at the depth at which shots are to be fired, drilling a hole in the earth of a predetermined diameter to below the weathered layer, wherein said predetermined diameter is determined from said nature of the formation determination, assembling a string of casing which includes a length of shot hole liner to be positioned at the depth at which shots are to be'fired with means at the joints of the ends of said liner and the casing string to protect the ends of said liner at said joints from shearing off from the remainder of said string of easing; selecting a wall thickness of said liner based on said predetermined diameter, selecting a material of said liner dependent upon the nature of said formation at which shots are to be fired according to the relationships that wall thickness and ductility of the material of said liner are inversely proportional to degree of consolidation, and inserting a sand-cement mixture under pressure in the annulus between said string of easing with the liner therein and the borehole wall.
2. The method of claim 1, locating an explosive charge inside said liner, and centralizing said explosive charge within said liner.
3. The method of claim 2, and filling said liner with water to couple said charge to said liner.

Claims (3)

1. A method of making a reproducible shot hole in the earth comprising the steps of determining the nature of the formation at the depth at which shots are to be fired, drilling a hole in the earth of a predetermined diameter to below the weathered layer, wherein said predetermined diameter is determined from said nature of the formation determination, assembling a string of casing which includes a length of shot hole liner to be positioned at the depth at which shots are to be fired with means at the joints of the ends of said liner and the casing string to protect the ends of said liner at said joints from shearing off from the reMainder of said string of casing; selecting a wall thickness of said liner based on said predetermined diameter, selecting a material of said liner dependent upon the nature of said formation at which shots are to be fired according to the relationships that wall thickness and ductility of the material of said liner are inversely proportional to degree of consolidation, and inserting a sand-cement mixture under pressure in the annulus between said string of casing with the liner therein and the borehole wall.
2. The method of claim 1, locating an explosive charge inside said liner, and centralizing said explosive charge within said liner.
3. The method of claim 2, and filling said liner with water to couple said charge to said liner.
US82907A 1970-10-22 1970-10-22 Reproducible shot hole Expired - Lifetime US3693717A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US8290770A 1970-10-22 1970-10-22

Publications (1)

Publication Number Publication Date
US3693717A true US3693717A (en) 1972-09-26

Family

ID=22174217

Family Applications (1)

Application Number Title Priority Date Filing Date
US82907A Expired - Lifetime US3693717A (en) 1970-10-22 1970-10-22 Reproducible shot hole

Country Status (1)

Country Link
US (1) US3693717A (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3777814A (en) * 1972-05-19 1973-12-11 Gulf Research Development Co Clamped detector
US3876971A (en) * 1972-02-22 1975-04-08 Gulf Research Development Co Precision seismology
WO1993025799A1 (en) * 1992-06-09 1993-12-23 Shell Internationale Research Maatschappij B.V. Method of creating a wellbore in an underground formation
US6182012B1 (en) * 1998-02-20 2001-01-30 Institut Francais Du Petrole Method and device intended for permanent monitoring of an underground formation
US6328113B1 (en) 1998-11-16 2001-12-11 Shell Oil Company Isolation of subterranean zones
US20020056553A1 (en) * 2000-06-01 2002-05-16 Duhon Mark C. Expandable elements
US6446724B2 (en) 1999-05-20 2002-09-10 Baker Hughes Incorporated Hanging liners by pipe expansion
US6470966B2 (en) 1998-12-07 2002-10-29 Robert Lance Cook Apparatus for forming wellbore casing
US6557640B1 (en) 1998-12-07 2003-05-06 Shell Oil Company Lubrication and self-cleaning system for expansion mandrel
US20030094278A1 (en) * 1998-12-07 2003-05-22 Shell Oil Co. Expansion cone for radially expanding tubular members
US6568471B1 (en) 1999-02-26 2003-05-27 Shell Oil Company Liner hanger
US6575250B1 (en) 1999-11-15 2003-06-10 Shell Oil Company Expanding a tubular element in a wellbore
US6575240B1 (en) 1998-12-07 2003-06-10 Shell Oil Company System and method for driving pipe
US20030116325A1 (en) * 2000-07-28 2003-06-26 Cook Robert Lance Liner hanger with standoffs
US6604763B1 (en) 1998-12-07 2003-08-12 Shell Oil Company Expandable connector
US6634431B2 (en) 1998-11-16 2003-10-21 Robert Lance Cook Isolation of subterranean zones
US6640903B1 (en) 1998-12-07 2003-11-04 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US20030233524A1 (en) * 2002-06-12 2003-12-18 Poisner David I. Protected configuration space in a protected environment
US20040045718A1 (en) * 2000-09-18 2004-03-11 Brisco David Paul Liner hanger with sliding sleeve valve
US6712154B2 (en) 1998-11-16 2004-03-30 Enventure Global Technology Isolation of subterranean zones
US6725919B2 (en) 1998-12-07 2004-04-27 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US6745845B2 (en) 1998-11-16 2004-06-08 Shell Oil Company Isolation of subterranean zones
US20040118574A1 (en) * 1998-12-07 2004-06-24 Cook Robert Lance Mono-diameter wellbore casing
US6823937B1 (en) 1998-12-07 2004-11-30 Shell Oil Company Wellhead
US20050098323A1 (en) * 1999-03-11 2005-05-12 Shell Oil Co. Forming a wellbore casing while simultaneously drilling a wellbore
US6892819B2 (en) 1998-12-07 2005-05-17 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US6968618B2 (en) 1999-04-26 2005-11-29 Shell Oil Company Expandable connector
US7048067B1 (en) 1999-11-01 2006-05-23 Shell Oil Company Wellbore casing repair
US7100685B2 (en) 2000-10-02 2006-09-05 Enventure Global Technology Mono-diameter wellbore casing
US7121352B2 (en) 1998-11-16 2006-10-17 Enventure Global Technology Isolation of subterranean zones
US7168496B2 (en) 2001-07-06 2007-01-30 Eventure Global Technology Liner hanger
US7168499B2 (en) 1998-11-16 2007-01-30 Shell Oil Company Radial expansion of tubular members
US7172024B2 (en) 2000-10-02 2007-02-06 Shell Oil Company Mono-diameter wellbore casing
US7195064B2 (en) 1998-12-07 2007-03-27 Enventure Global Technology Mono-diameter wellbore casing
US7258168B2 (en) 2001-07-27 2007-08-21 Enventure Global Technology L.L.C. Liner hanger with slip joint sealing members and method of use
US7290616B2 (en) 2001-07-06 2007-11-06 Enventure Global Technology, L.L.C. Liner hanger
US7290605B2 (en) 2001-12-27 2007-11-06 Enventure Global Technology Seal receptacle using expandable liner hanger
US7404444B2 (en) 2002-09-20 2008-07-29 Enventure Global Technology Protective sleeve for expandable tubulars
US7416027B2 (en) 2001-09-07 2008-08-26 Enventure Global Technology, Llc Adjustable expansion cone assembly
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
US7739917B2 (en) 2002-09-20 2010-06-22 Enventure Global Technology, Llc Pipe formability evaluation for expandable tubulars
US7740076B2 (en) 2002-04-12 2010-06-22 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger
US7775290B2 (en) 2003-04-17 2010-08-17 Enventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US7793721B2 (en) 2003-03-11 2010-09-14 Eventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US7819185B2 (en) 2004-08-13 2010-10-26 Enventure Global Technology, Llc Expandable tubular
US7886831B2 (en) 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
US7918284B2 (en) 2002-04-15 2011-04-05 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1746848A (en) * 1928-08-23 1930-02-11 Walter Bates Steel Corp Earth anchor
US1834946A (en) * 1927-11-15 1931-12-08 Halliburton Erle Palmer Method and apparatus for operating wells
US2214227A (en) * 1939-03-29 1940-09-10 English Aaron Method and apparatus for securing objects in wells
US2449037A (en) * 1945-11-30 1948-09-07 C H C Patent Corp Method of seismic exploration operations
US2669431A (en) * 1948-04-24 1954-02-16 Crowell Consulting Company Earth drilling apparatus
US3179168A (en) * 1962-08-09 1965-04-20 Pan American Petroleum Corp Metallic casing liner
US3367442A (en) * 1963-12-19 1968-02-06 Dow Chemical Co Portable seismic survey apparatus with an implodable device
US3389752A (en) * 1965-10-23 1968-06-25 Schlumberger Technology Corp Zone protection

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1834946A (en) * 1927-11-15 1931-12-08 Halliburton Erle Palmer Method and apparatus for operating wells
US1746848A (en) * 1928-08-23 1930-02-11 Walter Bates Steel Corp Earth anchor
US2214227A (en) * 1939-03-29 1940-09-10 English Aaron Method and apparatus for securing objects in wells
US2449037A (en) * 1945-11-30 1948-09-07 C H C Patent Corp Method of seismic exploration operations
US2669431A (en) * 1948-04-24 1954-02-16 Crowell Consulting Company Earth drilling apparatus
US3179168A (en) * 1962-08-09 1965-04-20 Pan American Petroleum Corp Metallic casing liner
US3367442A (en) * 1963-12-19 1968-02-06 Dow Chemical Co Portable seismic survey apparatus with an implodable device
US3389752A (en) * 1965-10-23 1968-06-25 Schlumberger Technology Corp Zone protection

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876971A (en) * 1972-02-22 1975-04-08 Gulf Research Development Co Precision seismology
US3777814A (en) * 1972-05-19 1973-12-11 Gulf Research Development Co Clamped detector
WO1993025799A1 (en) * 1992-06-09 1993-12-23 Shell Internationale Research Maatschappij B.V. Method of creating a wellbore in an underground formation
US5348095A (en) * 1992-06-09 1994-09-20 Shell Oil Company Method of creating a wellbore in an underground formation
US6182012B1 (en) * 1998-02-20 2001-01-30 Institut Francais Du Petrole Method and device intended for permanent monitoring of an underground formation
US7168499B2 (en) 1998-11-16 2007-01-30 Shell Oil Company Radial expansion of tubular members
US6328113B1 (en) 1998-11-16 2001-12-11 Shell Oil Company Isolation of subterranean zones
US6745845B2 (en) 1998-11-16 2004-06-08 Shell Oil Company Isolation of subterranean zones
US6712154B2 (en) 1998-11-16 2004-03-30 Enventure Global Technology Isolation of subterranean zones
US7108072B2 (en) 1998-11-16 2006-09-19 Shell Oil Company Lubrication and self-cleaning system for expansion mandrel
US6634431B2 (en) 1998-11-16 2003-10-21 Robert Lance Cook Isolation of subterranean zones
US7121352B2 (en) 1998-11-16 2006-10-17 Enventure Global Technology Isolation of subterranean zones
US6604763B1 (en) 1998-12-07 2003-08-12 Shell Oil Company Expandable connector
US7108061B2 (en) 1998-12-07 2006-09-19 Shell Oil Company Expander for a tapered liner with a shoe
US20030094279A1 (en) * 1998-12-07 2003-05-22 Shell Oil Co. Method of selecting tubular members
US7174964B2 (en) 1998-12-07 2007-02-13 Shell Oil Company Wellhead with radially expanded tubulars
US7195064B2 (en) 1998-12-07 2007-03-27 Enventure Global Technology Mono-diameter wellbore casing
US6575240B1 (en) 1998-12-07 2003-06-10 Shell Oil Company System and method for driving pipe
US7159665B2 (en) 1998-12-07 2007-01-09 Shell Oil Company Wellbore casing
US6892819B2 (en) 1998-12-07 2005-05-17 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US7011161B2 (en) 1998-12-07 2006-03-14 Shell Oil Company Structural support
US7147053B2 (en) 1998-12-07 2006-12-12 Shell Oil Company Wellhead
US6561227B2 (en) 1998-12-07 2003-05-13 Shell Oil Company Wellbore casing
US6557640B1 (en) 1998-12-07 2003-05-06 Shell Oil Company Lubrication and self-cleaning system for expansion mandrel
US6631760B2 (en) 1998-12-07 2003-10-14 Shell Oil Company Tie back liner for a well system
US6497289B1 (en) 1998-12-07 2002-12-24 Robert Lance Cook Method of creating a casing in a borehole
US6640903B1 (en) 1998-12-07 2003-11-04 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US20030094278A1 (en) * 1998-12-07 2003-05-22 Shell Oil Co. Expansion cone for radially expanding tubular members
US6470966B2 (en) 1998-12-07 2002-10-29 Robert Lance Cook Apparatus for forming wellbore casing
US7077211B2 (en) 1998-12-07 2006-07-18 Shell Oil Company Method of creating a casing in a borehole
US7077213B2 (en) 1998-12-07 2006-07-18 Shell Oil Company Expansion cone for radially expanding tubular members
US20040045616A1 (en) * 1998-12-07 2004-03-11 Shell Oil Co. Tubular liner for wellbore casing
US7048062B2 (en) 1998-12-07 2006-05-23 Shell Oil Company Method of selecting tubular members
US7240729B2 (en) 1998-12-07 2007-07-10 Shell Oil Company Apparatus for expanding a tubular member
US6725919B2 (en) 1998-12-07 2004-04-27 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US6739392B2 (en) 1998-12-07 2004-05-25 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US7665532B2 (en) 1998-12-07 2010-02-23 Shell Oil Company Pipeline
US20040118574A1 (en) * 1998-12-07 2004-06-24 Cook Robert Lance Mono-diameter wellbore casing
US6758278B2 (en) 1998-12-07 2004-07-06 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US6823937B1 (en) 1998-12-07 2004-11-30 Shell Oil Company Wellhead
US7044218B2 (en) 1998-12-07 2006-05-16 Shell Oil Company Apparatus for radially expanding tubular members
US7036582B2 (en) 1998-12-07 2006-05-02 Shell Oil Company Expansion cone for radially expanding tubular members
US7159667B2 (en) 1999-02-25 2007-01-09 Shell Oil Company Method of coupling a tubular member to a preexisting structure
US6631769B2 (en) 1999-02-26 2003-10-14 Shell Oil Company Method of operating an apparatus for radially expanding a tubular member
US6966370B2 (en) 1999-02-26 2005-11-22 Shell Oil Company Apparatus for actuating an annular piston
US6631759B2 (en) 1999-02-26 2003-10-14 Shell Oil Company Apparatus for radially expanding a tubular member
US6568471B1 (en) 1999-02-26 2003-05-27 Shell Oil Company Liner hanger
US6684947B2 (en) 1999-02-26 2004-02-03 Shell Oil Company Apparatus for radially expanding a tubular member
US7063142B2 (en) 1999-02-26 2006-06-20 Shell Oil Company Method of applying an axial force to an expansion cone
US7040396B2 (en) 1999-02-26 2006-05-09 Shell Oil Company Apparatus for releasably coupling two elements
US7044221B2 (en) 1999-02-26 2006-05-16 Shell Oil Company Apparatus for coupling a tubular member to a preexisting structure
US6857473B2 (en) 1999-02-26 2005-02-22 Shell Oil Company Method of coupling a tubular member to a preexisting structure
US6705395B2 (en) 1999-02-26 2004-03-16 Shell Oil Company Wellbore casing
US7055608B2 (en) 1999-03-11 2006-06-06 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US20050098323A1 (en) * 1999-03-11 2005-05-12 Shell Oil Co. Forming a wellbore casing while simultaneously drilling a wellbore
US6968618B2 (en) 1999-04-26 2005-11-29 Shell Oil Company Expandable connector
US6915852B2 (en) 1999-05-20 2005-07-12 Baker Hughes Incorporated Hanging liners by pipe expansion
US6446724B2 (en) 1999-05-20 2002-09-10 Baker Hughes Incorporated Hanging liners by pipe expansion
US6561271B2 (en) 1999-05-20 2003-05-13 Baker Hughes Incorporated Hanging liners by pipe expansion
US20040016545A1 (en) * 1999-05-20 2004-01-29 Baugh John L. Hanging liners by pipe expansion
US6631765B2 (en) 1999-05-20 2003-10-14 Baker Hughes Incorporated Hanging liners by pipe expansion
US6598677B1 (en) 1999-05-20 2003-07-29 Baker Hughes Incorporated Hanging liners by pipe expansion
US7048067B1 (en) 1999-11-01 2006-05-23 Shell Oil Company Wellbore casing repair
US6575250B1 (en) 1999-11-15 2003-06-10 Shell Oil Company Expanding a tubular element in a wellbore
US7455104B2 (en) * 2000-06-01 2008-11-25 Schlumberger Technology Corporation Expandable elements
US20020056553A1 (en) * 2000-06-01 2002-05-16 Duhon Mark C. Expandable elements
US20030116325A1 (en) * 2000-07-28 2003-06-26 Cook Robert Lance Liner hanger with standoffs
US7100684B2 (en) 2000-07-28 2006-09-05 Enventure Global Technology Liner hanger with standoffs
US6976541B2 (en) 2000-09-18 2005-12-20 Shell Oil Company Liner hanger with sliding sleeve valve
US20040045718A1 (en) * 2000-09-18 2004-03-11 Brisco David Paul Liner hanger with sliding sleeve valve
US7100685B2 (en) 2000-10-02 2006-09-05 Enventure Global Technology Mono-diameter wellbore casing
US7172019B2 (en) 2000-10-02 2007-02-06 Shell Oil Company Method and apparatus for forming a mono-diameter wellbore casing
US7172024B2 (en) 2000-10-02 2007-02-06 Shell Oil Company Mono-diameter wellbore casing
US7146702B2 (en) 2000-10-02 2006-12-12 Shell Oil Company Method and apparatus for forming a mono-diameter wellbore casing
US7290616B2 (en) 2001-07-06 2007-11-06 Enventure Global Technology, L.L.C. Liner hanger
US7168496B2 (en) 2001-07-06 2007-01-30 Eventure Global Technology Liner hanger
US7258168B2 (en) 2001-07-27 2007-08-21 Enventure Global Technology L.L.C. Liner hanger with slip joint sealing members and method of use
US7416027B2 (en) 2001-09-07 2008-08-26 Enventure Global Technology, Llc Adjustable expansion cone assembly
US7290605B2 (en) 2001-12-27 2007-11-06 Enventure Global Technology Seal receptacle using expandable liner hanger
US7740076B2 (en) 2002-04-12 2010-06-22 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger
US7918284B2 (en) 2002-04-15 2011-04-05 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger
US20030233524A1 (en) * 2002-06-12 2003-12-18 Poisner David I. Protected configuration space in a protected environment
US7404444B2 (en) 2002-09-20 2008-07-29 Enventure Global Technology Protective sleeve for expandable tubulars
US7739917B2 (en) 2002-09-20 2010-06-22 Enventure Global Technology, Llc Pipe formability evaluation for expandable tubulars
US7886831B2 (en) 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
US7793721B2 (en) 2003-03-11 2010-09-14 Eventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US7775290B2 (en) 2003-04-17 2010-08-17 Enventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
US7819185B2 (en) 2004-08-13 2010-10-26 Enventure Global Technology, Llc Expandable tubular

Similar Documents

Publication Publication Date Title
US3693717A (en) Reproducible shot hole
US3812912A (en) Reproducible shot hole apparatus
US6263283B1 (en) Apparatus and method for generating seismic energy in subterranean formations
US7637318B2 (en) Pressure communication assembly external to casing with connectivity to pressure source
US4081031A (en) Oil well stimulation method
US11629568B2 (en) Shaped charge assembly, explosive units, and methods for selectively expanding wall of a tubular
US4688640A (en) Abandoning offshore well
US11781393B2 (en) Explosive downhole tools having improved wellbore conveyance and debris properties, methods of using the explosive downhole tools in a wellbore, and explosive units for explosive column tools
CA3109407C (en) Duel end firing explosive column tools and methods for selectively expanding a wall of a tubular
US20230113807A1 (en) Methods of pre-testing expansion charge for selectively expanding a wall of a tubular, and methods of selectively expanding walls of nested tubulars
US11781394B2 (en) Shaped charge assembly, explosive units, and methods for selectively expanding wall of a tubular
Shim Response of piles in saturated soil under blast loading
US2449037A (en) Method of seismic exploration operations
Cuderman et al. Multiple fracturing technique for enhanced gas recovery
US2561309A (en) Method and apparatus for seismic underwater prospecting
Schmidt et al. In Situ Testing of Well-Shooting Concepts
Cuderman et al. High energy gas fracture experiments in liquid-filled boreholes: potential geothermal application
CA3203289A1 (en) Shaped charge assembly, explosive units, and methods for selectively expanding wall of a tubular
Taqieddin Role of borehole pressure containment on surface ground vibration levels at close scaled distances

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A COR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GULF RESEARCH AND DEVELOPMENT COMPANY, A CORP. OF DE.;REEL/FRAME:004610/0801

Effective date: 19860423

Owner name: CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A COR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GULF RESEARCH AND DEVELOPMENT COMPANY, A CORP. OF DE.;REEL/FRAME:004610/0801

Effective date: 19860423