US3684842A - Pushbutton keyboard switch assembly with improved over center diaphragm contact - Google Patents

Pushbutton keyboard switch assembly with improved over center diaphragm contact Download PDF

Info

Publication number
US3684842A
US3684842A US51464A US3684842DA US3684842A US 3684842 A US3684842 A US 3684842A US 51464 A US51464 A US 51464A US 3684842D A US3684842D A US 3684842DA US 3684842 A US3684842 A US 3684842A
Authority
US
United States
Prior art keywords
conductive
elements
pushbutton
sheet
paths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US51464A
Inventor
Henry J Boulanger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Application granted granted Critical
Publication of US3684842A publication Critical patent/US3684842A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/001Electromechanical switches for setting or display
    • G04C3/005Multiple switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/7006Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard comprising a separate movable contact element for each switch site, all other elements being integrated in layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/23Construction or mounting of dials or of equivalent devices; Means for facilitating the use thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2203/00Form of contacts
    • H01H2203/026Form of contacts on different planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2205/00Movable contacts
    • H01H2205/016Separate bridge contact
    • H01H2205/024Means to facilitate positioning
    • H01H2205/03Apertured plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2215/00Tactile feedback
    • H01H2215/034Separate snap action
    • H01H2215/036Metallic disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2227/00Dimensions; Characteristics
    • H01H2227/026Separate dome contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2233/00Key modules
    • H01H2233/002Key modules joined to form button rows
    • H01H2233/004One molded part

Definitions

  • ABSTRACT A selectively energizable keyboard system including a plurality of selectively actuatable pushbutton members having exposed surfaces adapted to be symbolized in accordance with electronic functions generated by actuation of the pushbutton members, and having opposed surfaces adapted to transmit force in response to actuation.
  • a plurality of conductive elements are supported in registration with the opposed surfaces of the pushbutton members, each having a dished surface of curvature when in an unactuated condition and adapted to be deflected into an overcenter position in response to application of force by a pushbutton member.
  • a conductive member having a plurality of contact areas in electrical contact with the conductive elements is arranged adjacent the set of conductive elements.
  • a plurality of conductive paths are arranged at a surface of a support member facing the conductive member. Each of the conductive paths is adapted to be electrically connected to the conductive member through one of the conductive elements, when the conductive element is deflected into its over-center position.
  • PATENTEDM B 5 saw u or 4 INVENTOR.
  • Ade/21y J. Boa/anger BY 7 MM V W A213 PUSHBUTTON KEYBOARD SWITCH ASSEMBLY WITH IMPROVED OVER CENTER DIAPHRAGM CONTACT The present invention relates generally to keyboard systems and more particularly is directed to an improved pushbutton keyboard system for establishing positive electrical contacts in response to actuation.
  • Such arrangements may not produce the abrupt positive electrical contact desirable to achieve the desired electrical operation, and may be susceptible to problems of contact bounce, particularly when the keyboard system is utilized for operating devices, such as electronic calculators, in which rapid actuation of the pushbutton members is contemplated and in which the establishment of erroneous electrical contacts causes inaccurate results.
  • FIG. 1 is a plan view of one embodiment of a selectively energizable keyboard system in accordance with the present invention
  • FIG. 2 is a vertical sectional view taken along lines 22 of FIG. 1;
  • FIG. 3 is a partial sectional view taken along lines 3-3 of FIG. 2;
  • FIG. 4 is a sectional view taken along lines 4-4 of FIG. 2;
  • FIG. 5 is a graph of force vs. deflection illustrating the mechanical energy produced by actuation of a pushbutton member
  • FIG. 6 is a partially broken away perspective view illustrating an electronic calculator incorporating the keyboard system.
  • FIG. 7 is an exploded perspective view illustrating an alternative embodiment of a keyboard system similar to that illustrated in FIGS. 1-4.
  • a keyboard system 8 in accordance with the present invention generally includes a non-conductive support member 10 having a plurality of conductive paths 12 arranged in a preselected pattern at a surface thereof, each of the conductive paths including an enlarged contact portion or pad 14 at one end and a terminal member 16 adjacent an opposite end thereof.
  • Each of the conductive paths 12 is adapted to transmit electrical signals or information upon the establishment of an electrical contact with the contact pad 14, as will be subsequently explained in detail.
  • a sheet or layer 18 of conductive material is disposed in overlying relationship with the surface of the support member 10 on which the conductive paths 12 are arranged, and is separated and electrically insulated therefrom by a relatively thin sheet of insulation material 20, having a plurality of apertures 21, which expose the contact pads 14. Electrical engagement is selectively established between the pads 14 and the conductive layer 18 in response to deflection of a plurality of conductive elements 22, which are arranged in electrical contact with the conductive layer 18 and adapted to be deflected in response to the application of a mechanical force to provide a bridging electrical contact between the conductive layer 18 and one of the contact pads 14.
  • Actuation of the conductive elements 22 to effect deflection is accomplished by the application of mechanical force to one of a plurality of pushbutton members 26, one of such pushbutton members being associated with each of said conductive elements 22.
  • the pushbutton members 26 are preferably maintained in abutment with the conductive elements 22 and are adapted to be moved from a retracted to an activating position which effects the establishment of the bridging electrical contact between the conductive layer 18 and one of the conductive pads 14.
  • the support layer is fabricated of a relatively rigid, non-conductive material and is adapted to support the keyboard system, as well as associated electronic circuitry, power supplies, display means, etc., when the keyboard is to be incorporated in an electronic calculator unit.
  • the sheet 18 of conductive material is of a generally planar configuration and is disposed in spaced facing relationship with the pattern of conductive paths.
  • the sheet 18 includes a plurality of annular contact areas 28 on its surface, the annular contact areas circumscribin'g a plurality of apertures 30 provided in the sheet 18.
  • the contact areas 28 are maintained in contact with each of the conductive elements 22 and are adapted to be electrically coupled to the conductive pads 14 upon actuation of a key member 26 which causes deflection of its associated conductive element 22 to form a bridging electrical contact between the contact area 28 of the conductive layer 18 and one of the conductive pads.
  • the apertures 30 in the conductive sheet 18 preferably have a generally circular configuration of a preselected diameter less than the size of the conductive elements 22 so as to accommodate passage therethrough of the central portion of the conductive elements 22 upon deflection, while the contact area 28 aids in restraining peripheral movement of the conductive element.
  • Each of the conductive elements 22 is supported in axial registry with one of the apertures in the conductive layer 18 in order to effect the establishment of a bridging electrical contact between the contact area 28 and hence, with the conductive layer 18, and asassociated conductive pad 14 in registration with the aperture 30 in the conductive layer.
  • the apertures 21 in the layer of insulation material 20, which is disposed intermediate the conductive layer 18 and the conductive paths 12, preferably have a generally circular configuration and are each in axial registry with one of the apertures 30 and an associated portion of one of the conductive pads 14.
  • the apertures 21 each have a preselected diameter which is less than or equal to the diameter of the apertures 30, and of a sufiicient size to accommodate passage therethrough of the central portion of the conductive element 22 upon deflection thereof, such that electrical contact is established between the contact area 28 of the conductive layer 18 and one of the conductive pads 14 through the conductive element 22, only upon deflection thereof.
  • Each of the conductive elements 22 is maintained in its respective position in axial registry with one of the conductive pads 14 and with one of the pushbutton members 26, such that peripheral movement of the conductive element 22 is restrained by the contact area 28, and is also arranged such that lateral movement is restrained in order to permit the establishment of the aforementioned bridging electrical contact.
  • the conductive elements 22 are supportingly carried within a generally planar sheet of insulation material 34, which is disposed in overlying relationship with the conductive sheet 18 and preferably secured thereto to maintain the electrical contact between the conductive elements and the conductive sheet.
  • the sheet 34 includes a plurality of aper tures 36 preferably of a circular configuration having a preselected diameter approximately equal to that of each of the conductive elements 22, which preferably are of a generally circular or disc-shaped configuration, so as to be accommodated within the apertures 36. Accordingly, the conductive elements are supported in close-fitting relationship within the aperture 36.
  • the rim of each of the conductive elements 22 preferably is sealingly received within the wall defined by an associated one of the apertures 36 and is thus restrained against lateral motion while deflection in response to an actuating force is permitted and contact with the annular contact area 28 of the underlying conductive sheet 18 is maintained.
  • Each of the apertures 36 in the sheet 34 of insulation is in axial registry with a corresponding one of the apertures 30 in the conductive layer 18, but is of a slightly larger diameter than the aperture 30 so as to expose the contact area 28 and permit essentially continuous electrical contact to be maintained between each of the conductive elements 22 and the conductive sheet 18.
  • the conductive element upon deflection of one of the conductive elements 22 in response to the application of an actuating force by its associated pushbutton member 26, which is maintained generally in abutment with the surface thereof, the conductive element establishes a bridging electrical contact between the conductive layer 18 and the associated conductive pad l4'which is exposed through the axially aligned apertures in the various sheets of material separating the conductive sheet from the conductive pads.
  • one of the pushbutton members designated by the numeral 26a is illustrated in an actuated or depressed condition such that the conductive element, designated by the reference numeral 22a, associated therewith is in a deflected condition establishing the aforementioned bridging electrical contact between one of the contact pads and the conductive sheet 18.
  • the individual pushbutton members 26 may be symbolized as shown, in accordance with the electrical function accomplished by establishing electrical contact between the conductive sheet 18 and one of the conductive pads so that electrical information may be transmitted along the conductive path associated with the pad to a circuit element or the like, to generate the electrical function.
  • each of the pushbutton members 26 is normally in a non-operative or retracted position, and is adapted to be actuated into a contact establishing position in response to the application of a predetermined mechanical force thereto as indicated by the position of the pushbutton member 26a, as previously explained. More particularly, each of the pushbutton members 26 includes a force applying surface 38 opposite to the exposed symbolized surface, the surface 38 being arranged in abutment with a corresponding conductive element 22.
  • each pushbutton member preferably includes a generally cylindrical protrusion 39, integrally depend ing from the exposed surface for transmitting applied actuating force to the conductive element. Accordingly, upon operation of a pushbutton member 26 by the application of an actuating force, such as in response to manual depression by an operator, the pushbutton member 26 transmits the applied force through the cylindrical protrusion 39 and the surface 38 to the conductive element 22 to effect deflection thereof as shown by the position of the pushbutton member 26a to cause the conductive element to be deflected into the position which it establishes bridging electrical contact between the conductive sheet 18 and one of the conductive pads 14.
  • the pushbutton members are preferably fabricated of a relatively resilient material such as elastomers in order to permit the storage of a preselected amount of force within the material comprising the pushbutton member during actuation so as to achieve an abrupt and positive deflection of the conductive element.
  • the pushbutton members 26 are formed of a unitary body of material to facilitate fabrication, although other configurations may be suitable as indicated hereinafter in connection with FIG. 7.
  • a certain amount of force may be also stored in the flesh of the contacting finger tips of the operator so as to increase the storage of force in order to further enhance the positive deflection of the conductive element.
  • force-deflection curve of FIG. 5 in which applied force in ounces is shown plotted against deflection in thousandths of inches in connection illustrative of the deflection operation of one of the conductive elements 22.
  • force and deflection initially increase in an almost linear relationship, as indicated by the portion 40 of the curve, and reach a peak at a portion 42 at which point the curve exhibits a negative slope region 44 during which deflection increases with a decreasing force eventually approaching a minimum point or valley 46 at which the relationship reverses and deflection once again increases in response to the increasing force, as shown by the portion 48 of the curve.
  • the pushbutton members are preferably arranged, as previously explained, such that a preselected amount of force is stored within the mechanism itself in order to effect deflection of the conductive element along the negative slope portion 44 of the curve illustrated in FIG. 5, and preferably at a point which approaches or is at the minimal point 46 at which maximum deflection is achieved in response to a minimum level of applied force.
  • a preselected amount of force is stored within the mechanism itself in order to effect deflection of the conductive element along the negative slope portion 44 of the curve illustrated in FIG. 5, and preferably at a point which approaches or is at the minimal point 46 at which maximum deflection is achieved in response to a minimum level of applied force.
  • each of these elements preferably is formed of a segment of a hollow body having a double curved outer surface such as a segment of an oblique spheroid and is illustrated including a generally convex surface of curvature 50, when in an unactuated or rest state.
  • a fundamental criteria in selecting the shape of the conductive element is that the surface has an over-center position, when its central position is subjected to an axial force, and the surface automatically returns to its original position upon removal of the force, to wit, the element has memory.
  • the force applying surface 38 of the pushbutton member 26 is preferably arranged such that it is contiguous or in abutment with the central portion of this surface 50 and in a preferred embodiment of the present invention, the surface 38 of the pushbutton member 26 contacts approximately one-third of the surface area of the surface 50 of the element 22 during the application of force to the conductive element so as to maximize the force being applied thereto.
  • the element 22 may be provided with a generally dimpled protuberance 52 which depends from the opposite surface thereof and is arranged in axial registry with the aperture 21 in the insulating sheet 20 and is also arranged in registry with one of the conductive pads 14 such that upon deflection of the element 22, the protuberance 52 makes a positive electrical contact with the conductive pad 14 so as to effectively establish the bridging electrical contact between the conductive pad and the conductive sheet 18 through the conductive element 22.
  • the conductive element is arranged as shown ad described so that it may undergo a snap-action deflection into an over-center position as shown by the position of element 22a, as previously mentioned, the amount of deflection accompanying such a snapaction motion into the over-center position being sufficient to permit the bridging electrical contact to be established between the underlying conductive pad and the conductive sheet.
  • this snap-action deflection into the over-center position an abrupt, instantaneous and positive electrical contact is made in which contact bounce is precluded so as to avoid the possibility of inadvertent multiple electrical inputs.
  • a tactile feedback is provided which may be sensed in the fingertips of the operator actuating a particular pushbutton.
  • an audible acknowledgement of deflection also accompanying the snap-action deflection may be sensed by an operator to provide a further indication that a pushbutton member has been actuated to supply a desired electrical input.
  • the conductive sheet 18 may be connected, if desired, to a source of electrical energy to supply signals to a conductive pad for transmission along a conductive path to a terminal member upon the establishment of electrical contact due to deflection of a conductive element 22, the sheet 18 may be connected to a source of input information, such as a computer, etc., depending upon the use to which the system is to be put.
  • the support member 10 may be formed of a suitable insulating material having the conductive pattern arranged at the surface thereof, in a configuration slightly raised from the surface thereof, as shown, so as to permit the establishment of a positive electrical contact between the conductive sheet 18 and a selected conductive pad upon deflection of a conductive element 22.
  • the support member 10 may comprise a conventional printed circuit board formed of a relatively rigid insulating material with the conductive pattern laid down utilizing conventional techniques, such as masking, etching, engraving, etc.
  • the insulating layer 20 may be formed of a suitable, non-reactive insulation material, such as polyethylene terephthalate, commonly sold under the trademark Mylar, and is preferably disposed in sealed relationship intermediate the conductive sheet 18 and the surface of the support board 10 at which the conductive paths are arranged. This may be accomplished by providing an adhesive backing or the like on sheet 20.
  • the conductive sheet 18, which is disposed intermediate the insulating layer 34 and the insulating sheet 20 may be suitably bonded to the insulating layer 20 by utilizing a suitable adhesive on the underside of the conductive sheet 18 and similarly may be bonded to the insulating layer 34 utilizing a suitable adhesive arranged on the underside of the insulating layer 34.
  • the integral sheet comprising the pushbutton members may be secured in position by an adhesive which bonds the edges thereof to the support member 10.
  • the supporting board 10 is formed of a preselected insulating material such as epoxy bonded glass cloth generally sold under the trade description G-l0 by the Formica Company. This material has a thickness of approximately one-sixteenth inch while its lateral dimensions are approximately 2% inches X 3 inches.
  • the conductive paths are laid down in a preselected pattern on the surface of the support 10, using conventional deposition techniques and are preferably formed of gold-plated copper having a thickness of approximately 0.003 inch.
  • the insulating layer 20 disposed intermediate the surface of the support board 10 and the conductive layer 18 is fabricated of a material such as polyethylene terephthalate commonly sold under the trade namer Mylar, and has a thickness of approximately 0.0045 inch.
  • the conductive layer 18 is formed of gold-plated brass having a thickness of approximately 0.002 inch.
  • the insulating layer 34 which supportingly carries the conductive elements 22 is also fabricated of epoxy bonded glass cloth such as that commonly sold under the trade designation G-l0 by the Formica Company.
  • the conductive elements 22 which are restrained within the apertures 36 in the non-conductive layer 34 comprise discs of goldplated type 302 stainless steel having a thickness of approximately 0.004 inch while the thickness of the protuberance 52 is also approximately 0.004 inch and the diameter of the disc is approximately 0.375 inch.
  • the key members 22 are preferably fabricated of an integrally molded unit of a resilient elastomer which permits separate individual movement of each of the key members without affecting the position of other pushbutton members in view of the resiliency of the material.
  • a keyboard system 8 such as that shown in FIGS. l-4, is illustrated incorporated within an integral self-contained electronic calculator unit 53. More particularly, the embodiment illustrated is shown partially broken away to depict the provision of a plurality of semiconductor devices 54, such as integrated circuits.
  • the semiconductor devices 54 are supported on the same surface of the support member 10, on which the pattern of conductive paths are arranged.
  • Each of the semiconductor devices 54 includes a plurality of circuit elements 56 at a surface thereof with selected ones of the circuit elements being electrically connected to selected terminal members 16 by the provision of suitable whisker wire leads 58.
  • a suitable energy source (not shown) may be also supported by the board and coupled to the semiconductor devices.
  • Suitable indicating means including a display window 60, may be coupled to the semiconductor device 54 and arranged to provide visual indication of a particular electronic function generated in response to actuation of one of the pushbutton members 26 of the calculator unit.
  • other types of indicating systems could be provided, such as heat sensitive paper adapted to be imprinted with information in response to actuation of a pushbutton member, a tape punching apparatus, etc. It may be noted that for the sake of simplicity, only several circuit elements 56 and whisker wire lead connections have been illustrated, but it is contemplated that semiconductor devices utilizing enormous numbers of circuit elements may be employed in order to provide a complete electronics system for a self-contained calculator unit. Thus, in operation of the electronic calculator 53 illustrated in FIG.
  • a bridging electrical contact is established between the conductive sheet which may be coupled to a source of energy, or source of electrical information, etc., and one of the conductive pads through one of the conductive elements 22. Electrical information is then transmitted along the associated conductive path to one of the terminal members l6 and thence, to a selected one of the circuit elements 56, while appropriate output information is visually indicated in the display window 60. Additional specific details regarding the general mode of operation of electronic calculators actuated in response to the application of an electrical signal and the provision of a visual or other indication of operation are provided in various sources and accordingly, a detailed description of such operation is not set forth herein.
  • FIG. 7 an alternative embodiment of keyboard system similar to that illustrated in FIGS. 14 is shown.
  • This keyboard system is essentially identical to that illustrated in FIGS. 1-4, except for the provision of a different type of pushbutton member and supporting carriage therefore.
  • the support member including the conductive pads 14, the conductive paths l2 and the terminal members arranged in a preselected pattern at the surface thereof is generally similar to that shown in FIGS. 1-4 as is the overlying insulating layer 20, including the apertures 21 therein, exposing the conductive pads.
  • the conductive sheet 18, having apertures 30 therein is provided overlying the insulating layer to accommodate deflection of the conductive elements 22, when the bridging electrical engagement is established between the conductive sheet 18 and one of the conductive pads 14.
  • the insulating layer 34 having the plurality of apertures 36 therein for sealingly receiving the conductive elements 22, is also provided, although only one of the conductive elements 22 is shown for the sake of simplicity. However, rather than including a plurality of generally circular shaped pushbutton members integrally formed of a molded elastomer material such as illustrated in connection with FIGS.
  • aplurality of separate individual pushbutton members 64 are provided, each of which is appropriately symbolized at an exposed surface and which includes an opposed protruding surface 66, depending from the main body portion thereof and maintained in abutment with the central region of the conductive element 22 for effecting deflection in response to actuation of the pushbutton member 64.
  • Each of the key members is supportingly carried within a support casing 68 having a generally planar surface from which the exposed surfaces of the pushbutton member 64 project.
  • the support casing 68 may be fabricated of a relatively rigid non-conductive material or the like.
  • each of the pushbutton members 64 includes a flanged portion 70, which in the illustrated embodiment, is arranged integrally extending from opposed lower edge surfaces thereof, these flanged portions being adapted to be received within appropriate receiving channels or slots 72 in the casing 68 to preclude lateral motion while permitting movement normal to the planar surface of the casing 68 upon actuation. More particularly, the flanged portions 70 are appropriately restrained within the slots 72 to prevent lateral movement of the pushbutton members 64, while permitting movement of the pushbutton members from a retracted to an actuating position in response to the application of a mechanical force to the exposed surfaces thereof, similarly to the previous embodiment. Operation of the system illustrated in FIG.
  • the conductive element 22 is similarly caused to execute a snap-action deflection into its over-center position in which it establishes bridging electrical contact between the conductive sheet 18 and an associated conductive pad which is exposed through the aligned apertures in the various layers comprising the keyboard system, in the manner previously explained.
  • a selectively energizable keyboard system comprising a set of selectively operable pushbutton members each movable in one direction from a retracted to an activating position, each of said pushbutton members having an exposed surface adapted to receive the application of a preselected mechanical force to effect movement into said activating position and having an opposed surface adapted to transmit said force, set of conductive elements in registration with respective opposed surface of said pushbutton members, each of said elements having a dished surface of curvature when in an unactuated condition, said surface being in abutment with said opposed surface of one of said pushbutton members and adapted to be deflected into an over-center position in response to the application of said preselected force transmitted by actuation of said pushbutton member,
  • a generally planar conductive member disposed adjacent said set of conductive elements, said conductive member including a plurality of contact sections arranged in electrical contact with said conductive elements, and
  • support member having a plurality of conductive paths arranged at a surface thereof in spaced facing relationship with said plurality of sections of said conductive member, selected ones of said conductive paths being electrically connected to said conductive member through a bridging electrical connection established between said conductive member and one of said conductive elements only when said conductive element is in an over-center position.
  • a system in accordance with claim 1 wherein means are provided for supportingly carrying and restraining said set of conductive elements against lateral movement relative to. said opposed surfaces of said pushbutton members and relative to said conductive paths to assure positive electrical contact between said conductive elements and said selected conductive paths through said conductive elements in response to actuation of preselected pushbutton members.
  • each of said conductive elements is of a generally circular configuration having a preselected diameter
  • said conductive member includes a plurality of generally circular apertures, said apertures being in axial registration with said conductive elements and having a diameter less than said preselected diameter but sufficient to ac commodate deflection of the central portion of said conductive elements therethrough, and at least a portion of each of said conductive paths is arranged in registration with said apertures to permit the making of a bridging electrical connection between each of said paths and the conductive member through the conductive element in response to deflection thereof.
  • each of said apertures in said conductive member is defined by an annular contact area circumscribing said aperture, said annular contact area being in electrical contact with an associated one of said conductive elements to effect selective electrical contact between the conductive path in registration with said aperture and said annular contact area through said conductive element.
  • each of said conductive elements is provided with a generally centrally located protuberance facing one of said conductive paths through said apertures in said conductive elements to enhance electrical engagement between said conductive element, said conductive member, and said conductive path.
  • a layer of insulating material is disposed intermediate said conductive member and the surface of said member at which said plurality of conductive paths are arranged, said layer of insulating material having a plurality of apertures of a preselected size in axial registration with said apertures in said conductive members and with said conductive elements, said apertures in said layer of insulation material each being of a size suf ficient to permit passage therethrough of said protuberance on said conductive element into electrical contact with one of said conductive paths to effect the establishment of a bridging electrical contact between said conductive member and said conductive path when said conductive element is deflected into its overcenter position.
  • a system in accordance with claim 6 wherein a generally cylindrical protrusion is provided defining said opposed surface of each of said pushbutton members for selectively engaging said conductive elements in response to actuation of said pushbutton member, said protrusion being in axial alignment with an associated conductive element and having a surface of engagement with said conductive element of a diameter having an area equal to approximately one-third of the surface area of the conductive element in order to cause snap-action deflection of said conductive element thereby effecting positive establishment of the bridging electrical contact in response to actuation of said pushbutton member.
  • said pushbutton members are fabricated, at least in part, of a resilient material adapted to store energy in response to mechanical actuation, said stored energy being transmitted to an associated conductive element upon engagement with said opposed surface of said pushbutton member to produce a positive snap-action deflection of said conductive element into electrical contact with said conductive member and one of said selected conductive paths.
  • each of said pushbutton members is symbolized in a manner indicative of the electronic function established by the conductive path electrically contacted by said conductive member in response to actuation of said pushbutton member.
  • terminals pads are provided at preselected locations on said support member in electrical contact with said conductive paths and in registration with said conductive elements and at least one semiconductor device is provided having a plurality of circuit elements at a surface thereof adapted to be electrically coupled to selected terminal pads, said circuit elements being adapted to generate selectedelectrical functions in response to the electrical contact established between said conductive layer and a conductive path upon actuation of a pushbutton member.
  • said support member for said conductive paths comprises a relatively rigid layer of insulation material
  • said terminal pads include enlarged contact portions defined by integral extensions of said conductive path
  • said semiconductor device is supported on said rigid layer of insulation material adjacent said terminal pads
  • said means for generating an electrical function are supported on said rigid layer of insulation material.
  • a pushbutton keyboard system adapted to generate electrical information in response to actuation thereof comprising a support member having a generally planar surface at which a plurality of conductive paths are arranged in a preselected pattern and adapted to transmit electrical information in response to energization thereof, a generally planar sheet of conductive material disposed in spaced, facing relationship with said pattern of conductive paths, said sheet of conductive material including a plurality of contact areas adapted to be selectively electrically coupled to portions of said conductive paths for effecting energization thereof, plurality of selectively actuatable conductive ele ments disposed in electrical contact with said contact areas and in selective disengagement with said portions of said conductive paths, said conductive elements being adapted to be individually deflected into a position of engagement with said portions of said conductive paths in response to the application of a preselected deflecting force thereto, thereby efiecting an instantaneous bridging electrical contact between said conductive sheet and one of said conductive paths, and means for applying the
  • said conductive elements are each of a generally circular configuration having a convex surface of curvature in facing engagement with the force applying surface of said pushbutton member, said convex surface being adapted to be deflected into a concave configuration in response to the application of the preselected force by said force applying surface, thereby establishing the bridging electrical contact between said conductive layer and one of said conductive paths.
  • a system in accordance with claim 17 wherein means are provided for supportingly carrying said conductive elements in a manner permitting snap-action deflection of said convex surface into a concave surface while precluding lateral movement of said conductive elements to maintain alignment between said conductive elements and said portions of said conductive paths.
  • said means for supportingly carrying said conductive elements comprises a sheet of insulation material having a plurality of apertures for accommodating said conductive elements and the rims of said conductive elements are maintained in generally sealed relation ship with the walls of said apertures to permit deflection of said conductive elements through said apertures in response to actuation by said pushbutton members.
  • a system in accordance with claim 20 wherein said conductive sheet is disposed between said sheet of insulation material carrying said conductive elements and said generally planar surface of said support member, said conductive sheet having a plurality of apertures in axial registration with said apertures in said sheet of insulation material, said apertures in said conductive sheet being of a smaller diameter than said apertures in said sheet of insulation material to define annular contact areas circumscribing said apertures in said sheet of conductive material, said annular contact areas being in engagement with said conductive elements and adapted to permit deflection of the central portion of the conductive elements through said apertures while restraining peripheral movement of said conductive elements.
  • a system in accordance with claim 21 wherein a spacer sheet of insulation material is provided intermediate said conductive sheet and said pattern of conductive paths at said generally planar surface of said support member, said spacer sheet having a plurality of apertures in axial registration with said apertures in said sheet of conductive material and exposing said portions of said conductive paths, said apertures in said spacer sheet being of a diameter equal to or less than the diameter of said apertures in said conductive sheet to maintain said conductive layer electrically insulated from said conductive paths until deflection of said conductive elements is effected to establish the bridging electrical contact between said annular contact areas of said conductive layer and said exposed conductive paths through said apertures in said spacer sheet.
  • said generally conductive elements each include a dimpled protrusion extending toward said conductive paths, said protrusions being of a size less than the size of said apertures in said spacer sheet and being adapted to pass through said apertures in response to deflection of said conductive elements so as to facilitate the establishment of electrical contact with said conductive paths.
  • said support member comprises a sheet of epoxy bonded glass cloth
  • said conductive paths comprise gold-plated copper
  • said spacer sheet comprises polyethylene terephthalate resin
  • said conductive sheet comprises gold-plated brass
  • said conductive elements comprise gold-plated type 302 stainless steel
  • said sheet of insulation for carrying said conductive elements comprises epoxy bonded glass cloth and said pushbutton key members comprise an elastomer.
  • a system in accordance with claim 22 wherein a plurality of terminal members are provided at preselected locations adjacent one end of said support layer in electrical contact with said conductive paths, at least one semiconductor device is disposed adjacent said one end of said support layer having a plurality of circuit elements at a surface thereof electrically coupled to selected terminal members, said circuit elements being adapted to perform electrical functions in response to the establishment of electrical contact between said conductive sheet and one of said conductive paths upon deflection of a conductive element, thereby generating the electrical information.
  • a pushbutton keyboard system adapted to enter electrical information in response to actuation, said keyboard system including a support member having a generally planar surface at which a plurality of conductive paths are arranged in a preselected pattern and adapted to transmit electrical information in response to energization thereof, a generally planar sheet of conductive material disposed in spaced, facing relationship with said pattern of conductive paths, said sheet of conductive material including a plurality of contact areas adapted to be selectively electrically coupled to portions of said conductive paths for effecting energization thereof, a plurality of selectively actuatable conductive elements disposed in electrical contact with said contact areas and in selective disengagement with said portions of said conductive paths, said conductive elements being adapted to be individually deflected into a position of engagement with said portions of said conductive paths in response to the application of a preselected deflecting force thereto, thereby effecting an instantaneous bridging electrical contact between said conductive sheet and one of said conductive paths, and means for applying the pre
  • actuating members selectively movable from a first to a second position
  • each of said elements having a double curved outer surface with a selected area thereof being contiguous to a selected portion of said actuating members, said elements being selectively movable from a first to a second position in response to selective movement of said actuating members;
  • a support member adjacent to but spaced from said elements and having a plurality of spaced contacts formed thereon respectively positioned adjacent to but spaced from said elements;
  • said respective element when said actuating members are selectively moved from their first to their second position, said respective element is moved from its first to its second position into contact with its respective spaced contact and electrically connects its respective conductive area to its respective spaced contact and when said actuating members are selectively moved from their second to their first position, said respective element automatically moves from its second to its first position out of contact with its respective spaced contact and electrically disconnects its respective conductive area from its respective spaced contact.
  • each of said contact elements have an overcenter second position when a selected portion thereof is subjected to an axial force, said elements automatically returning to their first position when said axial force is removed.
  • each of said contact elements are segments of symbolized in a manner indicative of the electrical an que spheroid.

Abstract

A selectively energizable keyboard system is disclosed including a plurality of selectively actuatable pushbutton members having exposed surfaces adapted to be symbolized in accordance with electronic functions generated by actuation of the pushbutton members, and having opposed surfaces adapted to transmit force in response to actuation. A plurality of conductive elements are supported in registration with the opposed surfaces of the pushbutton members, each having a dished surface of curvature when in an unactuated condition and adapted to be deflected into an over-center position in response to application of force by a pushbutton member. A conductive member having a plurality of contact areas in electrical contact with the conductive elements is arranged adjacent the set of conductive elements. In addition, a plurality of conductive paths are arranged at a surface of a support member facing the conductive member. Each of the conductive paths is adapted to be electrically connected to the conductive member through one of the conductive elements, when the conductive element is deflected into its over-center position.

Description

United States Patent Boulanger ['54] PUSHBUTTON KEYBOARD SWITCH ASSEMBLY WITH IMPROVED OVER CENTER DIAPHRAGM CONTACT [72] Inventor: Henry J. Boulanger, Cumberland,
[73] Assignee: Texas Instruments Incorporated,
Dallas, Tex.
[22] Filed: July 1, 1970 [21] Appl. No.: 51,464
[52] US. Cl ..200/5 R, 200/159 B [51] Int. Cl. ..H0lh 13/26 [58] Field of Search ...200/5 R, 5 A, 46, 86 R, 159 B; 340/ 166 R [56] References Cited UNITED STATES PATENTS 3,600,528 8/1971 Leposavic ..200/159 B 2,262,777 1l/1941 Roper ..200/159 B 3,541,515 11/1970 Walter et a1. ..340/166 R 3,472,974 10/1969 McGough ..200/5 R 3,308,253 3/ 1967 Krakinowski ..200/86 R X 3,551,616 12/ 1970 Juliusburger et al. ..200/46 3,290,439 12/1966 Willcox ..200/5 A FOREIGN PATENTS OR APPLICATIONS 1,806,241 8/ 1969 Germany ..200/159 B OTHER PUBLICATIONS IBM Technical Disclosure Bulletin, R. H. Harris et al.,
[451 Aug. 15, 1972 Switch, Dec. 1969, Vol. 12, No. 7, p. 1130 John A. l-Iaug, James P. McAndrews and Gerald B. Epstein [5 7] ABSTRACT A selectively energizable keyboard system is disclosed including a plurality of selectively actuatable pushbutton members having exposed surfaces adapted to be symbolized in accordance with electronic functions generated by actuation of the pushbutton members, and having opposed surfaces adapted to transmit force in response to actuation. A plurality of conductive elements are supported in registration with the opposed surfaces of the pushbutton members, each having a dished surface of curvature when in an unactuated condition and adapted to be deflected into an overcenter position in response to application of force by a pushbutton member. A conductive member having a plurality of contact areas in electrical contact with the conductive elements is arranged adjacent the set of conductive elements. In addition, a plurality of conductive paths are arranged at a surface of a support member facing the conductive member. Each of the conductive paths is adapted to be electrically connected to the conductive member through one of the conductive elements, when the conductive element is deflected into its over-center position.
32 Claims, 7 Drawing Figures minimum m2 7 33841842 sum 2 or 4 v INVENTOR. 69147 J fiouldnyer 3. F1 Ally.
PATENTEDM B 5 saw u or 4 INVENTOR. Ade/21y J. Boa/anger BY 7 MM V W A213 PUSHBUTTON KEYBOARD SWITCH ASSEMBLY WITH IMPROVED OVER CENTER DIAPHRAGM CONTACT The present invention relates generally to keyboard systems and more particularly is directed to an improved pushbutton keyboard system for establishing positive electrical contacts in response to actuation.
Various types of keyboard systems have been developed in recent years utilizing pushbutton members which are appropriately symbolized in a manner indicative of a numeric of mathematical function which is generated by depression of the pushbutton member to establish electrical contact with various circuit elements in order to achieve the function desired. Typically, such pushbutton members are spring biased in a retracted position and are adapted to be manually depressed to establish the desired electrical contact. However, various problems have arisen in connection with such arrangements. For example, the spring biasing arrangement may cause operator fatigue in certain instances. Alternatively, the bias may be too weak to provide sufficient sensitivity to produce tactile feedback to the operator indicative of the establishment of the requisite electrical contact. Similarly, such arrangements may not produce the abrupt positive electrical contact desirable to achieve the desired electrical operation, and may be susceptible to problems of contact bounce, particularly when the keyboard system is utilized for operating devices, such as electronic calculators, in which rapid actuation of the pushbutton members is contemplated and in which the establishment of erroneous electrical contacts causes inaccurate results.
Various devices have been proposed in order to alleviate such difficulties and achieve abrupt positive electrical contact in response to actuation of a pushbutton member, including devices which produce an audible indication in response to actuation, devices utilizing various types of sliding arrangements so as to effect wiping contact, etc. However, certain problems have still arisen. For example, the provision of audible indication of operation may result in an intolerable noise level, when a large number of such devices are being utilized in a relatively enclosed environment, or alternatively may make the device unsuitable for use in a relatively noisy environment, in which the audible indication could not be sensed. In addition, the provision of sliding type arrangements to effect wiping contact, may be subject'to durability problems in view of eventual mechanical wear of the contacts, the presence of contaminants which may interfere with electrical contact, etc.
Moreover, an increasing need has developed in recent years for fabricating devices of this nature in which a high degree of miniaturization is achieved, as technological advances have permitted the fabrication of extremely small electronic systems. Such a need has become particularly critical in view of the current availability of semiconductor devices including an enormous number of circuit functions on material which may occupy less space than one of the pushbutton members itself. Since the associated electronic circuitry required for electrical operation occupies a relatively insignificant amount of space, it becomes imperative also to achieve an analogous reduction in size of the keyboard.
It is an object of the present invention to provide an improved keyboard system adapted for selectively establishing electrical contacts in response to mechanical actuation thereof.
It is another object of the present invention to provide an improved pushbutton keyboard system in which actuation of individual pushbutton members establishes a positive electrical contact while providing a tactile feedback as an indication of the establishment of contact.
It is still another object of the present invention to provide an improved pushbutton keyboard system in which a bridging electrical contact is established between conductive portions of the system by the establishment of a maximum deflection of a bridging contact element in response to the application of a minimum amount of force.
It is a further object of the present invention to provide an improved miniaturized pushbutton keyboard system which is extremely rugged and durable, is capable of efiecting the generation of electrical information in response to actuation thereof, and is adapted for incorporation in an electronic calculator.
Various additional objects and advantages of the present invention will become readily apparent from the following detailed description and accompanying drawings wherein:
FIG. 1 is a plan view of one embodiment of a selectively energizable keyboard system in accordance with the present invention;
FIG. 2 is a vertical sectional view taken along lines 22 of FIG. 1;
FIG. 3 is a partial sectional view taken along lines 3-3 of FIG. 2;
FIG. 4 is a sectional view taken along lines 4-4 of FIG. 2;
FIG. 5 is a graph of force vs. deflection illustrating the mechanical energy produced by actuation of a pushbutton member;
FIG. 6 is a partially broken away perspective view illustrating an electronic calculator incorporating the keyboard system; and
FIG. 7 is an exploded perspective view illustrating an alternative embodiment of a keyboard system similar to that illustrated in FIGS. 1-4.
Referring generally to the drawings wherein corresponding elements in the various views are indicated by common reference numerals, and in particular, to FIGS. l-4, a keyboard system 8 in accordance with the present invention generally includes a non-conductive support member 10 having a plurality of conductive paths 12 arranged in a preselected pattern at a surface thereof, each of the conductive paths including an enlarged contact portion or pad 14 at one end and a terminal member 16 adjacent an opposite end thereof. Each of the conductive paths 12 is adapted to transmit electrical signals or information upon the establishment of an electrical contact with the contact pad 14, as will be subsequently explained in detail. A sheet or layer 18 of conductive material is disposed in overlying relationship with the surface of the support member 10 on which the conductive paths 12 are arranged, and is separated and electrically insulated therefrom by a relatively thin sheet of insulation material 20, having a plurality of apertures 21, which expose the contact pads 14. Electrical engagement is selectively established between the pads 14 and the conductive layer 18 in response to deflection of a plurality of conductive elements 22, which are arranged in electrical contact with the conductive layer 18 and adapted to be deflected in response to the application of a mechanical force to provide a bridging electrical contact between the conductive layer 18 and one of the contact pads 14. Actuation of the conductive elements 22 to effect deflection is accomplished by the application of mechanical force to one of a plurality of pushbutton members 26, one of such pushbutton members being associated with each of said conductive elements 22. The pushbutton members 26 are preferably maintained in abutment with the conductive elements 22 and are adapted to be moved from a retracted to an activating position which effects the establishment of the bridging electrical contact between the conductive layer 18 and one of the conductive pads 14.
More particularly, the support layer is fabricated of a relatively rigid, non-conductive material and is adapted to support the keyboard system, as well as associated electronic circuitry, power supplies, display means, etc., when the keyboard is to be incorporated in an electronic calculator unit. The sheet 18 of conductive material is of a generally planar configuration and is disposed in spaced facing relationship with the pattern of conductive paths. The sheet 18 includes a plurality of annular contact areas 28 on its surface, the annular contact areas circumscribin'g a plurality of apertures 30 provided in the sheet 18. The contact areas 28 are maintained in contact with each of the conductive elements 22 and are adapted to be electrically coupled to the conductive pads 14 upon actuation of a key member 26 which causes deflection of its associated conductive element 22 to form a bridging electrical contact between the contact area 28 of the conductive layer 18 and one of the conductive pads. In this regard, the apertures 30 in the conductive sheet 18 preferably have a generally circular configuration of a preselected diameter less than the size of the conductive elements 22 so as to accommodate passage therethrough of the central portion of the conductive elements 22 upon deflection, while the contact area 28 aids in restraining peripheral movement of the conductive element. Each of the conductive elements 22 is supported in axial registry with one of the apertures in the conductive layer 18 in order to effect the establishment of a bridging electrical contact between the contact area 28 and hence, with the conductive layer 18, and asassociated conductive pad 14 in registration with the aperture 30 in the conductive layer. In addition, the apertures 21 in the layer of insulation material 20, which is disposed intermediate the conductive layer 18 and the conductive paths 12, preferably have a generally circular configuration and are each in axial registry with one of the apertures 30 and an associated portion of one of the conductive pads 14. The apertures 21 each have a preselected diameter which is less than or equal to the diameter of the apertures 30, and of a sufiicient size to accommodate passage therethrough of the central portion of the conductive element 22 upon deflection thereof, such that electrical contact is established between the contact area 28 of the conductive layer 18 and one of the conductive pads 14 through the conductive element 22, only upon deflection thereof.
Each of the conductive elements 22 is maintained in its respective position in axial registry with one of the conductive pads 14 and with one of the pushbutton members 26, such that peripheral movement of the conductive element 22 is restrained by the contact area 28, and is also arranged such that lateral movement is restrained in order to permit the establishment of the aforementioned bridging electrical contact. In this regard, the conductive elements 22 are supportingly carried within a generally planar sheet of insulation material 34, which is disposed in overlying relationship with the conductive sheet 18 and preferably secured thereto to maintain the electrical contact between the conductive elements and the conductive sheet. More particularly, the sheet 34 includes a plurality of aper tures 36 preferably of a circular configuration having a preselected diameter approximately equal to that of each of the conductive elements 22, which preferably are of a generally circular or disc-shaped configuration, so as to be accommodated within the apertures 36. Accordingly, the conductive elements are supported in close-fitting relationship within the aperture 36. In this regard, the rim of each of the conductive elements 22 preferably is sealingly received within the wall defined by an associated one of the apertures 36 and is thus restrained against lateral motion while deflection in response to an actuating force is permitted and contact with the annular contact area 28 of the underlying conductive sheet 18 is maintained. Each of the apertures 36 in the sheet 34 of insulation is in axial registry with a corresponding one of the apertures 30 in the conductive layer 18, but is of a slightly larger diameter than the aperture 30 so as to expose the contact area 28 and permit essentially continuous electrical contact to be maintained between each of the conductive elements 22 and the conductive sheet 18. Thus, upon deflection of one of the conductive elements 22 in response to the application of an actuating force by its associated pushbutton member 26, which is maintained generally in abutment with the surface thereof, the conductive element establishes a bridging electrical contact between the conductive layer 18 and the associated conductive pad l4'which is exposed through the axially aligned apertures in the various sheets of material separating the conductive sheet from the conductive pads.
Referring particularly to FIG. 2, one of the pushbutton members designated by the numeral 26a is illustrated in an actuated or depressed condition such that the conductive element, designated by the reference numeral 22a, associated therewith is in a deflected condition establishing the aforementioned bridging electrical contact between one of the contact pads and the conductive sheet 18. The individual pushbutton members 26 may be symbolized as shown, in accordance with the electrical function accomplished by establishing electrical contact between the conductive sheet 18 and one of the conductive pads so that electrical information may be transmitted along the conductive path associated with the pad to a circuit element or the like, to generate the electrical function. In FIG. 1, it may be seen that the various pushbutton members are symbolized with the digits 1-9, as well as with symbols indicative of various arithmetic operations, since the particular keyboard system illustrated is particularly adapted for use in an electronic calculator as will be explained hereinafter. Each of the pushbutton members 26, is normally in a non-operative or retracted position, and is adapted to be actuated into a contact establishing position in response to the application of a predetermined mechanical force thereto as indicated by the position of the pushbutton member 26a, as previously explained. More particularly, each of the pushbutton members 26 includes a force applying surface 38 opposite to the exposed symbolized surface, the surface 38 being arranged in abutment with a corresponding conductive element 22. In this connection, each pushbutton member preferably includes a generally cylindrical protrusion 39, integrally depend ing from the exposed surface for transmitting applied actuating force to the conductive element. Accordingly, upon operation of a pushbutton member 26 by the application of an actuating force, such as in response to manual depression by an operator, the pushbutton member 26 transmits the applied force through the cylindrical protrusion 39 and the surface 38 to the conductive element 22 to effect deflection thereof as shown by the position of the pushbutton member 26a to cause the conductive element to be deflected into the position which it establishes bridging electrical contact between the conductive sheet 18 and one of the conductive pads 14.
The pushbutton members are preferably fabricated of a relatively resilient material such as elastomers in order to permit the storage of a preselected amount of force within the material comprising the pushbutton member during actuation so as to achieve an abrupt and positive deflection of the conductive element. In the illustrated embodiment, the pushbutton members 26 are formed of a unitary body of material to facilitate fabrication, although other configurations may be suitable as indicated hereinafter in connection with FIG. 7. In those instances, in which the keyboard system is adapted to be manually actuated by an operator, a certain amount of force may be also stored in the flesh of the contacting finger tips of the operator so as to increase the storage of force in order to further enhance the positive deflection of the conductive element. In this regard, reference may be made briefly to the force-deflection curve of FIG. 5 in which applied force in ounces is shown plotted against deflection in thousandths of inches in connection illustrative of the deflection operation of one of the conductive elements 22. As may be seen, force and deflection initially increase in an almost linear relationship, as indicated by the portion 40 of the curve, and reach a peak at a portion 42 at which point the curve exhibits a negative slope region 44 during which deflection increases with a decreasing force eventually approaching a minimum point or valley 46 at which the relationship reverses and deflection once again increases in response to the increasing force, as shown by the portion 48 of the curve. In accordance with an important feature of the present invention, the pushbutton members are preferably arranged, as previously explained, such that a preselected amount of force is stored within the mechanism itself in order to effect deflection of the conductive element along the negative slope portion 44 of the curve illustrated in FIG. 5, and preferably at a point which approaches or is at the minimal point 46 at which maximum deflection is achieved in response to a minimum level of applied force. Such an effect is obtained as a result of the arrangement of the various elements comprising the keyboard system 8, which permits energy storage within the pushbutton member itself due to its resiliency as well as in the resilient flesh of the operator, thereby achieving deflection operation along the negative slop portion 44 at a point near or at the valley 46 of the curve.
Referring in detail to the conductive elements 22, it may be seen that each of these elements preferably is formed of a segment of a hollow body having a double curved outer surface such as a segment of an oblique spheroid and is illustrated including a generally convex surface of curvature 50, when in an unactuated or rest state. In this regard, a fundamental criteria in selecting the shape of the conductive element is that the surface has an over-center position, when its central position is subjected to an axial force, and the surface automatically returns to its original position upon removal of the force, to wit, the element has memory. It is contemplated that segments of other hollow bodies having double curved surfaces may be utilized in forming the conductive elements, such as hyperboloids, paraboloids, etc., providing the above fundamental criteria are met. The force applying surface 38 of the pushbutton member 26 is preferably arranged such that it is contiguous or in abutment with the central portion of this surface 50 and in a preferred embodiment of the present invention, the surface 38 of the pushbutton member 26 contacts approximately one-third of the surface area of the surface 50 of the element 22 during the application of force to the conductive element so as to maximize the force being applied thereto. In addition, the element 22 may be provided with a generally dimpled protuberance 52 which depends from the opposite surface thereof and is arranged in axial registry with the aperture 21 in the insulating sheet 20 and is also arranged in registry with one of the conductive pads 14 such that upon deflection of the element 22, the protuberance 52 makes a positive electrical contact with the conductive pad 14 so as to effectively establish the bridging electrical contact between the conductive pad and the conductive sheet 18 through the conductive element 22. The conductive element is arranged as shown ad described so that it may undergo a snap-action deflection into an over-center position as shown by the position of element 22a, as previously mentioned, the amount of deflection accompanying such a snapaction motion into the over-center position being sufficient to permit the bridging electrical contact to be established between the underlying conductive pad and the conductive sheet. As a result of this snap-action deflection into the over-center position, an abrupt, instantaneous and positive electrical contact is made in which contact bounce is precluded so as to avoid the possibility of inadvertent multiple electrical inputs. Furthermore, as a result of this snap-action deflection, a tactile feedback is provided which may be sensed in the fingertips of the operator actuating a particular pushbutton. Moreover, an audible acknowledgement of deflection also accompanying the snap-action deflection may be sensed by an operator to provide a further indication that a pushbutton member has been actuated to supply a desired electrical input.
Thus, it may be seen that in operation, upon actuation of a selected pushbutton member 26 by the application of a sufficient mechanical force thereto, snapaction deflection of an associated conductive element 22 is producedto cause the conductive element to be deflected into an over-center position in which its surface of curvature 50 is transformed from a convex configuration to a concave configuration, as indicated by the position of element 22a, thereby establishing a positive instantaneous bridging electrical contact between the conductive sheet 18 and an associated conductive pad so as to permit an electrical signal tobe transmitted along one of the conductive paths to a terminal member 16. In this connection, it should be noted that the conductive sheet 18 may be connected, if desired, to a source of electrical energy to supply signals to a conductive pad for transmission along a conductive path to a terminal member upon the establishment of electrical contact due to deflection of a conductive element 22, the sheet 18 may be connected to a source of input information, such as a computer, etc., depending upon the use to which the system is to be put.
The support member 10 may be formed of a suitable insulating material having the conductive pattern arranged at the surface thereof, in a configuration slightly raised from the surface thereof, as shown, so as to permit the establishment of a positive electrical contact between the conductive sheet 18 and a selected conductive pad upon deflection of a conductive element 22. In this regard, the support member 10 may comprise a conventional printed circuit board formed of a relatively rigid insulating material with the conductive pattern laid down utilizing conventional techniques, such as masking, etching, engraving, etc. The insulating layer 20 may be formed of a suitable, non-reactive insulation material, such as polyethylene terephthalate, commonly sold under the trademark Mylar, and is preferably disposed in sealed relationship intermediate the conductive sheet 18 and the surface of the support board 10 at which the conductive paths are arranged. This may be accomplished by providing an adhesive backing or the like on sheet 20. The conductive sheet 18, which is disposed intermediate the insulating layer 34 and the insulating sheet 20 may be suitably bonded to the insulating layer 20 by utilizing a suitable adhesive on the underside of the conductive sheet 18 and similarly may be bonded to the insulating layer 34 utilizing a suitable adhesive arranged on the underside of the insulating layer 34. The integral sheet comprising the pushbutton members may be secured in position by an adhesive which bonds the edges thereof to the support member 10.
In one example of a device such as that shown in FIGS. 1-4 which has been fabricated, the supporting board 10 is formed of a preselected insulating material such as epoxy bonded glass cloth generally sold under the trade description G-l0 by the Formica Company. This material has a thickness of approximately one-sixteenth inch while its lateral dimensions are approximately 2% inches X 3 inches. The conductive paths are laid down in a preselected pattern on the surface of the support 10, using conventional deposition techniques and are preferably formed of gold-plated copper having a thickness of approximately 0.003 inch. The insulating layer 20 disposed intermediate the surface of the support board 10 and the conductive layer 18 is fabricated of a material such as polyethylene terephthalate commonly sold under the trade namer Mylar, and has a thickness of approximately 0.0045 inch. The conductive layer 18 is formed of gold-plated brass having a thickness of approximately 0.002 inch. The insulating layer 34 which supportingly carries the conductive elements 22 is also fabricated of epoxy bonded glass cloth such as that commonly sold under the trade designation G-l0 by the Formica Company. The conductive elements 22 which are restrained within the apertures 36 in the non-conductive layer 34 comprise discs of goldplated type 302 stainless steel having a thickness of approximately 0.004 inch while the thickness of the protuberance 52 is also approximately 0.004 inch and the diameter of the disc is approximately 0.375 inch. The key members 22 are preferably fabricated of an integrally molded unit of a resilient elastomer which permits separate individual movement of each of the key members without affecting the position of other pushbutton members in view of the resiliency of the material.
Referring to FIG. 6, a keyboard system 8, such as that shown in FIGS. l-4, is illustrated incorporated within an integral self-contained electronic calculator unit 53. More particularly, the embodiment illustrated is shown partially broken away to depict the provision of a plurality of semiconductor devices 54, such as integrated circuits. In the illustrated embodiment, the semiconductor devices 54 are supported on the same surface of the support member 10, on which the pattern of conductive paths are arranged. Each of the semiconductor devices 54 includes a plurality of circuit elements 56 at a surface thereof with selected ones of the circuit elements being electrically connected to selected terminal members 16 by the provision of suitable whisker wire leads 58. In addition, a suitable energy source (not shown) may be also supported by the board and coupled to the semiconductor devices. Suitable indicating means, including a display window 60, may be coupled to the semiconductor device 54 and arranged to provide visual indication of a particular electronic function generated in response to actuation of one of the pushbutton members 26 of the calculator unit. Similarly, if desired, other types of indicating systems could be provided, such as heat sensitive paper adapted to be imprinted with information in response to actuation of a pushbutton member, a tape punching apparatus, etc. It may be noted that for the sake of simplicity, only several circuit elements 56 and whisker wire lead connections have been illustrated, but it is contemplated that semiconductor devices utilizing enormous numbers of circuit elements may be employed in order to provide a complete electronics system for a self-contained calculator unit. Thus, in operation of the electronic calculator 53 illustrated in FIG. 6, upon actuation of one of the pushbutton members 26 by depression thereof, a bridging electrical contact is established between the conductive sheet which may be coupled to a source of energy, or source of electrical information, etc., and one of the conductive pads through one of the conductive elements 22. Electrical information is then transmitted along the associated conductive path to one of the terminal members l6 and thence, to a selected one of the circuit elements 56, while appropriate output information is visually indicated in the display window 60. Additional specific details regarding the general mode of operation of electronic calculators actuated in response to the application of an electrical signal and the provision of a visual or other indication of operation are provided in various sources and accordingly, a detailed description of such operation is not set forth herein.
Referring now to FIG. 7, an alternative embodiment of keyboard system similar to that illustrated in FIGS. 14 is shown. This keyboard system is essentially identical to that illustrated in FIGS. 1-4, except for the provision of a different type of pushbutton member and supporting carriage therefore. More particularly, the support member including the conductive pads 14, the conductive paths l2 and the terminal members arranged in a preselected pattern at the surface thereof, is generally similar to that shown in FIGS. 1-4 as is the overlying insulating layer 20, including the apertures 21 therein, exposing the conductive pads. Similarly, the conductive sheet 18, having apertures 30 therein is provided overlying the insulating layer to accommodate deflection of the conductive elements 22, when the bridging electrical engagement is established between the conductive sheet 18 and one of the conductive pads 14. The insulating layer 34 having the plurality of apertures 36 therein for sealingly receiving the conductive elements 22, is also provided, although only one of the conductive elements 22 is shown for the sake of simplicity. However, rather than includinga plurality of generally circular shaped pushbutton members integrally formed of a molded elastomer material such as illustrated in connection with FIGS. 1-4, aplurality of separate individual pushbutton members 64 are provided, each of which is appropriately symbolized at an exposed surface and which includes an opposed protruding surface 66, depending from the main body portion thereof and maintained in abutment with the central region of the conductive element 22 for effecting deflection in response to actuation of the pushbutton member 64. Each of the key members is supportingly carried within a support casing 68 having a generally planar surface from which the exposed surfaces of the pushbutton member 64 project. The support casing 68 may be fabricated of a relatively rigid non-conductive material or the like. In this regard, each of the pushbutton members 64 includes a flanged portion 70, which in the illustrated embodiment, is arranged integrally extending from opposed lower edge surfaces thereof, these flanged portions being adapted to be received within appropriate receiving channels or slots 72 in the casing 68 to preclude lateral motion while permitting movement normal to the planar surface of the casing 68 upon actuation. More particularly, the flanged portions 70 are appropriately restrained within the slots 72 to prevent lateral movement of the pushbutton members 64, while permitting movement of the pushbutton members from a retracted to an actuating position in response to the application of a mechanical force to the exposed surfaces thereof, similarly to the previous embodiment. Operation of the system illustrated in FIG. 7 is essentially identical to the embodiment illustrated and described in connection with FIGS. l-4. Accordingly, upon actuation of a selected pushbutton member, the conductive element 22 is similarly caused to execute a snap-action deflection into its over-center position in which it establishes bridging electrical contact between the conductive sheet 18 and an associated conductive pad which is exposed through the aligned apertures in the various layers comprising the keyboard system, in the manner previously explained.
Thus, a unique keyboard system has been described in detail in which a particularly advantageous snap-action bridging electrical contact is provided, as well as the incorporation of such a keyboard system in an electronic calculator.
Various changes and modifications in the abovedescribed invention will be readily apparent to those skilled in the art and any of such changes or modifications are deemed to be within the spirit and scope of the present invention, as set forth in the appended claims.
I claim:
1. A selectively energizable keyboard system comprising a set of selectively operable pushbutton members each movable in one direction from a retracted to an activating position, each of said pushbutton members having an exposed surface adapted to receive the application of a preselected mechanical force to effect movement into said activating position and having an opposed surface adapted to transmit said force, set of conductive elements in registration with respective opposed surface of said pushbutton members, each of said elements having a dished surface of curvature when in an unactuated condition, said surface being in abutment with said opposed surface of one of said pushbutton members and adapted to be deflected into an over-center position in response to the application of said preselected force transmitted by actuation of said pushbutton member,
a generally planar conductive member disposed adjacent said set of conductive elements, said conductive member including a plurality of contact sections arranged in electrical contact with said conductive elements, and
support member having a plurality of conductive paths arranged at a surface thereof in spaced facing relationship with said plurality of sections of said conductive member, selected ones of said conductive paths being electrically connected to said conductive member through a bridging electrical connection established between said conductive member and one of said conductive elements only when said conductive element is in an over-center position.
2. A system in accordance with claim 1 wherein means are provided for supportingly carrying and restraining said set of conductive elements against lateral movement relative to. said opposed surfaces of said pushbutton members and relative to said conductive paths to assure positive electrical contact between said conductive elements and said selected conductive paths through said conductive elements in response to actuation of preselected pushbutton members.
3. A system in accordance with claim 1 wherein said conductive elements preclude electrical contact between said conductive paths and said conductive member until respective conductive elements are subjected to said preselected force required for deflection into its over-center position in response to actuation by an associated pushbutton member, said preselected force being at least partially stored to effect an abrupt snap-action deflection of said conductive element into its over-center position, thereby effecting a positive in-' stantaneous electrical contact between said conductive member and said selected conductive path through said conductive element.
4. A system in accordance with claim 3 wherein said pushbutton members are adapted to be individually manually actuatable and said conductive elements are adapted to produce a tactile stimulation transmittable through said associated pushbutton member in response to the snap-action deflection into the overcenter position.
5. A system in accordance with claim 3 wherein each of said conductive elements is of a generally circular configuration having a preselected diameter, said conductive member includes a plurality of generally circular apertures, said apertures being in axial registration with said conductive elements and having a diameter less than said preselected diameter but sufficient to ac commodate deflection of the central portion of said conductive elements therethrough, and at least a portion of each of said conductive paths is arranged in registration with said apertures to permit the making of a bridging electrical connection between each of said paths and the conductive member through the conductive element in response to deflection thereof.
6. A system in accordance with claim 5 wherein each of said apertures in said conductive member is defined by an annular contact area circumscribing said aperture, said annular contact area being in electrical contact with an associated one of said conductive elements to effect selective electrical contact between the conductive path in registration with said aperture and said annular contact area through said conductive element.
7. A system in accordance with claim 6 wherein each of said conductive elements is provided with a generally centrally located protuberance facing one of said conductive paths through said apertures in said conductive elements to enhance electrical engagement between said conductive element, said conductive member, and said conductive path.
8. A system in accordance with claim 7 wherein a layer of insulating material is disposed intermediate said conductive member and the surface of said member at which said plurality of conductive paths are arranged, said layer of insulating material having a plurality of apertures of a preselected size in axial registration with said apertures in said conductive members and with said conductive elements, said apertures in said layer of insulation material each being of a size suf ficient to permit passage therethrough of said protuberance on said conductive element into electrical contact with one of said conductive paths to effect the establishment of a bridging electrical contact between said conductive member and said conductive path when said conductive element is deflected into its overcenter position.
9. A system in accordance with claim 6 wherein a generally cylindrical protrusion is provided defining said opposed surface of each of said pushbutton members for selectively engaging said conductive elements in response to actuation of said pushbutton member, said protrusion being in axial alignment with an associated conductive element and having a surface of engagement with said conductive element of a diameter having an area equal to approximately one-third of the surface area of the conductive element in order to cause snap-action deflection of said conductive element thereby effecting positive establishment of the bridging electrical contact in response to actuation of said pushbutton member.
10. A system in accordance with claim 9 wherein said pushbutton members are fabricated, at least in part, of a resilient material adapted to store energy in response to mechanical actuation, said stored energy being transmitted to an associated conductive element upon engagement with said opposed surface of said pushbutton member to produce a positive snap-action deflection of said conductive element into electrical contact with said conductive member and one of said selected conductive paths.
11. A system in accordance with claim 3 wherein each of said pushbutton members is symbolized in a manner indicative of the electronic function established by the conductive path electrically contacted by said conductive member in response to actuation of said pushbutton member.
12. A system in accordance with claim 11 wherein terminals pads are provided at preselected locations on said support member in electrical contact with said conductive paths and in registration with said conductive elements and at least one semiconductor device is provided having a plurality of circuit elements at a surface thereof adapted to be electrically coupled to selected terminal pads, said circuit elements being adapted to generate selectedelectrical functions in response to the electrical contact established between said conductive layer and a conductive path upon actuation of a pushbutton member.
13. A system in accordance with claim 12 wherein said conductive layer is adopted to be connected to a source of electrical power so as to effect electrical energization of selected circuit elements of said semiconductor device in response to actuation of a pushbutton member.
14. A system in accordance with claim 13 wherein means are provided for generating an indication of the electrical function represented by actuation of a pushbutton member.
15. A system in accordance with claim 13 wherein said support member for said conductive paths comprises a relatively rigid layer of insulation material, and said terminal pads include enlarged contact portions defined by integral extensions of said conductive path, said semiconductor device is supported on said rigid layer of insulation material adjacent said terminal pads, and said means for generating an electrical function are supported on said rigid layer of insulation material.
16. A pushbutton keyboard system adapted to generate electrical information in response to actuation thereof comprising a support member having a generally planar surface at which a plurality of conductive paths are arranged in a preselected pattern and adapted to transmit electrical information in response to energization thereof, a generally planar sheet of conductive material disposed in spaced, facing relationship with said pattern of conductive paths, said sheet of conductive material including a plurality of contact areas adapted to be selectively electrically coupled to portions of said conductive paths for effecting energization thereof, plurality of selectively actuatable conductive ele ments disposed in electrical contact with said contact areas and in selective disengagement with said portions of said conductive paths, said conductive elements being adapted to be individually deflected into a position of engagement with said portions of said conductive paths in response to the application of a preselected deflecting force thereto, thereby efiecting an instantaneous bridging electrical contact between said conductive sheet and one of said conductive paths, and means for applying the preselected deflecting force to said conductive elements including a plurality of pushbutton members adapted to be manually actuated to apply the preselected deflecting force to said conductive elements to effect deflection thereof into said position of engagement with said conductive paths, each of said pushbutton members including a force applying surface adjacent an associated conductive element and an exposed surface adapted to be symbolized in a manner indicative of the electrical information to be transmitted by the establishment of electrical contact between said conductive layer and said portion of said conductive path.
17. A system in accordance with claim 16 wherein said conductive elements are each of a generally circular configuration having a convex surface of curvature in facing engagement with the force applying surface of said pushbutton member, said convex surface being adapted to be deflected into a concave configuration in response to the application of the preselected force by said force applying surface, thereby establishing the bridging electrical contact between said conductive layer and one of said conductive paths.
18. A system in accordance with claim 16 wherein said conductive element is adapted to be deflected a maximum distance in response to the application of minimum preselected deflecting force.
19. A system in accordance with claim 17 wherein means are provided for supportingly carrying said conductive elements in a manner permitting snap-action deflection of said convex surface into a concave surface while precluding lateral movement of said conductive elements to maintain alignment between said conductive elements and said portions of said conductive paths.
20. A system in accordance with claim 19 wherein said means for supportingly carrying said conductive elements comprises a sheet of insulation material having a plurality of apertures for accommodating said conductive elements and the rims of said conductive elements are maintained in generally sealed relation ship with the walls of said apertures to permit deflection of said conductive elements through said apertures in response to actuation by said pushbutton members.
21. A system in accordance with claim 20 wherein said conductive sheet is disposed between said sheet of insulation material carrying said conductive elements and said generally planar surface of said support member, said conductive sheet having a plurality of apertures in axial registration with said apertures in said sheet of insulation material, said apertures in said conductive sheet being of a smaller diameter than said apertures in said sheet of insulation material to define annular contact areas circumscribing said apertures in said sheet of conductive material, said annular contact areas being in engagement with said conductive elements and adapted to permit deflection of the central portion of the conductive elements through said apertures while restraining peripheral movement of said conductive elements.
22. A system in accordance with claim 21 wherein a spacer sheet of insulation material is provided intermediate said conductive sheet and said pattern of conductive paths at said generally planar surface of said support member, said spacer sheet having a plurality of apertures in axial registration with said apertures in said sheet of conductive material and exposing said portions of said conductive paths, said apertures in said spacer sheet being of a diameter equal to or less than the diameter of said apertures in said conductive sheet to maintain said conductive layer electrically insulated from said conductive paths until deflection of said conductive elements is effected to establish the bridging electrical contact between said annular contact areas of said conductive layer and said exposed conductive paths through said apertures in said spacer sheet.
23. A system in accordance with claim 22 wherein said generally conductive elements each include a dimpled protrusion extending toward said conductive paths, said protrusions being of a size less than the size of said apertures in said spacer sheet and being adapted to pass through said apertures in response to deflection of said conductive elements so as to facilitate the establishment of electrical contact with said conductive paths.
24. A system in accordance with claim 23 wherein said support member comprises a sheet of epoxy bonded glass cloth, said conductive paths comprise gold-plated copper, said spacer sheet comprises polyethylene terephthalate resin, said conductive sheet comprises gold-plated brass, said conductive elements comprise gold-plated type 302 stainless steel, said sheet of insulation for carrying said conductive elements comprises epoxy bonded glass cloth and said pushbutton key members comprise an elastomer.
25. A system in accordance with claim 24 wherein said gold-plated copper conductive paths have a thickness of approximately 0.003 inches, said spacer sheet has a thickness of approximately 0.0045 inches, said gold-plated brass conductive sheet has a thickness of approximately 0.002 inches, said conductive elements have a thickness of approximately 0.004 inches, said sheet of epoxy bonded glass cloth has a thickness of approximately 0.015 inches, and said dimpled protrusion extends approximately 0.004 inches from the surface of said conductive element.
26. A system in accordance with claim 22 wherein a plurality of terminal members are provided at preselected locations adjacent one end of said support layer in electrical contact with said conductive paths, at least one semiconductor device is disposed adjacent said one end of said support layer having a plurality of circuit elements at a surface thereof electrically coupled to selected terminal members, said circuit elements being adapted to perform electrical functions in response to the establishment of electrical contact between said conductive sheet and one of said conductive paths upon deflection of a conductive element, thereby generating the electrical information.
27. A system in accordance with claim 26 wherein said conductive sheet is adapted to be electrically connected to a source of electrical power so as to selectively supply electrical power to said circuit elements upon the establishment of contact between said conductive sheet and said conductive paths through said conductive elements.
28. A system in accordance with claim 27 wherein means are provided supported by said support member electrically coupled to said semiconductor device for generating an indication of the electrical information generated by actuation of one of said pushbutton members.
29. In an electronic calculator;
a pushbutton keyboard system adapted to enter electrical information in response to actuation, said keyboard system including a support member having a generally planar surface at which a plurality of conductive paths are arranged in a preselected pattern and adapted to transmit electrical information in response to energization thereof, a generally planar sheet of conductive material disposed in spaced, facing relationship with said pattern of conductive paths, said sheet of conductive material including a plurality of contact areas adapted to be selectively electrically coupled to portions of said conductive paths for effecting energization thereof, a plurality of selectively actuatable conductive elements disposed in electrical contact with said contact areas and in selective disengagement with said portions of said conductive paths, said conductive elements being adapted to be individually deflected into a position of engagement with said portions of said conductive paths in response to the application of a preselected deflecting force thereto, thereby effecting an instantaneous bridging electrical contact between said conductive sheet and one of said conductive paths, and means for applying the preselected deflecting force to said conductive elements including a plurality of pushbutton members adapted to be manually actuated to apply the preselected deflecting force to said conductive elements to effect deflection thereof into said position of engagement with said conductive paths, each of said pushbutton members including a force applying surface adjacent an associated conductive element and an exposed surface adapted to be of electrical contact between said conductive layer and said portion of said conductive path; at least one semiconductor device supported on said support member, said semiconductor device havin a luralit of circuit elements t a surf ce th reofz electi ically coupled to saici conductive paths, said circuit elements being adapted to generate electrical signals in response to electrical information applied thereto from said conductive paths upon the establishment of electrical contact between said conductive sheet and said conductive paths; and indicating means supported by said support member in communication with said semiconductor device for providing an indication of the electrical signals generated in response to information applied to said circuit elements. 30. A multiple switching system comprising in combination:
a plurality of spaced actuating members selectively movable from a first to a second position;
plurality of contact elements respectively contiguous with said actuating members, each of said elements having a double curved outer surface with a selected area thereof being contiguous to a selected portion of said actuating members, said elements being selectively movable from a first to a second position in response to selective movement of said actuating members;
a support member adjacent to but spaced from said elements and having a plurality of spaced contacts formed thereon respectively positioned adjacent to but spaced from said elements;
an array of conductive areas respectively arranged intermediate said elements and said contacts; and
means for holding said actuating members, said elements, said support member, and said conductive areas in relative position;
whereby when said actuating members are selectively moved from their first to their second position, said respective element is moved from its first to its second position into contact with its respective spaced contact and electrically connects its respective conductive area to its respective spaced contact and when said actuating members are selectively moved from their second to their first position, said respective element automatically moves from its second to its first position out of contact with its respective spaced contact and electrically disconnects its respective conductive area from its respective spaced contact.
31. The multiple switching system of claim 30 wherein each of said contact elements have an overcenter second position when a selected portion thereof is subjected to an axial force, said elements automatically returning to their first position when said axial force is removed.
32. The multiple switching system of claim 31 wherein each of said contact elements are segments of symbolized in a manner indicative of the electrical an que spheroid.
information to be transmitted by the establishment

Claims (32)

1. A selectively energizable keyboard system comprising a set of selectively operable pushbutton members each movable in one direction from a retracted to an activating position, each of said pushbutton members having an exposed surface adapted to receive the application of a preselected mechanical force to effect movement into said activating position and having an opposed surface adapted to transmit said force, a set of conductive elements in registration with respective opposed surface of said pushbutton members, each of said elements having a dished surface of curvature when in an unactuated condition, said surface being in abutment with said opposed surface of one of said pushbutton members and adapted to be deflected into an over-center position in response to the application of said preselected force transmitted by actuation of said pushbutton member, a generally planar conductive member disposed adjacent said set of conductive elements, said conductive member including a plurality of contact sections arranged in electrical contact with said conductive elements, and a support member having a plurality of conductive paths arranged at a surface thereof in spaced facing relationship with said plurality of sections of said conductive member, selected ones of said conductive paths being electrically connected to said conductive member through a bridging electrical connection established between said conductive member and one of said conductive elements only when said conductive element is in an over-center position.
2. A system in accordance with claim 1 wherein means are provided for supportingly carrying and restraining said set of conductive elements against lateral movement relative to said opposed surfaces of said pushbutton members and relative to said conductive paths to assure positive electrical contact between said conductive elements and said selected conductive paths through said conductive elements in response to actuation of preselected pushbutton members.
3. A system in accordance with claim 1 wherein said conductive elements preclude electrical contact between said conductive paths and said conductive member until respective conductive elements are subjected to said preselected force required for deflection into its over-center position in response to actuation by an associated pushbutton member, said preselected force being at least partially stored to effect an aBrupt snap-action deflection of said conductive element into its over-center position, thereby effecting a positive instantaneous electrical contact between said conductive member and said selected conductive path through said conductive element.
4. A system in accordance with claim 3 wherein said pushbutton members are adapted to be individually manually actuatable and said conductive elements are adapted to produce a tactile stimulation transmittable through said associated pushbutton member in response to the snap-action deflection into the over-center position.
5. A system in accordance with claim 3 wherein each of said conductive elements is of a generally circular configuration having a preselected diameter, said conductive member includes a plurality of generally circular apertures, said apertures being in axial registration with said conductive elements and having a diameter less than said preselected diameter but sufficient to accommodate deflection of the central portion of said conductive elements therethrough, and at least a portion of each of said conductive paths is arranged in registration with said apertures to permit the making of a bridging electrical connection between each of said paths and the conductive member through the conductive element in response to deflection thereof.
6. A system in accordance with claim 5 wherein each of said apertures in said conductive member is defined by an annular contact area circumscribing said aperture, said annular contact area being in electrical contact with an associated one of said conductive elements to effect selective electrical contact between the conductive path in registration with said aperture and said annular contact area through said conductive element.
7. A system in accordance with claim 6 wherein each of said conductive elements is provided with a generally centrally located protuberance facing one of said conductive paths through said apertures in said conductive elements to enhance electrical engagement between said conductive element, said conductive member, and said conductive path.
8. A system in accordance with claim 7 wherein a layer of insulating material is disposed intermediate said conductive member and the surface of said member at which said plurality of conductive paths are arranged, said layer of insulating material having a plurality of apertures of a preselected size in axial registration with said apertures in said conductive members and with said conductive elements, said apertures in said layer of insulation material each being of a size sufficient to permit passage therethrough of said protuberance on said conductive element into electrical contact with one of said conductive paths to effect the establishment of a bridging electrical contact between said conductive member and said conductive path when said conductive element is deflected into its over-center position.
9. A system in accordance with claim 6 wherein a generally cylindrical protrusion is provided defining said opposed surface of each of said pushbutton members for selectively engaging said conductive elements in response to actuation of said pushbutton member, said protrusion being in axial alignment with an associated conductive element and having a surface of engagement with said conductive element of a diameter having an area equal to approximately one-third of the surface area of the conductive element in order to cause snap-action deflection of said conductive element thereby effecting positive establishment of the bridging electrical contact in response to actuation of said pushbutton member.
10. A system in accordance with claim 9 wherein said pushbutton members are fabricated, at least in part, of a resilient material adapted to store energy in response to mechanical actuation, said stored energy being transmitted to an associated conductive element upon engagement with said opposed surface of said pushbutton member to produce a positive snap-action deflection of said conductive element intO electrical contact with said conductive member and one of said selected conductive paths.
11. A system in accordance with claim 3 wherein each of said pushbutton members is symbolized in a manner indicative of the electronic function established by the conductive path electrically contacted by said conductive member in response to actuation of said pushbutton member.
12. A system in accordance with claim 11 wherein terminals pads are provided at preselected locations on said support member in electrical contact with said conductive paths and in registration with said conductive elements and at least one semiconductor device is provided having a plurality of circuit elements at a surface thereof adapted to be electrically coupled to selected terminal pads, said circuit elements being adapted to generate selected electrical functions in response to the electrical contact established between said conductive layer and a conductive path upon actuation of a pushbutton member.
13. A system in accordance with claim 12 wherein said conductive layer is adopted to be connected to a source of electrical power so as to effect electrical energization of selected circuit elements of said semiconductor device in response to actuation of a pushbutton member.
14. A system in accordance with claim 13 wherein means are provided for generating an indication of the electrical function represented by actuation of a pushbutton member.
15. A system in accordance with claim 13 wherein said support member for said conductive paths comprises a relatively rigid layer of insulation material, and said terminal pads include enlarged contact portions defined by integral extensions of said conductive path, said semiconductor device is supported on said rigid layer of insulation material adjacent said terminal pads, and said means for generating an electrical function are supported on said rigid layer of insulation material.
16. A pushbutton keyboard system adapted to generate electrical information in response to actuation thereof comprising a support member having a generally planar surface at which a plurality of conductive paths are arranged in a preselected pattern and adapted to transmit electrical information in response to energization thereof, a generally planar sheet of conductive material disposed in spaced, facing relationship with said pattern of conductive paths, said sheet of conductive material including a plurality of contact areas adapted to be selectively electrically coupled to portions of said conductive paths for effecting energization thereof, a plurality of selectively actuatable conductive elements disposed in electrical contact with said contact areas and in selective disengagement with said portions of said conductive paths, said conductive elements being adapted to be individually deflected into a position of engagement with said portions of said conductive paths in response to the application of a preselected deflecting force thereto, thereby effecting an instantaneous bridging electrical contact between said conductive sheet and one of said conductive paths, and means for applying the preselected deflecting force to said conductive elements including a plurality of pushbutton members adapted to be manually actuated to apply the preselected deflecting force to said conductive elements to effect deflection thereof into said position of engagement with said conductive paths, each of said pushbutton members including a force applying surface adjacent an associated conductive element and an exposed surface adapted to be symbolized in a manner indicative of the electrical information to be transmitted by the establishment of electrical contact between said conductive layer and said portion of said conductive path.
17. A system in accordance with claim 16 wherein said conductive elements are each of a generally circular configuration having a convex surface of curvature in facing engagement with the force applying surface of said pushbutton memBer, said convex surface being adapted to be deflected into a concave configuration in response to the application of the preselected force by said force applying surface, thereby establishing the bridging electrical contact between said conductive layer and one of said conductive paths.
18. A system in accordance with claim 16 wherein said conductive element is adapted to be deflected a maximum distance in response to the application of minimum preselected deflecting force.
19. A system in accordance with claim 17 wherein means are provided for supportingly carrying said conductive elements in a manner permitting snap-action deflection of said convex surface into a concave surface while precluding lateral movement of said conductive elements to maintain alignment between said conductive elements and said portions of said conductive paths.
20. A system in accordance with claim 19 wherein said means for supportingly carrying said conductive elements comprises a sheet of insulation material having a plurality of apertures for accommodating said conductive elements and the rims of said conductive elements are maintained in generally sealed relationship with the walls of said apertures to permit deflection of said conductive elements through said apertures in response to actuation by said pushbutton members.
21. A system in accordance with claim 20 wherein said conductive sheet is disposed between said sheet of insulation material carrying said conductive elements and said generally planar surface of said support member, said conductive sheet having a plurality of apertures in axial registration with said apertures in said sheet of insulation material, said apertures in said conductive sheet being of a smaller diameter than said apertures in said sheet of insulation material to define annular contact areas circumscribing said apertures in said sheet of conductive material, said annular contact areas being in engagement with said conductive elements and adapted to permit deflection of the central portion of the conductive elements through said apertures while restraining peripheral movement of said conductive elements.
22. A system in accordance with claim 21 wherein a spacer sheet of insulation material is provided intermediate said conductive sheet and said pattern of conductive paths at said generally planar surface of said support member, said spacer sheet having a plurality of apertures in axial registration with said apertures in said sheet of conductive material and exposing said portions of said conductive paths, said apertures in said spacer sheet being of a diameter equal to or less than the diameter of said apertures in said conductive sheet to maintain said conductive layer electrically insulated from said conductive paths until deflection of said conductive elements is effected to establish the bridging electrical contact between said annular contact areas of said conductive layer and said exposed conductive paths through said apertures in said spacer sheet.
23. A system in accordance with claim 22 wherein said generally conductive elements each include a dimpled protrusion extending toward said conductive paths, said protrusions being of a size less than the size of said apertures in said spacer sheet and being adapted to pass through said apertures in response to deflection of said conductive elements so as to facilitate the establishment of electrical contact with said conductive paths.
24. A system in accordance with claim 23 wherein said support member comprises a sheet of epoxy bonded glass cloth, said conductive paths comprise gold-plated copper, said spacer sheet comprises polyethylene terephthalate resin, said conductive sheet comprises gold-plated brass, said conductive elements comprise gold-plated type 302 stainless steel, said sheet of insulation for carrying said conductive elements comprises epoxy bonded glass cloth and said pushbutton key members comprise an elastomer.
25. A system in accordance with claim 24 wherein said gold-Plated copper conductive paths have a thickness of approximately 0.003 inches, said spacer sheet has a thickness of approximately 0.0045 inches, said gold-plated brass conductive sheet has a thickness of approximately 0.002 inches, said conductive elements have a thickness of approximately 0.004 inches, said sheet of epoxy bonded glass cloth has a thickness of approximately 0.015 inches, and said dimpled protrusion extends approximately 0.004 inches from the surface of said conductive element.
26. A system in accordance with claim 22 wherein a plurality of terminal members are provided at preselected locations adjacent one end of said support layer in electrical contact with said conductive paths, at least one semiconductor device is disposed adjacent said one end of said support layer having a plurality of circuit elements at a surface thereof electrically coupled to selected terminal members, said circuit elements being adapted to perform electrical functions in response to the establishment of electrical contact between said conductive sheet and one of said conductive paths upon deflection of a conductive element, thereby generating the electrical information.
27. A system in accordance with claim 26 wherein said conductive sheet is adapted to be electrically connected to a source of electrical power so as to selectively supply electrical power to said circuit elements upon the establishment of contact between said conductive sheet and said conductive paths through said conductive elements.
28. A system in accordance with claim 27 wherein means are provided supported by said support member electrically coupled to said semiconductor device for generating an indication of the electrical information generated by actuation of one of said pushbutton members.
29. In an electronic calculator; a pushbutton keyboard system adapted to enter electrical information in response to actuation, said keyboard system including a support member having a generally planar surface at which a plurality of conductive paths are arranged in a preselected pattern and adapted to transmit electrical information in response to energization thereof, a generally planar sheet of conductive material disposed in spaced, facing relationship with said pattern of conductive paths, said sheet of conductive material including a plurality of contact areas adapted to be selectively electrically coupled to portions of said conductive paths for effecting energization thereof, a plurality of selectively actuatable conductive elements disposed in electrical contact with said contact areas and in selective disengagement with said portions of said conductive paths, said conductive elements being adapted to be individually deflected into a position of engagement with said portions of said conductive paths in response to the application of a preselected deflecting force thereto, thereby effecting an instantaneous bridging electrical contact between said conductive sheet and one of said conductive paths, and means for applying the preselected deflecting force to said conductive elements including a plurality of pushbutton members adapted to be manually actuated to apply the preselected deflecting force to said conductive elements to effect deflection thereof into said position of engagement with said conductive paths, each of said pushbutton members including a force applying surface adjacent an associated conductive element and an exposed surface adapted to be symbolized in a manner indicative of the electrical information to be transmitted by the establishment of electrical contact between said conductive layer and said portion of said conductive path; at least one semiconductor device supported on said support member, said semiconductor device having a plurality of circuit elements at a surface thereof, electrically coupled to said conductive paths, said circuit elements being adapted to generate electrical signals in response to electrical information applied tHereto from said conductive paths upon the establishment of electrical contact between said conductive sheet and said conductive paths; and indicating means supported by said support member in communication with said semiconductor device for providing an indication of the electrical signals generated in response to information applied to said circuit elements.
30. A multiple switching system comprising in combination: a plurality of spaced actuating members selectively movable from a first to a second position; a plurality of contact elements respectively contiguous with said actuating members, each of said elements having a double curved outer surface with a selected area thereof being contiguous to a selected portion of said actuating members, said elements being selectively movable from a first to a second position in response to selective movement of said actuating members; a support member adjacent to but spaced from said elements and having a plurality of spaced contacts formed thereon respectively positioned adjacent to but spaced from said elements; an array of conductive areas respectively arranged intermediate said elements and said contacts; and means for holding said actuating members, said elements, said support member, and said conductive areas in relative position; whereby when said actuating members are selectively moved from their first to their second position, said respective element is moved from its first to its second position into contact with its respective spaced contact and electrically connects its respective conductive area to its respective spaced contact and when said actuating members are selectively moved from their second to their first position, said respective element automatically moves from its second to its first position out of contact with its respective spaced contact and electrically disconnects its respective conductive area from its respective spaced contact.
31. The multiple switching system of claim 30 wherein each of said contact elements have an over-center second position when a selected portion thereof is subjected to an axial force, said elements automatically returning to their first position when said axial force is removed.
32. The multiple switching system of claim 31 wherein each of said contact elements are segments of an oblique spheroid.
US51464A 1970-07-01 1970-07-01 Pushbutton keyboard switch assembly with improved over center diaphragm contact Expired - Lifetime US3684842A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US5146470A 1970-07-01 1970-07-01

Publications (1)

Publication Number Publication Date
US3684842A true US3684842A (en) 1972-08-15

Family

ID=21971457

Family Applications (1)

Application Number Title Priority Date Filing Date
US51464A Expired - Lifetime US3684842A (en) 1970-07-01 1970-07-01 Pushbutton keyboard switch assembly with improved over center diaphragm contact

Country Status (6)

Country Link
US (1) US3684842A (en)
JP (1) JPS598266Y2 (en)
AR (1) AR203369Q (en)
DE (1) DE2132329A1 (en)
FR (1) FR2103009A5 (en)
GB (1) GB1352076A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743798A (en) * 1971-09-13 1973-07-03 North American Rockwell Elongated spring coil conductors applying tension force to pushbutton actuators in keyboard matrix switch assembly
US3749859A (en) * 1972-04-19 1973-07-31 Colorado Instr Inc Keyboard switch assembly with improved hermetically sealed diaphragm contact structure
US3767875A (en) * 1972-06-19 1973-10-23 Texas Instruments Inc Diaphragm type pushbutton setting switch with fixed contact semiconductor substrate support
US3783205A (en) * 1971-10-27 1974-01-01 Texas Instruments Inc Keyboard switch matrix assembly with improved guide means for reducing transfer of bounding motion to movable conductor
US3806673A (en) * 1972-11-20 1974-04-23 Texas Instruments Inc Pushbutton keyboard switch assembly with improved disc spring contact and printed circuit structure
US3808384A (en) * 1971-06-01 1974-04-30 Texas Instruments Inc Pushbutton keyboard system
JPS49109160U (en) * 1973-01-11 1974-09-18
US3839785A (en) * 1971-06-01 1974-10-08 Texas Instruments Inc Pushbutton keyboard system
US3858202A (en) * 1971-06-01 1974-12-31 Texas Instruments Inc Pushbutton keyboard system
DE2507581A1 (en) * 1974-02-22 1975-08-28 Canon Kk Electronic equipment input device with dual-purpose keys - whereby first pressure on key effects different operation from second
US3908109A (en) * 1974-06-14 1975-09-23 Mohawk Data Sciences Corp Dome shaped switch member
US3916135A (en) * 1974-07-03 1975-10-28 Hewlett Packard Co Keyboard type switch with rocker type key actuator
US3947390A (en) * 1974-09-23 1976-03-30 Xerox Corporation Arch shaped snap-type switch contact
US3952174A (en) * 1974-11-29 1976-04-20 Texas Instruments Incorporated Pushbutton keyboard system
US3964594A (en) * 1972-12-01 1976-06-22 Ing. C. Olivetti & C., S.P.A. Keyboard of elastic material for office machines
US3971902A (en) * 1975-03-21 1976-07-27 Amp Incorporated Keyboard switch assembly having one piece plural pushbutton actuator and resilient mounting structure for plural cantilever beam contacts
US3973091A (en) * 1975-02-03 1976-08-03 Texas Instruments Incorporated Pushbutton keyboard assembly having pole and inner contacts simultaneously engaged by a bridging contact
US3995128A (en) * 1975-01-10 1976-11-30 Texas Instruments Incorporated Pushbutton keyboard system having preformed recessed support with contacts mounted on face and in recesses
US3995126A (en) * 1975-04-03 1976-11-30 Magic Dot, Inc. Membrane keyboard apparatus
US3996428A (en) * 1975-03-17 1976-12-07 Litronix, Inc. Pushbutton keyboard assembly with over center diaphragm contact
US3996427A (en) * 1975-01-10 1976-12-07 Texas Instruments Incorporated Pushbutton keyboard system and method of making same
US4005293A (en) * 1974-11-29 1977-01-25 Texas Instruments Incorporated Pushbutton keyboard switch assembly having individual concave-convex contacts integrally attached to conductor strips
US4005299A (en) * 1974-04-29 1977-01-25 Texas Instruments Incorporated Electrical contact member having low electrical resistance
US4021630A (en) * 1975-04-25 1977-05-03 Neomed Incorporated Hermetically sealed resilient contact switch having surgical applications
US4039068A (en) * 1972-12-14 1977-08-02 Ing. C. Olivetti & C., S.P.A. Keyboard of elastic material for office machines
DE2706463A1 (en) * 1976-02-20 1977-08-25 Alps Electric Co Ltd PUSH BUTTON SWITCHES FOR ELECTRIC CALCULATORS ETC.
US4046981A (en) * 1975-12-24 1977-09-06 Texas Instruments Incorporated Keyboard switch with printed wiring board structure and its method of manufacture
US4046982A (en) * 1974-05-22 1977-09-06 Rudolf Schadow, Gmbh Switch means for short-stroke push-button keys
USRE29440E (en) * 1973-01-02 1977-10-11 Bowmar Instrument Corporation Calculator keyboard switch with disc spring contact and printed circuit board
US4065650A (en) * 1976-09-21 1977-12-27 Lou Kwong Li Electronic calculator with switches in solid V- and U-shaped groups
US4086451A (en) * 1976-12-06 1978-04-25 Texas Instruments Incorporated Keyboard apparatus
US4125934A (en) * 1974-05-21 1978-11-21 Texas Instruments Incorporated Keyboard apparatus and method of making
DE2743360A1 (en) * 1977-09-27 1979-04-05 Bosch Gmbh Robert BUTTON SWITCH FOR PRODUCTION OR INTERRUPTION OF AN ELECTRICAL CONNECTION
US4237351A (en) * 1978-10-02 1980-12-02 Texas Instruments Incorporated Keyboard apparatus
US4314112A (en) * 1971-08-23 1982-02-02 Hewlett-Packard Company Keyboard having switches with tactile feedback
USRE30923E (en) * 1973-01-02 1982-05-04 Bowmar Instrument Corporation Calculator keyboard switch with disc spring contact and printed circuit board
US4681987A (en) * 1983-01-11 1987-07-21 Canon Kabushiki Kaisha Electronic equipment having a key input function
US4720610A (en) * 1986-12-19 1988-01-19 Amp Incorporated Membrane key switch with anti-inversion feature
US4794215A (en) * 1984-09-29 1988-12-27 Matsushita Electric Industrial Co., Ltd. Push switch sealed against contaminants
EP1528582A1 (en) * 2003-10-30 2005-05-04 Siemens Aktiengesellschaft Keypad
US20060028436A1 (en) * 1992-03-05 2006-02-09 Armstrong Brad A Image controller
US20060028435A1 (en) * 1995-02-23 2006-02-09 Armstrong Brad A Image controller
US20070152042A1 (en) * 2005-10-21 2007-07-05 Jon Mittler Protective cover for terminal keypad security switches
US20120008294A1 (en) * 2010-07-08 2012-01-12 Jahan Minoo Printed circuit boards with embedded components
US8879272B2 (en) 2009-03-09 2014-11-04 Apple Inc. Multi-part substrate assemblies for low profile portable electronic devices

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2196515B1 (en) * 1972-08-18 1977-09-16 Matsushita Electric Ind Co Ltd
DE7520309U (en) 1975-06-26 1978-10-19 Braun Ag, 6000 Frankfurt Switch with two switch positions
DE3011674C2 (en) * 1980-03-26 1984-07-26 Preh, Elektrofeinmechanische Werke Jakob Preh Nachf. Gmbh & Co, 8740 Bad Neustadt keyboard
DE3012717A1 (en) * 1980-04-01 1981-10-08 Wilhelm Ruf KG, 8000 München KEYPAD
US5438177A (en) * 1992-05-06 1995-08-01 Key Tronic Corporation Two-layer membrane switch
GB2346739B (en) 1999-02-12 2002-12-18 Nokia Mobile Phones Ltd Keypad structure
DE202009000260U1 (en) 2009-01-07 2009-05-28 Cerbe, Michael, Dipl.-Ing. input device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2262777A (en) * 1940-09-21 1941-11-18 John M Roper Quick acting positive contact switch
US3290439A (en) * 1963-04-29 1966-12-06 Willcox Data encoding keyboard
US3308253A (en) * 1965-03-25 1967-03-07 Ibm Diaphragm switch having a diaphragm supported on an incompressible layer and an elastomer overlaying the diaphragm
DE1806241A1 (en) * 1967-11-02 1969-08-14 Int Standard Electric Corp Pressure switch for telecommunication systems
US3472974A (en) * 1967-09-25 1969-10-14 Automatic Elect Lab Pushbutton switch activated by a slide with a plurality of toggle joints and cams
US3541515A (en) * 1968-04-01 1970-11-17 Rca Corp Single wire crosspoint switching circuit with external signaling
US3551616A (en) * 1969-01-15 1970-12-29 Ibm Multiple switch encoding device
US3600528A (en) * 1969-09-25 1971-08-17 Lematex Corp Multiple switch construction

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2262777A (en) * 1940-09-21 1941-11-18 John M Roper Quick acting positive contact switch
US3290439A (en) * 1963-04-29 1966-12-06 Willcox Data encoding keyboard
US3308253A (en) * 1965-03-25 1967-03-07 Ibm Diaphragm switch having a diaphragm supported on an incompressible layer and an elastomer overlaying the diaphragm
US3472974A (en) * 1967-09-25 1969-10-14 Automatic Elect Lab Pushbutton switch activated by a slide with a plurality of toggle joints and cams
DE1806241A1 (en) * 1967-11-02 1969-08-14 Int Standard Electric Corp Pressure switch for telecommunication systems
US3541515A (en) * 1968-04-01 1970-11-17 Rca Corp Single wire crosspoint switching circuit with external signaling
US3551616A (en) * 1969-01-15 1970-12-29 Ibm Multiple switch encoding device
US3600528A (en) * 1969-09-25 1971-08-17 Lematex Corp Multiple switch construction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IBM Technical Disclosure Bulletin, R. H. Harris et al., Switch, Dec. 1969, Vol. 12, No. 7, p. 1130 *

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3808384A (en) * 1971-06-01 1974-04-30 Texas Instruments Inc Pushbutton keyboard system
US3839785A (en) * 1971-06-01 1974-10-08 Texas Instruments Inc Pushbutton keyboard system
US3858202A (en) * 1971-06-01 1974-12-31 Texas Instruments Inc Pushbutton keyboard system
US4314112A (en) * 1971-08-23 1982-02-02 Hewlett-Packard Company Keyboard having switches with tactile feedback
US3743798A (en) * 1971-09-13 1973-07-03 North American Rockwell Elongated spring coil conductors applying tension force to pushbutton actuators in keyboard matrix switch assembly
US3783205A (en) * 1971-10-27 1974-01-01 Texas Instruments Inc Keyboard switch matrix assembly with improved guide means for reducing transfer of bounding motion to movable conductor
US3749859A (en) * 1972-04-19 1973-07-31 Colorado Instr Inc Keyboard switch assembly with improved hermetically sealed diaphragm contact structure
US3767875A (en) * 1972-06-19 1973-10-23 Texas Instruments Inc Diaphragm type pushbutton setting switch with fixed contact semiconductor substrate support
US3806673A (en) * 1972-11-20 1974-04-23 Texas Instruments Inc Pushbutton keyboard switch assembly with improved disc spring contact and printed circuit structure
US3964594A (en) * 1972-12-01 1976-06-22 Ing. C. Olivetti & C., S.P.A. Keyboard of elastic material for office machines
US4039068A (en) * 1972-12-14 1977-08-02 Ing. C. Olivetti & C., S.P.A. Keyboard of elastic material for office machines
USRE30923E (en) * 1973-01-02 1982-05-04 Bowmar Instrument Corporation Calculator keyboard switch with disc spring contact and printed circuit board
USRE29440E (en) * 1973-01-02 1977-10-11 Bowmar Instrument Corporation Calculator keyboard switch with disc spring contact and printed circuit board
JPS49109160U (en) * 1973-01-11 1974-09-18
DE2507581A1 (en) * 1974-02-22 1975-08-28 Canon Kk Electronic equipment input device with dual-purpose keys - whereby first pressure on key effects different operation from second
US4005299A (en) * 1974-04-29 1977-01-25 Texas Instruments Incorporated Electrical contact member having low electrical resistance
US4125934A (en) * 1974-05-21 1978-11-21 Texas Instruments Incorporated Keyboard apparatus and method of making
US4046982A (en) * 1974-05-22 1977-09-06 Rudolf Schadow, Gmbh Switch means for short-stroke push-button keys
US3908109A (en) * 1974-06-14 1975-09-23 Mohawk Data Sciences Corp Dome shaped switch member
US3916135A (en) * 1974-07-03 1975-10-28 Hewlett Packard Co Keyboard type switch with rocker type key actuator
US3947390A (en) * 1974-09-23 1976-03-30 Xerox Corporation Arch shaped snap-type switch contact
US3952174A (en) * 1974-11-29 1976-04-20 Texas Instruments Incorporated Pushbutton keyboard system
US4005293A (en) * 1974-11-29 1977-01-25 Texas Instruments Incorporated Pushbutton keyboard switch assembly having individual concave-convex contacts integrally attached to conductor strips
US3996427A (en) * 1975-01-10 1976-12-07 Texas Instruments Incorporated Pushbutton keyboard system and method of making same
US3995128A (en) * 1975-01-10 1976-11-30 Texas Instruments Incorporated Pushbutton keyboard system having preformed recessed support with contacts mounted on face and in recesses
US4068369A (en) * 1975-01-10 1978-01-17 Texas Instruments Incorporated Method of making pushbutton keyboard system
US3973091A (en) * 1975-02-03 1976-08-03 Texas Instruments Incorporated Pushbutton keyboard assembly having pole and inner contacts simultaneously engaged by a bridging contact
US3996428A (en) * 1975-03-17 1976-12-07 Litronix, Inc. Pushbutton keyboard assembly with over center diaphragm contact
US3971902A (en) * 1975-03-21 1976-07-27 Amp Incorporated Keyboard switch assembly having one piece plural pushbutton actuator and resilient mounting structure for plural cantilever beam contacts
US3995126A (en) * 1975-04-03 1976-11-30 Magic Dot, Inc. Membrane keyboard apparatus
US4021630A (en) * 1975-04-25 1977-05-03 Neomed Incorporated Hermetically sealed resilient contact switch having surgical applications
US4046981A (en) * 1975-12-24 1977-09-06 Texas Instruments Incorporated Keyboard switch with printed wiring board structure and its method of manufacture
DE2706463A1 (en) * 1976-02-20 1977-08-25 Alps Electric Co Ltd PUSH BUTTON SWITCHES FOR ELECTRIC CALCULATORS ETC.
US4065650A (en) * 1976-09-21 1977-12-27 Lou Kwong Li Electronic calculator with switches in solid V- and U-shaped groups
US4086451A (en) * 1976-12-06 1978-04-25 Texas Instruments Incorporated Keyboard apparatus
DE2743360A1 (en) * 1977-09-27 1979-04-05 Bosch Gmbh Robert BUTTON SWITCH FOR PRODUCTION OR INTERRUPTION OF AN ELECTRICAL CONNECTION
US4237351A (en) * 1978-10-02 1980-12-02 Texas Instruments Incorporated Keyboard apparatus
US4681987A (en) * 1983-01-11 1987-07-21 Canon Kabushiki Kaisha Electronic equipment having a key input function
US4794215A (en) * 1984-09-29 1988-12-27 Matsushita Electric Industrial Co., Ltd. Push switch sealed against contaminants
US4720610A (en) * 1986-12-19 1988-01-19 Amp Incorporated Membrane key switch with anti-inversion feature
US20060028437A1 (en) * 1992-03-05 2006-02-09 Armstrong Brad A Image controller
US20060028436A1 (en) * 1992-03-05 2006-02-09 Armstrong Brad A Image controller
US7345670B2 (en) 1992-03-05 2008-03-18 Anascape Image controller
US9081426B2 (en) 1992-03-05 2015-07-14 Anascape, Ltd. Image controller
US20060028435A1 (en) * 1995-02-23 2006-02-09 Armstrong Brad A Image controller
US8674932B2 (en) 1996-07-05 2014-03-18 Anascape, Ltd. Image controller
EP1528582A1 (en) * 2003-10-30 2005-05-04 Siemens Aktiengesellschaft Keypad
US20070152042A1 (en) * 2005-10-21 2007-07-05 Jon Mittler Protective cover for terminal keypad security switches
US7832628B2 (en) * 2005-10-21 2010-11-16 Verifone, Inc. Protective cover for terminal keypad security switches
US8879272B2 (en) 2009-03-09 2014-11-04 Apple Inc. Multi-part substrate assemblies for low profile portable electronic devices
US20120008294A1 (en) * 2010-07-08 2012-01-12 Jahan Minoo Printed circuit boards with embedded components
US8339798B2 (en) * 2010-07-08 2012-12-25 Apple Inc. Printed circuit boards with embedded components
US8804363B2 (en) 2010-07-08 2014-08-12 Apple Inc. Printed circuit boards with embedded components

Also Published As

Publication number Publication date
DE2132329B2 (en) 1973-12-06
DE2132329A1 (en) 1972-01-05
GB1352076A (en) 1974-05-15
JPS5612230U (en) 1981-02-02
FR2103009A5 (en) 1972-04-07
AR203369Q (en) 1975-09-08
JPS598266Y2 (en) 1984-03-14

Similar Documents

Publication Publication Date Title
US3684842A (en) Pushbutton keyboard switch assembly with improved over center diaphragm contact
US3996427A (en) Pushbutton keyboard system and method of making same
US3806673A (en) Pushbutton keyboard switch assembly with improved disc spring contact and printed circuit structure
US3973091A (en) Pushbutton keyboard assembly having pole and inner contacts simultaneously engaged by a bridging contact
US4005293A (en) Pushbutton keyboard switch assembly having individual concave-convex contacts integrally attached to conductor strips
US4035593A (en) Flexible pressure sensitive switch actuator module adaptable to a keyboard surface having fixed contact array
US4771139A (en) Keyboard with metal cover and improved switches
US3796843A (en) Calculator keyboard switch with disc spring contact and printed circuit board
US3643041A (en) Pushbutton diaphragm switch with improved dimple actuator and/or capacitance-type switch contact structure
US4086451A (en) Keyboard apparatus
US4194097A (en) Membrane keyboard apparatus with tactile feedback
US3699294A (en) Keyboard, digital coding, switch for digital logic, and low power detector switches
US4127752A (en) Tactile touch switch panel
US4862499A (en) Deformable membrane keypad assembly for public telephones
US3952174A (en) Pushbutton keyboard system
US4164634A (en) Keyboard switch assembly with multiple isolated electrical engagement regions
US3808384A (en) Pushbutton keyboard system
US3590195A (en) Oilcan pushbutton switch
GB2068841A (en) Tactile element and keyboard including the tactile element
US3627927A (en) Monolithic keyboard and method for making same
US3928741A (en) Momentary contact single pole switch
GB2046996A (en) Electrical switch
US4163125A (en) Pushbutton keyboard system
US4354068A (en) Long travel elastomer keyboard
US4796007A (en) Micro-motion keyboard