US3683736A - Ultrasonic perforating of a sheet of film, paper or the like - Google Patents

Ultrasonic perforating of a sheet of film, paper or the like Download PDF

Info

Publication number
US3683736A
US3683736A US100993A US3683736DA US3683736A US 3683736 A US3683736 A US 3683736A US 100993 A US100993 A US 100993A US 3683736D A US3683736D A US 3683736DA US 3683736 A US3683736 A US 3683736A
Authority
US
United States
Prior art keywords
punch
sheet
anvil
punches
horn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US100993A
Inventor
Guenter H Loose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3683736A publication Critical patent/US3683736A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8351Jaws mounted on rollers, cylinders, drums, bands, belts or chains; Flying jaws
    • B29C66/83511Jaws mounted on rollers, cylinders, drums, bands, belts or chains; Flying jaws jaws mounted on rollers, cylinders or drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • B29C65/083Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations using a rotary sonotrode or a rotary anvil
    • B29C65/086Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations using a rotary sonotrode or a rotary anvil using a rotary anvil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • B29C65/083Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations using a rotary sonotrode or a rotary anvil
    • B29C65/087Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations using a rotary sonotrode or a rotary anvil using both a rotary sonotrode and a rotary anvil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/74Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area
    • B29C65/743Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area using the same tool for both joining and severing, said tool being monobloc or formed by several parts mounted together and forming a monobloc
    • B29C65/7443Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area using the same tool for both joining and severing, said tool being monobloc or formed by several parts mounted together and forming a monobloc by means of ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/74Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area
    • B29C65/749Removing scrap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81421General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave
    • B29C66/81423General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave being concave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81427General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth
    • B29C66/81429General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth comprising a single tooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81431General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single cavity, e.g. a groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/816General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8161General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps said pressing elements being supported or backed-up by springs or by resilient material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/822Transmission mechanisms
    • B29C66/8226Cam mechanisms; Wedges; Eccentric mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • B29C66/83415Roller, cylinder or drum types the contact angle between said rollers, cylinders or drums and said parts to be joined being a non-zero angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9513Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration frequency values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0045Perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81415General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being bevelled
    • B29C66/81419General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being bevelled and flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9517Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration amplitude values or ranges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0405With preparatory or simultaneous ancillary treatment of work
    • Y10T83/041By heating or cooling
    • Y10T83/0414At localized area [e.g., line of separation]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0524Plural cutting steps
    • Y10T83/0577Repetitive blanking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/283With means to control or modify temperature of apparatus or work
    • Y10T83/293Of tool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/465Cutting motion of tool has component in direction of moving work
    • Y10T83/4766Orbital motion of cutting blade
    • Y10T83/4795Rotary tool
    • Y10T83/4812Compound movement of tool during tool cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/869Means to drive or to guide tool
    • Y10T83/8752Tool moves work to and against cooperating tool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/97Miscellaneous

Definitions

  • ABSTRACT A hole is punched through a sheet of photographic film or paper by positioning the sheet with one side in contact with a punch, and applying an ultrasonically vibrating'hom to the opposite side to force the punch through the sheet.
  • a long web of such material can be passed continuously past a horn while a series of punches are successively brought into register with the horn to pierce a series of spaced holes.
  • Such a series of punches can be carried by a rotating cylindrical anvil over which the web is passing. Cores from the holes are sucked away from the operation, any cores remaining within punches first being expelled by fingers within the punches.
  • the punches can move back and forth radially .of the cylindlrical anvil.
  • a recess in the horn is adapted to receive the protruding ends of punches. 1
  • PATENTEDAU 1 s 1912 SHEET 2 0F 2 Fla 4 A TTOR/VFYS '1 ULTRASONIC PERFORATING OF A SHEET OF FILM, PAPER OR THE LIKE BACKGROUND OF THE INVENTION 1.
  • the present invention relates to a novel method of and apparatus for perforating'a sheet of material such as photographic film or paper, or similar material.
  • the disadvantages discussed above have been overcome by positioning a sheet of film or paper with one side thereof in contact with a punch, and then applying an ultrasonically vibrating horn to the opposite side of the sheet to force the punch through the sheet.
  • the horn vibrates at between about 20 and about 40 KHz or more, and consequently not only exerts a mechanical force against the film but also beats it locally so as to soften the material and reduce energy requirements, while also reducing the possibility of dust being formed.
  • FIG. I is a vertical sectional view, partly in side elevation, showing an arrangement of apparatus for ultrasonically perforating a single hole in a sheet of material;
  • FIG. 2 is a vertical sectional view, parts being in side elevation, schematically showing apparatus for repetitively ultrasonically perforating a series of accurately spaced holes through a continuously moving web of material;
  • FIG. 3 is a sectional view taken along the line 3-3 in 7 embodiment of the apparatus for perforating a continuously moving web.
  • FIG. 1 there is shown an anvil 11 of a dense rigid material such as steel or other metal, having a hollow punch 13 mounted within a bore therein and protruding above the top surface of the anvil by a distance equal to, or slightly greater than, the thickness of web 15, to be perforated.
  • An ultrasonic horn 17 is positioned with its bottom surface adjacent the top side of web 15, so that when horn 17 is vibrated rapidly up and down by an ultrasonic transducer of a type which is well known, the horn forces web 15 down over punch 13 while at the same time beating the web, thus forming a hole therein.
  • Ultrasonic transducers and horns suitable for carrying out this operation are well known and have been described in numerous patents such as US. Pat. No. 3,495,104 and 3,022,814.
  • transducers vibrate at a frequency of up to KHz, eg. 20 or 40 KHz, and may have an amplitude of between 0.001 and 0.005 inch, more or less.
  • the transducer generally is carried by a suitable support (not shown) which permits the horn 17 to float rather than being rigidly mounted, thereby permitting the horn to drop down slightly as web 15 is forced over punch 13.
  • a rigidly mounted transducer the excursion of the end of horn 17 can be relied upon to perforate the web.
  • Punch 13 can have any desired shape so that its open end will punch holes of circular, rectangular or other shape, as desired.
  • anvil 21 is cylindrical in shape and is mounted for continuous rotation adjacent the end of horn 23, to carry along web 25 of photographic film or paper continuously across the horn.
  • the cylinder 21 carries a series of equally spaced radially extending punches 27 which are successively brought into register with horn 23 as the cylinder rotates. At the same time, each punch 27 is moved radially outwardly from an initial'position with its end level or flush with the surface of cylinder 21, so that as it passes across the horn it projects sufficiently to penetrate through the thickness of web 25. Upon further movement of cylinder 21, each punch 27 in turn is moved still further outwardly so as to assure complete penetration through the web; after which each punch in turn then moves radially inwardly and is retracted to its initial position.
  • punches 27 The movement of punches 27 radially is accomplished by positioning their inner ends in contact with an eccentric stationary cam 29 which is mounted within cylinder 21.
  • Each punch is held in retracted position by a coil spring 31 which bears at its outer end against the inner periphery of an outer flange 32 of cylinder 21, and bears at its inner end against an abutment such as a flange 33 carried by the punch.
  • Each coil spring 31 is located in a space between outer flange 32 and an inner flange 34.
  • each punch is provided with a stationary finger 37 which is mounted within cylinder 21 and projects therefrom through a longitudinal slot 39 in the punch.
  • the finger 37 expels the core from the inside of the punch.
  • the cores are all removed from the vicinity by suction device 43, 43, or by an air jet. Also sprockets or springs which enter the holes can be employed;
  • the end surface of horn 23 has about the same curvature as cylinder 21, is rounded or chamfered at its edges to prevent damage to the web, and is provided with a shallow groove 45 providing space for receiving the end of each punch 27 after it penetrates the web and projects slightly therethrough.
  • the cylindrical anvil 21 is secured by spokes 47 to a shaft 49 which is rotated by a motor M to bring each of the punches 27 successively into register with horn 23, which is carried by a transducer 51 of a well known type.
  • the eccentric cam (not shown) is carried on a stationary shaft 55 supported by a stationary tripod 57 on the opposite side of cylinder 21 from motor M.
  • the ultrasonic horn 23' is cylindrical in shape and is mounted for rotation concurrently with rotation of anvil 21 by mechanism such as that shown in US. Pat. No. 3,201,864 to J.B. Jones et al, for Method and Apparatus for Ultrasonic Welding.
  • Both horns 23 and 23 are spaced sufiiciently from cylindrical anvil 21 to permit entry of the web to be perforated.
  • penetration can be just short of complete (say 95 percent through the web), and the subsequent outward movement of the punches completes the penetration.
  • a method for punching a hole through a sheet of material comprising positioning said sheet with one side thereof in contact with a punch, and
  • an apparatus for punching a hole through a sheet of material comprising: an anvil, a punch protrudable from said anvil and in engagement with one side of the sheet, and an ultrasonic horn for engaging the other side of the sheet and positioned adjacent said punch in axial alignment therewith and adapted to be spaced from said anvil a distance at least equal to the thickness of the sheet to be punched.
  • Apparatus in accordance with claim 4 wherein said anvil is cylindrical in shape and is mounted for rotation past the end of said horn to carry said sheet in the form of a long narrow web continuously into and out of punching relationship with said horn, and wherein a plurality of punches are carried by said anvil and successively pass into and out of register with said horn; said apparatus also comprising mechanism for rotating said anvil.
  • Apparatus in accordance with claim 6, also comprising means for removing the core formed by each punch from the vicinity of said web.
  • each of said punches having an inner end riding on the surface of said cam.
  • said cylindrical anvil has an annular recess extending laterally in from one side thereof, forming spaced inner and outer cylindrical flanges; wherein said punches extend through said inner and outer flanges and across said recess; and wherein said mechanism for moving each punch comprises a spring within said recess urging said punch resiliently inwardly, and a stationary cam mounted internally of said cylindrical anvil, each of said punches having an inner end riding on said cam.

Abstract

A hole is punched through a sheet of photographic film or paper by positioning the sheet with one side in contact with a punch, and applying an ultrasonically vibrating horn to the opposite side to force the punch through the sheet. A long web of such material can be passed continuously past a horn while a series of punches are successively brought into register with the horn to pierce a series of spaced holes. Such a series of punches can be carried by a rotating cylindrical anvil over which the web is passing. Cores from the holes are sucked away from the operation, any cores remaining within punches first being expelled by fingers within the punches. The punches can move back and forth radially of the cylindrical anvil. A recess in the horn is adapted to receive the protruding ends of punches.

Description

United States Patent Loose [54] ULTRASONIC PERFORATING OF A SHEET OF FILM, PAPER OR THE LIKE [72] Inventor: Guenter H. Loose, 1669 Lake Ave.,
Rochester, NY. 14650 [22] Filed: Dec. 23, 1970 [21] Appl. No.: 100,993
[52] US. Cl. ..83/16, 83/50, 83/171, 83/337, 83/566, 83/701, 264/25 [51] Int. Cl. ..B26f l/08 [58] Field of Search ..83/15, 16, 50, 55,170,171, 83/337, 338, 13, 701, 116, 123, 566-570;
[451 Aug. 15,1972
Primary Examiner-James M. Meister Attorney-Walter O. l-lodsdon and Henry M. Chapin 57] ABSTRACT A hole is punched through a sheet of photographic film or paper by positioning the sheet with one side in contact with a punch, and applying an ultrasonically vibrating'hom to the opposite side to force the punch through the sheet. A long web of such material can be passed continuously past a horn while a series of punches are successively brought into register with the horn to pierce a series of spaced holes. Such a series of punches can be carried by a rotating cylindrical anvil over which the web is passing. Cores from the holes are sucked away from the operation, any cores remaining within punches first being expelled by fingers within the punches. The punches can move back and forth radially .of the cylindlrical anvil. A recess in the horn is adapted to receive the protruding ends of punches. 1
12 Claims, 6 Drawing Figures PATENTEDMIB 1 5 1912 3. 83; 736
SHEET 1 BF 2 GUENTER H. LOOSE IVE TOR.
PATENTEDAU: 1 s 1912 SHEET 2 0F 2 Fla 4 A TTOR/VFYS '1 ULTRASONIC PERFORATING OF A SHEET OF FILM, PAPER OR THE LIKE BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method of and apparatus for perforating'a sheet of material such as photographic film or paper, or similar material.
2. The Prior Art In the past webs of such material have been perforated along one or both edges by the intermittent operation of a punch and die set, with periodic indexing of the web. Other methods for perforation have involved laser beams and electrical discharge means. The most commonly used are punch and die combinations because of the great accuracy that can be obtained. However, the speed of operation is lower than desirable, intermittent movement of the film rather than continuous movement is required, a substantial quantity of undesirable dust is created, and separation of coated layers from one another may occur adjacent each hole when punching photographic film or paper.
SUMMARY OF THE INVENTION In accordance with the present invention the disadvantages discussed above have been overcome by positioning a sheet of film or paper with one side thereof in contact with a punch, and then applying an ultrasonically vibrating horn to the opposite side of the sheet to force the punch through the sheet. The horn vibrates at between about 20 and about 40 KHz or more, and consequently not only exerts a mechanical force against the film but also beats it locally so as to soften the material and reduce energy requirements, while also reducing the possibility of dust being formed. The procedural steps just described apply to the perforation of a stationary web as well as to the repetitive perforation of a continuously moving web which is passing across the ultrasonic horn while a series of accurately spaced punches are successively brought into contact with the opposite side of the web.
THE DRAWINGS The principles of the invention will become apparent from the following description, having reference to the accompanying drawings wherein:
FIG. I is a vertical sectional view, partly in side elevation, showing an arrangement of apparatus for ultrasonically perforating a single hole in a sheet of material;
FIG. 2 is a vertical sectional view, parts being in side elevation, schematically showing apparatus for repetitively ultrasonically perforating a series of accurately spaced holes through a continuously moving web of material;
FIG. 3 is a sectional view taken along the line 3-3 in 7 embodiment of the apparatus for perforating a continuously moving web.
THE SPECIFIC EMBODIMENTS Referring to FIG. 1 there is shown an anvil 11 of a dense rigid material such as steel or other metal, having a hollow punch 13 mounted within a bore therein and protruding above the top surface of the anvil by a distance equal to, or slightly greater than, the thickness of web 15, to be perforated. An ultrasonic horn 17 is positioned with its bottom surface adjacent the top side of web 15, so that when horn 17 is vibrated rapidly up and down by an ultrasonic transducer of a type which is well known, the horn forces web 15 down over punch 13 while at the same time beating the web, thus forming a hole therein.
Ultrasonic transducers and horns suitable for carrying out this operation are well known and have been described in numerous patents such as US. Pat. No. 3,495,104 and 3,022,814.
Generally, such transducers vibrate at a frequency of up to KHz, eg. 20 or 40 KHz, and may have an amplitude of between 0.001 and 0.005 inch, more or less. The transducer generally is carried by a suitable support (not shown) which permits the horn 17 to float rather than being rigidly mounted, thereby permitting the horn to drop down slightly as web 15 is forced over punch 13. However, even with a rigidly mounted transducer, the excursion of the end of horn 17 can be relied upon to perforate the web.
Punch 13 can have any desired shape so that its open end will punch holes of circular, rectangular or other shape, as desired.
When employing the principles described above for perforating by effecting relative movement between a horn and a long web, such as a web of photographic film or paper, rapid and continuous operation is desired. This can be secured with the apparatus shown in FIG. 2 wherein an anvil 21 is cylindrical in shape and is mounted for continuous rotation adjacent the end of horn 23, to carry along web 25 of photographic film or paper continuously across the horn.
The cylinder 21 carries a series of equally spaced radially extending punches 27 which are successively brought into register with horn 23 as the cylinder rotates. At the same time, each punch 27 is moved radially outwardly from an initial'position with its end level or flush with the surface of cylinder 21, so that as it passes across the horn it projects sufficiently to penetrate through the thickness of web 25. Upon further movement of cylinder 21, each punch 27 in turn is moved still further outwardly so as to assure complete penetration through the web; after which each punch in turn then moves radially inwardly and is retracted to its initial position.
The movement of punches 27 radially is accomplished by positioning their inner ends in contact with an eccentric stationary cam 29 which is mounted within cylinder 21. Each punch is held in retracted position by a coil spring 31 which bears at its outer end against the inner periphery of an outer flange 32 of cylinder 21, and bears at its inner end against an abutment such as a flange 33 carried by the punch. Each coil spring 31 is located in a space between outer flange 32 and an inner flange 34.
In order to assure that the core or chip of material formed by each hollow punch is always removed from the area of operation, each punch, as shown in FIG. 3, is provided with a stationary finger 37 which is mounted within cylinder 21 and projects therefrom through a longitudinal slot 39 in the punch. With this construction, when the punch 27 moves outwardly, the horn 23 causes perforation of the web to occur, and a core of the web material sometimes may remain within the punch. Subsequently, when the punch moves radially inwardly, the finger 37 expels the core from the inside of the punch. The cores (both those which separated freely from the punches, and those expelled by fingers 37) are all removed from the vicinity by suction device 43, 43, or by an air jet. Also sprockets or springs which enter the holes can be employed;
Referring to FIGS. 2 and 4, the end surface of horn 23 has about the same curvature as cylinder 21, is rounded or chamfered at its edges to prevent damage to the web, and is provided with a shallow groove 45 providing space for receiving the end of each punch 27 after it penetrates the web and projects slightly therethrough.
Now referring to FIG. 5, the cylindrical anvil 21 is secured by spokes 47 to a shaft 49 which is rotated by a motor M to bring each of the punches 27 successively into register with horn 23, which is carried by a transducer 51 of a well known type. The eccentric cam (not shown) is carried on a stationary shaft 55 supported by a stationary tripod 57 on the opposite side of cylinder 21 from motor M.
In the modification shown in FIG. 6, the ultrasonic horn 23' is cylindrical in shape and is mounted for rotation concurrently with rotation of anvil 21 by mechanism such as that shown in US. Pat. No. 3,201,864 to J.B. Jones et al, for Method and Apparatus for Ultrasonic Welding.
Both horns 23 and 23 are spaced sufiiciently from cylindrical anvil 21 to permit entry of the web to be perforated.
Instead of fully penetrating the web with each punch, penetration can be just short of complete (say 95 percent through the web), and the subsequent outward movement of the punches completes the penetration.
The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
I claim:
1. A method for punching a hole through a sheet of material, comprising positioning said sheet with one side thereof in contact with a punch, and
applying an ultrasonically vibrating horn to the opposite side of said sheet to force said sheet onto said punch which punches a hole through said sheet.
2. A method in accordance with claim 1, wherein said sheet is of a thermoplastic material, and wherein the vibrations of said ultrasonically vibrating horn heat and soften said material.
3. A method in accordance with claim 1 wherein said punch forms said hole by shaping a removable core, and wherein said core is removed from the vicinity of sai heet.
ln an apparatus for punching a hole through a sheet of material, the combination comprising: an anvil, a punch protrudable from said anvil and in engagement with one side of the sheet, and an ultrasonic horn for engaging the other side of the sheet and positioned adjacent said punch in axial alignment therewith and adapted to be spaced from said anvil a distance at least equal to the thickness of the sheet to be punched.
5. Apparatus in accordance with claim 4 wherein said punch is hollow.
6. Apparatus in accordance with claim 4 wherein said anvil is cylindrical in shape and is mounted for rotation past the end of said horn to carry said sheet in the form of a long narrow web continuously into and out of punching relationship with said horn, and wherein a plurality of punches are carried by said anvil and successively pass into and out of register with said horn; said apparatus also comprising mechanism for rotating said anvil.
7. Apparatus in accordance with claim 6, wherein said punches are movable back and forth radially of said cylindrical anvil, and wherein said apparatus also comprises mechanism for moving each punch outwardly to protrude from the surface of said anvil during passage of said punch in register with said anvil, and for subsequently moving said punch inwardly.
8. Apparatus in accordance with claim 6 wherein said horn has a groove therein adapted to register with and to receive the protruding portion of each punch for clearing the core formed by each punch from said web.
9. Apparatus in accordance with claim 6, also comprising means for removing the core formed by each punch from the vicinity of said web.
10. Apparatus in accordance with claim 7 wherein said mechanism for moving each punch comprises spring means urging each punch inwardly; and
a stationary cam mounted internally of said cylindrical anvil, each of said punches having an inner end riding on the surface of said cam.
11. Apparatus in accordance with claim 7 wherein said punches are hollow, said apparatus also comprising a stationary finger within each punch acting to expel a core therefrom upon movement of said punch inwardly.
12. Apparatus in accordance with claim 7 wherein said cylindrical anvil has an annular recess extending laterally in from one side thereof, forming spaced inner and outer cylindrical flanges; wherein said punches extend through said inner and outer flanges and across said recess; and wherein said mechanism for moving each punch comprises a spring within said recess urging said punch resiliently inwardly, and a stationary cam mounted internally of said cylindrical anvil, each of said punches having an inner end riding on said cam.

Claims (12)

1. A method for punching a hole through a sheet of material, comprising positioning said sheet with one side thereof in contact with a punch, and applying an ultrasonically vibrating horn to the opposite side of said sheet to force said sheet onto said punch which punches a hole through said sheet.
2. A method in accordance with claim 1, wherein said sheet is of a thermoplastic material, and wherein the vibrations of said ultrasonically vibrating horn heat and soften said material.
3. A method in accordance with claim 1 wherein said punch forms said hole by shaping a removable core, and wherein said core is removed from the vicinity of said sheet.
4. In an apparatus for punching a hole through a sheet of material, the combination comprising: an anvil, a punch protrudable from said anvil and in engagement with one side of the sheet, and an ultrasonic horn for engaging the other side of the sheet and positioned adjacent said punch in axial alignment therewith and adapted to be spaced from said anvil a distance at least equal to the thickness of the sheet to be punched.
5. Apparatus in accordance with claim 4 wherein said punch is hollow.
6. Apparatus in accordance with claim 4 wherein said anvil is cylindrical in shape and is mounted for rotation past the end of said horn to carry said sheet in the form of a long narrow web continuously into and out of punching relationship with said horn, and wherein a plurality of punches are carried by said anvil and successively pass into and out of register with said horn; said apparatus also comprising mechanism for rotating said anvil.
7. Apparatus in accordance with claim 6, wherein said punches are movable back and forth radially of said cylindrical anvil, and wherein said apparatus also comprises mechanism for moving each punch outwardly to protrude from the surface of said anvil during passage of said punch in register with said anvil, and for subsequently moving said punch inwardly.
8. Apparatus in accordance with claim 6 wherein said horn has a groove therein adapted to register with and to receive the protruding portion of each punch for clearing the core formed by each punch from said web.
9. Apparatus in accordance with claim 6, also comprising means for removing the core formed by each punch from the vicinity of said web.
10. Apparatus in accordance with claim 7 wherein said mechanism for moving each punch comprises spring means urging each punch inwardly; and a stationary cam mounted internally of said cylindrical anvil, each of said punches having an inner end riding on the surface of said cam.
11. Apparatus in accordance with claim 7 wherein said punches are hollow, said apparatus also comprising a stationary finger within each punch acting to expel a core therefrom upon movement of said punch inwardly.
12. Apparatus in accordance with claim 7 wherein said cylindrical anvil has an annular recess extending laterally in from one side thereof, forming spaced inner and outer cylindrical flanges; wherein said punches extend through said inner and outer flanges and across said recess; and wherein said mechanism for moving each punch comprises a spring within said recess urging said punch resiliently inwardly, and a stationary cam mounted internally of said cylindrical anvil, each of said punches having an inner end riding on said cam.
US100993A 1970-12-23 1970-12-23 Ultrasonic perforating of a sheet of film, paper or the like Expired - Lifetime US3683736A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10099370A 1970-12-23 1970-12-23

Publications (1)

Publication Number Publication Date
US3683736A true US3683736A (en) 1972-08-15

Family

ID=22282577

Family Applications (1)

Application Number Title Priority Date Filing Date
US100993A Expired - Lifetime US3683736A (en) 1970-12-23 1970-12-23 Ultrasonic perforating of a sheet of film, paper or the like

Country Status (3)

Country Link
US (1) US3683736A (en)
BR (1) BR7107277D0 (en)
CA (1) CA931497A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204447A (en) * 1977-12-16 1980-05-27 Slaughterbeck David W Apparatus for perforating corrugated plastic pipe
US4248232A (en) * 1977-09-13 1981-02-03 Eckart Engelbrecht Method of dissolving the bond between interconnected components
US4254075A (en) * 1977-04-01 1981-03-03 Reed Irrigation Systems Method for forming holes in a member
US4354406A (en) * 1980-01-14 1982-10-19 L'oreal Method of and device for forming openings in a gelatinous substance
US4594926A (en) * 1983-10-24 1986-06-17 Didde Graphic Systems Corporation File hole punch ring apparatus for web fed paper conveying mechanism
US5074951A (en) * 1988-09-23 1991-12-24 The Dow Chemical Company Apparatus for inert atmosphere sealing
US5167619A (en) * 1989-11-17 1992-12-01 Sonokineticss Group Apparatus and method for removal of cement from bone cavities
US5176677A (en) * 1989-11-17 1993-01-05 Sonokinetics Group Endoscopic ultrasonic rotary electro-cauterizing aspirator
US5269981A (en) * 1991-09-30 1993-12-14 Kimberly-Clark Corporation Process for hydrosonically microaperturing
US5314737A (en) * 1991-09-30 1994-05-24 Kimberly-Clark Corporation Area thinned thin sheet materials
US5318570A (en) * 1989-01-31 1994-06-07 Advanced Osseous Technologies, Inc. Ultrasonic tool
US5324297A (en) * 1989-01-31 1994-06-28 Advanced Osseous Technologies, Inc. Ultrasonic tool connector
US5336452A (en) * 1992-09-23 1994-08-09 Kimberly-Clark Corporation Process for hydrosonically area embossing thin thermoplastic film materials
US5358505A (en) * 1991-05-29 1994-10-25 Sonokinetics, Inc. Tapered tip ultrasonic aspiration method
US5368464A (en) * 1992-12-31 1994-11-29 Eastman Kodak Company Ultrasonic apparatus for cutting and placing individual chips of light lock material
US5370830A (en) * 1992-09-23 1994-12-06 Kimberly-Clark Corporation Hydrosonic process for forming electret filter media
US5382251A (en) * 1989-01-31 1995-01-17 Biomet, Inc. Plug pulling method
US5443886A (en) * 1991-09-30 1995-08-22 Kimberly-Clark Corporation Hydrosonically embedded soft thin film materials
US5492528A (en) * 1990-07-17 1996-02-20 Anis; Azis Y. Removal of tissue
US5722945A (en) * 1990-07-17 1998-03-03 Aziz Yehia Anis Removal of tissue
US5735984A (en) * 1994-11-08 1998-04-07 Minnesota Mining And Manufacturing Company Method of aperturing thin sheet materials
US5879494A (en) * 1996-09-23 1999-03-09 Minnesota Mining And Manufacturing Company Method of aperturing thin sheet materials
WO1999046095A1 (en) * 1998-03-13 1999-09-16 Aztex, Inc. Method of manufacturing a perforated laminate
US6007513A (en) * 1990-07-17 1999-12-28 Aziz Yehia Anis Removal of tissue
DE19936854C1 (en) * 1999-07-06 2001-02-01 Windmoeller & Hoelscher Device for cutting holes in a running web and for removing the cutouts
US6190602B1 (en) 1998-03-13 2001-02-20 Aztex, Inc. Method of manufacturing a perforated laminate
US6203518B1 (en) 1990-07-17 2001-03-20 Aziz Yehia Anis Removal of tissue
US6634539B2 (en) * 2001-09-21 2003-10-21 3M Innovative Properties Company Adjustable-gap rotary ultrasonic horn mounting apparatus and method for mounting
US20050235795A1 (en) * 2004-04-22 2005-10-27 The Boeing Company Cutting anvil and method
EP1632449A1 (en) * 2003-05-15 2006-03-08 Sekisui Jushi Kabushiki Kaisha Method of manufacturing thermoplastic resin cord wound body
US7494468B2 (en) 1999-10-05 2009-02-24 Omnisonics Medical Technologies, Inc. Ultrasonic medical device operating in a transverse mode
US7503895B2 (en) 1999-10-05 2009-03-17 Omnisonics Medical Technologies, Inc. Ultrasonic device for tissue ablation and sheath for use therewith
US20100098906A1 (en) * 2008-10-20 2010-04-22 Cytec Technology Corp. Prepregs with improved processing
US7794414B2 (en) 2004-02-09 2010-09-14 Emigrant Bank, N.A. Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes
US20110100176A1 (en) * 2008-04-07 2011-05-05 Thorsten Kroeger Needle roller
US20130029091A1 (en) * 2011-07-29 2013-01-31 Nitto Denko Corporation Resin sheet, method of producing the same and through-hole forming apparatus
US8790359B2 (en) 1999-10-05 2014-07-29 Cybersonics, Inc. Medical systems and related methods
US20160263776A1 (en) * 2014-11-13 2016-09-15 The Boeing Company Systems and methods for making indexed prepreg composite sheets and laminated composite articles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2098165A (en) * 1936-08-24 1937-11-02 John W Riggenbach Printing and cutting machine
US3075573A (en) * 1959-09-23 1963-01-29 Continental Can Co Apparatus for punching holes or cutouts in thermoplastic sheet material
US3355974A (en) * 1965-08-23 1967-12-05 Du Pont Film-perforating apparatus
US3392219A (en) * 1966-03-03 1968-07-09 Burlington Industries Inc Process for imparting creases

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2098165A (en) * 1936-08-24 1937-11-02 John W Riggenbach Printing and cutting machine
US3075573A (en) * 1959-09-23 1963-01-29 Continental Can Co Apparatus for punching holes or cutouts in thermoplastic sheet material
US3355974A (en) * 1965-08-23 1967-12-05 Du Pont Film-perforating apparatus
US3392219A (en) * 1966-03-03 1968-07-09 Burlington Industries Inc Process for imparting creases

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4254075A (en) * 1977-04-01 1981-03-03 Reed Irrigation Systems Method for forming holes in a member
US4248232A (en) * 1977-09-13 1981-02-03 Eckart Engelbrecht Method of dissolving the bond between interconnected components
US4204447A (en) * 1977-12-16 1980-05-27 Slaughterbeck David W Apparatus for perforating corrugated plastic pipe
US4354406A (en) * 1980-01-14 1982-10-19 L'oreal Method of and device for forming openings in a gelatinous substance
US4594926A (en) * 1983-10-24 1986-06-17 Didde Graphic Systems Corporation File hole punch ring apparatus for web fed paper conveying mechanism
US5074951A (en) * 1988-09-23 1991-12-24 The Dow Chemical Company Apparatus for inert atmosphere sealing
US5324297A (en) * 1989-01-31 1994-06-28 Advanced Osseous Technologies, Inc. Ultrasonic tool connector
US5382251A (en) * 1989-01-31 1995-01-17 Biomet, Inc. Plug pulling method
US5318570A (en) * 1989-01-31 1994-06-07 Advanced Osseous Technologies, Inc. Ultrasonic tool
US5167619A (en) * 1989-11-17 1992-12-01 Sonokineticss Group Apparatus and method for removal of cement from bone cavities
US5176677A (en) * 1989-11-17 1993-01-05 Sonokinetics Group Endoscopic ultrasonic rotary electro-cauterizing aspirator
US5722945A (en) * 1990-07-17 1998-03-03 Aziz Yehia Anis Removal of tissue
US6203518B1 (en) 1990-07-17 2001-03-20 Aziz Yehia Anis Removal of tissue
US6217543B1 (en) 1990-07-17 2001-04-17 Aziz Yehia Anis Removal of tissue
US6352519B1 (en) 1990-07-17 2002-03-05 Aziz Yehia Anis Removal of tissue
US6007513A (en) * 1990-07-17 1999-12-28 Aziz Yehia Anis Removal of tissue
US5827292A (en) * 1990-07-17 1998-10-27 Anis; Aziz Yehia Removal of tissue
US5492528A (en) * 1990-07-17 1996-02-20 Anis; Azis Y. Removal of tissue
US5358505A (en) * 1991-05-29 1994-10-25 Sonokinetics, Inc. Tapered tip ultrasonic aspiration method
US5514308A (en) * 1991-09-30 1996-05-07 Kimberly-Clark Corporation Method for hydrosonically embedding a material in a soft thin film material
US5443886A (en) * 1991-09-30 1995-08-22 Kimberly-Clark Corporation Hydrosonically embedded soft thin film materials
US5269981A (en) * 1991-09-30 1993-12-14 Kimberly-Clark Corporation Process for hydrosonically microaperturing
US5314737A (en) * 1991-09-30 1994-05-24 Kimberly-Clark Corporation Area thinned thin sheet materials
US5336452A (en) * 1992-09-23 1994-08-09 Kimberly-Clark Corporation Process for hydrosonically area embossing thin thermoplastic film materials
US5370830A (en) * 1992-09-23 1994-12-06 Kimberly-Clark Corporation Hydrosonic process for forming electret filter media
US5512132A (en) * 1992-12-31 1996-04-30 Eastman Kodak Company Method for cutting and placing individual chips of light lock material
US5368464A (en) * 1992-12-31 1994-11-29 Eastman Kodak Company Ultrasonic apparatus for cutting and placing individual chips of light lock material
US5735984A (en) * 1994-11-08 1998-04-07 Minnesota Mining And Manufacturing Company Method of aperturing thin sheet materials
US5879494A (en) * 1996-09-23 1999-03-09 Minnesota Mining And Manufacturing Company Method of aperturing thin sheet materials
WO1999046095A1 (en) * 1998-03-13 1999-09-16 Aztex, Inc. Method of manufacturing a perforated laminate
US6190602B1 (en) 1998-03-13 2001-02-20 Aztex, Inc. Method of manufacturing a perforated laminate
DE19936854C1 (en) * 1999-07-06 2001-02-01 Windmoeller & Hoelscher Device for cutting holes in a running web and for removing the cutouts
US8790359B2 (en) 1999-10-05 2014-07-29 Cybersonics, Inc. Medical systems and related methods
US7494468B2 (en) 1999-10-05 2009-02-24 Omnisonics Medical Technologies, Inc. Ultrasonic medical device operating in a transverse mode
US7503895B2 (en) 1999-10-05 2009-03-17 Omnisonics Medical Technologies, Inc. Ultrasonic device for tissue ablation and sheath for use therewith
US6634539B2 (en) * 2001-09-21 2003-10-21 3M Innovative Properties Company Adjustable-gap rotary ultrasonic horn mounting apparatus and method for mounting
EP1632449A1 (en) * 2003-05-15 2006-03-08 Sekisui Jushi Kabushiki Kaisha Method of manufacturing thermoplastic resin cord wound body
EP1632449A4 (en) * 2003-05-15 2006-10-25 Sekisui Jushi Kk Method of manufacturing thermoplastic resin cord wound body
US20070089837A1 (en) * 2003-05-15 2007-04-26 Susumu Yamane Method for producing thermoplastic resin string roll
US7794414B2 (en) 2004-02-09 2010-09-14 Emigrant Bank, N.A. Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes
US8495943B2 (en) * 2004-04-22 2013-07-30 The Boeing Company Anvil for supporting cuts in sheet and roll stock
US8387502B2 (en) 2004-04-22 2013-03-05 The Boeing Company Cutting anvil and method
US20090000451A1 (en) * 2004-04-22 2009-01-01 Evans Richard B Cutting anvil and method
US20050235795A1 (en) * 2004-04-22 2005-10-27 The Boeing Company Cutting anvil and method
US9375857B2 (en) 2004-04-22 2016-06-28 The Boeing Company Cutting anvil and method
US20110100176A1 (en) * 2008-04-07 2011-05-05 Thorsten Kroeger Needle roller
US8752460B2 (en) * 2008-04-07 2014-06-17 Windmoeller & Hoelscher Kg Needle roller
US20100098906A1 (en) * 2008-10-20 2010-04-22 Cytec Technology Corp. Prepregs with improved processing
US8696965B2 (en) * 2008-10-20 2014-04-15 Cytec Technology Corp. Prepregs with improved processing
US20130029091A1 (en) * 2011-07-29 2013-01-31 Nitto Denko Corporation Resin sheet, method of producing the same and through-hole forming apparatus
US20160263776A1 (en) * 2014-11-13 2016-09-15 The Boeing Company Systems and methods for making indexed prepreg composite sheets and laminated composite articles
US9724845B2 (en) * 2014-11-13 2017-08-08 The Boeing Company Systems and methods for making indexed prepreg composite sheets and laminated composite articles
US10081119B2 (en) * 2014-11-13 2018-09-25 The Boeing Company Systems and methods for making indexed prepreg composite sheets and laminated composite articles

Also Published As

Publication number Publication date
CA931497A (en) 1973-08-07
BR7107277D0 (en) 1973-06-07

Similar Documents

Publication Publication Date Title
US3683736A (en) Ultrasonic perforating of a sheet of film, paper or the like
US3677117A (en) Material cutting apparatus with reciprocating cutting elements
US3756880A (en) Moval ultrasonic perforating a sheet of film paper or the like with chip re
US4747895A (en) Continuous ultrasonic perforating system and method
EP0609520A1 (en) Perforator for metal plate
JP2007290117A (en) Method and device for manufacturing perforated film or foil
US3890892A (en) Ultrasonic marking
US1925034A (en) Prick punching machine
US2628681A (en) Web perforating mechanism
IT988553B (en) METHOD AND EQUIPMENT FOR PERFORATING MATERIAL IN SHEETS
US3747447A (en) Orbital perforator
US2250931A (en) Apparatus for cutting metal tubes
JP3934806B2 (en) Web material processing equipment
US2188916A (en) Method of making container parts
US2376724A (en) Method of cutting openings through a pile of sheets
US4441395A (en) Tube punching method
US4369682A (en) Rotary die cutters having magnetically-attracted waste ejector
US3416396A (en) Gummed label strip punch cutting machine
US3312134A (en) Cutting device with vibrating cutter anvil
US1574481A (en) Apparatus for and process of making pulley units
US4638702A (en) Web cutting method and apparatus
WO2020026470A1 (en) Ultrasonic punching device and ultrasonic punching method
US3513738A (en) Automatic sensitometric film strip cutter
SU1263529A1 (en) Device for perforating sheet material
GB1463789A (en) Device for making a perforation in film material