US3680412A - Joint breakout mechanism - Google Patents

Joint breakout mechanism Download PDF

Info

Publication number
US3680412A
US3680412A US881842A US3680412DA US3680412A US 3680412 A US3680412 A US 3680412A US 881842 A US881842 A US 881842A US 3680412D A US3680412D A US 3680412DA US 3680412 A US3680412 A US 3680412A
Authority
US
United States
Prior art keywords
drill string
drill
sections
motor
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US881842A
Inventor
James R Mayer
Joe D Tipton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gardner Denver Inc
Original Assignee
Gardner Denver Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gardner Denver Inc filed Critical Gardner Denver Inc
Application granted granted Critical
Publication of US3680412A publication Critical patent/US3680412A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/16Connecting or disconnecting pipe couplings or joints
    • E21B19/167Connecting or disconnecting pipe couplings or joints using a wrench adapted to engage a non circular section of pipe, e.g. a section with flats or splines
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/20Combined feeding from rack and connecting, e.g. automatically

Definitions

  • ABSTRACT A remotely controlled breakout'mechanism grips and loosens threadably joined connections between sections of a drill string.
  • The-mechanism is coaxial with and movable along the drill string and includes stationary and rotatable gripping assemblies which are independently operable for interengagement with splines formed about the adjacent ends of adjoining string sections.
  • the stationary gripping assembly holds one section against rotation and axial movement while the rotatable gripping assembly applies a threadloosening torque to the adjoining section.
  • a pressure fluid power system for the breakout mechanism includes a control which prevents rotation of the rotatable gripping assembly unless the jaws thereof have been operated for positive interengagement with the splines on a section. Another control is responsive to engagement of the jaws of the stationary gripping assembly for limiting the joint retightening torque output of a fluid motor which normally rotates the drill string with full torque output during drilling operations.
  • the breakout mechanism also serves as a centralizer for the drill string and as a support for tem porarily suspending the drill string off the hole bottom.
  • the number and shape of the splines on the end surfaces of the sections are preselected to provide substantial circumferential engagement with the jaws of the mechanism and to provide a sufficiently great number of opportunities for the gripping assemblies to interengage the splines so that a short-stroke power cylinder can be employed to operate the rotatable gripping assembly.
  • the Johnson breakout is hinged and openable to receive laterally the ends of two pipe sections.
  • the adjacent ends of the joined sections have six circumferentially spaced slots for receiving single spring applied pawls carried by stationary and rotary portions of the mechanism.
  • An extendable power cylinder mounted on the stationary portion is operable to rotate the rotary portion to loosen the threads.
  • O- Neill et al is operationally similar to the Johnson device and is incorporated in a semi-automatic drill rig as part of a more comprehensive system intended to reduce human intervention and effort in the drilling operation.
  • O- Neill et a1 show a portable drill rig having a tiltable mast which slidably supports a rotary drill motor, a breakout mechanism carried by the mast, a suspension means for temporarily supporting the string off the bottom of the hole, and a pipe transfer and storage device for swinging pipe sections to and from alignment with the drill string.
  • the ONeill breakout includes a stationary jaw assembly, a rotatable jaw assembly and a guiding jaw assembly for guiding the upper pipe into the lower pipe during make-up operations. It is believed that the stationary jaws and rotatable jaws either frictionally engage with or bite into the walls of the pipe sections.
  • Provision of a mechanism which will not only serve its intended breakout purpose, but will also function as a drill string centralizer during the drilling operation and as a temporary support for suspending the drill string ofi bottom as string sections are removed.
  • the broad object of this invention is to provide a drill string breakout mechanism for a drill rig which coacts with splined drill string sections and with improved control systems to permit drill strings to be made up and broken down in a manner which is more rapid, foolproof, and safe than any heretofore known. More specifically, this invention is intended to provide structures, mechanisms and controls for drill string handling which meet the several above-enumerated shortcomings of the prior art.
  • FIG. 1 is a front elevational view of a mobile, tracktype drill rig which incorporates the present invention
  • FIG. 2 is a partial sectional view of an improved breakout mechanism shown in FIG. 1;
  • FIG. 3 is a partial sectional view generally taken along lines 3-3 of FIG. 2;
  • FIG. 4 is a partial sectional view of a connection between threadably joined drill string sections
  • FIG. 5 is a diagrammatic illustration of the teeth on the drill string sections and the pistons of the breakout mechanism shown in FIGS. 2 and 3;
  • FIG. 6 is a schematic illustration of a fluid power and control system for the drill rig shown in FIG. 1;
  • FIGS. 7 through 15 are diagrammatic illustrations of a sequence of operations which may be performed by remote control in the drill rig shown in FIG. 1.
  • the drill rig is of the track type and is movable from place to place by powered tracks 22 which support the rig frame 24.
  • Pivotably supported on the frame 24 is an elongated mast 26 which in the upright position has a foot 28 which rests on the ground surface 30.
  • the mast is generally square in transverse cross section and is fabricated by welding or the like.
  • a pair of transversely spaced guide channels 32 are secured to the front of mast 26 and extend the full length of the mast for retaining and guiding a drill motor, generally shown at 34, and a breakout mechanism, generally shown at 36.
  • the drill motor 34 is moved up and down the mast 26 by a fluid operated motor 38 which drives a chain 40 secured to the drill motor 34 and trained over drive sprocket 42 and idler sprocket
  • the breakout mechanism 36 is powered up and down the mast by a fluid operated motor 46 which drives a chain 48 in a path parallel to the path of chain 40.
  • Chain 48 is trained over drive sprocket 50 and idler sprocket 52 and is secured to the breakout mechanism 36 by a lug 54 as shown in FIG. 3.
  • a rack, generally shown at 56, for transferring and storing sections of a drill string is attached to the side of the mast 26 and is powered for lateral movement by a fluid operated motor 58.
  • FIG. 1 many conventional components of the rig 20 as well as fluid supply lines have not been shown since they are not part of this invention.
  • An operators control panel 60 is shown on the rig with handles for operating certain components of the power and control system of the rig which are illustrated schematically in FIG. 6.
  • section A projects from a bore hole 62 and is connected to adjoining section B which is in turn connected to the projecting shank 64 of the drill motor 34.
  • Sections C and D are stored in the rack 56.
  • this rig includes these components:
  • the illustrative drill motor 34 is of the percussion type, i.e. a fluid actuated hammer, not shown, impacts a shank 64 which projects from the drill motor front head 66 for threaded engagement with one of the sections A-D.
  • the hammer impacts are transmitted through the shank and the drill string to a bit 212 which cuts into an underlying earth formation to form the bore hole 62 in a well understood manner.
  • a fluid actuated motor 68 comprising a subassembly of the drill motor 34.
  • the rotary output of the rotation motor 68 is coupled to the shank 64 by any suitable means; and, reference may be had to US. Pat. No.
  • the rotation motor 68 may be reversed and operated independently of the drill motor hammer so that the rotation motor is cooperable with the breakout mechanism 36 and the transfer and storage rack 56, as will be hereinafter described, to provide a remotely controlled, semiautomatic means for assembling, disassembling and storing a multisection drill string.
  • Motor 34 is provided with a slide 70 which is restrained within and guided by the spaced channels 32; and, the drive motor 38 and the chain 40 move the drill motor 34 up and down the mast 26 as desired.
  • the illustrative drill motor 34 is of the rotary percussive type, the scope of this invention is not limited by a particular drill motor type or construction or by a particular mode of drilling.
  • a socalled top drive drill motor which reversibly rotates, but does not impact, a drive spindle could be substituted for motor 34.
  • the motive fluid for operating the drill hammer and the rotation motor 68 can be either hydraulic fluid or compressed air as desired, although a hydraulic supply is described hereinafter in connection with FIG. 6.
  • the remotely controlled rack 56 stores drill string sections not in use and transfers sections to and from coaxial alignment with the drill motor 34 and the breakout mechanism 36.
  • the vertically spaced upper and lower rack assemblies 70, 72 include brackets 74, 76 which are rigidly attached to the side of the mast 26 and T-shaped upper and lower rails 78, 80 which are journaled for lateral movement by roller assemblies 82, 84.
  • the fluid actuated rack motor 58 reversibly rotates an elongated shaft 86 having pinions at its ends which coact with gear racks, not shown, formed on the upper and lower rails 78, 80 whereby rotation of motor 58 and shaft 86 in one direction moves both rails 78, 80 laterally inwardly with respect to the mast 26 and rotation in the other direction moves the rails outwardly.
  • the lower rail 80 carries cuplike receptacles 88 for receiving the threaded lower ends 89 of those sections stored in rack 56.
  • a locking plate 90 attached to the upper rail 78 has an elongated slot, not shown, opening toward the mast 26 in line with the longitudinal axis of the drill string.
  • the slot is dimensioned to receive the reduced diameter neck portion 92 of the sections A-D and the slot is transversely enlarged at spaced intervals to permit the normal diameter upper ends 94 of stored sections to drop down through the locking plate 90.
  • the breakout mechanism 36 comprises an upper rotatable gripping assembly 100 and a lower stationary gripping assembly 102 which are reversely mounted above and below and intermediate plate 104.
  • the mounting plate 184 is rigidly attached at right angles to a U-shaped slide 186 which carries at either side detachable slide bars 108 which interfit in mast guide channels 32.
  • the chain 48 is attached to a lug 54 extending rearwardly from the slide 106; and, the chain is powered by motor 46 for raising and lowering the breakout mechanism 36 along the mast 26.
  • the mounting plate 104 is generally rectangular and extends forwardly from the mast 26 so that an aperture 1 near the center of the plate 1% is aligned with the longitudinal axis of the drill string.
  • the jaw or gripping assembly 100 includes a housing 112 having four angularly spaced stepped bores 114 which open radially through the housing body into a center bore 116.
  • a cylinder 118 is removably retained in each of the radial bores 114 by a snap ring 1211; and, a piston 122 operates within each of the cylinders 118 between a retracted position, shown in FIGS. 2 and 3, and an extended position wherein the cylindrical rod portion of each piston 122 enters the center bore 116 for a purpose to be explained.
  • the enlarged head 126 of each piston carries an O-ring 128 to provide a fluid seal between the head 126 and the interior wall of the cylinder 118.
  • the pistons 122 are normally biased to the retracted position by surrounding coiled springs 130 seated between a shoulder of the stepped bores 1 14 and the piston heads 126. Pressure fluid is communicated to and from the rear pressure surfaces of this piston heads from a flexible supply conduit 132 through a fitting 134 which opens into one of four internal passages 13b in housing 112 which interconnect the bores 114.
  • the internal passages 136 open to annular grooves 138 relieved in the external walls of cylinders 118; and, ports 1 111 connect the grooves 138 to the interior of the cylinders.
  • the extreme inner ends of the piston rods 122 are arcuate as viewed in FIG. 3 and are slotted or serrated at 192 for interengagement with the splines 144 formed on the lower end 89 of a drill string section.
  • Splines 145 which are identical to splines 144 are framed on the end of shank 64 which has male threads which join the shank to the upper end 94 of a string section.
  • the piston rods are held against rotation with respect to the stepped bores 1141 by a slot and key arrangement designated at 146. Further discussion of the piston rod splines 192 is presented hereinafter in connection with the detailed description of the sections A-D.
  • a centralizer bushing 148 of hard, wear-resistant material is mounted on the housing 112 concentrically with the center bore 116 by means of a flanged retainer ring 150 which is removably secured to the housing by a plurality of angularly spaced fasteners 152.
  • the interior diameter of the bushing is smaller than the diameter of the center bore 116 and is selected to provide a loose running fit with the exterior surface of a drill string section.
  • the structural and operational details of the rotatable jaw assembly 100 and the stationary jaw assembly 102 are identical; therefore, to avoid needless duplication of the description of the stationary jaw assembly, the suffix letter a will be added to those numerals denoting identical structure elements incorporated in the stationary jaw assembly 102.
  • the center bores 116, 116a of the housings 1 12, 112a are concentrically piloted with respect to the mounting plate aperture 1 1@ by the interfitting of annular bosses 15 1, 154a within the counterbores formed in opposite openings of the aperture 110.
  • the stationary jaw assembly 102 is fixed against rotation with respect to plate 1% by means of a plurality of cap screws 156 which clamp a radially projecting annular flange 158a of the lower housing 112a to the underside of plate 1
  • the flange 158 of the upper housing 1 12 is held in bearing relation against the upper surface of the plate 1114 by an annular retaining ring 160.
  • the jaw assembly 1110 is rotatable with respect to the stationary jaw assembly 102 through an angle Z from the full line position to the broken line position as depicted in FIG. 3.
  • Such rotation of jaw assembly is provided by a double acting power cylinder 164 having a cylinder body 166 pivotally attached to the mounting plate 104 at 168 and having an extendable and retractable piston rod 171) pivotally attached to a lever arm 172 by a clevis and pin arrangement 17 1.
  • the inner end of the lever arm 172 is threaded into a boss 176 projecting from the housing 112.
  • Pressure fluid for actuating the piston of the power cylinder 164 is communicated to opposite ends of the cylinder body 166 by flexible conduits 178 and 1811.
  • the power cylinder 164 has a short stroke and is, therefore, relatively small and mountable on the support plate 1114 in a very compact manner without adding appreciably to the overall size or weight of the breakout mechanism 315.
  • the sections A-D are identically constructed and, as shown in FIG. 4, comprise an upper end segment 94 and a lower end segment 89 which are preferably attached at opposite ends of an elongated body segment 132 by some suitable welding operation such as friction welding.
  • the body segment 182 generally comprises a hardened thin-walled metal tube having inner and outer diameters uniform from end to end.
  • the interior of the upper end segment 92 is provided with female threads 184 which receive mating male threads 186 formed exteriorly on the lower end segment 89. The threads engage for their full length and the extreme upper end surface of the upper end segment 94 abuts with an annular shoulder 188 of the lower end segment 89.
  • a reduced diameter neck portion 92 is provided to permit the upper segments 94 to be received in the aforedescribed slot in the locking plate 90 of the transfer and storage rack 56. Since other types of racking devices could be used with the rig 20, the neck 90 may not be necessary and represents only one possible embodiment.
  • An important feature of this invention is the provision of serrations or splines 144 and 190 respectively located adjacent the ends of the lower end segment 89 and the upper end segment 94.
  • the basic function of these splines is to provide an improved surface means on the drill string sections whereby the jaw assemblies 100 and 102 can quickly and positively grip the adjacent end segments of joined drill string section.
  • drill pipes and rods be provided with flat surfaces relieved in their outer wall which are engageable by opposed jaws of a wrench.
  • two, four or six flats are provided for this purpose; and, unless the wrench can be moved substantially about the perimeter of a string section and can be easily manipulated with respect to the flats, extreme difficulty is experienced in engaging the wrench with the flats. Thispoor situation is worsened if the wrench is capable of .only very limited angular movement relative to the flats since the angular opportunities for engaging a six flatted section, for example, are 60 apart.
  • a wrench adapted for gripping a six flatted section must be capable of rotating 60 with respect to the section to insure an opportunity for the wrench to fit onto the flats.
  • the present invention effectively uses a short stroke cylinder 164 to rotate the rotatable jaw assembly through an angle Z, shown in FIG. 3, to achieve assured engagement of the splines 144 on the lower end segments 89 and splines 145 on the shank 64 with complementary splines 192 on the end surfaces of the pistons 122.
  • a short stroke cylinder 164 to rotate the rotatable jaw assembly through an angle Z, shown in FIG. 3, to achieve assured engagement of the splines 144 on the lower end segments 89 and splines 145 on the shank 64 with complementary splines 192 on the end surfaces of the pistons 122.
  • the angle Y may be referred to as the thread breakout angle and can be calculated or measured for any given type of threaded joint.
  • the angle Z must be at least equal to the sum of angles X and Y if the teeth 196 of the piston splines 192 are to be provided enough rotative movement to insure that they will come into engaging alignment with the splines 144 and 145 under the worst conditions of initial misalignment and will thereafter be rotated through the breakout angle of the joint threads.
  • the angle Z is fixed at 15 by the design of the breakout mechanism and if the breakout angle of the threads 184, 186 is known to be 6, the angular spacing of the splines: 144, 145 and 192 can be no more than 9. Under these conditions 40 splines could be provided.
  • the maximum number of splines has been found to be established by practical limits on the circumferential spacing between adjacent splines. If an excessive number of splines are formed on a string section of a given diameter and wall thickness, the teeth of the splines are not of suflicient cross section and strength to withstand the turning forces applied thereto to break out a joint. Moreover, if the splines are too closely spaced, they will tend to become clogged with dirt and mud while in the bore hole and the piston splines 192 cannot interengage. A minimum critical circumferential spacing between splines has been established as being inch.
  • Another feature of the splined string sections and shank disclosed herein is the slope of the walls of spline teeth. Referring to FIG. it will be seen that the sides of an individual tooth 194 on a string section slope toward one another and if projected, intersect to define an included angle R.
  • the teeth 196 of the piston splines 192 are sloped at the same angle R for interfitting engagement with the splines 144.
  • the number of teeth 196 which will engage upon linear movement of the piston 122 should be made as great as possible.
  • the limitation on the number of teeth 196 is the maximum possible size of the angle S which, in turn, can be no greater than the included angle R defined by the slope of the teeth 194.
  • the slope of the walls of the teeth on the string section and the piston surface 142 determines the maximum number of engageable teeth, the diameter of the pistons 122 and, therefore, the total area of clamping engagement of the rotation assembly 100 and the stationary assembly 102 with the drill string sections engaged thereby.
  • a practical upper limit on the size of angles R and S occurs when the tooth slope is so great that a tangential rotating force applied by the teeth 196 of the pistons 122 to the teeth 194 creates a reactance force acting upon the piston teeth 196 which has a radial force component greater than the opposed force imparted to the teeth 196 by the pressure fluid acting on the head 128 of each piston 122.
  • the teeth 194 and 196 will not stay in rotary driving engagement; and, it is possible to severely damage these teeth.
  • the included angle R is 60.
  • the hereinbefore described components and assemblies are powered by and controlled by a hydraulic system comprised of conventionally constructed pumps, motors and valves.
  • the pumps P P and P are are mounted on the rig frame and are powered by a suitable prime mover also carried on the rig frame
  • the pump P supplies the reversible motor 38 which moves the drill 34 up and down the mast under the control of the rig operator by means of a suitable motor control valve, not shown.
  • the pump P supplies the reversible drill rotation motor 68 which is remotely controllable by the rig operator by valve means, not shown.
  • a pilot controlled relief valve V is connected in parallel with the drill rotation motor 68; and, when opened, V bypasses fluid around motor 68.
  • valve V only operates as a bypass for fluid flow which produces rotation of the motor 68 in the forward direction i.e., the direction of rotation of the shank 64 which tends to tighten a threaded joint between the shank and string sections and between sections.
  • the relief valve V opens at a preset fluid pressure, less than the full pressure of the pump P only when a two-way pressure operated valve V is opened to connect the pilot portion of V, to a fluid reservoir by means of conduit 198.
  • valves V and V coact to reduce the torque output of the drill rotation motor only in the forward direction to limit the tightness of threaded joints while the reverse or thread disconnecting torque output is unchanged.
  • the joint connecting torque output of the motor 68 is cut to from one fourth to one third of the joint disconnecting torque output. The purpose of this control feature will be more clearly understood from the following description of the operation of the invention.
  • the pump 1 supplies valves V V V and V which are also connected to a reservoir for the pump P V is a three-position spring centered valve shown in theneutral position. V is operated to supply pressure fluid from pump P to the transfer and storage rack motor 58 for forward and reverse rotation to effect lateral movement of the rack 56 as described above.
  • V is a two-position detented valve shown in the disengaged position wherein conduits 200 and 202 are connected to the reservoir of pump P
  • pressure fluid is supplied to the stationary jaw assembly 102 to force the pistons 122a radially inwardly into gripping engagement with the splines 190.
  • pressure fluid is supplied to V which opens the bypass valve V in the manner described above.
  • V is returned to the position shown in FIG. 6, the conduits and 102 are exhausted to the reservoir whereby the springs 1300 return the pistons to their retracted position and valve V is depressurized thereby blocking the bypassing fluid flow through V V is a three-position, spring centered valve shown in the neutral position.
  • V supplies pressure fluid from pump P to actuate the piston jaws 122 of the rotary jaw assembly 100 and to extend and retract the double acting cylinder 164 for effecting rotation of the rotary jaw assembly 100.
  • Conduit 132 communicates V to the fitting 134 on the housing 112 and has a branch conduit 180 connected to one end of the cylinder 164. Interposed in branch conduit 180 is a pressure sensing sequence valve V which is operated to its open position by a build-up of fluid pressure in the conduit 132 as the pistons 122 of the rotary jaw assembly engage with shank 64 or with a drill string section.
  • the conduit 178 connects the other end of the cylinder 164 with V
  • the sequence valve V provides an important control feature of this invention by assuring that the pistons 122 have been extended so that the piston teeth 196 are biased for interengagement with splines 144 or 145 before pressure fluid is admitted to the power cylinder 164 to rotate the pistons 122.
  • This sequence of operations gives the piston teeth 196 their best chance for engagement with splines 144 or 145 with a very minimum degree of relative rotation and reduces the chance of damage to these splines or malfunction of the rotary breakout assembly due to a failure of the spline teeth to engage prior to actuation of the power cylinder 164.
  • V is a three-position, spring centered valve shown in the neutral position for supplying pressure fluid from pump P to the reversible motor 46 which powers the breakout mechanism 36 up and down the rig mast 26.
  • valves V V V and V as well as the handles for control valves, not shown, for the drill rotation motor 68 and the drill pull-down motor 38, may be conveniently grouped on the operators control panel 60.
  • FIGS. 1 and 7-15 the pressure fluid conduits for the rig components described above have not been shown since their location and manner of installation are merely a matter of design and convenience.
  • the preferred mode of operation of the drill rig 20 is as follows.
  • the rig 20 is moved into position at the drilling site and the mast 26 is elevated to the desired angle with respect'to the ground surface 30.
  • string section A is initially stored in the-mast 26 with its upper end 94A joined to the motor shank 64 and with its lower end 89A extended through the breakout mechanism 36 which has been lowered by motor 46 to its lowermost position for bearing up on the plate 210 of the mast foot 28.
  • the threaded lower end 89A of section A is joined to a drill bit 212 which is advanced into the ground by the hammering and rotating action of the drill motor 34 and by the pull-down force applied to the drill string by the motor 38.
  • the sections B, C, and D are stored in the rack which has been moved to itsoutermost lateral position by motor 58.
  • the drill motor is then actuated to impact and rotate section A and bit 212 to start the hole 62.
  • the centralizer bushings 148, 148a serve to restrain section A and the bit 212 from lateral bending and wandering as the hole is started.
  • the incorporation of this centralizing function in the breakout mechanism itself is particularly advantageous since it eliminates the need for a separate centralizer assembly on the rig.
  • the rotation motor 68 may be operated up to full torque output. When the extreme lower position of the drill motor 34 is reached, as shown in FIG.
  • the front head 66 of the drill motor abuts with the retainer ring 150 of the breakout mechanism 36; and, the shank 64 and upper section end 94A are automatically aligned for engagement with the breakout pistons 122 and 122a, respectively.
  • the stationary jaw assembly 102 is then actuated byvalve V, to cause the piston teeth 196a to engage with the string section splines 190A whereby section A is held against rotation and longitudinal movement.
  • V is operated to actuate the stationary jaw assembly 102, the valve V is simultaneously operated to place the bypass valve V in parallel with the drill rotation motor 68.
  • Valve V is then operated first to supply pressure fluid behind the piston jaws 122 of the rotary jaw assembly 100 causing jaws 122 to contact the shank serrations 145 and thereafter to extend the piston rod 170 of the cylinder 164 causing the jaws 122 to rotate the shank 64 through the angle Z, as shown in FIG. 3.
  • the cylinder 164 imparts thread breakout rotation to the shank relative to the v.nonrotatably held section A.
  • the valve V is then operated to release the pistons 122 and to retract the piston rod 170 of the rotation cylinder 164.
  • the drill rotation motor 68 is then reversed at full power to completely disconnect or spin out the shank from section A.
  • the motor 38 then raises the drill motor 34 to the top of the mast 26 as shown in FIG. 14 so that the rack 56 may be moved in to the position shown in FIG. 9 whereby the section B is aligned with the drill motor 34 and thebreakout mechanism 36.
  • Drill motor 34 is then lowered to thread the shank 64 into the upper end 94B of section B and is then raised again to lift section B so that the lower end 89B clears the receptacle 88 and the neck 92Bis aligned with the slot in the locking plate whereby the rack 56 can be laterally retracted to the position shown in FIG. 10.
  • the drill motor 34 is then lowered and operated to rotate section B to connect its male threads 186B with female threads 184A of section A.
  • Valve V is then operated to release the stationary piston jaws 122a and to take the bypass valve V, out of circuit with the drill rotation motor 68.
  • valve V is operated to actuate the motor 46 to raise the breakout mechanism 36 up the mast into abutting engagement with the drill motor 34 as shown in FIG. 11.
  • the stationary breakout assembly 102 is actuated by valve V and the rotary breakout assembly is then actuatedby valve V to loosen the joint between sections A and B.
  • the rotation motor 68 is then operated in the forward direction, but at reduced torque output because the bypass valve V is in circuit with the rotation motor, to retighten the shank 64 to a snug relation with the upper end 94B of section B.
  • snug-tight connection between the shank and section B is for a purpose to be explained hereafter.
  • the breakout mechanism 36 is lowered against the foot plate 210 and the drill motor raised to position the joint between sections A and B in proper alignment with the breakout mechanism, as shown in FIG. 12.
  • the breakout mechanism is operated to break out the joint between sections A and B in the manner described above. With the rotatable jaws 122 retracted and the stationary jaws 122a engagedto support section A off the hole bottom, the rotation motor is reversed to spin out the joint between sections A and B.
  • This step in the string disassembly cycle can be performed with complete confidence that the shank will not uncouple from the top of section B since this joint has previously been retightened to a snug condition by the reduced forward torque output of the drill rotation motor 68 while, on the other hand, the joint between sections A and B has not been retightened at all from its loosened condition.
  • This feature of the invention provides a foolproof method of drill string disassembly which increases the speed and 'efiiciency of drilling operations and eliminates a heretofore hazardous working condition for the rig operator. Section B is then raised by the drill motor 34 to align the neck 92B with the slot in the locking plate 90 of the rack 56.
  • the rack is moved laterally to receive the section B and the drill motor 34 is then lowered to seat it lower end 89B in receptacle 88 and to align its upper end 948 with the clamp member 98.
  • Cylinder 96 is then actuated to clamp section B against rotation; and, the drill rotation motor 68 is reversed at full torque output to disconnect completely the snug-tight joint between the shank 64 and the top of section B.
  • Rack 56 is then retracted, as shown in FIG. 14, and the drill motor 34 is lowered to connect the shank 64 with the upper end 94A of section A which is supported by the breakout mechanism 36, as shown in FIG. 15. Section A is then withdrawn from the hole 62 to its stored position in the mast 26, shown in FIG. 7, to complete the drilling cycle.
  • a fluid actuated breakout mechanism operable for loosening a threaded joint between a rotatable drill member and a drill string section from an initially tight condition
  • said breakout mechanism including a fluid actuated jaw assembly having drill string section engaging jaws and drill member engaging jaws;
  • a reversible fluid actuated rotary motor providing torque for rotating said drill member to connect and disconnect said joint
  • fluid control means responsive to operation of said breakout mechanism to limit the joint connecting torque output of said motor to a level less than its joint disconnecting torque output.
  • said breakout mechanism includes a fluid actuated jaw assembly operable to engage said drill string section;
  • said fluid control means includes a bypass connectable in circuit with said motor when said drill string section engaging jaws are engaged.
  • said fluid control means includes fluid actuated valve means operable to connect said bypass;
  • valve means and said drill string section engaging jaws are connected to a common fluid supply valve for simultaneous operation.
  • Threadably joinable drill string sections each having external splines formed adjacent opposite ends thereof and a breakout mechanism for loosening threaded joints between sections of a drill string, comprising:
  • said upper gripping means being rotatable with respect to said lower gripping means
  • jaw means having plural teeth formed thereon and housed in said gripping means;
  • said jaw means being operable for movement relative to said gripping means into said bore to effect interengagement of said teeth with the splined ends of said joined sections.
  • said jaw means comprise fluid actuated pistons radially disposed about said bore in cylinder bores interconnected by fluid passage means.
  • fluid actuated cylinder means having a cylinder body connected to said lower gripping means and an extendable piston rod connected to said upper -s flui means ln circuit with said aw means of said upper gripping means and said cylinder means for sequentially operating said jaw means of the upper gripping and then said cylinder means.
  • said teeth are spaced apart by at least .125 inch.
  • annular bushings removably attached to the upper and lower gripping means and disposed adjacent the opposite openings of said bore.
  • the inside diameter of said bushings are smaller than the diameter of said bore.

Abstract

A remotely controlled breakout mechanism grips and loosens threadably joined connections between sections of a drill string. The mechanism is coaxial with and movable along the drill string and includes stationary and rotatable gripping assemblies which are independently operable for interengagement with splines formed about the adjacent ends of adjoining string sections. The stationary gripping assembly holds one section against rotation and axial movement while the rotatable gripping assembly applies a thread-loosening torque to the adjoining section. A pressure fluid power system for the breakout mechanism includes a control which prevents rotation of the rotatable gripping assembly unless the jaws thereof have been operated for positive interengagement with the splines on a section. Another control is responsive to engagement of the jaws of the stationary gripping assembly for limiting the joint retightening torque output of a fluid motor which normally rotates the drill string with full torque output during drilling operations. The breakout mechanism also serves as a centralizer for the drill string and as a support for temporarily suspending the drill string off the hole bottom. The number and shape of the splines on the end surfaces of the sections are preselected to provide substantial circumferential engagement with the jaws of the mechanism and to provide a sufficiently great number of opportunities for the gripping assemblies to interengage the splines so that a short-stroke power cylinder can be employed to operate the rotatable gripping assembly.

Description

United States Patent Mayer et al.
v 1s] 3,680,412 [451 Aug. 1,1972
[54] JOINT BREAKOUT MECHANISM [72] Inventors: James R. Mayer, Dallas; Joe D. lip- [21] Appl. No.: 881,842
[52] U.S. Cl. ..8l/57.34, 81/5716, 81/5719,
[51] Int. Cl. ..'...B25b 13/50, B25b 17/00 [58] Field of Search....8l/57.16, 57.19, 57.21, 57.15,
[56] References Cited UNITED STATES PATENTS 3,246,547 4/1966 ONeill et a1 ..8l/57.34
3,371,562 3/1968 Kelley ..8l/57.22
3,041,901 7/1962 Knights ..8l/57.34
3,203,284 8/1965 Norrick ..8l/57.34
Primary Examiner-James L. Jones, Jr. Attorney-Joseph W. Holloway [57] ABSTRACT A remotely controlled breakout'mechanism grips and loosens threadably joined connections between sections of a drill string. The-mechanism is coaxial with and movable along the drill string and includes stationary and rotatable gripping assemblies which are independently operable for interengagement with splines formed about the adjacent ends of adjoining string sections. The stationary gripping assembly holds one section against rotation and axial movement while the rotatable gripping assembly applies a threadloosening torque to the adjoining section. A pressure fluid power system for the breakout mechanism includes a control which prevents rotation of the rotatable gripping assembly unless the jaws thereof have been operated for positive interengagement with the splines on a section. Another control is responsive to engagement of the jaws of the stationary gripping assembly for limiting the joint retightening torque output of a fluid motor which normally rotates the drill string with full torque output during drilling operations. The breakout mechanism also serves as a centralizer for the drill string and as a support for tem porarily suspending the drill string off the hole bottom. The number and shape of the splines on the end surfaces of the sections are preselected to provide substantial circumferential engagement with the jaws of the mechanism and to provide a sufficiently great number of opportunities for the gripping assemblies to interengage the splines so that a short-stroke power cylinder can be employed to operate the rotatable gripping assembly.
11 Claims, 15 Drawing Figures PATENTEDMIB 1 1912 3,680,412
sum 1 or a mnenmr5 jame s ikmayer jmz flEIphm PATENTEDAus I 1972 SHEET 3 OF 6 PATENTEmus 1 m I 3.680.412
SHEET U UF 6 Fig 7 *TPf-g 3 "Fig 5 BACKGROUND OF THE INVENTION Remotely controlled mechanisms have been developed heretofore for making up and breaking out threaded connections between sections of pipe or rod joined together to form a drill string. Ordinarily the drill bit is rotated by a drill motor as it is fed into the ground, consequently, the joints between sections become extremely tight and substantial forces are required to loosen or break out such joints as the string is disassembled.
Self-reacting breakout mechanisms which simulate the gripping and turning actions of a pair of human hands have been disclosed in US. Pat. No. 3,158,213 issued to ONeill et al and in US. Pat. No. 3,463,037 issued to Johnson.
The Johnson breakout is hinged and openable to receive laterally the ends of two pipe sections. The adjacent ends of the joined sections have six circumferentially spaced slots for receiving single spring applied pawls carried by stationary and rotary portions of the mechanism. An extendable power cylinder mounted on the stationary portion is operable to rotate the rotary portion to loosen the threads.
The breakout disclosed by ONeill et al is operationally similar to the Johnson device and is incorporated in a semi-automatic drill rig as part of a more comprehensive system intended to reduce human intervention and effort in the drilling operation. Thus O- Neill et a1 show a portable drill rig having a tiltable mast which slidably supports a rotary drill motor, a breakout mechanism carried by the mast, a suspension means for temporarily supporting the string off the bottom of the hole, and a pipe transfer and storage device for swinging pipe sections to and from alignment with the drill string. The ONeill breakout includes a stationary jaw assembly, a rotatable jaw assembly and a guiding jaw assembly for guiding the upper pipe into the lower pipe during make-up operations. It is believed that the stationary jaws and rotatable jaws either frictionally engage with or bite into the walls of the pipe sections.
While the desirability of employing a remotely controlled, self-contained breakout mechanism in a semiautomatic drill rig has been generally recognized by ONeill et al, substantial problems remain to be solved in the following areas:
1. Provision of interengaging means formed on the breakout jaws and on the drill string sections which will assure rapid and positive engagement between the breakout jaws and the sections without damaging the sections;
2. Provision of powerful, yet compact drive means for rotating the rotary jaws for breakout;
3. Provision of a control system which will provide driving engagement between the rotary breakout jaws and a drill string section before the rotary jaws are powered for breakout;
4. Provision of remotely controlled means for moving the breakout mechanism along the entire length of a drill string section to enable the breakout of connections between the drill motor and a string section in case a stringsection is ad vanced only part way into the ground;
5. Provision of a control system which will, as a drill string is being disassembled, automatically coordinate the operation of the drill motor and the breakout mechanism to provide a snug-tight con nection between the drill motor and the top of that section joined to the drill motor which will not uncouple when the drill motor is reversely rotated to spin out a preloosened connection at the bottom of that section;
6. Provision of a mechanism which will not only serve its intended breakout purpose, but will also function as a drill string centralizer during the drilling operation and as a temporary support for suspending the drill string ofi bottom as string sections are removed.
SY OF THE INVENTION The broad object of this invention is to provide a drill string breakout mechanism for a drill rig which coacts with splined drill string sections and with improved control systems to permit drill strings to be made up and broken down in a manner which is more rapid, foolproof, and safe than any heretofore known. More specifically, this invention is intended to provide structures, mechanisms and controls for drill string handling which meet the several above-enumerated shortcomings of the prior art.
BRIEF DESCRIPTIOn OF THE DRAWINGS FIG. 1 is a front elevational view of a mobile, tracktype drill rig which incorporates the present invention;
FIG. 2 is a partial sectional view of an improved breakout mechanism shown in FIG. 1;
FIG. 3 is a partial sectional view generally taken along lines 3-3 of FIG. 2;
FIG. 4 is a partial sectional view of a connection between threadably joined drill string sections;
FIG. 5 is a diagrammatic illustration of the teeth on the drill string sections and the pistons of the breakout mechanism shown in FIGS. 2 and 3;
FIG. 6 is a schematic illustration of a fluid power and control system for the drill rig shown in FIG. 1; and,
FIGS. 7 through 15 are diagrammatic illustrations of a sequence of operations which may be performed by remote control in the drill rig shown in FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. 1 of the drawings, the drill rig, generally designated by numeral 20, is of the track type and is movable from place to place by powered tracks 22 which support the rig frame 24. Pivotably supported on the frame 24 is an elongated mast 26 which in the upright position has a foot 28 which rests on the ground surface 30. The mast is generally square in transverse cross section and is fabricated by welding or the like. A pair of transversely spaced guide channels 32 are secured to the front of mast 26 and extend the full length of the mast for retaining and guiding a drill motor, generally shown at 34, and a breakout mechanism, generally shown at 36. The drill motor 34 is moved up and down the mast 26 by a fluid operated motor 38 which drives a chain 40 secured to the drill motor 34 and trained over drive sprocket 42 and idler sprocket The breakout mechanism 36 is powered up and down the mast by a fluid operated motor 46 which drives a chain 48 in a path parallel to the path of chain 40. Chain 48 is trained over drive sprocket 50 and idler sprocket 52 and is secured to the breakout mechanism 36 by a lug 54 as shown in FIG. 3. A rack, generally shown at 56, for transferring and storing sections of a drill string is attached to the side of the mast 26 and is powered for lateral movement by a fluid operated motor 58.
In FIG. 1, many conventional components of the rig 20 as well as fluid supply lines have not been shown since they are not part of this invention. An operators control panel 60 is shown on the rig with handles for operating certain components of the power and control system of the rig which are illustrated schematically in FIG. 6.
In order to facilitate the description of the operation of this invention for assembling and disassembling a multiple section drill string, the identically constructed pipe or rod sections are designated by letters A, B, C and D. InFIG. 1, section A projects from a bore hole 62 and is connected to adjoining section B which is in turn connected to the projecting shank 64 of the drill motor 34. Sections C and D are stored in the rack 56.
From the foregoing brief description of the drill rig 20, it will be understood that this rig includes these components:
1. Drill motor 34;
2. Transfer and storage rack 56;
3. Breakout mechanism 36;
4. Drill string sections A-D;
5. Power and control system shown in FIG. 6.
These components will be discussed in detail under separate headings.
DRILL MOTOR The illustrative drill motor 34 is of the percussion type, i.e. a fluid actuated hammer, not shown, impacts a shank 64 which projects from the drill motor front head 66 for threaded engagement with one of the sections A-D. The hammer impacts are transmitted through the shank and the drill string to a bit 212 which cuts into an underlying earth formation to form the bore hole 62 in a well understood manner. To enhance the cutting action of the bit, it is rotated during the drilling operation by a fluid actuated motor 68 comprising a subassembly of the drill motor 34. The rotary output of the rotation motor 68 is coupled to the shank 64 by any suitable means; and, reference may be had to US. Pat. No. 3,082,741 for details of one suitable construction. Preferably, the rotation motor 68 may be reversed and operated independently of the drill motor hammer so that the rotation motor is cooperable with the breakout mechanism 36 and the transfer and storage rack 56, as will be hereinafter described, to provide a remotely controlled, semiautomatic means for assembling, disassembling and storing a multisection drill string. Motor 34 is provided with a slide 70 which is restrained within and guided by the spaced channels 32; and, the drive motor 38 and the chain 40 move the drill motor 34 up and down the mast 26 as desired.
While the illustrative drill motor 34 is of the rotary percussive type, the scope of this invention is not limited by a particular drill motor type or construction or by a particular mode of drilling. For example, a socalled top drive drill motor which reversibly rotates, but does not impact, a drive spindle could be substituted for motor 34. Moreover, the motive fluid for operating the drill hammer and the rotation motor 68 can be either hydraulic fluid or compressed air as desired, although a hydraulic supply is described hereinafter in connection with FIG. 6.
TRANSFER AND STORAGE RACK The remotely controlled rack 56 stores drill string sections not in use and transfers sections to and from coaxial alignment with the drill motor 34 and the breakout mechanism 36. The vertically spaced upper and lower rack assemblies 70, 72 include brackets 74, 76 which are rigidly attached to the side of the mast 26 and T-shaped upper and lower rails 78, 80 which are journaled for lateral movement by roller assemblies 82, 84. The fluid actuated rack motor 58 reversibly rotates an elongated shaft 86 having pinions at its ends which coact with gear racks, not shown, formed on the upper and lower rails 78, 80 whereby rotation of motor 58 and shaft 86 in one direction moves both rails 78, 80 laterally inwardly with respect to the mast 26 and rotation in the other direction moves the rails outwardly. The lower rail 80 carries cuplike receptacles 88 for receiving the threaded lower ends 89 of those sections stored in rack 56. A locking plate 90 attached to the upper rail 78 has an elongated slot, not shown, opening toward the mast 26 in line with the longitudinal axis of the drill string. The slot is dimensioned to receive the reduced diameter neck portion 92 of the sections A-D and the slot is transversely enlarged at spaced intervals to permit the normal diameter upper ends 94 of stored sections to drop down through the locking plate 90. After the lower end 89 of a section has been seated in a receptacle 88 and the upper end 94 of the section is disposed in the slot in the locking plate 90, a power cylinder 96 mounted on the locking plate moves a clamp member 98 with respect to locking plate 90 to grip the upper ends 94 of those sections stored in the rack 56 and secures these sections against rotation for a purpose to be described herein.
Since the transfer and storage rack is only incidentally involved in the operation of the present invention, only a brief .description has been set forth. For a detailed description of the structural and functional features of rack 56, reference may be had to copending U.S. Pat. application Ser. No. 757,950 filed Sept. 6, 1968.
BREAKOUT MECHANISM The structural details of the breakout mechanism 36 are shown in FIGS. 2 and 3. As viewed in FIG. 2, the breakout mechanism comprises an upper rotatable gripping assembly 100 and a lower stationary gripping assembly 102 which are reversely mounted above and below and intermediate plate 104. The mounting plate 184 is rigidly attached at right angles to a U-shaped slide 186 which carries at either side detachable slide bars 108 which interfit in mast guide channels 32. As hereinbefore explained, the chain 48 is attached to a lug 54 extending rearwardly from the slide 106; and, the chain is powered by motor 46 for raising and lowering the breakout mechanism 36 along the mast 26.
The mounting plate 104 is generally rectangular and extends forwardly from the mast 26 so that an aperture 1 near the center of the plate 1% is aligned with the longitudinal axis of the drill string.
The jaw or gripping assembly 100 includes a housing 112 having four angularly spaced stepped bores 114 which open radially through the housing body into a center bore 116. A cylinder 118 is removably retained in each of the radial bores 114 by a snap ring 1211; and, a piston 122 operates within each of the cylinders 118 between a retracted position, shown in FIGS. 2 and 3, and an extended position wherein the cylindrical rod portion of each piston 122 enters the center bore 116 for a purpose to be explained. The enlarged head 126 of each piston carries an O-ring 128 to provide a fluid seal between the head 126 and the interior wall of the cylinder 118. The pistons 122 are normally biased to the retracted position by surrounding coiled springs 130 seated between a shoulder of the stepped bores 1 14 and the piston heads 126. Pressure fluid is communicated to and from the rear pressure surfaces of this piston heads from a flexible supply conduit 132 through a fitting 134 which opens into one of four internal passages 13b in housing 112 which interconnect the bores 114. The internal passages 136 open to annular grooves 138 relieved in the external walls of cylinders 118; and, ports 1 111 connect the grooves 138 to the interior of the cylinders. When pressure fluid is supplied to the cylinders 118, the pistons 122 are simultaneously forced radially inwardly into the central bore 16; and, when pressure fluid is thereafter exhausted from the cylinders 118, the return springs 130 urge the pistons 122 radially outwardly from the central bore 116 to their fully retracted position.
The extreme inner ends of the piston rods 122 are arcuate as viewed in FIG. 3 and are slotted or serrated at 192 for interengagement with the splines 144 formed on the lower end 89 of a drill string section. Splines 145 which are identical to splines 144 are framed on the end of shank 64 which has male threads which join the shank to the upper end 94 of a string section. To maintain proper alignment of the piston splines 192 with either the section splines 144 or the shank splines 145, the piston rods are held against rotation with respect to the stepped bores 1141 by a slot and key arrangement designated at 146. Further discussion of the piston rod splines 192 is presented hereinafter in connection with the detailed description of the sections A-D.
A centralizer bushing 148 of hard, wear-resistant material is mounted on the housing 112 concentrically with the center bore 116 by means of a flanged retainer ring 150 which is removably secured to the housing by a plurality of angularly spaced fasteners 152. The interior diameter of the bushing is smaller than the diameter of the center bore 116 and is selected to provide a loose running fit with the exterior surface of a drill string section.
As thus far described, the structural and operational details of the rotatable jaw assembly 100 and the stationary jaw assembly 102 are identical; therefore, to avoid needless duplication of the description of the stationary jaw assembly, the suffix letter a will be added to those numerals denoting identical structure elements incorporated in the stationary jaw assembly 102.
The center bores 116, 116a of the housings 1 12, 112a are concentrically piloted with respect to the mounting plate aperture 1 1@ by the interfitting of annular bosses 15 1, 154a within the counterbores formed in opposite openings of the aperture 110. The stationary jaw assembly 102 is fixed against rotation with respect to plate 1% by means of a plurality of cap screws 156 which clamp a radially projecting annular flange 158a of the lower housing 112a to the underside of plate 1 The flange 158 of the upper housing 1 12 is held in bearing relation against the upper surface of the plate 1114 by an annular retaining ring 160. While the retaining ring is fixed to the plate 104 by plural cap screws 162, it will be understood that the housing 114 of the rotatable gripping assembly 101) is free to rotate about the axis of its center bore 116 relative to the retaining ring 1611, the plate 1 and the stationary gripping assembly 102.
The jaw assembly 1110 is rotatable with respect to the stationary jaw assembly 102 through an angle Z from the full line position to the broken line position as depicted in FIG. 3. Such rotation of jaw assembly is provided by a double acting power cylinder 164 having a cylinder body 166 pivotally attached to the mounting plate 104 at 168 and having an extendable and retractable piston rod 171) pivotally attached to a lever arm 172 by a clevis and pin arrangement 17 1. The inner end of the lever arm 172 is threaded into a boss 176 projecting from the housing 112. Pressure fluid for actuating the piston of the power cylinder 164 is communicated to opposite ends of the cylinder body 166 by flexible conduits 178 and 1811. It will be noted that the power cylinder 164 has a short stroke and is, therefore, relatively small and mountable on the support plate 1114 in a very compact manner without adding appreciably to the overall size or weight of the breakout mechanism 315.
DRILL STRING SECTIONS When having reference to FIGS. 2 through 5, numerals indicating common structural features of all of the string sections AD will not include a suffix letter. However, in connection with the description of the operation of the drill rig 211, as shown in FIGS. 1 and 7 through 15, the sections will be generally designated by letters A, B, C, and D and numerical references to structural features of a particular section will be followed by a letter suffix. For example, see FIG. 1 where the upper end segment of section B is indicated as 943.
The sections A-D are identically constructed and, as shown in FIG. 4, comprise an upper end segment 94 and a lower end segment 89 which are preferably attached at opposite ends of an elongated body segment 132 by some suitable welding operation such as friction welding. The body segment 182 generally comprises a hardened thin-walled metal tube having inner and outer diameters uniform from end to end. The interior of the upper end segment 92 is provided with female threads 184 which receive mating male threads 186 formed exteriorly on the lower end segment 89. The threads engage for their full length and the extreme upper end surface of the upper end segment 94 abuts with an annular shoulder 188 of the lower end segment 89. A reduced diameter neck portion 92 is provided to permit the upper segments 94 to be received in the aforedescribed slot in the locking plate 90 of the transfer and storage rack 56. Since other types of racking devices could be used with the rig 20, the neck 90 may not be necessary and represents only one possible embodiment.
An important feature of this invention is the provision of serrations or splines 144 and 190 respectively located adjacent the ends of the lower end segment 89 and the upper end segment 94. The basic function of these splines is to provide an improved surface means on the drill string sections whereby the jaw assemblies 100 and 102 can quickly and positively grip the adjacent end segments of joined drill string section.
The prior art suggests that drill pipes and rods be provided with flat surfaces relieved in their outer wall which are engageable by opposed jaws of a wrench. Usually two, four or six flats are provided for this purpose; and, unless the wrench can be moved substantially about the perimeter of a string section and can be easily manipulated with respect to the flats, extreme difficulty is experienced in engaging the wrench with the flats. Thispoor situation is worsened if the wrench is capable of .only very limited angular movement relative to the flats since the angular opportunities for engaging a six flatted section, for example, are 60 apart. Thus a wrench adapted for gripping a six flatted section must be capable of rotating 60 with respect to the section to insure an opportunity for the wrench to fit onto the flats. An additional increment of wrench rotation must be provided which at least equals the rotation needed to break out the threads between sections. The amount of breakout rotation will depend upon the configuration of the threads and the properties of the thread material. It is believed that wrench rotation on the order of 60 is unacceptable where the wrench comprises a part of a self-contained breakout device for a portable drill rig because the power cylinder must have a relatively long stroke to turn the lever arm of the wrench through a 60 arc. The restraints imposed on the physical dimensions and weight of a power cylindersuitable for use on a breakout mechanism such as that disclosed in this specification require that the stroke of the power cylinder be as short as possible.
Several solutions to theproblems noted above in the use of a short stroke cylinder for rotational power in a breakout mechanism have been proposed but found unacceptable. One solution involves the substitution of a rotary drive motor for the power cylinder 164 so that unlimited wrench rotation is available to align the wrench jaws with flats or slots as taught by the prior art. It has been found,however, that sufficiently high starting torque for breaking out tight joints encountered in a typical drill string cannot be provided by a rotary drive motor which meets the size and weight requirements of the application under consideration. It has also been suggested that the jaws of the wrench have sharp edges which bite into the outer wall of the drill string sections thereby eliminating flats altogether. Such biting action will severely shorten the useful life of a thin-walled section such as sections A-D if the section material is soft enough to deform. If the sections are hardened, as is the usual case with percussive drill strings, the jaws will not bite into the section sufficiently to hold when loosening torque is applied to the wrench. Still another solution has been advanced whereby the number of wrench flats on the sections is substantially increased to increase correspondingly the opportunities for the wrench to come into alignment with a pair of flats. In practice any improvement has been severely limited since increasing the number of flats produces a decrease in the area of each flat hence a decrease in the effective area of driving contact between the wrench jaws and the flats.
The present invention effectively uses a short stroke cylinder 164 to rotate the rotatable jaw assembly through an angle Z, shown in FIG. 3, to achieve assured engagement of the splines 144 on the lower end segments 89 and splines 145 on the shank 64 with complementary splines 192 on the end surfaces of the pistons 122. In the development of the breakout mechanism 36, it has been discovered that three factors must be considered if a splined or serrated construction is to be successfully employed with drill string sections, namely:
l. The size of the angle of rotation Z of the rotatable jaw assembly 100 as provided by a power cylinder having a short stroke length applied to a lever arm also of the shortest practical length.
2. The size of the angle of rotation Y needed to loosen the threads 184, 186 which join adjacent drill string sections. The angle Y may be referred to as the thread breakout angle and can be calculated or measured for any given type of threaded joint.
3. The size of the angle X between the splines.
In relating these angles to the design of the breakout mechanism and the drill string and shank splines, the angle Z must be at least equal to the sum of angles X and Y if the teeth 196 of the piston splines 192 are to be provided enough rotative movement to insure that they will come into engaging alignment with the splines 144 and 145 under the worst conditions of initial misalignment and will thereafter be rotated through the breakout angle of the joint threads. As an example, if the angle Z is fixed at 15 by the design of the breakout mechanism and if the breakout angle of the threads 184, 186 is known to be 6, the angular spacing of the splines: 144, 145 and 192 can be no more than 9. Under these conditions 40 splines could be provided. It will be understood that for any given breakout angle Y the number of splines will vary directly as the rotation angle Z is changed. From a knowledge of this relationship and fixing what has been found to be a practical design limit on angle Z of 30, the minimum number of splines for drill strings having a breakout angle of 6 would be 15.
The maximum number of splines has been found to be established by practical limits on the circumferential spacing between adjacent splines. If an excessive number of splines are formed on a string section of a given diameter and wall thickness, the teeth of the splines are not of suflicient cross section and strength to withstand the turning forces applied thereto to break out a joint. Moreover, if the splines are too closely spaced, they will tend to become clogged with dirt and mud while in the bore hole and the piston splines 192 cannot interengage. A minimum critical circumferential spacing between splines has been established as being inch.
Another feature of the splined string sections and shank disclosed herein is the slope of the walls of spline teeth. Referring to FIG. it will be seen that the sides of an individual tooth 194 on a string section slope toward one another and if projected, intersect to define an included angle R. The teeth 196 of the piston splines 192 are sloped at the same angle R for interfitting engagement with the splines 144. In order to maximize the engagement between the teeth 194 and 196, the number of teeth 196 which will engage upon linear movement of the piston 122 should be made as great as possible. The limitation on the number of teeth 196 is the maximum possible size of the angle S which, in turn, can be no greater than the included angle R defined by the slope of the teeth 194. Thus the slope of the walls of the teeth on the string section and the piston surface 142 determines the maximum number of engageable teeth, the diameter of the pistons 122 and, therefore, the total area of clamping engagement of the rotation assembly 100 and the stationary assembly 102 with the drill string sections engaged thereby. A practical upper limit on the size of angles R and S occurs when the tooth slope is so great that a tangential rotating force applied by the teeth 196 of the pistons 122 to the teeth 194 creates a reactance force acting upon the piston teeth 196 which has a radial force component greater than the opposed force imparted to the teeth 196 by the pressure fluid acting on the head 128 of each piston 122. If this condition should occur, the teeth 194 and 196 will not stay in rotary driving engagement; and, it is possible to severely damage these teeth. In a preferred embodiment of the splines 144, 190 on the pipe sections and the pistons 122, 122a, the included angle R is 60.
PGWER AND CONTROL SYSTEM In the preferred embodiment of the drill rig 20, the hereinbefore described components and assemblies are powered by and controlled by a hydraulic system comprised of conventionally constructed pumps, motors and valves. The pumps P P and P are are mounted on the rig frame and are powered by a suitable prime mover also carried on the rig frame The pump P supplies the reversible motor 38 which moves the drill 34 up and down the mast under the control of the rig operator by means of a suitable motor control valve, not shown. The pump P supplies the reversible drill rotation motor 68 which is remotely controllable by the rig operator by valve means, not shown. A pilot controlled relief valve V is connected in parallel with the drill rotation motor 68; and, when opened, V bypasses fluid around motor 68. V only operates as a bypass for fluid flow which produces rotation of the motor 68 in the forward direction i.e., the direction of rotation of the shank 64 which tends to tighten a threaded joint between the shank and string sections and between sections. The relief valve V opens at a preset fluid pressure, less than the full pressure of the pump P only when a two-way pressure operated valve V is opened to connect the pilot portion of V, to a fluid reservoir by means of conduit 198. Thus it will be understood that valves V and V coact to reduce the torque output of the drill rotation motor only in the forward direction to limit the tightness of threaded joints while the reverse or thread disconnecting torque output is unchanged. In a preferred embodiment of this control feature of the invention the joint connecting torque output of the motor 68 is cut to from one fourth to one third of the joint disconnecting torque output. The purpose of this control feature will be more clearly understood from the following description of the operation of the invention.
The pump 1 supplies valves V V V and V which are also connected to a reservoir for the pump P V is a three-position spring centered valve shown in theneutral position. V is operated to supply pressure fluid from pump P to the transfer and storage rack motor 58 for forward and reverse rotation to effect lateral movement of the rack 56 as described above.
V is a two-position detented valve shown in the disengaged position wherein conduits 200 and 202 are connected to the reservoir of pump P When V is operated to connect conduits 200 and 202 to the pump P pressure fluid is supplied to the stationary jaw assembly 102 to force the pistons 122a radially inwardly into gripping engagement with the splines 190. At the same fime, pressure fluid is supplied to V which opens the bypass valve V in the manner described above. When V is returned to the position shown in FIG. 6, the conduits and 102 are exhausted to the reservoir whereby the springs 1300 return the pistons to their retracted position and valve V is depressurized thereby blocking the bypassing fluid flow through V V is a three-position, spring centered valve shown in the neutral position. V supplies pressure fluid from pump P to actuate the piston jaws 122 of the rotary jaw assembly 100 and to extend and retract the double acting cylinder 164 for effecting rotation of the rotary jaw assembly 100. Conduit 132 communicates V to the fitting 134 on the housing 112 and has a branch conduit 180 connected to one end of the cylinder 164. Interposed in branch conduit 180 is a pressure sensing sequence valve V which is operated to its open position by a build-up of fluid pressure in the conduit 132 as the pistons 122 of the rotary jaw assembly engage with shank 64 or with a drill string section. The conduit 178 connects the other end of the cylinder 164 with V The sequence valve V provides an important control feature of this invention by assuring that the pistons 122 have been extended so that the piston teeth 196 are biased for interengagement with splines 144 or 145 before pressure fluid is admitted to the power cylinder 164 to rotate the pistons 122. This sequence of operations gives the piston teeth 196 their best chance for engagement with splines 144 or 145 with a very minimum degree of relative rotation and reduces the chance of damage to these splines or malfunction of the rotary breakout assembly due to a failure of the spline teeth to engage prior to actuation of the power cylinder 164.
V is a three-position, spring centered valve shown in the neutral position for supplying pressure fluid from pump P to the reversible motor 46 which powers the breakout mechanism 36 up and down the rig mast 26.
The manual control handles for valves V V V and V as well as the handles for control valves, not shown, for the drill rotation motor 68 and the drill pull-down motor 38, may be conveniently grouped on the operators control panel 60. In FIGS. 1 and 7-15 the pressure fluid conduits for the rig components described above have not been shown since their location and manner of installation are merely a matter of design and convenience.
OPERATION The preferred mode of operation of the drill rig 20 is as follows. The rig 20 is moved into position at the drilling site and the mast 26 is elevated to the desired angle with respect'to the ground surface 30. As shown in FIG. 7, string section A is initially stored in the-mast 26 with its upper end 94A joined to the motor shank 64 and with its lower end 89A extended through the breakout mechanism 36 which has been lowered by motor 46 to its lowermost position for bearing up on the plate 210 of the mast foot 28. The threaded lower end 89A of section A is joined to a drill bit 212 which is advanced into the ground by the hammering and rotating action of the drill motor 34 and by the pull-down force applied to the drill string by the motor 38. The pistons 122, 122a of the breakout mechanism 36.are retracted and the centralizer bushings 148, 1480 closely surround the body 182A of section A. The sections B, C, and D are stored in the rack which has been moved to itsoutermost lateral position by motor 58.
The drill motor is then actuated to impact and rotate section A and bit 212 to start the hole 62. The centralizer bushings 148, 148a serve to restrain section A and the bit 212 from lateral bending and wandering as the hole is started. The incorporation of this centralizing function in the breakout mechanism itself is particularly advantageous since it eliminates the need for a separate centralizer assembly on the rig. As the drill motor is advanced by the feed motor 38, the rotation motor 68 may be operated up to full torque output. When the extreme lower position of the drill motor 34 is reached, as shown in FIG. 8, the front head 66 of the drill motor abuts with the retainer ring 150 of the breakout mechanism 36; and, the shank 64 and upper section end 94A are automatically aligned for engagement with the breakout pistons 122 and 122a, respectively. The stationary jaw assembly 102 is then actuated byvalve V, to cause the piston teeth 196a to engage with the string section splines 190A whereby section A is held against rotation and longitudinal movement. When V is operated to actuate the stationary jaw assembly 102, the valve V is simultaneously operated to place the bypass valve V in parallel with the drill rotation motor 68. Valve V is then operated first to supply pressure fluid behind the piston jaws 122 of the rotary jaw assembly 100 causing jaws 122 to contact the shank serrations 145 and thereafter to extend the piston rod 170 of the cylinder 164 causing the jaws 122 to rotate the shank 64 through the angle Z, as shown in FIG. 3. As soon as the jaw teeth 196 and shank splines 14S interengage, the cylinder 164 imparts thread breakout rotation to the shank relative to the v.nonrotatably held section A. The valve V is then operated to release the pistons 122 and to retract the piston rod 170 of the rotation cylinder 164. The drill rotation motor 68 is then reversed at full power to completely disconnect or spin out the shank from section A. The motor 38 then raises the drill motor 34 to the top of the mast 26 as shown in FIG. 14 so that the rack 56 may be moved in to the position shown in FIG. 9 whereby the section B is aligned with the drill motor 34 and thebreakout mechanism 36. Drill motor 34 is then lowered to thread the shank 64 into the upper end 94B of section B and is then raised again to lift section B so that the lower end 89B clears the receptacle 88 and the neck 92Bis aligned with the slot in the locking plate whereby the rack 56 can be laterally retracted to the position shown in FIG. 10. The drill motor 34 is then lowered and operated to rotate section B to connect its male threads 186B with female threads 184A of section A. Valve V is then operated to release the stationary piston jaws 122a and to take the bypass valve V, out of circuit with the drill rotation motor 68.
The cycle of operations described above is repeated until a sufficient number of sections have been added to the drill string to advance the bit 212 to the desired depth.
Not all of the length of a string section need be employed; therefore, holes may bedrilled to depths which are not even multiples of a section length. In such a case, the joint between the shank 64 and the uppermost section, section B in this case, is stopped short of the lowermost position of the breakout mechanism 36 as shown in FIG. 10. To disassemble sections A and B, valve V is operated to actuate the motor 46 to raise the breakout mechanism 36 up the mast into abutting engagement with the drill motor 34 as shown in FIG. 11. The stationary breakout assembly 102 is actuated by valve V and the rotary breakout assembly is then actuatedby valve V to loosen the joint between sections A and B. The rotation motor 68 is then operated in the forward direction, but at reduced torque output because the bypass valve V is in circuit with the rotation motor, to retighten the shank 64 to a snug relation with the upper end 94B of section B. Thus snug-tight connection between the shank and section B is for a purpose to be explained hereafter. The breakout mechanism 36 is lowered against the foot plate 210 and the drill motor raised to position the joint between sections A and B in proper alignment with the breakout mechanism, as shown in FIG. 12. The breakout mechanism is operated to break out the joint between sections A and B in the manner described above. With the rotatable jaws 122 retracted and the stationary jaws 122a engagedto support section A off the hole bottom, the rotation motor is reversed to spin out the joint between sections A and B. This step in the string disassembly cycle can be performed with complete confidence that the shank will not uncouple from the top of section B since this joint has previously been retightened to a snug condition by the reduced forward torque output of the drill rotation motor 68 while, on the other hand, the joint between sections A and B has not been retightened at all from its loosened condition. This feature of the invention provides a foolproof method of drill string disassembly which increases the speed and 'efiiciency of drilling operations and eliminates a heretofore hazardous working condition for the rig operator. Section B is then raised by the drill motor 34 to align the neck 92B with the slot in the locking plate 90 of the rack 56. The rack is moved laterally to receive the section B and the drill motor 34 is then lowered to seat it lower end 89B in receptacle 88 and to align its upper end 948 with the clamp member 98. Cylinder 96 is then actuated to clamp section B against rotation; and, the drill rotation motor 68 is reversed at full torque output to disconnect completely the snug-tight joint between the shank 64 and the top of section B. Rack 56 is then retracted, as shown in FIG. 14, and the drill motor 34 is lowered to connect the shank 64 with the upper end 94A of section A which is supported by the breakout mechanism 36, as shown in FIG. 15. Section A is then withdrawn from the hole 62 to its stored position in the mast 26, shown in FIG. 7, to complete the drilling cycle.
What we claim is:
l. A fluid actuated breakout mechanism operable for loosening a threaded joint between a rotatable drill member and a drill string section from an initially tight condition;
said breakout mechanism including a fluid actuated jaw assembly having drill string section engaging jaws and drill member engaging jaws;
a reversible fluid actuated rotary motor providing torque for rotating said drill member to connect and disconnect said joint; and
fluid control means responsive to operation of said breakout mechanism to limit the joint connecting torque output of said motor to a level less than its joint disconnecting torque output.
2. The invention defined in claim 1, wherein:
said breakout mechanism includes a fluid actuated jaw assembly operable to engage said drill string section; and
said fluid control means includes a bypass connectable in circuit with said motor when said drill string section engaging jaws are engaged.
3. The invention defined in claim 2, wherein:
said fluid control means includes fluid actuated valve means operable to connect said bypass; and
said valve means and said drill string section engaging jaws are connected to a common fluid supply valve for simultaneous operation.
4. Threadably joinable drill string sections each having external splines formed adjacent opposite ends thereof and a breakout mechanism for loosening threaded joints between sections of a drill string, comprising:
upper and lower gripping means;
said upper gripping means being rotatable with respect to said lower gripping means;
a bore extending through said gripping means for receiving the splined adjacent ends of two joined sections;
jaw means having plural teeth formed thereon and housed in said gripping means; and
said jaw means being operable for movement relative to said gripping means into said bore to effect interengagement of said teeth with the splined ends of said joined sections.
5. The invention defined in claim 4, wherein:
said jaw means comprise fluid actuated pistons radially disposed about said bore in cylinder bores interconnected by fluid passage means.
6. The invention defined in claim 4, together with:
fluid actuated means for operating the jaw means of said upper gripping means;
fluid actuated cylinder means having a cylinder body connected to said lower gripping means and an extendable piston rod connected to said upper -s flui means ln circuit with said aw means of said upper gripping means and said cylinder means for sequentially operating said jaw means of the upper gripping and then said cylinder means.
7. The invention defined in claim 4, wherein:
said teeth have sloping walls which when extended would intersect to define an included angle of 8. The invention defined in claim 4, wherein:
said teeth are spaced apart by at least .125 inch.
9. The invention defined in claim 4, together with:
annular bushings removably attached to the upper and lower gripping means and disposed adjacent the opposite openings of said bore.
10. The invention defined in claim 9, wherein:
the inside diameter of said bushings are smaller than the diameter of said bore.
1 1. The invention defined in claim 4, together with:
means for moving said upper and lower gripping means along the entire length of a drill string section received in said bore.

Claims (11)

1. A fluid actuated breakout mechanism operable for loosening a threaded joint between a rotatable drill member and a drill string section from an initially tight condition; said breakout mechanism including a fluid actuated jaw assembly having drill string section engaging jaws and drill member engaging jaws; a reversible fluid actuated rotary motor providing torque for rotating said drill member to connect and disconnect said joint; and fluid control means responsive to operation of said breakout mechanism to limit the joint connecting torque output of said motor to a level less than its joint disconnecting torque output.
2. The invention defined in claim 1, wheRein: said breakout mechanism includes a fluid actuated jaw assembly operable to engage said drill string section; and said fluid control means includes a bypass connectable in circuit with said motor when said drill string section engaging jaws are engaged.
3. The invention defined in claim 2, wherein: said fluid control means includes fluid actuated valve means operable to connect said bypass; and said valve means and said drill string section engaging jaws are connected to a common fluid supply valve for simultaneous operation.
4. Threadably joinable drill string sections each having external splines formed adjacent opposite ends thereof and a breakout mechanism for loosening threaded joints between sections of a drill string, comprising: upper and lower gripping means; said upper gripping means being rotatable with respect to said lower gripping means; a bore extending through said gripping means for receiving the splined adjacent ends of two joined sections; jaw means having plural teeth formed thereon and housed in said gripping means; and said jaw means being operable for movement relative to said gripping means into said bore to effect interengagement of said teeth with the splined ends of said joined sections.
5. The invention defined in claim 4, wherein: said jaw means comprise fluid actuated pistons radially disposed about said bore in cylinder bores interconnected by fluid passage means.
6. The invention defined in claim 4, together with: fluid actuated means for operating the jaw means of said upper gripping means; fluid actuated cylinder means having a cylinder body connected to said lower gripping means and an extendable piston rod connected to said upper gripping means; and fluid control means in circuit with said jaw means of said upper gripping means and said cylinder means for sequentially operating said jaw means of the upper gripping and then said cylinder means.
7. The invention defined in claim 4, wherein: said teeth have sloping walls which when extended would intersect to define an included angle of 60* .
8. The invention defined in claim 4, wherein: said teeth are spaced apart by at least .125 inch.
9. The invention defined in claim 4, together with: annular bushings removably attached to the upper and lower gripping means and disposed adjacent the opposite openings of said bore.
10. The invention defined in claim 9, wherein: the inside diameter of said bushings are smaller than the diameter of said bore.
11. The invention defined in claim 4, together with: means for moving said upper and lower gripping means along the entire length of a drill string section received in said bore.
US881842A 1969-12-03 1969-12-03 Joint breakout mechanism Expired - Lifetime US3680412A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88184269A 1969-12-03 1969-12-03

Publications (1)

Publication Number Publication Date
US3680412A true US3680412A (en) 1972-08-01

Family

ID=25379321

Family Applications (1)

Application Number Title Priority Date Filing Date
US881842A Expired - Lifetime US3680412A (en) 1969-12-03 1969-12-03 Joint breakout mechanism

Country Status (11)

Country Link
US (1) US3680412A (en)
JP (1) JPS5028361B1 (en)
AT (1) AT315782B (en)
BE (1) BE757087A (en)
CA (1) CA927374A (en)
DE (1) DE2047587A1 (en)
FR (1) FR2070233B1 (en)
GB (3) GB1309398A (en)
NL (1) NL7017345A (en)
SE (1) SE388452B (en)
ZA (1) ZA703912B (en)

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833070A (en) * 1973-03-23 1974-09-03 Gardner Denver Co Resilient drill string guide and seal
US3881375A (en) * 1972-12-12 1975-05-06 Borg Warner Pipe tong positioning system
US3881558A (en) * 1972-06-09 1975-05-06 Claudio Dolza Pipe thrust machine for horizontal drilling
US3902385A (en) * 1974-03-14 1975-09-02 Varco Int Pipe joint make-up or break-out tool
US3920087A (en) * 1973-07-16 1975-11-18 Gardner Denver Co Rotary drive and joint breakout mechanism
US4037672A (en) * 1974-08-12 1977-07-26 Hughes Tool Company Shaft drill break-out system
DE2618877A1 (en) * 1976-04-29 1977-11-10 Christensen Inc DEVICE FOR KONTAKING AND BREAKING THE THREADED CONNECTIONS BETWEEN THE PIPE BODIES OF PIPE AND DRILLING STRINGS AND DRILLING TOOLS FOR DEEP DRILLING
US4102411A (en) * 1976-08-26 1978-07-25 Smith International, Inc. Drill stem for drilling upwardly
US4128135A (en) * 1977-07-13 1978-12-05 Gardner-Denver Company Drill pipe handling mechanism
DE2810962A1 (en) * 1977-03-15 1979-02-15 Bj Hughes Inc COMPUTER-CONTROLLED OIL DRILL EQUIPMENT WITH A CONTROL OF THE DRAWER MOTOR AND THE DRAWER BRAKE
US4147215A (en) * 1978-03-09 1979-04-03 Hughes Tool Company Independently powered breakout apparatus and method for a sectional drill string
WO1979000704A1 (en) * 1978-03-03 1979-09-20 Wintermeyer Automat Karl Process and device for screwing tubular sleeves
US4194581A (en) * 1975-03-22 1980-03-25 Walter Hans P Deep drill hammer
US4194579A (en) * 1976-08-09 1980-03-25 Joy Manufacturing Company Drilling apparatus and method
US4194419A (en) * 1977-07-13 1980-03-25 Cooper Industries, Inc. Drill pipe handling mechanism
US4209066A (en) * 1978-11-17 1980-06-24 Watson Barry R Method and apparatus for running tubular goods into and out of a borehole
US4421447A (en) * 1981-03-09 1983-12-20 Zena Equipment, Inc. Elevator transfer and support system
FR2531479A1 (en) * 1982-08-03 1984-02-10 Varco Int WELL DRILLING WITH TOP CONTROL UNIT
US4449592A (en) * 1981-03-23 1984-05-22 Cooper Industries, Inc. Automatic drill string section changer
US4458764A (en) * 1981-06-01 1984-07-10 Craelius Ab Device in rock or earth drilling apparatus for rotary drilling
US4545269A (en) * 1982-04-30 1985-10-08 Brissonneau Et Lotz Marine Machine to apply a screwing or unscrewing torque
EP0199664A2 (en) * 1985-04-26 1986-10-29 Varco International, Inc. Well pipe handling machine
US4621974A (en) * 1982-08-17 1986-11-11 Inpro Technologies, Inc. Automated pipe equipment system
US4703811A (en) * 1984-11-08 1987-11-03 Lam Ming L Drilling and/or lifting machine
FR2610363A1 (en) * 1987-01-30 1988-08-05 Montabert Ets Apparatus for unblocking and unscrewing drill-string elements
US4785892A (en) * 1984-11-08 1988-11-22 Luen Lam M Pile driver, pile drawer and/or drilling machine
US5255751A (en) * 1991-11-07 1993-10-26 Huey Stogner Oilfield make-up and breakout tool for top drive drilling systems
US5388651A (en) * 1993-04-20 1995-02-14 Bowen Tools, Inc. Top drive unit torque break-out system
EP0643638A1 (en) * 1993-03-03 1995-03-22 Unex Corporation Fluid operated tool
US5653297A (en) * 1995-04-14 1997-08-05 Harnischfeger Corporation Blasthole drill with improved automatic breakout wrench
US5785132A (en) * 1996-02-29 1998-07-28 Richardson; Allan S. Backup tool and method for preventing rotation of a drill string
US5791206A (en) * 1996-12-10 1998-08-11 Ingersoll-Rand Company Drill pipe handling mechanism
US6148924A (en) * 1998-11-10 2000-11-21 Oil & Gas Rental Services, Inc. Method and apparatus for the disassembly of drill pipe
US6543551B1 (en) 1995-02-22 2003-04-08 The Charles Machine Works, Inc. Pipe handling device
US20030132035A1 (en) * 2001-04-26 2003-07-17 Tsutomu Kaneko Step tube rod, and drilling machine
US6598501B1 (en) * 1999-01-28 2003-07-29 Weatherford/Lamb, Inc. Apparatus and a method for facilitating the connection of pipes
US20030141111A1 (en) * 2000-08-01 2003-07-31 Giancarlo Pia Drilling method
US20030164276A1 (en) * 2000-04-17 2003-09-04 Weatherford/Lamb, Inc. Top drive casing system
US20030221519A1 (en) * 2000-03-14 2003-12-04 Haugen David M. Methods and apparatus for connecting tubulars while drilling
US6668684B2 (en) 2000-03-14 2003-12-30 Weatherford/Lamb, Inc. Tong for wellbore operations
US20040045717A1 (en) * 2002-09-05 2004-03-11 Haugen David M. Method and apparatus for reforming tubular connections
US20040049905A1 (en) * 2002-09-12 2004-03-18 Manfred Jansch Automated pipe joining system
US6745646B1 (en) 1999-07-29 2004-06-08 Weatherford/Lamb, Inc. Apparatus and method for facilitating the connection of pipes
US6814149B2 (en) 1999-11-26 2004-11-09 Weatherford/Lamb, Inc. Apparatus and method for positioning a tubular relative to a tong
US20040237726A1 (en) * 2002-02-12 2004-12-02 Schulze Beckinghausen Joerg E. Tong
US20040251025A1 (en) * 2003-01-30 2004-12-16 Giroux Richard L. Single-direction cementing plug
US20050061112A1 (en) * 2003-09-19 2005-03-24 Weatherford Lamb, Inc. Adapter frame for a power frame
US6871712B2 (en) 2001-07-18 2005-03-29 The Charles Machine Works, Inc. Remote control for a drilling machine
US20050077743A1 (en) * 2003-10-08 2005-04-14 Bernd-Georg Pietras Tong assembly
US20050076744A1 (en) * 2003-10-08 2005-04-14 Weatherford/Lamb, Inc. Apparatus and methods for connecting tubulars
WO2005073495A1 (en) * 2004-01-28 2005-08-11 Max Streicher Gmbh & Co. Kg Aa Device for the production of deep drilling in geological structures
US6938697B2 (en) 2001-05-17 2005-09-06 Weatherford/Lamb, Inc. Apparatus and methods for tubular makeup interlock
US6994176B2 (en) 2002-07-29 2006-02-07 Weatherford/Lamb, Inc. Adjustable rotating guides for spider or elevator
US7004264B2 (en) 2002-03-16 2006-02-28 Weatherford/Lamb, Inc. Bore lining and drilling
US7004259B2 (en) * 1998-12-24 2006-02-28 Weatherford/Lamb, Inc. Apparatus and method for facilitating the connection of tubulars using a top drive
US7013997B2 (en) 1994-10-14 2006-03-21 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7028585B2 (en) 1999-11-26 2006-04-18 Weatherford/Lamb, Inc. Wrenching tong
US7028586B2 (en) 2000-02-25 2006-04-18 Weatherford/Lamb, Inc. Apparatus and method relating to tongs, continous circulation and to safety slips
US7036610B1 (en) 1994-10-14 2006-05-02 Weatherford / Lamb, Inc. Apparatus and method for completing oil and gas wells
US7040420B2 (en) 1994-10-14 2006-05-09 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7090021B2 (en) 1998-08-24 2006-08-15 Bernd-Georg Pietras Apparatus for connecting tublars using a top drive
US7090023B2 (en) 2002-10-11 2006-08-15 Weatherford/Lamb, Inc. Apparatus and methods for drilling with casing
US7090254B1 (en) 1999-04-13 2006-08-15 Bernd-Georg Pietras Apparatus and method aligning tubulars
US7096982B2 (en) 2003-02-27 2006-08-29 Weatherford/Lamb, Inc. Drill shoe
US7100710B2 (en) 1994-10-14 2006-09-05 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7100713B2 (en) 2000-04-28 2006-09-05 Weatherford/Lamb, Inc. Expandable apparatus for drift and reaming borehole
US7108084B2 (en) 1994-10-14 2006-09-19 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7131505B2 (en) 2002-12-30 2006-11-07 Weatherford/Lamb, Inc. Drilling with concentric strings of casing
US7137454B2 (en) 1998-07-22 2006-11-21 Weatherford/Lamb, Inc. Apparatus for facilitating the connection of tubulars using a top drive
US7140445B2 (en) 1997-09-02 2006-11-28 Weatherford/Lamb, Inc. Method and apparatus for drilling with casing
US7165634B2 (en) 1994-10-14 2007-01-23 Weatherford/Lamb, Inc. Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7188547B1 (en) 2005-12-23 2007-03-13 Varco I/P, Inc. Tubular connect/disconnect apparatus
US20070074606A1 (en) * 2003-11-25 2007-04-05 Helge-Ruben Halse Power tong
US7219744B2 (en) 1998-08-24 2007-05-22 Weatherford/Lamb, Inc. Method and apparatus for connecting tubulars using a top drive
US20070131416A1 (en) * 2003-03-05 2007-06-14 Odell Albert C Ii Apparatus for gripping a tubular on a drilling rig
WO2007070805A2 (en) * 2005-12-12 2007-06-21 Weatherford/Lamb, Inc. Apparatus for gripping a tubular on a drilling rig
US7506564B2 (en) 2002-02-12 2009-03-24 Weatherford/Lamb, Inc. Gripping system for a tong
US7513300B2 (en) 1998-08-24 2009-04-07 Weatherford/Lamb, Inc. Casing running and drilling system
US7650944B1 (en) 2003-07-11 2010-01-26 Weatherford/Lamb, Inc. Vessel for well intervention
US7654325B2 (en) 2000-04-17 2010-02-02 Weatherford/Lamb, Inc. Methods and apparatus for handling and drilling with tubulars or casing
US20100044112A1 (en) * 2006-10-26 2010-02-25 Tt Technologies, Inc. Drill stem connection and method
US7669662B2 (en) 1998-08-24 2010-03-02 Weatherford/Lamb, Inc. Casing feeder
US7694744B2 (en) 2005-01-12 2010-04-13 Weatherford/Lamb, Inc. One-position fill-up and circulating tool and method
US7757759B2 (en) 2006-04-27 2010-07-20 Weatherford/Lamb, Inc. Torque sub for use with top drive
US7845418B2 (en) 2005-01-18 2010-12-07 Weatherford/Lamb, Inc. Top drive torque booster
US7882902B2 (en) 2006-11-17 2011-02-08 Weatherford/Lamb, Inc. Top drive interlock
AU2008229630B2 (en) * 2007-03-22 2011-03-10 Bruce William Haines Drilling coupling break-out system
US20110219917A1 (en) * 2010-03-11 2011-09-15 Bucyrus Mining Equipment Breakout wrench system
USRE42877E1 (en) 2003-02-07 2011-11-01 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
US20120103623A1 (en) * 2009-04-29 2012-05-03 Itrec B.V. Tubulars storage and handling system
US20140131110A1 (en) * 2012-11-12 2014-05-15 Earth Tool Company Llc Make-Up/Break-Out Device For Drilling Hammers
US20140367133A1 (en) * 2013-06-18 2014-12-18 JW Tooling, LLC Hydraulic rotator converter for a hydraulic impact hammer and method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2399531A1 (en) * 1977-03-15 1979-03-02 Bj Hughes Inc Computerised boring rig lifting motor and brake operator - with control of making and breaking of boring train joints
FR2526080A1 (en) * 1982-04-30 1983-11-04 Brissonneau & Lotz METHOD AND DEVICE FOR LOCKING AND RELEASING A SUBSTANTIALLY VERTICAL AXIS DRILLING ROD
CA1276008C (en) * 1987-01-22 1990-11-06 Allen H. Kaven Self-adjusting bit basket
NO163973C (en) * 1988-04-19 1990-08-15 Maritime Hydraulics As MOMENT tong.
FI87391C (en) * 1989-03-23 1992-12-28 Tampella Oy Ab ANORDNING FOER HANTERING AV BORRSTAENGER I BERGBORRMASKINERI EL. Dyl.
JPH077893Y2 (en) * 1989-05-23 1995-03-01 ブラザー工業株式会社 Pocket setter pocket bending device
CA2253068C (en) 1998-11-06 2006-07-18 Mining Technologies International Inc. Remotely operated raise drill torque tool
GB2346576B (en) * 1999-01-28 2003-08-13 Weatherford Lamb A rotary and a method for facilitating the connection of pipes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3041901A (en) * 1959-05-20 1962-07-03 Dowty Rotol Ltd Make-up and break-out mechanism for drill pipe joints
US3203284A (en) * 1962-07-09 1965-08-31 Joy Mfg Co Power wrench and power slip
US3246547A (en) * 1962-08-13 1966-04-19 Leyman Corp Drill string suspension arrangement
US3371562A (en) * 1965-10-23 1968-03-05 Benjamin F. Kelley Grapple

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2450934A (en) * 1946-05-25 1948-10-12 Ingram X Calhoun Well pipe handling apparatus
US2705614A (en) * 1949-05-07 1955-04-05 Byron Jackson Co Power operated pipe tongs
US2969702A (en) * 1955-05-19 1961-01-31 O & M Machine Company Inc Apparatus for running thread-jointed oil well strings into and out of oil wells
US3201284A (en) * 1962-11-05 1965-08-17 Gould National Batteries Inc Two-way vent valve for batteries
FR1412311A (en) * 1964-10-23 1965-09-24 F N R D Ltd Improvements to tube clamping devices for drilling rigs and the like

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3041901A (en) * 1959-05-20 1962-07-03 Dowty Rotol Ltd Make-up and break-out mechanism for drill pipe joints
US3203284A (en) * 1962-07-09 1965-08-31 Joy Mfg Co Power wrench and power slip
US3246547A (en) * 1962-08-13 1966-04-19 Leyman Corp Drill string suspension arrangement
US3371562A (en) * 1965-10-23 1968-03-05 Benjamin F. Kelley Grapple

Cited By (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881558A (en) * 1972-06-09 1975-05-06 Claudio Dolza Pipe thrust machine for horizontal drilling
US3881375A (en) * 1972-12-12 1975-05-06 Borg Warner Pipe tong positioning system
US3833070A (en) * 1973-03-23 1974-09-03 Gardner Denver Co Resilient drill string guide and seal
US3920087A (en) * 1973-07-16 1975-11-18 Gardner Denver Co Rotary drive and joint breakout mechanism
US3902385A (en) * 1974-03-14 1975-09-02 Varco Int Pipe joint make-up or break-out tool
US4037672A (en) * 1974-08-12 1977-07-26 Hughes Tool Company Shaft drill break-out system
US4194581A (en) * 1975-03-22 1980-03-25 Walter Hans P Deep drill hammer
DE2618877A1 (en) * 1976-04-29 1977-11-10 Christensen Inc DEVICE FOR KONTAKING AND BREAKING THE THREADED CONNECTIONS BETWEEN THE PIPE BODIES OF PIPE AND DRILLING STRINGS AND DRILLING TOOLS FOR DEEP DRILLING
US4194579A (en) * 1976-08-09 1980-03-25 Joy Manufacturing Company Drilling apparatus and method
US4102411A (en) * 1976-08-26 1978-07-25 Smith International, Inc. Drill stem for drilling upwardly
US4187546A (en) * 1977-03-15 1980-02-05 B. J. Hughes Inc. Computer-controlled oil drilling rig having drawworks motor and brake control arrangement
DE2810962A1 (en) * 1977-03-15 1979-02-15 Bj Hughes Inc COMPUTER-CONTROLLED OIL DRILL EQUIPMENT WITH A CONTROL OF THE DRAWER MOTOR AND THE DRAWER BRAKE
US4194419A (en) * 1977-07-13 1980-03-25 Cooper Industries, Inc. Drill pipe handling mechanism
US4128135A (en) * 1977-07-13 1978-12-05 Gardner-Denver Company Drill pipe handling mechanism
WO1979000704A1 (en) * 1978-03-03 1979-09-20 Wintermeyer Automat Karl Process and device for screwing tubular sleeves
US4147215A (en) * 1978-03-09 1979-04-03 Hughes Tool Company Independently powered breakout apparatus and method for a sectional drill string
US4209066A (en) * 1978-11-17 1980-06-24 Watson Barry R Method and apparatus for running tubular goods into and out of a borehole
US4421447A (en) * 1981-03-09 1983-12-20 Zena Equipment, Inc. Elevator transfer and support system
US4449592A (en) * 1981-03-23 1984-05-22 Cooper Industries, Inc. Automatic drill string section changer
US4458764A (en) * 1981-06-01 1984-07-10 Craelius Ab Device in rock or earth drilling apparatus for rotary drilling
US4545269A (en) * 1982-04-30 1985-10-08 Brissonneau Et Lotz Marine Machine to apply a screwing or unscrewing torque
FR2565289A1 (en) * 1982-08-03 1985-12-06 Varco Int Well-drilling apparatus with control unit at the top and elevator held from rotating
US4449596A (en) * 1982-08-03 1984-05-22 Varco International, Inc. Drilling of wells with top drive unit
FR2565288A1 (en) * 1982-08-03 1985-12-06 Varco Int Well-drilling apparatus with torque wrench and elevator which can move vertically with respect to each other
FR2531479A1 (en) * 1982-08-03 1984-02-10 Varco Int WELL DRILLING WITH TOP CONTROL UNIT
FR2565287A1 (en) * 1982-08-03 1985-12-06 Varco Int Well-drilling apparatus with a control unit at the top and a torque wrench held from rotating
US4621974A (en) * 1982-08-17 1986-11-11 Inpro Technologies, Inc. Automated pipe equipment system
US4703811A (en) * 1984-11-08 1987-11-03 Lam Ming L Drilling and/or lifting machine
US4785892A (en) * 1984-11-08 1988-11-22 Luen Lam M Pile driver, pile drawer and/or drilling machine
EP0199664A2 (en) * 1985-04-26 1986-10-29 Varco International, Inc. Well pipe handling machine
EP0199664A3 (en) * 1985-04-26 1988-07-20 Varco International, Inc. Well pipe handling machine
FR2610363A1 (en) * 1987-01-30 1988-08-05 Montabert Ets Apparatus for unblocking and unscrewing drill-string elements
US5255751A (en) * 1991-11-07 1993-10-26 Huey Stogner Oilfield make-up and breakout tool for top drive drilling systems
EP0643638A1 (en) * 1993-03-03 1995-03-22 Unex Corporation Fluid operated tool
EP0643638A4 (en) * 1993-03-03 1996-08-07 Unex Corp Fluid operated tool.
US5388651A (en) * 1993-04-20 1995-02-14 Bowen Tools, Inc. Top drive unit torque break-out system
US7108084B2 (en) 1994-10-14 2006-09-19 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7036610B1 (en) 1994-10-14 2006-05-02 Weatherford / Lamb, Inc. Apparatus and method for completing oil and gas wells
US7040420B2 (en) 1994-10-14 2006-05-09 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7165634B2 (en) 1994-10-14 2007-01-23 Weatherford/Lamb, Inc. Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7013997B2 (en) 1994-10-14 2006-03-21 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7100710B2 (en) 1994-10-14 2006-09-05 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US6543551B1 (en) 1995-02-22 2003-04-08 The Charles Machine Works, Inc. Pipe handling device
US5653297A (en) * 1995-04-14 1997-08-05 Harnischfeger Corporation Blasthole drill with improved automatic breakout wrench
US5785132A (en) * 1996-02-29 1998-07-28 Richardson; Allan S. Backup tool and method for preventing rotation of a drill string
US5791206A (en) * 1996-12-10 1998-08-11 Ingersoll-Rand Company Drill pipe handling mechanism
US7140445B2 (en) 1997-09-02 2006-11-28 Weatherford/Lamb, Inc. Method and apparatus for drilling with casing
US7137454B2 (en) 1998-07-22 2006-11-21 Weatherford/Lamb, Inc. Apparatus for facilitating the connection of tubulars using a top drive
US7665531B2 (en) 1998-07-22 2010-02-23 Weatherford/Lamb, Inc. Apparatus for facilitating the connection of tubulars using a top drive
US7090021B2 (en) 1998-08-24 2006-08-15 Bernd-Georg Pietras Apparatus for connecting tublars using a top drive
US7219744B2 (en) 1998-08-24 2007-05-22 Weatherford/Lamb, Inc. Method and apparatus for connecting tubulars using a top drive
US7513300B2 (en) 1998-08-24 2009-04-07 Weatherford/Lamb, Inc. Casing running and drilling system
US7451826B2 (en) 1998-08-24 2008-11-18 Weatherford/Lamb, Inc. Apparatus for connecting tubulars using a top drive
US7669662B2 (en) 1998-08-24 2010-03-02 Weatherford/Lamb, Inc. Casing feeder
US7353880B2 (en) 1998-08-24 2008-04-08 Weatherford/Lamb, Inc. Method and apparatus for connecting tubulars using a top drive
US6148924A (en) * 1998-11-10 2000-11-21 Oil & Gas Rental Services, Inc. Method and apparatus for the disassembly of drill pipe
US20070107909A1 (en) * 1998-12-24 2007-05-17 Bernd-Georg Pietras Apparatus and methods for facilitating the connection of tubulars using a top drive
US7128161B2 (en) * 1998-12-24 2006-10-31 Weatherford/Lamb, Inc. Apparatus and methods for facilitating the connection of tubulars using a top drive
US7004259B2 (en) * 1998-12-24 2006-02-28 Weatherford/Lamb, Inc. Apparatus and method for facilitating the connection of tubulars using a top drive
US6598501B1 (en) * 1999-01-28 2003-07-29 Weatherford/Lamb, Inc. Apparatus and a method for facilitating the connection of pipes
US7090254B1 (en) 1999-04-13 2006-08-15 Bernd-Georg Pietras Apparatus and method aligning tubulars
US6745646B1 (en) 1999-07-29 2004-06-08 Weatherford/Lamb, Inc. Apparatus and method for facilitating the connection of pipes
US20060179980A1 (en) * 1999-11-26 2006-08-17 Weatherford/Lamb, Inc. Wrenching tong
US7861618B2 (en) 1999-11-26 2011-01-04 Weatherford/Lamb, Inc. Wrenching tong
US6814149B2 (en) 1999-11-26 2004-11-09 Weatherford/Lamb, Inc. Apparatus and method for positioning a tubular relative to a tong
US7028585B2 (en) 1999-11-26 2006-04-18 Weatherford/Lamb, Inc. Wrenching tong
US7028586B2 (en) 2000-02-25 2006-04-18 Weatherford/Lamb, Inc. Apparatus and method relating to tongs, continous circulation and to safety slips
US6668684B2 (en) 2000-03-14 2003-12-30 Weatherford/Lamb, Inc. Tong for wellbore operations
US7028787B2 (en) 2000-03-14 2006-04-18 Weatherford/Lamb, Inc. Tong for wellbore operations
US7107875B2 (en) 2000-03-14 2006-09-19 Weatherford/Lamb, Inc. Methods and apparatus for connecting tubulars while drilling
US20040154835A1 (en) * 2000-03-14 2004-08-12 Weatherford/Lamb, Inc. Tong for wellbore operations
US20030221519A1 (en) * 2000-03-14 2003-12-04 Haugen David M. Methods and apparatus for connecting tubulars while drilling
US7654325B2 (en) 2000-04-17 2010-02-02 Weatherford/Lamb, Inc. Methods and apparatus for handling and drilling with tubulars or casing
US7712523B2 (en) 2000-04-17 2010-05-11 Weatherford/Lamb, Inc. Top drive casing system
US7793719B2 (en) 2000-04-17 2010-09-14 Weatherford/Lamb, Inc. Top drive casing system
US20030164276A1 (en) * 2000-04-17 2003-09-04 Weatherford/Lamb, Inc. Top drive casing system
US7918273B2 (en) 2000-04-17 2011-04-05 Weatherford/Lamb, Inc. Top drive casing system
US7100713B2 (en) 2000-04-28 2006-09-05 Weatherford/Lamb, Inc. Expandable apparatus for drift and reaming borehole
US20050247483A1 (en) * 2000-07-18 2005-11-10 Koch Geoff D Remote control for a drilling machine
US7392858B2 (en) 2000-07-18 2008-07-01 The Charles Machine Works, Inc. Remote control for a drilling machine
US7093675B2 (en) 2000-08-01 2006-08-22 Weatherford/Lamb, Inc. Drilling method
US20030141111A1 (en) * 2000-08-01 2003-07-31 Giancarlo Pia Drilling method
US20030132035A1 (en) * 2001-04-26 2003-07-17 Tsutomu Kaneko Step tube rod, and drilling machine
US7896084B2 (en) 2001-05-17 2011-03-01 Weatherford/Lamb, Inc. Apparatus and methods for tubular makeup interlock
US7073598B2 (en) 2001-05-17 2006-07-11 Weatherford/Lamb, Inc. Apparatus and methods for tubular makeup interlock
US20110226486A1 (en) * 2001-05-17 2011-09-22 Haugen David M Apparatus and methods for tubular makeup interlock
US8251151B2 (en) 2001-05-17 2012-08-28 Weatherford/Lamb, Inc. Apparatus and methods for tubular makeup interlock
US7281587B2 (en) 2001-05-17 2007-10-16 Weatherford/Lamb, Inc. Apparatus and methods for tubular makeup interlock
US6938697B2 (en) 2001-05-17 2005-09-06 Weatherford/Lamb, Inc. Apparatus and methods for tubular makeup interlock
US8517090B2 (en) 2001-05-17 2013-08-27 Weatherford/Lamb, Inc. Apparatus and methods for tubular makeup interlock
US6871712B2 (en) 2001-07-18 2005-03-29 The Charles Machine Works, Inc. Remote control for a drilling machine
US7506564B2 (en) 2002-02-12 2009-03-24 Weatherford/Lamb, Inc. Gripping system for a tong
US20040237726A1 (en) * 2002-02-12 2004-12-02 Schulze Beckinghausen Joerg E. Tong
US7281451B2 (en) 2002-02-12 2007-10-16 Weatherford/Lamb, Inc. Tong
US7004264B2 (en) 2002-03-16 2006-02-28 Weatherford/Lamb, Inc. Bore lining and drilling
US7448456B2 (en) 2002-07-29 2008-11-11 Weatherford/Lamb, Inc. Adjustable rotating guides for spider or elevator
US6994176B2 (en) 2002-07-29 2006-02-07 Weatherford/Lamb, Inc. Adjustable rotating guides for spider or elevator
US20040045717A1 (en) * 2002-09-05 2004-03-11 Haugen David M. Method and apparatus for reforming tubular connections
US7100697B2 (en) 2002-09-05 2006-09-05 Weatherford/Lamb, Inc. Method and apparatus for reforming tubular connections
US20040049905A1 (en) * 2002-09-12 2004-03-18 Manfred Jansch Automated pipe joining system
US7114235B2 (en) 2002-09-12 2006-10-03 Weatherford/Lamb, Inc. Automated pipe joining system and method
US7090023B2 (en) 2002-10-11 2006-08-15 Weatherford/Lamb, Inc. Apparatus and methods for drilling with casing
US7131505B2 (en) 2002-12-30 2006-11-07 Weatherford/Lamb, Inc. Drilling with concentric strings of casing
US7128154B2 (en) 2003-01-30 2006-10-31 Weatherford/Lamb, Inc. Single-direction cementing plug
US20040251025A1 (en) * 2003-01-30 2004-12-16 Giroux Richard L. Single-direction cementing plug
USRE42877E1 (en) 2003-02-07 2011-11-01 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
US7096982B2 (en) 2003-02-27 2006-08-29 Weatherford/Lamb, Inc. Drill shoe
US20110174483A1 (en) * 2003-03-05 2011-07-21 Odell Ii Albert C Apparatus for gripping a tubular on a drilling rig
US7874352B2 (en) 2003-03-05 2011-01-25 Weatherford/Lamb, Inc. Apparatus for gripping a tubular on a drilling rig
US10138690B2 (en) 2003-03-05 2018-11-27 Weatherford Technology Holdings, Llc Apparatus for gripping a tubular on a drilling rig
US8567512B2 (en) 2003-03-05 2013-10-29 Weatherford/Lamb, Inc. Apparatus for gripping a tubular on a drilling rig
US20070131416A1 (en) * 2003-03-05 2007-06-14 Odell Albert C Ii Apparatus for gripping a tubular on a drilling rig
US7650944B1 (en) 2003-07-11 2010-01-26 Weatherford/Lamb, Inc. Vessel for well intervention
US20050061112A1 (en) * 2003-09-19 2005-03-24 Weatherford Lamb, Inc. Adapter frame for a power frame
US7188548B2 (en) 2003-09-19 2007-03-13 Weatherford/Lamb, Inc. Adapter frame for a power frame
US7707914B2 (en) 2003-10-08 2010-05-04 Weatherford/Lamb, Inc. Apparatus and methods for connecting tubulars
US20050076744A1 (en) * 2003-10-08 2005-04-14 Weatherford/Lamb, Inc. Apparatus and methods for connecting tubulars
US20050077743A1 (en) * 2003-10-08 2005-04-14 Bernd-Georg Pietras Tong assembly
US7571667B2 (en) * 2003-11-25 2009-08-11 V-Tech As Power tong
US20070074606A1 (en) * 2003-11-25 2007-04-05 Helge-Ruben Halse Power tong
WO2005073495A1 (en) * 2004-01-28 2005-08-11 Max Streicher Gmbh & Co. Kg Aa Device for the production of deep drilling in geological structures
US7694744B2 (en) 2005-01-12 2010-04-13 Weatherford/Lamb, Inc. One-position fill-up and circulating tool and method
US7845418B2 (en) 2005-01-18 2010-12-07 Weatherford/Lamb, Inc. Top drive torque booster
WO2007070805A3 (en) * 2005-12-12 2008-02-07 Weatherford Lamb Apparatus for gripping a tubular on a drilling rig
WO2007070805A2 (en) * 2005-12-12 2007-06-21 Weatherford/Lamb, Inc. Apparatus for gripping a tubular on a drilling rig
EA015156B1 (en) * 2005-12-12 2011-06-30 Везерфорд/Лэм, Инк. Apparatus for gripping a tubular on a drilling rig
US7188547B1 (en) 2005-12-23 2007-03-13 Varco I/P, Inc. Tubular connect/disconnect apparatus
US20070193417A1 (en) * 2005-12-23 2007-08-23 West Neil E Tubular-drill bit connect/disconnect apparatus
US7313986B2 (en) * 2005-12-23 2008-01-01 Varco I/P, Inc. Tubular-drill bit connect/disconnect apparatus
US7757759B2 (en) 2006-04-27 2010-07-20 Weatherford/Lamb, Inc. Torque sub for use with top drive
US8191638B2 (en) 2006-10-26 2012-06-05 Tt Technologies, Inc. Drill stem connection and method
US20100044112A1 (en) * 2006-10-26 2010-02-25 Tt Technologies, Inc. Drill stem connection and method
US20110113934A1 (en) * 2006-10-26 2011-05-19 Tt Technologies, Inc. Drill stem connection and method
US7874370B2 (en) * 2006-10-26 2011-01-25 Tt Technologies, Inc. Drill stem connection and method
US7882902B2 (en) 2006-11-17 2011-02-08 Weatherford/Lamb, Inc. Top drive interlock
AU2008229630B2 (en) * 2007-03-22 2011-03-10 Bruce William Haines Drilling coupling break-out system
US20120103623A1 (en) * 2009-04-29 2012-05-03 Itrec B.V. Tubulars storage and handling system
US9038733B2 (en) * 2009-04-29 2015-05-26 Itrec B.V. Tubulars storage and handling system
US20110219917A1 (en) * 2010-03-11 2011-09-15 Bucyrus Mining Equipment Breakout wrench system
US8424419B2 (en) * 2010-03-11 2013-04-23 Caterpillar Global Mining Equipment Llc Breakout wrench system
US20140131110A1 (en) * 2012-11-12 2014-05-15 Earth Tool Company Llc Make-Up/Break-Out Device For Drilling Hammers
US20140367133A1 (en) * 2013-06-18 2014-12-18 JW Tooling, LLC Hydraulic rotator converter for a hydraulic impact hammer and method
US9566702B2 (en) * 2013-06-18 2017-02-14 JW Tooling, LLC Hydraulic rotator converter for a hydraulic impact hammer and method

Also Published As

Publication number Publication date
GB1309399A (en) 1973-03-07
FR2070233B1 (en) 1979-05-25
BE757087A (en) 1971-04-06
NL7017345A (en) 1971-06-07
FR2070233A1 (en) 1971-09-10
JPS5028361B1 (en) 1975-09-13
AT315782B (en) 1974-06-10
CA927374A (en) 1973-05-29
GB1309398A (en) 1973-03-07
SE388452B (en) 1976-10-04
DE2047587A1 (en) 1971-06-09
ZA703912B (en) 1972-01-26
GB1309397A (en) 1973-03-07

Similar Documents

Publication Publication Date Title
US3680412A (en) Joint breakout mechanism
US4147215A (en) Independently powered breakout apparatus and method for a sectional drill string
US3766991A (en) Electric power swivel and system for use in rotary well drilling
US6938709B2 (en) Pipe running tool
US4762187A (en) Internal wrench for a top head drive assembly
US4529045A (en) Top drive drilling unit with rotatable pipe support
US4813493A (en) Hydraulic top drive for wells
US3518903A (en) Combined power tong and backup tong assembly
US4274777A (en) Subterranean well pipe guiding apparatus
US3915244A (en) Break out elevators for rotary drive assemblies
US4625796A (en) Well pipe stabbing and back-up apparatus
US4106575A (en) Tool string and means for supporting and rotating the same
US3920087A (en) Rotary drive and joint breakout mechanism
US3340938A (en) Semi-automated drilling rig
US20100200215A1 (en) Pipe running tool
US9988863B2 (en) Apparatus and method for connecting components
US5231899A (en) Drilling rig breakout wrench system
US3291225A (en) Drive coupling for drill string
US2705614A (en) Power operated pipe tongs
JPS5944487A (en) Apparatus for drilling well equipped with top drive unit
CA2298845C (en) Drill rod loader
EP0087917B1 (en) Drilling apparatus
US3158213A (en) Drill string suspension arrangement
US20150259993A1 (en) Exit Side Tool For Makeup And Breakout Of Pipe
US3507174A (en) Backup tong for power pipe tongs