Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3676325 A
Publication typeGrant
Publication date11 Jul 1972
Filing date8 Jun 1970
Priority date27 Jun 1969
Publication numberUS 3676325 A, US 3676325A, US-A-3676325, US3676325 A, US3676325A
InventorsEntwisle John Hubert, Smith Frank
Original AssigneeIci Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Anode assembly for electrolytic cells
US 3676325 A
Abstract
An anode assembly for electrolytic cells comprising: a downwardly-facing, open-ended, horizontally-elongated titanium channel member having a web portion and two depending flange portions integral with the web portion; a titanium tube secured at one end to said web portion in a fluid-tight manner so that said web portion closes said end, said web portion having at least one gas escape opening therethrough located intermediate said tube and each end of said channel an aluminum current lead-in rod at least partially within the tube coaxially therewith having one end friction-welded to said web portion; and a foraminate titanium structure lying in a plane parallel to said web portion and electrically connected to the lower edges of the flange portions, said foraminate structure carrying on at least a part of its surface a coating comprising an operative electrode material.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Smith et al. 51 July 11, 1972 54 ANODE ASSEMBLY FOR 3,318,792 5/1967 Cotton et al ..204/290 F ELECTROLYTIC CELLS 3,458,423 7/ 1969 Csizi 20 M290 F 3,437,579 4/1969 Smith ..204/288 [72] Inventors: Frank Smith; John Hubert Entwisle, both of Runcorn, England FOREIGN PATENTS OR APPLICATIONS [73] Assignee: Imperial Chemical Industries Limited, 668,618 9/1950 Great Britain ..204/284 London, England 453,750 12/1927 Germany ..204/284 [22] Filed: June 1970 Primary Examiner-John H. Mack Assistant ExaminerRegan J. Fay Attorney-Cushman, Darby & Cushman [30] Foreign Application Priority Data [57] ABSTRACT June 27, 1969 Great Britain ..32,544/69 An anode assembly for electrolytic cells comprising: a downwardly-facing, openended, horizontally-elongated [52] US. Cl ..204/288, 204/219, 204/250, titanium channel member having a web portion and two de- 204/284, 204/286, 204/290 F pending flange portions integral with the web portion; a titani- [51] Int. Cl..... ..B01k 3/04, C23g 5/68, B01r 3/04 um tube secured at one end to said web portion in a fluid-tight [58] Field of Search ..204/288, 28l, 29 F, 290 R, manner 80 that Said Web Portion Closes Said end, Said Web P 204 219 250 tion having at least one gas escape opening therethrough located intermediate said tube and each end of said channel [56] R fe e Cited an aluminum current lead-in rod at least partially within the tube coaxially therewith having one end friction-welded to UNITED STATES PATENTS said web portion; and a foraminate titanium structure lying in a plane parallel to said web portion and electrically connected 3,297,561 1/1967 Harrison et al. ..204/29OF to the lower edges of the flange ponions, Said foraminate 3409533 11/1968 '"204/221 X structure carrying on at least a part of its surface a coating 3,455,810 7/1969 Holm ..204/250 X Comprising an operative electrode material 3,511,766 5/1970 Klsner et a1. ..204/286 X 3,271,289 9/1966 Messner ..204/219 14 Claims, 7 Drawing Figures PA'TENTEDJUL 11 I972 3, 676.325

sum 2 or 3 PATENTEDJuL 1 1 m2 SHEET 3 BF 3 Fig.5

I3 (/fll ooooooi% 000000 0 O O O O 0 Fig.7

/ z r /vz/s M ANODE ASSEMBLY FOR ELECTROLYTIC CELLS The present invention relates to an anode assembly for electrolytic cells. More particularly it relates to an anode assembly which is particularly suitable for use in cells where gas is evolved at the anode.

In recent years it has been proposed to employ as anodes, particularly in cells electrolyzing aqueous alkali metal chloride solutions, structures in which a layer of a platinum group metal or metals and/or the oxides thereof constitutes the working anode surface and is carried on a support made of a film-forming metal, usually titanium. The anode conductor leading the current to the anode within the cell may also be constructed of titanium since this metal is resistant to electrochemical attack under the severe anodic conditions ruling in the cell, but in order to reduce capital expenditure and running costs it is desirable to use as far as possible a cheaper and better conducting metal. It has therefore been proposed to use as the current lead-in a composite structure in which a core of copper, steel or aluminum is protected from electrochemical attack by a casing or sheath of titanium. Aluminum is generally the most desirable core metal on the basis of cost/weight for adequate electrical conductivity but such a structure presents the problem of making a mechanically strong and low-resistance electrical connection between the aluminum core and the titanium of the casing or the titanium support member of the anode structure. This is important because the current carried principally by the good-conducting aluminum core must pass in some region across an interface between the aluminum of the core and the titanium of the casing or the anode structure itself in order to reach the working anode surface. I

it has been proposed to solve this problem by melting and alloying an aluminum core inside a titanium casing and by soldering an aluminum core into a titanium casing after coating the juxtaposed surfaces of the core and casing with a solderable metal. Melting and alloying is a high temperature process which can cause distortion. Soldering introduces problems of shrinkage between the core and the casing on cooling and is expensive in labor because of the pre-coating operations that are needed.

The present invention overcomes these problems by providing a friction-welded joint between an aluminum current leadin and a titanium member which supports the anode structure proper. Other advantageous features of the invention will appear hereinafter.

According to the present invention we provide an anode assembly for electrolytic cells which comprises a titanium tube having a flat titanium closure attached in fluid-tight manner across one end, an aluminum current lead-in at least partially within the tube and coaxial therewith having one end frictionwelded to the titanium closure, and a foraminate titanium structure carrying on at least a part of its surface a coating comprising an operative electrode material, the said foraminate titanium structure lying in a plane parallel to the said titanium closure and being electrically connected thereto by titanium members which together with the said closure define an inverted channel shape.

in this specification by titanium" we mean titanium alone or an alloy based on titanium and having anodic polarization properties comparable to those of titanium.

The operative electrode material may be any material which is active in transferring electrons from an electrolyte to the underlying titanium structure of the anode assembly and which is resistant to electrochemical attack under the conditions ruling in the cell where the anode is to be used. For use in very corrosive media, for instance in chloride electrolytes, the operative electrode material may suitably consist of one or more platinum group metals i.e. platinum, rhodium, iridium, ruthenium, osmium and palladium, and/or oxides thereof, or another metal or a compound which will function as an anode and which is resistant to electrochemical dissolution in the cell, for instance rhenium, rhenium trioxide, magnetite, titanium nitride, the borides, phosphides or silicides of the platinum group metals, or an oxidic semiconducting compound. The

coating comprising an operative electrode material may also contain electronically non-conducting oxides, particularly oxides of the film-forming metals such as titanium, as is known in the art, to anchor the operative electrode material more securely to the supporting titanium structure and to increase its resistance to dissolution in the working cell. A preferred coating comprising an operative electrode material for anodes that are to be used in mercury-cathode cells electrolyzing alkali metal chloride solutions consists of at least one oxide of at least one platinum group metal, particularly ruthenium dioxide, as the operative electrode material, and titanium dioxide.

When ananode assembly according to the invention is installed in a cell, the titanium tube passes through sealing means in thecell casing, for instance the cover of the cell, so that the aluminum current lead-in rod is protected from contact with the cell contents. In general the aluminum current lead-in rod is made of sufficient length to protrude from the titanium tube for easy connection of an electrical bus-bar to the end of the rod outside the cell.

In preferred embodiments of the invention the titanium closure and the titanium members together defining an inverted channel shape are fabricated from one integral piece of titanium metal. Furthermore, the inverted channel shape may extend both laterallyand longitudinally well beyond the limits defined by the cross-section of the end of the titanium tube to which the base of the channel forms a closure, and usually will so extend, in order to support a coated foraminate titanium structure of sufficient area to provide the desired working anode area when installed in the cell. Such embodiments are illustrated in the accompanying drawings FlG. 1-7, which are not to scale and in which like parts are numbered alike.

FIG. 1 and FIG. 2 show vertical sections at right angles to each other through the center of an electrode assembly. In these figures the center part of an inverted titanium channel 1 forms a fluid-tight closure across the lower end of titanium tube 2 by virtue of a peripheral weld around the end of the tube indicated as 3. (Other suitable forms, not shown, for the weld 3 are electrical resistance welding and friction welding). An aluminum current lead-in rod 4 has its lower end attached to the center of the channel 1 by a friction weld indicated at 5. The edges of the channel 1 are welded at intervals as indicated at 6 to a horizontally-disposed foraminate titanium structure 7 which carries on at least a part of its surface a coating (not shown) comprising an operative electrode material as defined hereinbefore. The foraminate titanium structure 7 may suitably be a multi-holed titanium sheet, for instance a sheet of expanded titanium metal. Alternatively the foraminate structure may be built up from longitudinally-extended titanium members spaced apart with their long axes parallel to each other, each one being welded to both bottom edges of the inverted channel. These members may be for instance flat strips. rods, hemicylindrical channels which are convex upwards or convex downwards or channels of U-shaped or inverted U- shaped, the closed end of the U being optionally flattened. Yet again, an arrangement approximating to the said built-up structure of longitudinally-extending members spaced apart with their long axes parallel to each other may be produced by pressing from a titanium sheet by means of a slotting and forming tool, whereby a structure with pressed-out louvres is obtained. The. louvre slats so obtained may suitably be turned at right angles to the original plane of the titanium sheet or they mayhave each of their edges rolled round to form approximately hemicylindrical members which alternate with the slots from which the metal forming them has been pressed out. FIG. 3 shows an anode assembly in which the foraminate titanium structure is built up from parallel-spaced titanium strips 8, which each have one long edge welded to both bottom edges of the inverted titanium channel 1 as again indicated at 6. The other parts of FIG. 3 correspond to those of FIG. 2. When the foraminate titanium structure is built up in this manner, at least half of the coating thereon comprising an operative electrode material may suitably be carried on the faces of the strips 8 (the vertical surfaces in the configuration in the drawing), as taught for instance in British Patent Specification No. 1,076,973 for coatings of the platinum group metals on anode surfaces formed from titanium ribs.

If desired, within the scope of the invention the titanium tube which surrounds the aluminum current lead-in may be provided with a flange at its lower end, the fluid-tight joint between the titanium tube and the inverted titanium channel then being made by welding the flange to the channel. Likewise each of the sides of the inverted channel may be terminated by a flange, the foraminate titanium structure carrying the coating comprising an operative electrode material then being welded to these flanges. An anode assembly incorporating these optional features is illustrated in FIG. 4, with the flange 8 and weld 9 replacing the weld 3 of FIG. 1 and the flanges l and welds ll replacing the welds 6 of FIG. 1.

In FIG. 1-4 the aluminum current lead-in rod 4 is shown substantially filling the cross-section of titanium tube 2. In general we prefer this arrangement, in which only sufficient clearance is provided between the rod and the tube for easy assembly of these parts, so as to obtain the lowest electrical resistance in the aluminum rod commensurate with the diameter of the tube employed. It is not, however, essential for the rod to be a close fit within the tube and a wider gap may be provided between these two members if desired.

An anode assembly according to the invention is very suitable for use in a cell wherein gas is evolved at the anode, with the working anode structure of coated foraminate titanium arranged parallel to a substantially horizontal cathode, e.g. a flowing mercury cathode, since gas evolved beneath the current lead-in can pass freely upwards through the foraminate structure into the space beneath the inverted titanium channel. The gas may be allowed to flow out from under the ends of the inverted channel or, if desired, one or more openings to assist the escape of gas may be provided in the top of the channel between the centrally disposed titanium tube and each end of the channel. Suitable arrangements of opening are shown in FIG. 57, which are plan views showing only the titanium channel-shaped member 1 and the current lead in 4 with its surrounding titanium tube 2. In the arrangement of FIG. 5 there is one large opening 12 provided towards each end of the channel. In the arrangement of FIG. 6 there is a plurality of small openings 13 towards each end of the channel and in the arrangement of FIG. 7 the channel is cut away at each end in approximately a V-shape 14 to assist the escape of gas.

What we claim is:

1. An anode assembly for electrolytic cells which comprises a titanium tube having a fiat titanium closure attached in fluidtight manner across one end, an aluminum current lead-in rod at least partially within the tube and coaxial therewith having one end friction-welded to the titanium closure, and a foraminate titanium structure carrying on at least a part of its surface a coating comprising an operative electrode material, the said foraminate titanium structure lying in a plane parallel to the said titanium closure and being electrically connected thereto by titanium members which together with the said closure define an inverted channel shape.

2. An anode assembly according to claim 1, wherein the said titanium members and the titanium closure which together define an inverted channel shape have been fabricated from one integral piece of titanium metal.

3. An anode assembly according to claim 1, wherein the edges of the titanium channel shape are welded at intervals to the foraminate titanium structure.

4. An anode assembly according to claim 1, wherein the foraminate titanium structure is a sheet of expanded titanium metal.

5. An anode assembly according to claim 1, wherein the foraminate titanium structure has been built up from longitudinally-extending titanium members spaced apart with their long axes parallel to each other.

6. An anode assembly according to claim 5, wherein the longitudinally-extending titanium members are flat strips which each have one long edge welded to the edges of the titanium channel shatlge.

7. An anode assem ly according to claim 6, wherein at least half the coating comprising an operative electrode material is carried on the faces of the said flat strips.

8. An'anode assembly according to claim 1, wherein the foraminate titanium structure is louvred structure formed by pressing a series of of louvre slats from a titanium sheet.

9. An anode assembly according to claim 8, wherein the louvre slats have been turned at right angles to the original plane of the titanium sheet.

10. An anode assembly according to claim 1, wherein the foraminate titanium structure comprises a titanium sheet having a plurality of louvre slats pressed out so as to form a plurality of corresponding slots, the slats having rolled edges so as to form a series of approximately hemicylindrical members which alternate with the slots.

11. An anode assembly according to claim 1, wherein the operative electrode material in selected from the group consisting of platinum group metals and oxides thereof.

12. An anode assembly according to claim 1, wherein the coating comprising an operative electrode material consists of at least one oxide of at least one platinum group metal as the operative electrode material and titanium dioxide.

13. An anode assembly according to claim 12, wherein the said operative electrode material is ruthenium dioxide.

14. An anode assembly for electrolytic cells comprising:

a downwardly-facing, open-ended, horizontally-elongated titanium channel member having a web portion and two depending flange portions integral with the web portion;

a titanium tube secured at one end to said web portion in a fluid-tight manner so that said web portion closes said end, said web portion having at least one gas escape opening therethrough located intermediate said tube and each end of said channel;

an aluminum current lead-in rod at least partially within the tube coaxially therewith having one end friction-welded to said web portion; and

a foraminate titanium structure lying in a plane parallel to said web portion and electrically connected to the lower edges of the flange portions, said foraminate structure carrying on at least a part of its surface a coating comprising an operative electrode material.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3271289 *10 Oct 19636 Sep 1966Oronzio De Nora ImpiantiMercury cathode electrolytic cell having an anode with high corrosionresistance and high electrical and heat conductivity
US3297561 *8 May 196210 Jan 1967Ici LtdAnode and supporting structure therefor
US3318792 *4 May 19669 May 1967Ici LtdMercury cathode cell with noble metaltitanium anode as cover means
US3409533 *23 Mar 19645 Nov 1968Asahi Chemical IndMercury-method cell for alkali chloride electrolysis
US3437579 *28 Mar 19668 Apr 1969Ici LtdAnode assembly
US3455810 *24 Jan 196615 Jul 1969Uddeholms AbFastening means for an electrode in a so-called horizontal electrolytic cell
US3458423 *21 Nov 196629 Jul 1969Basf AgMercury cathode alkali-chlorine cell containing a porous titanium or tantalum layered anode
US3511766 *2 Oct 196712 May 1970Dow Chemical CoCurrent lead-in pin
DE453750C *14 Dec 1927Ig Farbenindustrie AgElektrolysierzelle
GB668618A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3900384 *4 Jan 197419 Aug 1975Ppg Industries IncMethod of assembling a bipolar electrode having friction welded conductor/connector means and bipolar electrode formed thereby
US3912616 *31 May 197314 Oct 1975Olin CorpMetal anode assembly
US3951767 *1 Mar 197420 Apr 1976Metallgesellschaft AktiengesellschaftMethod and apparatus for the electrolysis of alkali metal chlorides
US3953316 *5 Nov 197327 Apr 1976Olin CorporationMetal anode assembly
US3981788 *18 Aug 197521 Sep 1976Kureha Kagaku Kogyo Kabushiki KaishaCaustic alkali producing multiple vertical diaphragm type electrolytic cell admitting of easy assembly
US3988220 *29 Jan 197526 Oct 1976Ppg Industries, Inc.Process for electrolyzing brine in a bipolar electrolytic diaphragm cell having friction welded conductor connector means
US4013525 *19 Sep 197422 Mar 1977Imperial Chemical Industries LimitedElectrolytic cells
US4022679 *19 Dec 197510 May 1977C. ConradtyCoated titanium anode for amalgam heavy duty cells
US4069130 *29 Jan 197517 Jan 1978Kerr-Mcgee Chemical CorporationBipolar electrode and method for constructing same
US4085016 *14 Oct 197618 Apr 1978Noranda Mines LimitedMethod and apparatus for the oxidation of organic material present in concentrated sulfuric acid
US4323438 *21 Mar 19806 Apr 1982Bayer AktiengesellschaftAnode for alkali metal chloride electrolysis
US4391695 *3 Feb 19815 Jul 1983Conradty Gmbh Metallelektroden KgCoated metal anode or the electrolytic recovery of metals
US4457811 *20 Dec 19823 Jul 1984Aluminum Company Of AmericaProcess for producing elements from a fused bath using a metal strap and ceramic electrode body nonconsumable electrode assembly
US4784735 *25 Nov 198615 Nov 1988The Dow Chemical CompanyConcentric tube membrane electrolytic cell with an internal recycle device
US5584975 *15 Jun 199517 Dec 1996Eltech Systems CorporationTubular electrode with removable conductive core
US6090617 *5 Dec 199618 Jul 2000Entremed, Inc.Flow electroporation chamber with electrodes having a crystalline metal nitride coating
US648596118 Jul 200026 Nov 2002Maxcyte, Inc.Electrodes having a continuous, crystalline metal nitride coating and method of use
US67736698 Nov 200010 Aug 2004Maxcyte, Inc.Flow electroporation chamber and method
US702991621 Feb 200218 Apr 2006Maxcyte, Inc.Apparatus and method for flow electroporation of biological samples
US714142521 Aug 200228 Nov 2006Maxcyte, Inc.Apparatus and method for electroporation of biological samples
US71865595 Jan 20046 Mar 2007Maxcyte, Inc.Apparatus and method for electroporation of biological samples
US777198412 May 200510 Aug 2010Maxcyte, Inc.Methods and devices related to a regulated flow electroporation chamber
US954635010 Aug 201017 Jan 2017Maxcyte, Inc.Methods and devices related to a regulated flow electroporation chamber
US20030059945 *21 Feb 200227 Mar 2003Dzekunov Sergey M.Apparatus and method for flow electroporation of biological samples
US20030073238 *21 Aug 200217 Apr 2003Dzekunov Sergey M.Apparatus and method for electroporation of biological samples
US20030119685 *26 Sep 200226 Jun 2003The Procter & Gamble CompanyPersonal cleansing compositions comprising silicone resin-containing adhesives
US20040115784 *30 Sep 200317 Jun 2004Maxcyte, Inc.Apparatus and method for streaming electroporation
US20050019311 *14 May 200427 Jan 2005Holaday John W.Flow electroporation chamber and method
US20050282200 *12 May 200522 Dec 2005Maxcyte, Inc.Methods and devices related to a regulated flow electroporation chamber
USRE32561 *11 Jun 198415 Dec 1987Conradty Gmbh & Co. Metallelektroden KgCoated metal anode for the electrolytic recovery of metals
DE2408392A1 *21 Feb 197422 Aug 1974Ici LtdAnoden fuer elektro-chemische verfahren
EP0686455A1 *11 May 199513 Dec 1995Heraeus Elektrochemie GmbhMethod for joining an electrode for electrolytical purposes and a current conducting stud, and joint assembly
WO1998024490A1 *4 Dec 199711 Jun 1998Entremed, Inc.Improved electrodes and method of use
Classifications
U.S. Classification204/288, 204/250, 204/290.9, 204/219, 204/290.13, 204/284
International ClassificationC25B11/00, C25B11/03, C25B11/10, C25B1/00, C25B1/36, C25B9/02
Cooperative ClassificationC25B11/03
European ClassificationC25B11/03