US3675711A - Thermal shield - Google Patents

Thermal shield Download PDF

Info

Publication number
US3675711A
US3675711A US26641A US3675711DA US3675711A US 3675711 A US3675711 A US 3675711A US 26641 A US26641 A US 26641A US 3675711D A US3675711D A US 3675711DA US 3675711 A US3675711 A US 3675711A
Authority
US
United States
Prior art keywords
walls
wall
temperature
cover
changes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US26641A
Inventor
Donald J Bilinski
Lawrence S Galowin
Michael Napolitano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kearfott Guidance and Navigation Corp
Original Assignee
Singer Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Singer Co filed Critical Singer Co
Application granted granted Critical
Publication of US3675711A publication Critical patent/US3675711A/en
Assigned to KEARFOTT GUIDANCE AND NAVIGATION CORPORATION reassignment KEARFOTT GUIDANCE AND NAVIGATION CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SINGER COMPANY, THE
Anticipated expiration legal-status Critical
Assigned to CONTINENTEL ILLINOIS NATIONAL BANK AND TRUST COMPANY OF CHICAGO, 231 SOUTH LASALLE STREET, CHICAGO, IL 60697 reassignment CONTINENTEL ILLINOIS NATIONAL BANK AND TRUST COMPANY OF CHICAGO, 231 SOUTH LASALLE STREET, CHICAGO, IL 60697 SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KEARFOTT GUIDANCE & NAVIGATION CORPORATION
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/12Gyroscopes

Definitions

  • This invention relates to a shield, and more particularly to a thermal shield for shielding and isolating an external device.
  • Thermal shields have been proposed which utilize solid structure adapted to absorb heat and remove it to cooler regions.
  • Other designs utilize non-conductive vacuum chambers to isolate inner regions from sensitivity to the external environmental conditions.
  • both of these techniques have shortcomings due to the temperature gradients resulting from thermal resistance and power required for cooling flow.
  • complete isolation by vacuum installation ls frequently impossible due to the need for structural integrity, demanding mounting contact support at the unit.
  • the thermal shield of the present invention comprises a pair of spaced walls forming an enclosure, a heat exchange fluid disposed in said enclosure, means to establish a working temperature for said fluid whereby it changes in phase between a liquid and a vapor in response to changes in temperature occurring at the outer surface of one of said walls, and means to effect the transfer of said liquid along the inner surfaces of at least one of said walls by capillary action.
  • FIG. 1 is a perspective view of the thermal shield of the present invention, utilized as a cover for a gyroscope;
  • FIG. 2 is an enlarged sectional view taken along the line 2- 2 of FIG. 1;
  • FIG. 3 is an enlarged partial view of a structure similar to FIG. 2 but depicting another embodiment of the present invention.
  • FIG. 4 is a view similar to FIG. 3 but depicting still another embodiment of the present invention.
  • the reference numeral refers to the thermal shield of the present invention which for the purposes of example, is depicted in the form of a generally dome-shaped cover extending over a gyroscope 12.
  • the gyroscope includes an upper housing 14 and a lower housing 16, and since this and the remaining structure of the gyroscope is conventional, it will not be described in any further detail.
  • the shield 10 is formed by an inner wall 18 having a cylindrical portion 180 which extends vertically as viewed in FIG. 2, and a substantially hemispherical portion 18b closing the top of the cylindrical portion. It is noted that the inner wall 18 is of a similar shape as the upper housing 14 of the gyroscope and, in certain applications can actually form the upper housmg.
  • An outer wall 20 extends over the inner wall 18 in a spaced relation thereto to form a chamber 22.
  • the lower ends of the walls 18 and 20 are bridged by an annular end wall 24 which rests on the upper portion of the lower housing 16 of the gyroscope.
  • a matrix of porous material shown in general by the reference numeral 26, is secured to the inner surfaces of the walls 18, 20, and 24. In this manner, a "heat pipe" is formed,
  • a working fluid such as water
  • a tube 27 whereby a working fluid, such as water, introduced into the chamber 22 by means of a tube 27, and maintained at a predetermined working temperature, undergoes a change in in response to temperature changes occurring in proximity to the outerwall 20.
  • the temperature along the inner wall is maintained substantially constant in ac cordance with classic heat pipe theory.
  • a heater 30 extends around the outer circumference of the cylindrical portion of the wall 20.
  • the heater may take any conventional form, such as an electric resistance wire housed in a casing as shown.
  • a sensing device shown diagrammatically by the reference numeral 32, is mounted on the upper housing 14 of the gyroscope, and is adapted to control the operation of the heater 30 in accordance with variations in temperature occurring in the vicinity of the gyroscope 12. To achieve this, the sensing device may be connected in a servo loop with the heater in a conventional manner.
  • a predetermined working temperature for the fluid is established by means of the heater 30 and this temperature level is maintained uniform within a limited range by virtue of the saturation properties of the liquid and vapor within the cover 10, despite variations in temperature along the outer wall 20.
  • temperature fluctuations along the outer surface of the wall 20 in response to ambient temperature changes for example, causes the latent heat of vaporization of the fluid to be absorbed or released ac cordingly.
  • the vapors within the tube condense at the cool zone and release their heat of formation.
  • the condensed fluid passes into the material 26 and moves by capillary action to a warmer position along the inner surface of the wall 20.
  • the opposite condition occurs, to wit, a portion of the liquid in the material 26 in the vicinity of the hot zone is vaporized and the vapor, due to its resultant increased pressure, moves to a lower pressure zone whereby it condenses and gives up its heat energy. Due to the fact that the above changes of phase of the fluid occurs at substantially the same temperature, the temperature along the cover, including the inner wall 18, is maintained constant.
  • the shield 10 thus provides a practical and realistic means of significantly reducing temperature gradiants while absorbing and transferring large variances in heat loads.
  • the inner wall 18 and the outer wall 20 are each provided with a plurality of arterial grooves 40 which are covered by the matrix of porous material 26. These grooves provide low resistance arteries for liquid flow along the cover in the above-mentioned heat transfer process, and thus may increase the efficiency of the process.
  • a matrix of porous material 50 is disposed along each of the inner surfaces of the walls 18 and 20, and is of a thickness sufficient to fill the entire space between the walls.
  • a plurality of channels 52 are provided at the interface of the material disposed along each of the walls. The material 50 thus provides an increased surface area for capillary flow of the working fluid in a liquid state, while the channels 52 permit flow of the fluid in a vapor state.
  • the grooves 40 and the channels 52 may extend in a direction or directions other than that shown in the drawings.
  • the matrix of porous material can be formed by sintering powdered metals to their respective inner wall surfaces.
  • a thermal shield comprising a pair of spaced walls forming an enclosure, a heat exchange fluid disposed in said enclosure, a heater disposed on one of said walls, means for controlling the operation of said heater to establish a substantially constant working temperature for said fluid whereby it changes in phase between a liquid and a vapor in response to changes in temperature occurringtat the outer surface of said one of said walls, a matrix of porous material disposed on the inner surface of each of said walls for permitting the transfer of said liquid along the inner surface of said walls by capillary action, and a plurality of grooves formed on the inner surfaces of said wallsand enclosed by said matrix of porous material to decrease the resistance to said transfer of liquid.

Abstract

A thermal shield consisting of a pair of walls forming an enclosed space. A heat exchange fluid is disposed in the space between the walls and is maintained at a working temperature whereby it changes in phase in response to changes in temperature along one of the walls.

Description

United States Patent Bilinski et al.
3,675,711 1 1 July 11, 1972 [54] THERMAL SHIELD [72] Inventors: Donald J. Blllnski, Dover; Lawrence S. Galowln, Upper Saddle River; Michael Napolltano, Mendham, all of NJ.
[73] Assignee: The Singer Company, New York, NY.
[22] Filed: April 8, 1970 [21] App]. No.: 26,641
52 U.S.CI ..l/32, 7415,165/47, 165/105, 219/201, 219/385, 219/530 511 Int.Cl ..F28d 15/00 581 FieldolSearch ..165/105,32,47;2l9/365,378, 219/385, 201, 530; 74/5 [56] References Cited UNITED STATES PATENTS 1,987,119 1/1935 Long ..219/365 3,490,718 1/1970 Vary ..165/ X 2,820,134 1/1958 Kobayashi. "219/365 X 2,026,423 12/1935 Fiene ..165/ 105 X 2,616,628 11/1952 Guild ..16$/105 X 3,517,730 6/1970 Wyatt ..165/105 X 3,525,386 8/1970 Grover ..165/105 X FOREIGN PATENTS OR APPLICATIONS 1,266,244 5/1961 France /105 Primary xaminerA1bert W. Davis, Jr. Attorney-S. A. Giarratana and S. Michael Bender 1 1 ABSTRACT A thermal shield consisting of a pair of walls forming an enclosed space. A heat exchange fluid is disposed in the space between the walls and is maintained at a working temperature whereby it changes in phase in response to changes in temperature along one of the walls.
ZCIBinBADraWingI-Tgures P'ATENTEDJUL H 1972 3.67571 1 M k///// J mvsmons DONALD J. BILINSKI LAWRENCE S. GALOWIN 8 MICHAEL NAPOLITANO ATTORNEYS THERMAL SHIELD BACKGROUND or THE INVENTION This invention relates to a shield, and more particularly to a thermal shield for shielding and isolating an external device.
Thermal shields have been proposed which utilize solid structure adapted to absorb heat and remove it to cooler regions. Other designs utilize non-conductive vacuum chambers to isolate inner regions from sensitivity to the external environmental conditions. However, both of these techniques have shortcomings due to the temperature gradients resulting from thermal resistance and power required for cooling flow. Also, complete isolation by vacuum installation ls frequently impossible due to the need for structural integrity, demanding mounting contact support at the unit.
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a thermal shield which significantly reduces temperature gradients by absorbing and transferring large variations in heat loads.
Toward the fulfillment of these objects, the thermal shield of the present invention comprises a pair of spaced walls forming an enclosure, a heat exchange fluid disposed in said enclosure, means to establish a working temperature for said fluid whereby it changes in phase between a liquid and a vapor in response to changes in temperature occurring at the outer surface of one of said walls, and means to effect the transfer of said liquid along the inner surfaces of at least one of said walls by capillary action.
BRIEF DESCRIPTION OF THE DRAWINGS Reference is now made to the accompanying drawings for a better understanding of the nature and objects of the present invention. The drawings illustrate the best mode presently contemplated for carrying out the objects of the invention and are not to be construed as restrictions or limitations on its scope. In the drawings:
FIG. 1 is a perspective view of the thermal shield of the present invention, utilized as a cover for a gyroscope;
FIG. 2 is an enlarged sectional view taken along the line 2- 2 of FIG. 1;
FIG. 3 is an enlarged partial view of a structure similar to FIG. 2 but depicting another embodiment of the present invention; and
FIG. 4 is a view similar to FIG. 3 but depicting still another embodiment of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the embodiment of FIGS. 1 and 2, the reference numeral refers to the thermal shield of the present invention which for the purposes of example, is depicted in the form of a generally dome-shaped cover extending over a gyroscope 12. The gyroscope includes an upper housing 14 and a lower housing 16, and since this and the remaining structure of the gyroscope is conventional, it will not be described in any further detail.
The shield 10 is formed by an inner wall 18 having a cylindrical portion 180 which extends vertically as viewed in FIG. 2, and a substantially hemispherical portion 18b closing the top of the cylindrical portion. It is noted that the inner wall 18 is of a similar shape as the upper housing 14 of the gyroscope and, in certain applications can actually form the upper housmg.
An outer wall 20 extends over the inner wall 18 in a spaced relation thereto to form a chamber 22. The lower ends of the walls 18 and 20 are bridged by an annular end wall 24 which rests on the upper portion of the lower housing 16 of the gyroscope.
A matrix of porous material, shown in general by the reference numeral 26, is secured to the inner surfaces of the walls 18, 20, and 24. In this manner, a "heat pipe" is formed,
whereby a working fluid, such as water, introduced into the chamber 22 by means of a tube 27, and maintained at a predetermined working temperature, undergoes a change in in response to temperature changes occurring in proximity to the outerwall 20. As a result, the temperature along the inner wall is maintained substantially constant in ac cordance with classic heat pipe theory.
In order to regulate the working temperature of the fluid within the cover 10, a heater 30 extends around the outer circumference of the cylindrical portion of the wall 20. The heater may take any conventional form, such as an electric resistance wire housed in a casing as shown. A sensing device, shown diagrammatically by the reference numeral 32, is mounted on the upper housing 14 of the gyroscope, and is adapted to control the operation of the heater 30 in accordance with variations in temperature occurring in the vicinity of the gyroscope 12. To achieve this, the sensing device may be connected in a servo loop with the heater in a conventional manner.
In operation, a predetermined working temperature for the fluid is established by means of the heater 30 and this temperature level is maintained uniform within a limited range by virtue of the saturation properties of the liquid and vapor within the cover 10, despite variations in temperature along the outer wall 20. In particular, temperature fluctuations along the outer surface of the wall 20 in response to ambient temperature changes, for example, causes the latent heat of vaporization of the fluid to be absorbed or released ac cordingly. Thus, upon an external cooling condition occurring on the outer surface of the wall 20, the vapors within the tube condense at the cool zone and release their heat of formation. The condensed fluid passes into the material 26 and moves by capillary action to a warmer position along the inner surface of the wall 20. If a rise in temperature occurs anywhere along the outer surface of the wall 20, the opposite condition occurs, to wit, a portion of the liquid in the material 26 in the vicinity of the hot zone is vaporized and the vapor, due to its resultant increased pressure, moves to a lower pressure zone whereby it condenses and gives up its heat energy. Due to the fact that the above changes of phase of the fluid occurs at substantially the same temperature, the temperature along the cover, including the inner wall 18, is maintained constant. The shield 10 thus provides a practical and realistic means of significantly reducing temperature gradiants while absorbing and transferring large variances in heat loads.
Since the embodiment of FIG. 3 is similar to that of FIGS. 1 and 2, only a portion of the shield will be shown in FIG. 3, and identical structure will be given the same reference numerals. According to this embodiment, the inner wall 18 and the outer wall 20 are each provided with a plurality of arterial grooves 40 which are covered by the matrix of porous material 26. These grooves provide low resistance arteries for liquid flow along the cover in the above-mentioned heat transfer process, and thus may increase the efficiency of the process.
In the embodiment of FIG. 4, a matrix of porous material 50 is disposed along each of the inner surfaces of the walls 18 and 20, and is of a thickness sufficient to fill the entire space between the walls. A plurality of channels 52 are provided at the interface of the material disposed along each of the walls. The material 50 thus provides an increased surface area for capillary flow of the working fluid in a liquid state, while the channels 52 permit flow of the fluid in a vapor state.
Many other variations may be made in the above without departing from the scope of the invention. For example, the grooves 40 and the channels 52 may extend in a direction or directions other than that shown in the drawings. Also, the matrix of porous material can be formed by sintering powdered metals to their respective inner wall surfaces. Of course, still other variations of the specific construction and arrangement of the shield disclosed above can be made by those skilled in the art without departing from the invention as defined in the appended claims.
We claim:
l. A thermal shield comprising a pair of spaced walls forming an enclosure, a heat exchange fluid disposed in said enclosure, a heater disposed on one of said walls, means for controlling the operation of said heater to establish a substantially constant working temperature for said fluid whereby it changes in phase between a liquid and a vapor in response to changes in temperature occurringtat the outer surface of said one of said walls, a matrix of porous material disposed on the inner surface of each of said walls for permitting the transfer of said liquid along the inner surface of said walls by capillary action, and a plurality of grooves formed on the inner surfaces of said wallsand enclosed by said matrix of porous material to decrease the resistance to said transfer of liquid.
2. The shield of claim 1 wherein said walls together form a cover having a substantially cylindrical portion and a substantially hemispherical portion extending over the top of said cylindricalportion, said one wall forming the outer wall of said cover, and said other wall forming an inner wall of said cover.
i i I l

Claims (2)

1. A thermal shield comprising a pair of spaced walls forming an enclosure, a heat exchange fluid disposed in said enclosure, a heater disposed on one of said walls, means for controlling the operation of said heater to establish a substantially constant working temperature for said fluid whereby it changes in phase between a liquid and a vapor in response to changes in temperature occurring at the outer surface of said one of said walls, a matrix of porous material disposed on the inner surface of each of said walls for permitting the transfer of said liquid along the inner surface of said walls by capillary action, and a plurality of grooves formed on the inner surfaces of said walls and enclosed by said matrix of porous material to decrease the resistance to said transfer of liquid.
2. The shield of claim 1 wherein said walls together form a cover having a substantially cylindrical portion and a substantially hemispherical portion extending over the top of said cylindrical portion, said one wall forming the outer wall of said cover, and said other wall forming an inner wall of said cover.
US26641A 1970-04-08 1970-04-08 Thermal shield Expired - Lifetime US3675711A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2664170A 1970-04-08 1970-04-08

Publications (1)

Publication Number Publication Date
US3675711A true US3675711A (en) 1972-07-11

Family

ID=21833002

Family Applications (2)

Application Number Title Priority Date Filing Date
US26641A Expired - Lifetime US3675711A (en) 1970-04-08 1970-04-08 Thermal shield
US00189463A Expired - Lifetime US3811493A (en) 1970-04-08 1971-10-14 Thermal shield

Family Applications After (1)

Application Number Title Priority Date Filing Date
US00189463A Expired - Lifetime US3811493A (en) 1970-04-08 1971-10-14 Thermal shield

Country Status (6)

Country Link
US (2) US3675711A (en)
JP (1) JPS542687B1 (en)
CA (1) CA918142A (en)
DE (1) DE2104629A1 (en)
FR (1) FR2092340A5 (en)
GB (1) GB1267620A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3762011A (en) * 1971-12-16 1973-10-02 Trw Inc Method of fabricating a capillary heat pipe wick
US4274479A (en) * 1978-09-21 1981-06-23 Thermacore, Inc. Sintered grooved wicks
US4527619A (en) * 1984-07-30 1985-07-09 The United States Of America As Represented By The Secretary Of The Army Exoatmospheric calibration sphere
US4550774A (en) * 1982-02-02 1985-11-05 Daimler-Benz Aktiengesellschaft Surface heating body for vehicles
US4815529A (en) * 1984-12-27 1989-03-28 Kabushiki Kaisha Toshiba Heat pipe
US5192186A (en) * 1980-10-03 1993-03-09 Rolls-Royce Plc Gas turbine engine
US20040069455A1 (en) * 2002-08-28 2004-04-15 Lindemuth James E. Vapor chamber with sintered grooved wick
US20040211549A1 (en) * 2003-04-24 2004-10-28 Garner Scott D. Sintered grooved wick with particle web
US20040244951A1 (en) * 1999-05-12 2004-12-09 Dussinger Peter M. Integrated circuit heat pipe heat spreader with through mounting holes
US20050011633A1 (en) * 2003-07-14 2005-01-20 Garner Scott D. Tower heat sink with sintered grooved wick
US20050022975A1 (en) * 2003-06-26 2005-02-03 Rosenfeld John H. Brazed wick for a heat transfer device and method of making same
US20050022976A1 (en) * 2003-06-26 2005-02-03 Rosenfeld John H. Heat transfer device and method of making same
US20060124281A1 (en) * 2003-06-26 2006-06-15 Rosenfeld John H Heat transfer device and method of making same
US20060243425A1 (en) * 1999-05-12 2006-11-02 Thermal Corp. Integrated circuit heat pipe heat spreader with through mounting holes

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT353036B (en) * 1976-12-07 1979-10-25 List Hans MEASURING VALUES, IN PARTICULAR PRESSURE TRANSDUCERS WITH BUILT-IN HEAT PIPE SYSTEM
US4250953A (en) * 1977-08-12 1981-02-17 Massachusetts Institute Of Technology Piston sealing
JPS634671U (en) * 1986-06-25 1988-01-13
US4770238A (en) * 1987-06-30 1988-09-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Capillary heat transport and fluid management device
DE3726809C1 (en) * 1987-08-12 1988-12-15 Dornier System Gmbh Gradient plate
GB2329756A (en) * 1997-09-25 1999-03-31 Univ Bristol Assemblies of light emitting diodes
WO2004038759A2 (en) * 2002-08-23 2004-05-06 Dahm Jonathan S Method and apparatus for using light emitting diodes
JP2004245550A (en) * 2003-02-17 2004-09-02 Fujikura Ltd Heat pipe superior in circulating characteristic
US8047686B2 (en) * 2006-09-01 2011-11-01 Dahm Jonathan S Multiple light-emitting element heat pipe assembly
US8016022B2 (en) * 2006-11-27 2011-09-13 Honeywell International Inc. Systems and methods for passive thermal management using phase change material
CN104035460A (en) * 2013-03-05 2014-09-10 上海新跃仪表厂 Temperature control circuit of hemisphere resonance gyro combination
CN104241676B (en) * 2013-06-14 2016-03-23 中国科学院上海硅酸盐研究所 Comprise sode cell of pre-wet structure and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1987119A (en) * 1932-06-20 1935-01-08 Richard H Long Heater for fluids
US2026423A (en) * 1933-09-27 1935-12-31 Gen Electric Constant temperature device
US2616628A (en) * 1948-06-22 1952-11-04 Lloyd V Guild Temperature controlled gas analysis apparatus
US2820134A (en) * 1953-05-06 1958-01-14 Kobayashi Keigo Heating apparatus
FR1266244A (en) * 1960-08-29 1961-07-07 Sony Corp Semiconductor cooling device
US3490718A (en) * 1967-02-01 1970-01-20 Nasa Capillary radiator
US3517730A (en) * 1967-03-15 1970-06-30 Us Navy Controllable heat pipe
US3525386A (en) * 1969-01-22 1970-08-25 Atomic Energy Commission Thermal control chamber

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3186240A (en) * 1962-10-25 1965-06-01 Jr Henry C Daubert Thermoelectrically cooled gyroscope
US3405299A (en) * 1967-01-27 1968-10-08 Rca Corp Vaporizable medium type heat exchanger for electron tubes
US3532158A (en) * 1967-06-22 1970-10-06 Hittman Associates Inc Thermal control structure
US3658125A (en) * 1968-01-11 1972-04-25 Rca Corp Internal configuration for a radial heat pipe
US3613778A (en) * 1969-03-03 1971-10-19 Northrop Corp Flat plate heat pipe with structural wicks
US3585842A (en) * 1969-05-12 1971-06-22 Phillips Petroleum Co Method and apparatus for temperature control
US3548930A (en) * 1969-07-30 1970-12-22 Ambrose W Byrd Isothermal cover with thermal reservoirs
US3677329A (en) * 1970-11-16 1972-07-18 Trw Inc Annular heat pipe

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1987119A (en) * 1932-06-20 1935-01-08 Richard H Long Heater for fluids
US2026423A (en) * 1933-09-27 1935-12-31 Gen Electric Constant temperature device
US2616628A (en) * 1948-06-22 1952-11-04 Lloyd V Guild Temperature controlled gas analysis apparatus
US2820134A (en) * 1953-05-06 1958-01-14 Kobayashi Keigo Heating apparatus
FR1266244A (en) * 1960-08-29 1961-07-07 Sony Corp Semiconductor cooling device
US3490718A (en) * 1967-02-01 1970-01-20 Nasa Capillary radiator
US3517730A (en) * 1967-03-15 1970-06-30 Us Navy Controllable heat pipe
US3525386A (en) * 1969-01-22 1970-08-25 Atomic Energy Commission Thermal control chamber

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3762011A (en) * 1971-12-16 1973-10-02 Trw Inc Method of fabricating a capillary heat pipe wick
US4274479A (en) * 1978-09-21 1981-06-23 Thermacore, Inc. Sintered grooved wicks
US5192186A (en) * 1980-10-03 1993-03-09 Rolls-Royce Plc Gas turbine engine
US4550774A (en) * 1982-02-02 1985-11-05 Daimler-Benz Aktiengesellschaft Surface heating body for vehicles
US4527619A (en) * 1984-07-30 1985-07-09 The United States Of America As Represented By The Secretary Of The Army Exoatmospheric calibration sphere
US4815529A (en) * 1984-12-27 1989-03-28 Kabushiki Kaisha Toshiba Heat pipe
US6896039B2 (en) 1999-05-12 2005-05-24 Thermal Corp. Integrated circuit heat pipe heat spreader with through mounting holes
US20060243425A1 (en) * 1999-05-12 2006-11-02 Thermal Corp. Integrated circuit heat pipe heat spreader with through mounting holes
US20040244951A1 (en) * 1999-05-12 2004-12-09 Dussinger Peter M. Integrated circuit heat pipe heat spreader with through mounting holes
US20050217826A1 (en) * 1999-05-12 2005-10-06 Dussinger Peter M Integrated circuit heat pipe heat spreader with through mounting holes
US6997245B2 (en) 2002-08-28 2006-02-14 Thermal Corp. Vapor chamber with sintered grooved wick
US20040069455A1 (en) * 2002-08-28 2004-04-15 Lindemuth James E. Vapor chamber with sintered grooved wick
US6880626B2 (en) 2002-08-28 2005-04-19 Thermal Corp. Vapor chamber with sintered grooved wick
US20050098303A1 (en) * 2002-08-28 2005-05-12 Lindemuth James E. Vapor chamber with sintered grooved wick
US6945317B2 (en) 2003-04-24 2005-09-20 Thermal Corp. Sintered grooved wick with particle web
US7013958B2 (en) 2003-04-24 2006-03-21 Thermal Corp. Sintered grooved wick with particle web
US20040211549A1 (en) * 2003-04-24 2004-10-28 Garner Scott D. Sintered grooved wick with particle web
US20050236143A1 (en) * 2003-04-24 2005-10-27 Garner Scott D Sintered grooved wick with particle web
US7028759B2 (en) 2003-06-26 2006-04-18 Thermal Corp. Heat transfer device and method of making same
US20050022975A1 (en) * 2003-06-26 2005-02-03 Rosenfeld John H. Brazed wick for a heat transfer device and method of making same
US20050205243A1 (en) * 2003-06-26 2005-09-22 Rosenfeld John H Brazed wick for a heat transfer device and method of making same
US20090139697A1 (en) * 2003-06-26 2009-06-04 Rosenfeld John H Heat transfer device and method of making same
US20050189091A1 (en) * 2003-06-26 2005-09-01 Rosenfeld John H. Brazed wick for a heat transfer device and method of making same
US6994152B2 (en) 2003-06-26 2006-02-07 Thermal Corp. Brazed wick for a heat transfer device
US20050167086A1 (en) * 2003-06-26 2005-08-04 Rosenfeld John H. Brazed wick for a heat transfer device and method of making same
US7137443B2 (en) 2003-06-26 2006-11-21 Thermal Corp. Brazed wick for a heat transfer device and method of making same
US20050022976A1 (en) * 2003-06-26 2005-02-03 Rosenfeld John H. Heat transfer device and method of making same
US20060124281A1 (en) * 2003-06-26 2006-06-15 Rosenfeld John H Heat transfer device and method of making same
US7124809B2 (en) 2003-06-26 2006-10-24 Thermal Corp. Brazed wick for a heat transfer device
US20050022984A1 (en) * 2003-06-26 2005-02-03 Rosenfeld John H. Heat transfer device and method of making same
US6938680B2 (en) 2003-07-14 2005-09-06 Thermal Corp. Tower heat sink with sintered grooved wick
US20050011633A1 (en) * 2003-07-14 2005-01-20 Garner Scott D. Tower heat sink with sintered grooved wick

Also Published As

Publication number Publication date
JPS542687B1 (en) 1979-02-10
CA918142A (en) 1973-01-02
US3811493A (en) 1974-05-21
FR2092340A5 (en) 1972-01-21
GB1267620A (en) 1972-03-22
DE2104629A1 (en) 1971-10-21
JPS463888A (en) 1971-11-08

Similar Documents

Publication Publication Date Title
US3675711A (en) Thermal shield
US3677329A (en) Annular heat pipe
US4478784A (en) Passive heat transfer means for nuclear reactors
US3923038A (en) Solar energy collector panel
US3532158A (en) Thermal control structure
US5017209A (en) High temperature furnace with thermal insulation
US4485670A (en) Heat pipe cooled probe
US3714981A (en) Heat shield assembly
US3746081A (en) Heat transfer device
US4335781A (en) High power cooler and method thereof
US3502138A (en) Means for regulating thermal energy transfer through a heat pipe
DE69001387T2 (en) TAPPED HEAT PROTECTION LAYER AND THEIR PRODUCTION METHOD.
US3782449A (en) Temperature stabilization system
US4789023A (en) Vibration isolating heat sink
EP0055478B1 (en) Solar heat collector
US3493177A (en) Method of and means for cooling the throat wall of rocket engine nozzle
JPH02105095A (en) Heat-insulating shielding body
JPS5814639B2 (en) Genshiro Yodanetsu Sochi
US3955619A (en) Heat transfer device
US3396079A (en) Thermal insulation for an internally heated hot tube immersed in a cold liquid
JPS55152388A (en) Gravity-type radiator
CN218023219U (en) Heat preservation device and optical equipment
SU642594A1 (en) Adjustable heating pipe
KR102156759B1 (en) Valve Room with Heat Pipe
SU775607A1 (en) Heating pipe

Legal Events

Date Code Title Description
AS Assignment

Owner name: KEARFOTT GUIDANCE AND NAVIGATION CORPORATION, NEW

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SINGER COMPANY, THE;REEL/FRAME:005029/0310

Effective date: 19880425

AS Assignment

Owner name: CONTINENTEL ILLINOIS NATIONAL BANK AND TRUST COMPA

Free format text: SECURITY INTEREST;ASSIGNOR:KEARFOTT GUIDANCE & NAVIGATION CORPORATION;REEL/FRAME:005250/0330