US3670786A - Container filling apparatus - Google Patents

Container filling apparatus Download PDF

Info

Publication number
US3670786A
US3670786A US42881A US3670786DA US3670786A US 3670786 A US3670786 A US 3670786A US 42881 A US42881 A US 42881A US 3670786D A US3670786D A US 3670786DA US 3670786 A US3670786 A US 3670786A
Authority
US
United States
Prior art keywords
inert gas
orifice
filling
containers
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US42881A
Inventor
Howard J Levin
Franklin M Kreider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth LLC
Original Assignee
American Home Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Home Products Corp filed Critical American Home Products Corp
Application granted granted Critical
Publication of US3670786A publication Critical patent/US3670786A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers

Definitions

  • CONTAINER FILLING APPARATUS [72] Inventors: Howard J. Levin, Norristown; fianklin M.
  • ABSTRACT A rotary filling machine which comprises a tunnel disposed substantially from before the filling station to the sealing station of the machine along the direction of travel of a container, and means for introducing an inert gas into the tunnel under a slight positive pressure.
  • the inert gas excludes air from the tunnel and provides an inert gas atmosphere within the tunnel which effectively maintains at a reduced level the oxygen content of the void space of containers being filled.
  • the tunnel has orifices permitting the passage of reciprocating filling spouts for introducing inert gas into the containers being filled and, in a separate step, for filling the containers.
  • the disclosure is directed to apparatus for the lowering of oxygen concentration in the void space of containers filled with oxidizable materials. More particularly, the invention is directed to apparatus for providing an inert gas environment about containers from the time they are filled with oxidizable drugs until they are sealed, for instance, on a rotary filling machine.
  • containers is used to describe the receptacles usually employed to package oxidizable pharmaceuticals and other chemical materials, compounds and compositions, such as bottles, vials, ampoules and disposable cartridges, particularly those having a small capacity-to-void space ratio.
  • the container contents will be referred to as drugs.
  • FIG. I is a perspective view, partly schematic, of a rotary filling machine to which the inert gas tunnel of the invention has been applied;
  • FIG. 4 is a sectional view taken generally along the line 4-4 of FIG. 2 and showing the relationship of an inert gas flushing station to the inert gas tunnel;
  • FIG. 5 is a sectional view taken generally along line 55 of FIG. 2 and showing the relationship of a filling station to the inert gas tunnel.
  • the inert gas tunnel 12 comprises an arcuate, substantially planar, gas impermeable cover 18 which is supported from the frame 16 of the rotary filling machine 10.
  • a first, or inner, wall 20 is supported from the cover, extends downwardly from it to a machine turret top 22 and is substantially linearly coextensive with the cover 18. At its lower extreme the inner wall is in close juxtaposition with, but does not contact, the upper surface 24 of the machine turret top 22.
  • a second wall 26 is similarly supported from the cover 18, extends downwardly from the cover 18 to a position near the machine turret top 22, and is substantially linearly coextensive with the cover 18.
  • both the inner wall 20 and the outer wall 26 are arcuate with the center of rotation about the center of rotation of the machine turret top 22.
  • the cover 18, inner wall 20, and outer wall 26 define the tunnel 12 through which the containers 14 travel during filling and before sealing.
  • the tunnel 12 is preferably open at both ends for free ingress and egress of the containers 14.
  • a flexible end wall or curtain may be provided at each end of the tunnel, if desired.
  • the clearances between the machine turret top 22 and each of the inner wall 20, and the outer wall 26 is preferably as small as possible to reduce to a minimum the flow of inert gas between them.
  • a seal may be provided between the top 22 and each of the walls 20,26, if desired, but seals have been found to be unnecessary in a well-made tunnel.
  • Orifices 28,30 are provided in the cover 18 between the two walls 20,26 through which inert gas may be introduced by means of a conduit 32 connected to a source of inert gas under a low pressure.
  • the preferred inert gas is nitrogen, particularly high purity nitrogen, such as Seaford grade nitrogen, although other gases inert or non-reactant with the drug may be substituted.
  • the inert gas pressure is slightly greater than atmospheric pressure, typically, about I to 3 inches of water. In an embodiment such as is shown in the drawings, the inert gas consumption is typically about 1 cubic foot per minute.
  • the cover, inner and outer walls of the tunnel may be made of any gas-impermeable material. However, it has been found especially advantageous that they be made of a transparent material so that the containers may be observed while in the tunnel. Methyl methacrylate has been found to be especially advantageous as a material for construction of the inert gas tunnel.
  • the conduit 32 is connected at one end to a source of an inert gas, not shown, and serves to conduct the inert gas to orifices 28 and 30 where the inert gas enters the interior 38 of the tunnel.
  • the inert gas flows through the tunnel l2 and exits at tunnel entrance 36 and tunnel exit 40.
  • the empty containers 14 are loaded into a hopper 34, flow downwardly and are individually inserted into a rotary machine turret top 22 at station A.
  • the empty containers l4 rotate in step-wise, or indexing, manner with the machine turret top 22 into the inert gas tunnel 12 at tunnel entrance 36.
  • the empty containers 14 are flushed with an inert gas by means of a hollow needle 42 which reciprocates vertically through an orifice 44 to permit passage of the containers 14.
  • the needle 42 is connected at one end to a conduit 46 which is in turn connected to a source of inert gas, not shown.
  • the needle may be made to reciprocate in any well known fashion, for instance. by a gear, cam and cam follower arrangement synchronized with the rotation of the turret top.
  • the needle 42 introduces the inert gas to the bottom of each container, displacing any air present upwardly and out of the container into the tunnel interior 38 where it is exhausted with the current of environmental inert gas.
  • each container 14 is filled by a reciprocating needle 48 which is connected through a conduit 50 to a source of a desired drug.
  • the needle 48 may be made to reciprocate vertically in well known fashion, and the exact amount of contents may be measured into the container in well known fashion.
  • the sealing station E is remote from the filling station C due to the requirements of economy, design, and the like. There is, therefore, a time lag between the filling and the sealing opera tions.
  • an inert gas atmosphere surrounds each container 14, so that, any equilibration of the materials in the void space with the environment merely exchanges one moiety of an inert gas for another while in the tunnel. That is, no oxygen is introduced into the void space while the containers are in the tunnel.
  • the filled, sealed containers are removed from the machine turret top at the unloading station F and pass to further inspection and packaging operations in well known fashion.
  • the inert gas tunnel terminates at exit 40, shortly before the closure applying station D.
  • EXAMPLEI The following example illustrates the effect of an inert gas environment on the air concentration in the void space of a container.
  • a nitrogen flushing needle is positioned in one of a series of empty disposable cartridges and connected to a source of nitrogen under pressure.
  • a polyethylene bag containing air is positioned around the filling area and sealed into position. The cartridge is flushed with high purity nitrogen for five seconds, then immediately filled halfway with nitrogen purged water, and sealed immediately while within the bag.
  • the concentration of air in the void space above the liquid is determined by polarographic analysis carried out on a Leeds and Northrup Polarograph 62200 Electro-Chemograph, type E.
  • the contents of the void space are injected into an oxygenfree polarographic cell after the difiusion current is measured.
  • a fixed potential is applied to the electrode and the diffusion current is recorded.
  • the difference between the current readings before and after the substitution of the contents of the void space is compared with a standard curve of diffusion currents of known oxygen contents to determine the oxygen content ofthe void space.
  • Oxygen percent Relative oxygen vironment surrounding the filling area greatly reduces the air concentration in the void space.
  • Extended nitrogen flushing time in an air environment decreases the oxygen (0 content in the void space somewhat, but extended flushing after about 20 seconds does not further reduce the oxygen concentration. Flushing in a nitrogen atmosphere greatly lowers the oxygen content.
  • the oxygen concentration in the void space with the 5 second flush in nitrogen environment is less than 7 percent of the oxygen concentration of the 5 second nitrogen flush in an air environment.
  • EXAMPLE II The following example illustrates the effect of a nitrogen environment on the oxygen content of the void space of a container when flushing is carried out under production conditions.
  • a rigid enclosure, substantially the same as the inert gas tunnel 12 shown in FIGS. l-5 is installed on a Shields Ampoule Machine Co. rotary filling machine.
  • Various sizes of disposable cartridges are filled to various solution capacities in the filling machine following a nitrogen flush performed by a flushing needle reciprocably inserted within the container.
  • the solutions are purged with nitrogen before filling.
  • the oxygen concentration in the void space is determined as described in Example I.
  • the test is run first with an air environment within the tunnel and is repeated with a Seaford grade nitrogen environment. Typical results are shown below in Table II.
  • the use of a nitrogen environ ment greatly reduces the amount of air present.
  • the relative concentration of oxygen in the containers when filled in an air environment as compared to that when filled in a nitrogen environment ranges from 269 to 770 percent as much. The greatest improvement is found when the void space is largest.
  • a rotary filling machine for filling containers with oxidizable drugs and including a rotating, indexing machine turret having means to support open-topped containers, the improvement comprising:
  • a first wall supported from said cover and extending downwardly from said cover 'to the top of said machine turret top, said first wall being disposed between the center of rotation of said machine turret top and the containers, and being substantially arcuate in shape having a center of rotation substantially at the center of rotation of said machine turret top;
  • a second wall supported from said cover and extending downwardly therefrom to a position adjacent the machine turret top, said second wall being disposed on the opposite side of said containers from said center of rotation of said machine turret top and being substantially arcuate having a center of rotation substantially centered at said center of rotation of said machine turret top;
  • An inert gas-flushing apparatus mounted on said filling machine frame for reciprocation through said first orifice into each container indexed beneath said first orifice;
  • a filling apparatus mounted on said filling machine frame for reciprocation through said second orifice into each container indexed beneath said second orifice;
  • At least one conduit connected to said third orifice and to a source of inert gas
  • said cover and first and second walls define a tunnel maintaining an inert gas atmosphere through which said containers pass during a major portion of the time between flushing and sealing.

Abstract

A rotary filling machine which comprises a tunnel disposed substantially from before the filling station to the sealing station of the machine along the direction of travel of a container, and means for introducing an inert gas into the tunnel under a slight positive pressure. The inert gas excludes air from the tunnel and provides an inert gas atmosphere within the tunnel which effectively maintains at a reduced level the oxygen content of the void space of containers being filled. The tunnel has orifices permitting the passage of reciprocating filling spouts for introducing inert gas into the containers being filled and, in a separate step, for filling the containers.

Description

United States Patent Levin et a1.
[451 June 20, 1972 [54] CONTAINER FILLING APPARATUS [72] Inventors: Howard J. Levin, Norristown; fianklin M.
2,931,147 4/1960 Bamby ..53/112 X 3,078,008 2/ 1963 MacDonald 3,191,640 6/1965 Hackett ..141/63 FOREIGN PATENTS OR APPLICATIONS 567,712 2/1945 Great Britain ..53/1 10 [57] ABSTRACT A rotary filling machine which comprises a tunnel disposed substantially from before the filling station to the sealing station of the machine along the direction of travel of a container, and means for introducing an inert gas into the tunnel under a slight positive pressure. The inert gas excludes air from the tunnel and provides an inert gas atmosphere within the tunnel which effectively maintains at a reduced level the oxygen content of the void space of containers being filled. The tunnel has orifices permitting the passage of reciprocating filling spouts for introducing inert gas into the containers being filled and, in a separate step, for filling the containers.
4 Claims, 5 Drawing Figures CONTAINER FILLING APPARATUS This application is a continuation-in-part of application Ser. No. 716,521 filed Mar. 27, 1968, now abandoned.
The disclosure is directed to apparatus for the lowering of oxygen concentration in the void space of containers filled with oxidizable materials. More particularly, the invention is directed to apparatus for providing an inert gas environment about containers from the time they are filled with oxidizable drugs until they are sealed, for instance, on a rotary filling machine.
The term containers" is used to describe the receptacles usually employed to package oxidizable pharmaceuticals and other chemical materials, compounds and compositions, such as bottles, vials, ampoules and disposable cartridges, particularly those having a small capacity-to-void space ratio. For convenience, the container contents will be referred to as drugs.
It is a practice in the pharmaceutical industry to fill containers with a single dose of a drug for convenience in dispensing it. The drug usually does not fill the container and a "void space" of gas-filled volume exists above the drug after the containers are sealed.
Many of the drugs are sensitive to oxidative decomposition. That is, they decompose, or otherwise lose potency, in the presence of oxygen. When a void space of a container contains oxygen, the potency of a contained oxidizable drug is reduced to the extent that reaction takes place between the oxygen and the drug. I
It is a common practice in the pharmaceutical packaging art to flush the containers with an inert gas, typically nitrogen, immediately prior to filling. However, the nitrogen flushing procedure is not entirely satisfactory, and it has been found that the concentration of oxygen increases in the void space where even a few seconds pass between filling and sealing. Such a time lapse typically occurs in a rotary filling machine where, due to design considerations, a sealing station is relatively remote in time from a filling station. Without wishing to be bound by a theory of operation it is believed that this is due to a rapid dispersion of the nitrogen flushing gas out of the void space into the surrounding air, and the concurrent inflow of the surrounding air into the void space.
It has long been known that oxidizable drugs may be protected by the exclusion of oxygen from contact with them by replacement of oxygen with an inert gas. However, the practical solution to the problem as applied to small containers while they are filled on rotating filling machines has not been obvious.
It is an object of the present invention to improve the shelf like and maintain the potency of oxidizable drugs.
It is another object of the present invention to provide an apparatus for maintaining an inert gas atmosphere substantially free of oxygen in the void space of small containers as they are filled on a filling machine.
It is a particular object of the present invention to provide an arcuate inert gas tunnel along the path of travel of a container between the filling and sealing stations of a rotary machine.
It is a further object of this invention to provide an economical apparatus for providing an inert gas atmosphere about containers being filled on commercially available filling machines.
Other objects and advantages of the invention will be apparent to those skilled in the art from a reading of the following description taken in conjunction with the drawings in which:
FIG. I is a perspective view, partly schematic, of a rotary filling machine to which the inert gas tunnel of the invention has been applied;
FIG. 4 is a sectional view taken generally along the line 4-4 of FIG. 2 and showing the relationship of an inert gas flushing station to the inert gas tunnel; and
FIG. 5 is a sectional view taken generally along line 55 of FIG. 2 and showing the relationship of a filling station to the inert gas tunnel.
It has been found that the objects of this invention may be achieved by providing filling machine 10 with an inert gas tunnel 12 extending along the path of travel of a container 14 from shortly before a filling station C to shortly before a sealing station E.
In a preferred embodiment, the inert gas tunnel 12 comprises an arcuate, substantially planar, gas impermeable cover 18 which is supported from the frame 16 of the rotary filling machine 10. A first, or inner, wall 20 is supported from the cover, extends downwardly from it to a machine turret top 22 and is substantially linearly coextensive with the cover 18. At its lower extreme the inner wall is in close juxtaposition with, but does not contact, the upper surface 24 of the machine turret top 22. A second wall 26 is similarly supported from the cover 18, extends downwardly from the cover 18 to a position near the machine turret top 22, and is substantially linearly coextensive with the cover 18. Preferably both the inner wall 20 and the outer wall 26 are arcuate with the center of rotation about the center of rotation of the machine turret top 22.
The cover 18, inner wall 20, and outer wall 26 define the tunnel 12 through which the containers 14 travel during filling and before sealing. The tunnel 12 is preferably open at both ends for free ingress and egress of the containers 14. A flexible end wall or curtain, not shown, may be provided at each end of the tunnel, if desired. The clearances between the machine turret top 22 and each of the inner wall 20, and the outer wall 26 is preferably as small as possible to reduce to a minimum the flow of inert gas between them. A seal may be provided between the top 22 and each of the walls 20,26, if desired, but seals have been found to be unnecessary in a well-made tunnel.
Orifices 28,30 are provided in the cover 18 between the two walls 20,26 through which inert gas may be introduced by means of a conduit 32 connected to a source of inert gas under a low pressure. The preferred inert gas is nitrogen, particularly high purity nitrogen, such as Seaford grade nitrogen, although other gases inert or non-reactant with the drug may be substituted. Preferably the inert gas pressure is slightly greater than atmospheric pressure, typically, about I to 3 inches of water. In an embodiment such as is shown in the drawings, the inert gas consumption is typically about 1 cubic foot per minute.
The cover, inner and outer walls of the tunnel may be made of any gas-impermeable material. However, it has been found especially advantageous that they be made of a transparent material so that the containers may be observed while in the tunnel. Methyl methacrylate has been found to be especially advantageous as a material for construction of the inert gas tunnel.
As is best seen in FIGS. 1 and 3, the conduit 32 is connected at one end to a source of an inert gas, not shown, and serves to conduct the inert gas to orifices 28 and 30 where the inert gas enters the interior 38 of the tunnel. The inert gas flows through the tunnel l2 and exits at tunnel entrance 36 and tunnel exit 40.
In operation, the empty containers 14 are loaded into a hopper 34, flow downwardly and are individually inserted into a rotary machine turret top 22 at station A. The empty containers l4 rotate in step-wise, or indexing, manner with the machine turret top 22 into the inert gas tunnel 12 at tunnel entrance 36.
As may be seen in FIGS. 1 and 4, at flushing station B, the empty containers 14 are flushed with an inert gas by means of a hollow needle 42 which reciprocates vertically through an orifice 44 to permit passage of the containers 14. The needle 42 is connected at one end to a conduit 46 which is in turn connected to a source of inert gas, not shown. The needle may be made to reciprocate in any well known fashion, for instance. by a gear, cam and cam follower arrangement synchronized with the rotation of the turret top. The needle 42 introduces the inert gas to the bottom of each container, displacing any air present upwardly and out of the container into the tunnel interior 38 where it is exhausted with the current of environmental inert gas.
At filling station C, each container 14 is filled by a reciprocating needle 48 which is connected through a conduit 50 to a source of a desired drug. The needle 48 may be made to reciprocate vertically in well known fashion, and the exact amount of contents may be measured into the container in well known fashion.
In the embodiment shown, as is frequent in the industry, the sealing station E is remote from the filling station C due to the requirements of economy, design, and the like. There is, therefore, a time lag between the filling and the sealing opera tions. During the travel of the filled container 14 from the filling station C to shortly before the closure applying station D, an inert gas atmosphere surrounds each container 14, so that, any equilibration of the materials in the void space with the environment merely exchanges one moiety of an inert gas for another while in the tunnel. That is, no oxygen is introduced into the void space while the containers are in the tunnel. After sealing, the filled, sealed containers are removed from the machine turret top at the unloading station F and pass to further inspection and packaging operations in well known fashion.
As is shown in the drawings, it is frequently impossible to extend the tunnel past the sealing station, and frequently impossible to extend it to a point immediately adjacent to the sealing station. This is due, frequently, to the positioning of the sealing apparatus directly about the rotating filled containers. As is shown in the drawings, the inert gas tunnel terminates at exit 40, shortly before the closure applying station D.
In order more clearly to disclose the nature of the present invention, specific examples of the practice of the invention are hereinafter given. It should be understood, however, that this is done solely by way of example and is intended neither to delineate the scope of the invention nor limit the ambit of the appended claims.
EXAMPLEI The following example illustrates the effect of an inert gas environment on the air concentration in the void space of a container.
A. A nitrogen flushing needle is positioned in one ofa series of empty disposable cartridges and connected to a source of nitrogen under pressure. A polyethylene bag containing air is positioned around the filling area and sealed into position. The cartridge is flushed with high purity nitrogen for five seconds, then immediately filled halfway with nitrogen purged water, and sealed immediately while within the bag.
The concentration of air in the void space above the liquid is determined by polarographic analysis carried out on a Leeds and Northrup Polarograph 62200 Electro-Chemograph, type E. The contents of the void space are injected into an oxygenfree polarographic cell after the difiusion current is measured. A fixed potential is applied to the electrode and the diffusion current is recorded. The difference between the current readings before and after the substitution of the contents of the void space is compared with a standard curve of diffusion currents of known oxygen contents to determine the oxygen content ofthe void space.
B. The same procedure is repeated three times except that the nitrogen flushing time is seconds, seconds, and 60 seconds, respectively.
C. The same procedure is repeated except that the bag is filled with nitrogen and the flushing time is 5 seconds. The results are shown in Table l below.
TABLE I Oxygen percent Relative oxygen vironment surrounding the filling area greatly reduces the air concentration in the void space. Extended nitrogen flushing time in an air environment decreases the oxygen (0 content in the void space somewhat, but extended flushing after about 20 seconds does not further reduce the oxygen concentration. Flushing in a nitrogen atmosphere greatly lowers the oxygen content. As may be seen from the table, the oxygen concentration in the void space with the 5 second flush in nitrogen environment is less than 7 percent of the oxygen concentration of the 5 second nitrogen flush in an air environment.
EXAMPLE II The following example illustrates the effect of a nitrogen environment on the oxygen content of the void space of a container when flushing is carried out under production conditions.
A rigid enclosure, substantially the same as the inert gas tunnel 12 shown in FIGS. l-5 is installed on a Shields Ampoule Machine Co. rotary filling machine. Various sizes of disposable cartridges are filled to various solution capacities in the filling machine following a nitrogen flush performed by a flushing needle reciprocably inserted within the container. The solutions are purged with nitrogen before filling. The oxygen concentration in the void space is determined as described in Example I. The test is run first with an air environment within the tunnel and is repeated with a Seaford grade nitrogen environment. Typical results are shown below in Table II.
As may be seen in Table II, the use of a nitrogen environ ment greatly reduces the amount of air present. The relative concentration of oxygen in the containers when filled in an air environment as compared to that when filled in a nitrogen environment ranges from 269 to 770 percent as much. The greatest improvement is found when the void space is largest.
The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed.
What is claimed is:
1. In a rotary filling machine for filling containers with oxidizable drugs and including a rotating, indexing machine turret having means to support open-topped containers, the improvement comprising:
A. A substantially planar, gas-impermeable cover supported from a frame for the filling machine and being coextensive with and overlapping the periphery of the top of the machine turret top from shortly before an inert gas flushing station to shortly before a sealing station;
E. A first wall supported from said cover and extending downwardly from said cover 'to the top of said machine turret top, said first wall being disposed between the center of rotation of said machine turret top and the containers, and being substantially arcuate in shape having a center of rotation substantially at the center of rotation of said machine turret top;
C. A second wall supported from said cover and extending downwardly therefrom to a position adjacent the machine turret top, said second wall being disposed on the opposite side of said containers from said center of rotation of said machine turret top and being substantially arcuate having a center of rotation substantially centered at said center of rotation of said machine turret top;
D. A plurality of orifices disposed in said cover and further comprising: l A first orifice located so as to permit passage of an inert gas-flushing apparatus; 2. A second orifice disposed so as to permit passage of a filling apparatus; and 3. A third orifice for the introduction of an inert gas;
E. An inert gas-flushing apparatus mounted on said filling machine frame for reciprocation through said first orifice into each container indexed beneath said first orifice;
F. A filling apparatus mounted on said filling machine frame for reciprocation through said second orifice into each container indexed beneath said second orifice;
G. At least one conduit connected to said third orifice and to a source of inert gas,
whereby said cover and first and second walls define a tunnel maintaining an inert gas atmosphere through which said containers pass during a major portion of the time between flushing and sealing.
2. The apparatus as defined in claim 1 wherein said inert gas is nitrogen.
3. The apparatus as defined in claim 1 where said cover and first and second walls are fabricated from transparent material.
4. The apparatus as defined in claim 1 where said cover and first and second walls are fabricated from methyl methacrylate.

Claims (9)

1. In a rotary filling machine for filling containers with oxidizable drugs and including a rotating, indexing machine turret having means to support open-topped containers, the improvement comprising: A. A substantially planar, gas-impermeable cover supported from a frame for the filling machine and being coextensive with and overlapping the periphery of the top of the machine turret top from shortly before an inert gas flushing station to shortly before a sealing station; B. A first wall supported from said cover and extending downwardly from said cover to the top of said machine turret top, said first wall being disposed between the center of rotation of said machine turret top and the containers, and being substantially arcuate in shape having a center of rotation substantially at the center of rotation of said machine turret top; C. A second wall supported from said cover and extending downwardly therefrom to a position adjacent the machine turret top, said second wall being disposed on the opposite side of said containers from said center of rotation of said machine turret top and being substantially arcuate having a center of rotation substantially centered at said center of rotation of said machine turret top; D. A plurality of orifices disposed in said cover and further comprising:
1. A first orifice located so as to permit passage of an inert gas-flushing apparatus;
2. A second orifice disposed so as to permit passage of a filling apparatus; and
2. A second orifice disposed so as to permit passage of a filling apparatus; and
2. The apparatus as defined in claim 1 wherein said inert gas is nitrogen.
3. The apparatus as defined in claim 1 where said cover and first and second walls are fabricated from transparent material.
3. A third orifice for the introduction of an inert gas; E. An inert gas-flushing apparatus mounted on said filling machine frame for reciprocation through said first orifice into each container indexed beneath said first orifice; F. A filling apparatus mounted on said filling machine frame for reciprocation through said second orifice into each container indexed beneath said second orifice; G. At least one conduit connected to said third orifice and to a source of inert gas, Whereby said cover and first and second walls define a tunnel maintaining an inert gas atmosphere through which said containers pass during a major portion of the time between flushing and sealing.
3. A third orifice for the introduction of an inert gas; E. An inert gas-flushing apparatus mounted on said filling machine frame for reciprocation through said first orifice into each container indexed beneath said first orifice; F. A filling apparatus mounted on said filling machine frame for reciprocation through said second orifice into each container indexed beneath said second orifice; G. At least one conduit connected to said third orifice and to a source of inert gas, Whereby said cover and first and second walls define a tunnel maintaining an inert gas atmosphere through which said containers pass during a major portion of the time between flushing and sealing.
4. The apparatus as defined in claim 1 where said cover and first and second walls are fabricated from methyl methacrylate.
US42881A 1970-06-02 1970-06-02 Container filling apparatus Expired - Lifetime US3670786A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US4288170A 1970-06-02 1970-06-02

Publications (1)

Publication Number Publication Date
US3670786A true US3670786A (en) 1972-06-20

Family

ID=21924246

Family Applications (1)

Application Number Title Priority Date Filing Date
US42881A Expired - Lifetime US3670786A (en) 1970-06-02 1970-06-02 Container filling apparatus

Country Status (1)

Country Link
US (1) US3670786A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4489767A (en) * 1981-09-08 1984-12-25 Toyo Seikan Kaisha, Ltd. Apparatus for dropping liquefied gases
US4827988A (en) * 1986-11-12 1989-05-09 Seitz Enzinger Noll Maschinenbau Aktiengesellschaft Foaming apparatus for driving out residual air from containers filled with a foamable liquid
US4905454A (en) * 1985-02-26 1990-03-06 Sanfilippo John E Method for providing containers with a controlled environment
US4977723A (en) * 1987-08-17 1990-12-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Plant for packing products in containers
US5001878A (en) * 1985-02-26 1991-03-26 Sanfilippo John E Apparatus for providing containers with a controlled environment
US5069020A (en) * 1990-07-13 1991-12-03 Sanfilippo John E Apparatus for providing containers with a controlled environment
US5228269A (en) * 1992-06-22 1993-07-20 Sanfilippo John E Apparatus and method for removing oxygen from food containers
US5299408A (en) * 1990-05-11 1994-04-05 Wine Recorker, Inc. Wine recorking apparatus and method
US6026867A (en) * 1997-07-24 2000-02-22 Krones Ag Hermann Kronseder Maschinenfabrik Rotary filling machine
FR2809376A1 (en) * 2000-05-24 2001-11-30 Hema Technologies Bulk filling method for liquid containers has container enclosed in at least partial vacuum during filling to reduce risk of air bubbles
WO2003024860A1 (en) * 2001-09-17 2003-03-27 Khs Maschinen- Und Anlagenbau Aktiengesellschaft Machine for treating containers comprising a hermetically closed space
EP1336418A1 (en) * 2002-02-14 2003-08-20 CO.RI.M.A. S.r.l. Disposable syringe conditioning apparatus and related conditioning method
US6705062B1 (en) * 1999-10-14 2004-03-16 Valois S.A. Machine for filling and sealing containers
US20070056251A1 (en) * 2005-01-05 2007-03-15 Ruppman Kurt H Sr Method and Apparatus for Flushing a Container with an Inert Gas
US20090223168A1 (en) * 2006-05-17 2009-09-10 Gianpietro Zanini Equipment for Processing Containers Filled with Liquid or Powder Products
US20100192524A1 (en) * 2007-03-21 2010-08-05 Gino Rapparini Machine for filling envelopes or bags also in controlled atmosphere
US20110005168A1 (en) * 2008-05-19 2011-01-13 Changsha Chutian Science & Technology Co., Ltd. Large Transfusion Filing and Corking Machine
US20160101881A1 (en) * 2003-11-17 2016-04-14 Btg International Ltd. Therapeutic foam
US11897747B1 (en) 2019-03-27 2024-02-13 Abc Fillers, Inc. Multi-container filling machine technologies

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1270797A (en) * 1914-08-03 1918-07-02 Melville E Dunkley Canning.
US1889629A (en) * 1928-07-19 1932-11-29 Seitz Werke Gmbh Method of filling and sealing bottles, vessels, and the like
GB567712A (en) * 1942-05-13 1945-02-28 Continental Can Co Improvements in or relating to methods of and apparatus for
US2630957A (en) * 1950-03-29 1953-03-10 Owens Illinois Glass Co Method and apparatus for sealing containers
US2931147A (en) * 1956-07-03 1960-04-05 Owens Illinois Glass Co Method and apparatus for excluding air in packaging powdered materials
US3078008A (en) * 1959-08-17 1963-02-19 Donald E Macdonald Container of and dispenser for cut-fruit sections
US3191640A (en) * 1961-11-24 1965-06-29 Continental Oil Co Reactive fluid transfer apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1270797A (en) * 1914-08-03 1918-07-02 Melville E Dunkley Canning.
US1889629A (en) * 1928-07-19 1932-11-29 Seitz Werke Gmbh Method of filling and sealing bottles, vessels, and the like
GB567712A (en) * 1942-05-13 1945-02-28 Continental Can Co Improvements in or relating to methods of and apparatus for
US2630957A (en) * 1950-03-29 1953-03-10 Owens Illinois Glass Co Method and apparatus for sealing containers
US2931147A (en) * 1956-07-03 1960-04-05 Owens Illinois Glass Co Method and apparatus for excluding air in packaging powdered materials
US3078008A (en) * 1959-08-17 1963-02-19 Donald E Macdonald Container of and dispenser for cut-fruit sections
US3191640A (en) * 1961-11-24 1965-06-29 Continental Oil Co Reactive fluid transfer apparatus

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4489767A (en) * 1981-09-08 1984-12-25 Toyo Seikan Kaisha, Ltd. Apparatus for dropping liquefied gases
US4905454A (en) * 1985-02-26 1990-03-06 Sanfilippo John E Method for providing containers with a controlled environment
US5001878A (en) * 1985-02-26 1991-03-26 Sanfilippo John E Apparatus for providing containers with a controlled environment
US4827988A (en) * 1986-11-12 1989-05-09 Seitz Enzinger Noll Maschinenbau Aktiengesellschaft Foaming apparatus for driving out residual air from containers filled with a foamable liquid
US4977723A (en) * 1987-08-17 1990-12-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Plant for packing products in containers
US5299408A (en) * 1990-05-11 1994-04-05 Wine Recorker, Inc. Wine recorking apparatus and method
US5069020A (en) * 1990-07-13 1991-12-03 Sanfilippo John E Apparatus for providing containers with a controlled environment
US5228269A (en) * 1992-06-22 1993-07-20 Sanfilippo John E Apparatus and method for removing oxygen from food containers
US6026867A (en) * 1997-07-24 2000-02-22 Krones Ag Hermann Kronseder Maschinenfabrik Rotary filling machine
US6705062B1 (en) * 1999-10-14 2004-03-16 Valois S.A. Machine for filling and sealing containers
FR2809376A1 (en) * 2000-05-24 2001-11-30 Hema Technologies Bulk filling method for liquid containers has container enclosed in at least partial vacuum during filling to reduce risk of air bubbles
WO2003024860A1 (en) * 2001-09-17 2003-03-27 Khs Maschinen- Und Anlagenbau Aktiengesellschaft Machine for treating containers comprising a hermetically closed space
US20040231748A1 (en) * 2001-09-17 2004-11-25 Peter Friede Machine for treating containers comprising a hermetically closed space
US6830084B1 (en) 2001-09-17 2004-12-14 Khs Maschinen-Und Anlagenbau Aktiengesellschaft Machine for treating containers comprising a hermetically closed space
EP1336418A1 (en) * 2002-02-14 2003-08-20 CO.RI.M.A. S.r.l. Disposable syringe conditioning apparatus and related conditioning method
US20160101881A1 (en) * 2003-11-17 2016-04-14 Btg International Ltd. Therapeutic foam
US10472100B2 (en) * 2003-11-17 2019-11-12 Btg International Ltd. Therapeutic foam
US20070056251A1 (en) * 2005-01-05 2007-03-15 Ruppman Kurt H Sr Method and Apparatus for Flushing a Container with an Inert Gas
US20090223168A1 (en) * 2006-05-17 2009-09-10 Gianpietro Zanini Equipment for Processing Containers Filled with Liquid or Powder Products
US20100192524A1 (en) * 2007-03-21 2010-08-05 Gino Rapparini Machine for filling envelopes or bags also in controlled atmosphere
US20110005168A1 (en) * 2008-05-19 2011-01-13 Changsha Chutian Science & Technology Co., Ltd. Large Transfusion Filing and Corking Machine
US8359818B2 (en) * 2008-05-19 2013-01-29 Truking Technology Limited Large transfusion filing and corking machine
US11897747B1 (en) 2019-03-27 2024-02-13 Abc Fillers, Inc. Multi-container filling machine technologies

Similar Documents

Publication Publication Date Title
US3670786A (en) Container filling apparatus
CA1326993C (en) Packaging device
US3477192A (en) Container filling process
AU639379B2 (en) Multi-chamber vessel
ES2508665T3 (en) Packaging procedure for food products, non-liquid, particularly sensitive to oxygen, in a container with low oxygen content
IT9021095A1 (en) DEVICE TO FILL AND CLOSE CONTAINERS
KR100197317B1 (en) Gas displacement device and method for packaging food and non-food products
US3861116A (en) Apparatus for determining the oxygen content of filled packaging containers
JPH02140462U (en)
GB1414925A (en) Method and apparatus for obtaining successive sample reagent mixtures for analysis
SU573123A3 (en) Device for packaging products under aceptic conditions
US20060013728A1 (en) Material stability test kit
CN202113876U (en) Vacuum sealed glass test tube
RU2001113508A (en) PACKAGE FOR STORAGE AND TRANSPORTATION OF STERILE POWDERED PRODUCTS AND FOR THE FORMATION OF SOLUTIONS OF SPECIFIED PRODUCTS IN IT
CN217278119U (en) Liquid chromatogram or liquid chromatogram tandem mass spectrometer sample introduction plate
CN208307488U (en) For quantitatively measuring and distributing the storage container of tablet
CN203997493U (en) Container and containing solid container
GB2222687A (en) A method and apparatus for testing and/or verifying the tightness of filled and hermetically sealed containers
KR100586708B1 (en) Integrated filling system and Multi-Chamber bag including the same
GB1582385A (en) Method of producing a sealed hard gelatine capsule containing a liquid
IT1134121B (en) METHOD FOR PACKAGING PRODUCTS OF ANY NATURE IN HEAT-SEALABLE CONTAINERS
JP2000175989A (en) Medicinal liquid container
JP2002065808A (en) Package for stably preserving plastic vessel holding medical solution containing amino acid
JP2004057321A (en) Adsorbed oxygen removed plastic container
ES433015A1 (en) Plasma collection system and bottle therefor