US3668574A - Hybrid mode electric transmission line using accentuated asymmetrical dual surface waves - Google Patents

Hybrid mode electric transmission line using accentuated asymmetrical dual surface waves Download PDF

Info

Publication number
US3668574A
US3668574A US29626A US3668574DA US3668574A US 3668574 A US3668574 A US 3668574A US 29626 A US29626 A US 29626A US 3668574D A US3668574D A US 3668574DA US 3668574 A US3668574 A US 3668574A
Authority
US
United States
Prior art keywords
wave
line
attenuation
surface wave
dual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US29626A
Inventor
Harold Monteagle Barlow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
British Railways Board
Original Assignee
British Railways Board
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Railways Board filed Critical British Railways Board
Application granted granted Critical
Publication of US3668574A publication Critical patent/US3668574A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1895Particular features or applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/12Arrangements for exhibiting specific transmission characteristics
    • H01B11/14Continuously inductively loaded cables, e.g. Krarup cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/04Lines formed as Lecher wire pairs

Definitions

  • ABSTRACT A method and means for reducing net transmission losses and frequency dispersion within an electrical transmission line having dual conducting surfaces and carrying a hybrid mode I electromagnetic wave comprising both a TEM component and a dual surface wave component.
  • One of the two conducting surfaces is caused to have more surface resistance than the other by a predetermined amount thereby making the surface wave part of the field asymmetric and enhancing the energy particularly associated with the surface wave to t e detriment reduction in its overall axial attenuation coefficient in the direction of propogation.
  • the wave is slowed down by the dielectric loading, its phase-change eoefficient is increased and made more nearly proportional directly to frequency.
  • the normal transmission mode of electromagnetic energy in a dual conducting surface transmission line is, contrary to generally accepted belief, an overall hybrid mode and not a simple TEM mode.
  • This hybrid mode comprises a combination of at least a dual surface wave field and a TEM field with the magnitude of the former depending to a large extent on the surface reactance of the two conducting surfaces. If, as is usually the case, the surface reactances of the two conducting surfaces are equal, then with a symmetrical disposition of conductors there will be a dual surface wave mode with fields of equal magnitude associated with each of the two conducting surfaces.
  • This invention is based upon the discovery that the net attenuation of electrical energy propagated along a two conductor line and the departure from the required linear relationship between phase-change coefficient and frequency may be reduced by purposefully increasing the surface reactance of one of the two conducting surfaces by a controlled amount.
  • This controlled increase enhances the dual surface wave fields associated with the one surface having increased surface reactance to the detriment of other existing propagation modes thereby producing an asymmetrical hybrid wave which has been found to cause appreciably less net attenuation and less distortion than if no such asymmetry exists, provided that the amount of increased surface reactance is carefully controlled and kept within certain ranges or limits.
  • the degree of asymmetry produced is such that the hybrid wave contour of minimum axial electric field occurs as close as possible. to the conducting surface opposite the one which is provided with increased surface reactance.
  • the essence of this invention is based on the application of just sufficient reactive loading (achieved in the preferred embodiment with a thin dielectric coating) to one of the conductors thus enhancing and making asymmetrical the surface wave mode content up to the point where the overall net line attenuation and distortion is a minimum or thereabouts. In the preferred embodiment, this requires only a very thin layer of dielectric coating. If an excessive thickness of dielectric or other reactive loading is utilized, the net line attenuation will be increased from a minimum and, in fact, will eventually exceed the attenuation of the line without any coating or loading at all.
  • the effect of adding a controlled amount of surface reactance to one of the two conducting surfaces causes very significant and complex changes in field distributions of electromagnetic fields within the space between the conducting surfaces. Over at least a small range of added reactance values, the result of such complex changes has been found to be a reduction in the product of transverse attenuation and transverse phase-change coefficients for the hybrid wave with enhanced asymmetrical surface wave content.
  • many other parameters of the hybrid wave are also changed. For example, the longitudinal or axial hybrid wave impedance and the longitudinal or axial phase-change coefficient are both increased and, as previously pointed out, the axial phase-change coefficient is also made more nearly proportional to frequency thereby producing a more desirable frequency dispersion characteristic.
  • a particularly important result of these changes is a reduction in the product of transverse attenuation and phasechange coefficients since the overall attenuation in the axial propagation direction of the hybrid wave with enhanced surface wave component is proportional to and thus directly dependent upon this product divided by the axial phase-change coefficient.
  • a controlled enhancement of the surface wave content increases the proportion of total energy propagating in that mode and may result in a reduced attenuation of the energy propagating in that mode.
  • the amount of added surface reactance not only is the dispersion less but the reduction in overall net attenuation can exceed any additional losses that may be caused by the introduction of the added dielectric medium or other reactive loading.
  • the transverse attenuation coefficient increases with added surface reactance while the transverse phase-change coefficient falls rapidly and the product is reduced over a limited range of surface reactance loading.
  • a further object of this invention is to provide means for producing an asymmetrical hybrid TEM dual surface wave by adding a controlled amount of surface reactance to one conductor in the form of corrugations or grooves substantially at right angles to the direction of the hybrid wave propagation. These grooves preferably have a depth 'much less than a quarter wave length such that the surface reactance is of the same order as that employed with the dielectric coated conductor previously described.
  • Another object of this invention is application of the above principles to resonators where such resonators comprise a length of transmission line embodying the invention as previously discussed together with electrical reflectors or short-circuits at opposite ends thereof.
  • FIG. 1 illustrates in cross-section a coaxial cable embodying this invention
  • FIG. 2 is an axial cross-section of the cable illustrated in FIG. 1,
  • FIG. 3 is a graph generally showing the relationship between net line attenuation and thickness of the dielectric coating or other equivalent surface reactance
  • FIG. 4 shows a spiral wrapping of a sandwiched dielectric material about a conductor according to this invention
  • FIG. 5 is a detailed cross-sectional view of the sandwiched material taken along line 5-5 in FIG. 4,
  • FIG. 6 illustrates an axial cross-section of the center conductor of an alternate embodiment of this invention utilizing a corrugated or grooved conductor surface to achieve increases surface reactance
  • FIG. 7 illustrates an end view of a low-frequency power cable embodying this invention
  • FIG. 8 illustrates a plan view of the power cable shown in FIG. 7,
  • FIG. 9 illustrates a resonator constructed according to the principles of this invention
  • 0pp FIG. 10 is a graph of experimentally determined approximately optimum dielectric thickness versus operating frequency.
  • the standard coaxial dual conductor line having an inner conductor 10 surrounded by an outer conductor 12 as shown in FIGS. 1 and 2 has long been known to support propagation of energy in a TEM mode characterized by radial electrical fields and circumferential magnetic fields. With this invention it has been discovered that the propagation of energy along such a dual conductor line as shown in FIGS. 1 and 2 actually includes significant surface wave modes as well as the long-accepted TEM mode which together constitute a resulting hybrid wave.
  • Inner conductor 10 has a coating 14 with a thickness t of a dielectric material.
  • the cable illustrated in FIG. 1 may be air-spaced in which case the space volume existing between dielectric coating 14 and outer conductor 12 would be filled with air or some inert gas and the conductor 10 would be held in proper spaced-apart relationship from outer conductor 12 by insulating spacers 16 as shown by dotted lines in FIG. 2.
  • the thickness 2 of the coating 14 required to minimize net line attenuation of axial propagating energy is dependent upon many parameters including the relative permittivity of the dielectric coating and its value with respect to the permittivity of the main dielectric medium existing between dielectric coating 14 and outer conductor 12 and the frequency range of propagating waves. Although, as yet, no rigorously derived mathematical formulas have been shown to predict the optimum value of thickness r or other reactive loading, the following table of operating frequency versus approximate optimum thickness of dielectric coating has been discovered by an experiment in which the relative permittivity of the dielectric coating 14 is approximately two or three times greater than the relative permittivity of the surrounding dielectric medium of the transmission line.
  • the inner conductor must be coated with a low-loss dielectric having a relative permittivity between 7 and 8, or thereabouts while if the main dielectric medium of the line is air, the coating may comprise polythene or polystrene.
  • the inner surface of outer conductor 12 may be coated, but it is preferable from the point of view of simplicity in manufacture to coat the inner conductor as shown in FIG. 2.
  • suitable materials for such a coating 14 are polystyrene loaded with titanium dioxide, calcium titanate, or strontium titanate. These materials may be applied as a coating to the inner conductor preferably by extrusion or as shown in FIGS. 4 and S by crushing the loading material into a powdered form and sandwiching the powder 22 between two layers of insulating flexible tape 24, for example, cellulose tape such as Sellotape. The resulting sandwich 26 of flexible tape and powdered dielectric material is then wound spirally about inner conductor 10 to provide the necessary coating 14 as shown in FIG. 4.
  • corrugations or grooves 28 may be provided in the surface of one of the conducting surfaces (inner conductor as shown in FIG. 6) instead of providing a coating such as coating 14 to increase the surface reactance.
  • These corrugations or grooves 28 are preferably about the inner conductor if the transmission line is coaxial as shown in FIGS. 1 and 2.
  • the circumferential grooves or channels 28 shown in FIG. 6 have effective depths much less than a quarter wavelength thereby producing a surface reactance comparable to that produced by the dielectric coating previously considered.
  • the ratio of slot width b to slot pitch B is such that b/B is equal very nearly to the ratio of slot reactance to surface reactance.
  • a cable constructed as described and illustrated in FIG. 6 behaves similarly to the cable illustrated in FIGS. 1 and 2 which utilizes the dielectric coating 14 in lieu of such corrugations or grooves to increase the surface reactance of conductor 10.
  • an advantage of transmission lines embodying this invention as described above is that since the overall net axial propagation attenuation of the line may be less than that of the usual type of line carrying a quasi-TEM wave, (i.e., one with most of the power in a TEM mode as would be the case without any surface wave accentuating means), the number of repeaters that are required when this form of line is used for a long distance signal transmission, as in a submarine cable, is reduced. Furthermore, these new lines result in noticeably less frequency dispersion than in a conventional cable so that the requirements for equalizing networks are reduced and the cables may be operated over wider frequency bands.
  • transmission lines are, of course, only representative of any dual surface electric transmission line having two conducting surfaces, such as, for example, coaxial lines, strip lines, twin lines, etc. While these transmission lines have their main application in the transmission of signals at hf and higher frequencies, the invention is also applicable to the transmission of power usually at frequencies of only 50 or 60 Hz. However, in order to increase sufficiently the surface reactance of a conductor at these low frequencies without utilizing excessively thick dielectric coatings, materials having very high permittivities are required.
  • One suitable material is manganese zinc ferrite which has a relative permittivity of about 10 a relative permeability of 10 and a conductivity in the range of 3 X 10 mho/m giving a loss tangent of 10*.
  • the coating of a conductor with such materials may be in the form of a series of individual axially spaced apart rings of the materialthus enabling the resulting reactively loaded cable to maintain the required degree of mechanical flexibility without damage to the dielectric material.
  • the ferrite material may be sandwiched in powdered form between supporting flexible tapes, as previously discussed for higher frequency lines and depicted in FIGS. 4 and 5. The use of such sandwiched tapes wound spirally about the conductor will also result in less longitudinal or axial induced current within the ferrite material than with the ring configuration.
  • FIGS. 7 and 8 An example illustrating the first-mentioned arrangement for power frequency transmission lines is shown in FIGS. 7 and 8 in which two parallel spaced-apart conductors 30 and 32 of circular cross-section constitute a high power transmission line.
  • Conductor 30 is coated with a series of axially aligned, individually spaced-apart rings 34 of manganese zinc ferrite.
  • FIG. 9 One application for the low-loss transmission line of this invention is in a resonator as shown in FIG. 9.
  • a fixed length l of electric transmission line constructed according to this invention is terminated at both ends by electrical reflectors or short-circuits 36 and 38. Electrical energy may be transferred to and from the resonator 40 by way of line 42 through reflector 38.
  • resonators of this type resonance will be observed at a plurality of frequencies having wavelengths in the medium of resonator 40 corresponding to 2( l/nn is an integer.
  • a new use for dielectric material on one conducting surface of said line which is of the type that inherently transmits a hybrid wave comprising at least a TEM mode and a dual surface wave mode and which has a pair of spaced-apart generally parallel conducting surfaces with a second dielectric material in between, said new use comprising the method steps of:
  • a method for decreasing frequency dispersion and net line attenuation in a two conductor transmission line system comprising a pair of spaced-apart generally parallel conducting surfaces having a dielectric medium disposed between said surfaces wherein a hybrid wave inherently exists having both TEM and dual surface wave components, said method comprising the step of introducing a predetermined thickness of a further dielectric medium along the length of one of said conducting surface, said predetermined thickness and the relative permittivity of said further dielectric material being chosen to enhance the dual surface wave component relative to the TEM component and to make said dual surface wave component asymmetric whereby the frequency dispersion and net line attenuation of the overall hybrid mode are decreased in spite of added losses introduced by the addition of said further dielectric medium.

Abstract

A method and means for reducing net transmission losses and frequency dispersion within an electrical transmission line having dual conducting surfaces and carrying a hybrid mode electromagnetic wave comprising both a TEM component and a dual surface wave component. One of the two conducting surfaces is caused to have more surface resistance than the other by a predetermined amount thereby making the surface wave part of the field asymmetric and enhancing the energy particularly associated with the surface wave to the detriment of the other existing components such as the TEM field. The predetermined amount of surface reactance is controlled to reduce the product of transverse attenuation and phase-change coefficients for the hybrid wave thereby causing a reduction in its overall axial attenuation coefficient in the direction of propogation. Thus the wave is slowed down by the dielectric loading, its phase-change coefficient is increased and made more nearly proportional directly to frequency.

Description

United States Patent Barlow June 6, 1972 [54] HYBRID MODE ELECTRIC TRANSMISSION LINE USING ACCENTUATED ASYNIMETRICAL DUAL SURFACE WAVES [72] Inventor: Harold Monteagle Barlow, Banstead, En-
1967, abandoned.
[30] Foreign Application Priority Data Oct. 7, 1966 Great Britain ..45,014/66 Feb. I, 1967 Great Britain ..4,818/67 [52] U.S. Cl ..333/95 S, 333/96, 333/97 R [51] Int. Cl. ..I-I0lp 1/16,I-IO1p3/06,H01p 11/00 [58] Field ofSearch ..333/84 R, 95 S,96;174/120C; 156/53 [56] References Cited UNITED STATES PATENTS 2,353,494 7/1944 Patten et al. ..138/124 X 2,949,589 8/1960 l-Iafner 333/95 S X 2,251,262 8/1941 Abbott 174/120 C FOREIGN PATENTS OR APPLICATIONS 1,076,211 2/1960 Germany 156/53 1,022,279 1/1958 Germany .333/95 S 694,622 7/1953 Great Britain. ....333/95 S OTHER PUBLICATIONS Barlow 1965, Screened Surface Waves and Some Possible Applications Proc IEE Vol. 1 12 No. 3, 3-1965, pp 477-482 Discussion, Screened Surface Waves and Some Possible Applications," Proc IEE Vol. 112, No. 10, 10-1965, pp. 1894- 1895 Barlow et a1; 1954. An Experimental lnveatigation of the Properties of Corrugated Cylindrical Surface waveguides," ProclEE, lOl,PT. 111, 1954, pp. 182-188 Barlow et al.; 1953, Surface Waves, Proc IEE, 100, pt. 111, 11-1953, pp. 329, 337- 338 Barlow, 1967; New Features of Wave Propogation Not Subject to Cutoff Between Two Parallel Guiding Surfaces," Proc IEE, 114, No. 4, 4-67, pp. 421 427 Barlow 1968; High-Frequency Coaxial Cables, Proc IEE,
1 15 No. 2, 2-1968, pp. 243- 246 Barlow 1969, Hybrid Tem-Dial Surface Wave in Coaxial Cable Proc IEE, 116, No. 4, 4-1969, pp. 489- 494 Millington et al.; Riccati Approach to the Propogation of Axially Symmetric Waves in a Coaxial Guide, Proc IEE, 115, No. 8, 8-1968, pp. 1079- 1088 Primary Examiner-Herman Karl Saalbach Assistant Examiner-Wm. H. Punter AttorneyCushman, Darby & Cushman [5 7] ABSTRACT A method and means for reducing net transmission losses and frequency dispersion within an electrical transmission line having dual conducting surfaces and carrying a hybrid mode I electromagnetic wave comprising both a TEM component and a dual surface wave component. One of the two conducting surfaces is caused to have more surface resistance than the other by a predetermined amount thereby making the surface wave part of the field asymmetric and enhancing the energy particularly associated with the surface wave to t e detriment reduction in its overall axial attenuation coefficient in the direction of propogation. Thus the wave is slowed down by the dielectric loading, its phase-change eoefficient is increased and made more nearly proportional directly to frequency.
3 Claims, 10 Drawing Figures PATENTEDJUH 61972 3,668,574
SHEET 10F 4 II 5 l PATENTEDJUH 61972 3,668,574 SHEET 2 BF 4 INVENTOR ATTORNEYS PATENTED-JUH s 1%? 3, 668. 574
sum 30F a H INVENTOR HWOwE/VB/WAM ATTORNEYS PATEMTEUJUH 81972 3,668,574 SHEET a 0F 4 HYBRID MODE ELECTRIC TRANSMISSION LINE USING ACCENTUATEI) ASYMMETRICAL DUAL SURFACE WAVES The subject matter of this specification constitutes a continuation-in-part of the subject matter of my previous application, Ser. No. 672,560, filed Oct. 3, 1967, now abandoned, which also relates to an electric transmission line.
Minimizing net electrical transmission line losses and reducing frequency dispersion has long been recognized as an important and worthwhile goal in the electrical art. These objectives are often given special emphasis wherever long transmission distance and/or large amounts of power are involved to make such minimization economically imperative. However, before this invention, such efforts at minimization were largely restricted to increasing the conductivity of conductors, increasing the cross-sectional area of conductors, increasing the effective skin depth of electrical current in conductors, providing special line terminations and adding distributed or lumped inductive loading to the line. All of these previous efforts to minimize losses were made in the art while it was generally believed that the only significant mode of propagation in dual conducting surface line was a simple TEM mode.
It has now been discovered that the normal transmission mode of electromagnetic energy in a dual conducting surface transmission line, for example, a strip line or a coaxial cable, is, contrary to generally accepted belief, an overall hybrid mode and not a simple TEM mode. This hybrid mode comprises a combination of at least a dual surface wave field and a TEM field with the magnitude of the former depending to a large extent on the surface reactance of the two conducting surfaces. If, as is usually the case, the surface reactances of the two conducting surfaces are equal, then with a symmetrical disposition of conductors there will be a dual surface wave mode with fields of equal magnitude associated with each of the two conducting surfaces.
This invention is based upon the discovery that the net attenuation of electrical energy propagated along a two conductor line and the departure from the required linear relationship between phase-change coefficient and frequency may be reduced by purposefully increasing the surface reactance of one of the two conducting surfaces by a controlled amount. This controlled increase enhances the dual surface wave fields associated with the one surface having increased surface reactance to the detriment of other existing propagation modes thereby producing an asymmetrical hybrid wave which has been found to cause appreciably less net attenuation and less distortion than if no such asymmetry exists, provided that the amount of increased surface reactance is carefully controlled and kept within certain ranges or limits. in the preferred embodiment of this invention, the degree of asymmetry produced is such that the hybrid wave contour of minimum axial electric field occurs as close as possible. to the conducting surface opposite the one which is provided with increased surface reactance.
In other words, it is now established that a hybrid wave propagation of energy is not only unavoidable in any parallel conductor electrical transmission system but that the deliberate accentuation of the surface wave content thereof, to a limited and controlled extent, can be very beneficial. This technique, is, of course, applicable to the standard two-wire transmission line normally used for the lower poser frequencies as well as other lines such as coaxial and strip lines which are used for higher electrical frequencies.
The essence of this invention is based on the application of just sufficient reactive loading (achieved in the preferred embodiment with a thin dielectric coating) to one of the conductors thus enhancing and making asymmetrical the surface wave mode content up to the point where the overall net line attenuation and distortion is a minimum or thereabouts. In the preferred embodiment, this requires only a very thin layer of dielectric coating. If an excessive thickness of dielectric or other reactive loading is utilized, the net line attenuation will be increased from a minimum and, in fact, will eventually exceed the attenuation of the line without any coating or loading at all.
It has also been discovered that the production of an asymmetrical surface wave on a two conductor line by the previously described principles tends, at the same time, to reduce the undesirable frequency dispersion characteristics of the resulting line by making the axial propagation phase-change coefficient almost directly proportional to frequency.
The effect of adding a controlled amount of surface reactance to one of the two conducting surfaces (obtained in the preferred embodiment by a thin dielectric coating) causes very significant and complex changes in field distributions of electromagnetic fields within the space between the conducting surfaces. Over at least a small range of added reactance values, the result of such complex changes has been found to be a reduction in the product of transverse attenuation and transverse phase-change coefficients for the hybrid wave with enhanced asymmetrical surface wave content. At the same time, many other parameters of the hybrid wave are also changed. For example, the longitudinal or axial hybrid wave impedance and the longitudinal or axial phase-change coefficient are both increased and, as previously pointed out, the axial phase-change coefficient is also made more nearly proportional to frequency thereby producing a more desirable frequency dispersion characteristic.
A particularly important result of these changes is a reduction in the product of transverse attenuation and phasechange coefficients since the overall attenuation in the axial propagation direction of the hybrid wave with enhanced surface wave component is proportional to and thus directly dependent upon this product divided by the axial phase-change coefficient. Thus, over a predetermined range of added surface reactance, a controlled enhancement of the surface wave content increases the proportion of total energy propagating in that mode and may result in a reduced attenuation of the energy propagating in that mode. Thus, by carefully controlling the amount of added surface reactance, not only is the dispersion less but the reduction in overall net attenuation can exceed any additional losses that may be caused by the introduction of the added dielectric medium or other reactive loading. Actually, the transverse attenuation coefficient increases with added surface reactance while the transverse phase-change coefficient falls rapidly and the product is reduced over a limited range of surface reactance loading.
While in the prior art surface reactance has been added to a single conducting surface for the purpose of trapping a surface wave mode in the close proximity of the conducting surface and thus providing a single conductor surface wave transmission line, the amount of added surface reactance used for these single conductor surface wave transmission lines is greatly in excess of the limited range of surface reactance loading which may be profitably utilized with this invention. In fact, the excessive surface reactance loading required to achieve a single conductor surface wave transmission line would, in most cases, actually increase the net line attenuation in a dual surface transmission line supporting hybrid modes of propagation.
Accordingly, it is an object of this invention to provide means for producing an asymmetrical TEM dual surface wave on a two conductor line by adding a controlled amount of surface reactance to one conductor, the added reactance comprising a thin coating of a low-loss dielectric medium on the one conducting surface with the coating relative permittivity and thickness being carefully controlled to insure a greater decrease in attenuation (due to the resulting asymmetrical surface wave) than increase in attenutation (due to added losses in the coating medium) thereby insuring a reduced overall net line attenuation and at the same time reduced frequency dispersion.
A further object of this invention is to provide means for producing an asymmetrical hybrid TEM dual surface wave by adding a controlled amount of surface reactance to one conductor in the form of corrugations or grooves substantially at right angles to the direction of the hybrid wave propagation. These grooves preferably have a depth 'much less than a quarter wave length such that the surface reactance is of the same order as that employed with the dielectric coated conductor previously described.
It is also an object of this invention to apply the foregoing principles to standard ac. power (50-60 Hz.). dual conductor transmission lines by using on one of the line conductors a controlled coating of a dielectric medium having a very high permittivity, as for example, a ferrite material.
Another object of this invention is application of the above principles to resonators where such resonators comprise a length of transmission line embodying the invention as previously discussed together with electrical reflectors or short-circuits at opposite ends thereof.
A more complete understanding of this invention may be obtained by carefully studying the following detailed explanation and the accompanying drawings of which:
FIG. 1 illustrates in cross-section a coaxial cable embodying this invention,
FIG. 2 is an axial cross-section of the cable illustrated in FIG. 1,
- FIG. 3 is a graph generally showing the relationship between net line attenuation and thickness of the dielectric coating or other equivalent surface reactance,
FIG. 4 shows a spiral wrapping of a sandwiched dielectric material about a conductor according to this invention,
FIG. 5 is a detailed cross-sectional view of the sandwiched material taken along line 5-5 in FIG. 4,
FIG. 6 illustrates an axial cross-section of the center conductor of an alternate embodiment of this invention utilizing a corrugated or grooved conductor surface to achieve increases surface reactance,
FIG. 7 illustrates an end view of a low-frequency power cable embodying this invention,
FIG. 8 illustrates a plan view of the power cable shown in FIG. 7,
FIG. 9 illustrates a resonator constructed according to the principles of this invention, and 0pp FIG. 10 is a graph of experimentally determined approximately optimum dielectric thickness versus operating frequency.
The standard coaxial dual conductor line having an inner conductor 10 surrounded by an outer conductor 12 as shown in FIGS. 1 and 2 (for the moment disregarding dielectric coating 14) has long been known to support propagation of energy in a TEM mode characterized by radial electrical fields and circumferential magnetic fields. With this invention it has been discovered that the propagation of energy along such a dual conductor line as shown in FIGS. 1 and 2 actually includes significant surface wave modes as well as the long-accepted TEM mode which together constitute a resulting hybrid wave. It has been further discovered that, by a controlled enhancement of the magnitude of the surface wave fields associated with one of the two conducting surfaces, the overall net attenuation of hybrid mode energy propagated along the line may be reduced, while the phase velocity of propagation becomes substantially constant at all operating frequencies.
Referring now to FIG. 1, there is shown, in cross-section, a coaxial cable embodying this invention. Inner conductor 10 has a coating 14 with a thickness t of a dielectric material. If desired, the cable illustrated in FIG. 1 may be air-spaced in which case the space volume existing between dielectric coating 14 and outer conductor 12 would be filled with air or some inert gas and the conductor 10 would be held in proper spaced-apart relationship from outer conductor 12 by insulating spacers 16 as shown by dotted lines in FIG. 2.
It has been discovered that when a high frequency wave is launched into a cable as illustrated by FIGS. 1 and 2, the total energy propagation is in fact in the form of a hybrid mode comprising both a TEM mode and a dual surface wave mode having surface wave fields associated with each of the two conducting surfaces. The effect of dielectric coating 14, which increases the surface reactance of conductor 10, is to cause the surface wave field associated with conducting surface 10 to be enhanced, thus causing the total dual surface wave mode to become increasingly asymmetric. That is, more of the total propagated energy is caused to travel in the surface wave field associated with conductor 10 than before. As illustrated by the electric field pattern shown in FIG. 2, electric field 18 associated with conducting surface 10 is of a much greater magnitude than electric field 20 which is associated with conductor 12. At some point between these two electric fields there is a contour of minimum axial electric field which is preferably caused to be as close to conductor 12 as possible.
It has been also discovered that, as the thickness 1 of coating 14 is increased from zero value upwards, the net attenuation of axially propagating energy within the cable falls to a minimum and thereafter increases. A general indication of this relationship between an axial attenuation coefficient a and thickness 1 of coating 14 is shown in FIG. 3.
The thickness 2 of the coating 14 required to minimize net line attenuation of axial propagating energy is dependent upon many parameters including the relative permittivity of the dielectric coating and its value with respect to the permittivity of the main dielectric medium existing between dielectric coating 14 and outer conductor 12 and the frequency range of propagating waves. Although, as yet, no rigorously derived mathematical formulas have been shown to predict the optimum value of thickness r or other reactive loading, the following table of operating frequency versus approximate optimum thickness of dielectric coating has been discovered by an experiment in which the relative permittivity of the dielectric coating 14 is approximately two or three times greater than the relative permittivity of the surrounding dielectric medium of the transmission line.
Approximate Optimum The information given in the above table is presented in graphical form in FIG. 10 with operating frequency shown on a horizontal logarithmic scale and thickness shown by a linear vertical scale. Operation within the cross-hatched region will result in reduced net line attenuation as taught by this invention.
If the main dielectric is solid polythene, the inner conductor must be coated with a low-loss dielectric having a relative permittivity between 7 and 8, or thereabouts while if the main dielectric medium of the line is air, the coating may comprise polythene or polystrene. Instead of coating the inner conductor 10 with dielectric medium, the inner surface of outer conductor 12 may be coated, but it is preferable from the point of view of simplicity in manufacture to coat the inner conductor as shown in FIG. 2.
In the case of a cable filled with a solid dielectric medium where, as previously noted, it is necessary for the coating 14 to have a higher permittivity than the main dielectric medium, suitable materials for such a coating 14 are polystyrene loaded with titanium dioxide, calcium titanate, or strontium titanate. These materials may be applied as a coating to the inner conductor preferably by extrusion or as shown in FIGS. 4 and S by crushing the loading material into a powdered form and sandwiching the powder 22 between two layers of insulating flexible tape 24, for example, cellulose tape such as Sellotape. The resulting sandwich 26 of flexible tape and powdered dielectric material is then wound spirally about inner conductor 10 to provide the necessary coating 14 as shown in FIG. 4.
In accordance with another embodiment of this invention shown in FIG. 6, corrugations or grooves 28 may be provided in the surface of one of the conducting surfaces (inner conductor as shown in FIG. 6) instead of providing a coating such as coating 14 to increase the surface reactance. These corrugations or grooves 28 are preferably about the inner conductor if the transmission line is coaxial as shown in FIGS. 1 and 2. The circumferential grooves or channels 28 shown in FIG. 6 have effective depths much less than a quarter wavelength thereby producing a surface reactance comparable to that produced by the dielectric coating previously considered. The ratio of slot width b to slot pitch B is such that b/B is equal very nearly to the ratio of slot reactance to surface reactance. A cable constructed as described and illustrated in FIG. 6 behaves similarly to the cable illustrated in FIGS. 1 and 2 which utilizes the dielectric coating 14 in lieu of such corrugations or grooves to increase the surface reactance of conductor 10.
Obviously an advantage of transmission lines embodying this invention as described above is that since the overall net axial propagation attenuation of the line may be less than that of the usual type of line carrying a quasi-TEM wave, (i.e., one with most of the power in a TEM mode as would be the case without any surface wave accentuating means), the number of repeaters that are required when this form of line is used for a long distance signal transmission, as in a submarine cable, is reduced. Furthermore, these new lines result in noticeably less frequency dispersion than in a conventional cable so that the requirements for equalizing networks are reduced and the cables may be operated over wider frequency bands.
The previously discussed transmission lines are, of course, only representative of any dual surface electric transmission line having two conducting surfaces, such as, for example, coaxial lines, strip lines, twin lines, etc. While these transmission lines have their main application in the transmission of signals at hf and higher frequencies, the invention is also applicable to the transmission of power usually at frequencies of only 50 or 60 Hz. However, in order to increase sufficiently the surface reactance of a conductor at these low frequencies without utilizing excessively thick dielectric coatings, materials having very high permittivities are required. One suitable material is manganese zinc ferrite which has a relative permittivity of about 10 a relative permeability of 10 and a conductivity in the range of 3 X 10 mho/m giving a loss tangent of 10*.
Because these ferrites are hard, brittle materials, the coating of a conductor with such materials may be in the form of a series of individual axially spaced apart rings of the materialthus enabling the resulting reactively loaded cable to maintain the required degree of mechanical flexibility without damage to the dielectric material. Alternatively, the ferrite material may be sandwiched in powdered form between supporting flexible tapes, as previously discussed for higher frequency lines and depicted in FIGS. 4 and 5. The use of such sandwiched tapes wound spirally about the conductor will also result in less longitudinal or axial induced current within the ferrite material than with the ring configuration.
It is desirable to insure that as high a proportion of the total energy as possible is contained in the surface wave content of the field rather than in the TEM part and at 50 Hz. this feature is best achieved either by a pair of spaced apart conductors of circular cross-section or by a coaxial configuration of conductors. An example illustrating the first-mentioned arrangement for power frequency transmission lines is shown in FIGS. 7 and 8 in which two parallel spaced-apart conductors 30 and 32 of circular cross-section constitute a high power transmission line. Conductor 30 is coated with a series of axially aligned, individually spaced-apart rings 34 of manganese zinc ferrite.
Of course, in any of the previously described embodiments, it is permissible to apply surface reactance loading to both of the two conducting surfaces but in unequal amounts such that the requisite asymmetric TEM surface wave field is still produced by the supporting surfaces; however, it is preferable that only one of the conductors is coated or otherwise loaded with additional surface reactance.
One application for the low-loss transmission line of this invention is in a resonator as shown in FIG. 9. Here a fixed length l of electric transmission line constructed according to this invention is terminated at both ends by electrical reflectors or short- circuits 36 and 38. Electrical energy may be transferred to and from the resonator 40 by way of line 42 through reflector 38. As is usual with resonators of this type, resonance will be observed at a plurality of frequencies having wavelengths in the medium of resonator 40 corresponding to 2( l/nn is an integer.
Although only a few embodiments of this invention have been specifically described above, it should be appreciated that this invention encompasses the whole of a dramatic new discovery of means for reducing the net line attenuation and dispersion of dual conductor electric transmission lines by providing surface-wave accentuating means for causing a significant portion of the total propagated energy to be in the form of an asymmetrical surface wave rather than in the usual TEM mode and for controlling this means both to cause a greater reduction in net line attenuation than any increase, thereof caused by the presence of said means and to cause a wider range of frequencies to travel along the line with the same phase velocity. Accordingly, many possible modifications of the disclosed embodiments are within the scope of this invention.
What is claimed is:
1. In a hybrid mode dual surface electrical transmission line, a new use for dielectric material on one conducting surface of said line which is of the type that inherently transmits a hybrid wave comprising at least a TEM mode and a dual surface wave mode and which has a pair of spaced-apart generally parallel conducting surfaces with a second dielectric material in between, said new use comprising the method steps of:
adding to said one conducting surface a predetermined thickness of the first-mentioned dielectric material having a permittivity greater than said second dielectric material to increase the surface reactance of said one surface and to product an accentuated asymmetrical dual surface wave mode thereby reducing the dispersion and attenuation of the resulting hybrid mode'while simultaneously introducing additional line losses caused by the addition of said first dielectric material, and
controlling the predetermined thickness of said first dielectric material to produce a substantially constant phase velocity over a relatively wide frequency range and to produce an increase in overall line attenuation due to said additional losses that is significantly less than an accompanying reduction in overall line attenuation due to said accentuated asymmetrical dual surface wave whereby a net reduction in overall line attenuation is attained.
2. A new use method as in claim 1, wherein said thickness controlling step causes the net line attenuation and dispersion to be minimized.
3. A method for decreasing frequency dispersion and net line attenuation in a two conductor transmission line system comprising a pair of spaced-apart generally parallel conducting surfaces having a dielectric medium disposed between said surfaces wherein a hybrid wave inherently exists having both TEM and dual surface wave components, said method comprising the step of introducing a predetermined thickness of a further dielectric medium along the length of one of said conducting surface, said predetermined thickness and the relative permittivity of said further dielectric material being chosen to enhance the dual surface wave component relative to the TEM component and to make said dual surface wave component asymmetric whereby the frequency dispersion and net line attenuation of the overall hybrid mode are decreased in spite of added losses introduced by the addition of said further dielectric medium.
i i K i

Claims (3)

1. In a hybrid mode dual surface electrical transmission line, a new use for dielectric material on one conducting surface of said line which is of the type that inherently transmits a hybrid wave comprising at least a TEM mode and a dual surface wave mode and which has a pair of spaced-apart generally parallel conducting surfaces with a second dielectric material in between, said new use comprising the method steps of: adding to said one conducting surface a predetermined thickness of the first-mentioned dielectric material having a permittivity greater than said second dielectric material to increase the surface reactance of said one surface and to product an accentuated asymmetrical dual surface wave mode thereby reducing the dispersion and attenuation of the resulting hybrid mode while simultaneously introducing additional line losses caused by the addition of said first dielectric material, and controlling the predetermined thickness of said first dielectric material to produce a substantially constant phase velocity over a relatively wide frequency range and to produce an increase in overall line attenuation due to said additional losses that is significantly less than an accompanying reduction in overall line attenuation due to said accentuated asymmetrical dual surface wave whereby a net reduction in overall line attenuation is attained.
2. A new use method as in claim 1, wherein said thickness controlling step causes the net line attenuation and dispersion to be minimized.
3. A method for decreasing frequency dispersion and net line attenuation in a two conductor transmission line system comprising a pair of spaced-apart generally parallel conducting surfaces having a dielectric medium disposed between said surfaces wherein a hybrid wave inherently exists having both TEM and dual surface wave components, said method comprising the step of introducing a predetermined thickness of a further dielectric medium along the length of one of said conducting surface, said predetermined thickness and the relative permittivity of said further dielectric material being chosen to enhance the dual surface wave component relative to the TEM component and to make said dual surface wave component asymmetric whereby the frequency dispersion and net line attenuation of the overall hybrid mode are decreased in spiTe of added losses introduced by the addition of said further dielectric medium.
US29626A 1966-10-07 1970-04-17 Hybrid mode electric transmission line using accentuated asymmetrical dual surface waves Expired - Lifetime US3668574A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB4818/67A GB1207491A (en) 1966-10-07 1966-10-07 Improvements relating to transmission line systems
GB4501466 1966-10-07

Publications (1)

Publication Number Publication Date
US3668574A true US3668574A (en) 1972-06-06

Family

ID=26239390

Family Applications (1)

Application Number Title Priority Date Filing Date
US29626A Expired - Lifetime US3668574A (en) 1966-10-07 1970-04-17 Hybrid mode electric transmission line using accentuated asymmetrical dual surface waves

Country Status (4)

Country Link
US (1) US3668574A (en)
DE (1) DE1665270A1 (en)
GB (1) GB1207491A (en)
NL (1) NL6713572A (en)

Cited By (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051450A (en) * 1975-04-03 1977-09-27 National Research Development Corporation Waveguides
US4114121A (en) * 1976-01-16 1978-09-12 National Research Development Corporation Apparatus and methods for launching and screening electromagnetic waves in the dipole mode
US4216449A (en) * 1977-02-11 1980-08-05 Bbc Brown Boveri & Company Limited Waveguide for the transmission of electromagnetic energy
US4271399A (en) * 1978-04-24 1981-06-02 Nippon Electric Co., Ltd. Dielectric resonator for VHF to microwave region
US4318064A (en) * 1977-05-20 1982-03-02 Patelhold Patentverwertungs- & Elektro-Holding Ag Resonator for high frequency electromagnetic oscillations
US6091025A (en) * 1997-07-29 2000-07-18 Khamsin Technologies, Llc Electrically optimized hybird "last mile" telecommunications cable system
US6239379B1 (en) 1998-07-29 2001-05-29 Khamsin Technologies Llc Electrically optimized hybrid “last mile” telecommunications cable system
US20010045875A1 (en) * 2000-05-25 2001-11-29 Murata Manufacturing Co., Ltd. Coaxial resonator, filter, duplexer, and communication device
US20030151033A1 (en) * 1996-10-09 2003-08-14 Qinetiq Limited Dielectric media
US6684030B1 (en) 1997-07-29 2004-01-27 Khamsin Technologies, Llc Super-ring architecture and method to support high bandwidth digital “last mile” telecommunications systems for unlimited video addressability in hub/star local loop architectures
WO2006019776A2 (en) * 2004-07-14 2006-02-23 William Marsh Rice University A method for coupling terahertz pulses into a coaxial waveguide
US9119127B1 (en) 2012-12-05 2015-08-25 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US9154966B2 (en) 2013-11-06 2015-10-06 At&T Intellectual Property I, Lp Surface-wave communications and methods thereof
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525210B2 (en) 2014-10-21 2016-12-20 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9531427B2 (en) 2014-11-20 2016-12-27 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9577307B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9755697B2 (en) 2014-09-15 2017-09-05 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10396887B2 (en) 2015-06-03 2019-08-27 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2251262A (en) * 1940-08-03 1941-08-05 Charles W Abbott Nonmetallic sheathed conductor
US2353494A (en) * 1941-11-04 1944-07-11 Johns Manville Insulating tape
GB694622A (en) * 1950-11-18 1953-07-22 Standard Telephones Cables Ltd Wave guide for electromagnetic surface waves
DE1022279B (en) * 1954-01-29 1958-01-09 Siemens Ag Shielded wave guide assembly made of dielectric material
DE1076211B (en) * 1954-06-24 1960-02-25 Du Pont Coated polymeric thermoplastic film for electrical insulation purposes and process for its manufacture
US2949589A (en) * 1955-05-20 1960-08-16 Surface Conduction Inc Microwave communication lines

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2251262A (en) * 1940-08-03 1941-08-05 Charles W Abbott Nonmetallic sheathed conductor
US2353494A (en) * 1941-11-04 1944-07-11 Johns Manville Insulating tape
GB694622A (en) * 1950-11-18 1953-07-22 Standard Telephones Cables Ltd Wave guide for electromagnetic surface waves
DE1022279B (en) * 1954-01-29 1958-01-09 Siemens Ag Shielded wave guide assembly made of dielectric material
DE1076211B (en) * 1954-06-24 1960-02-25 Du Pont Coated polymeric thermoplastic film for electrical insulation purposes and process for its manufacture
US2949589A (en) * 1955-05-20 1960-08-16 Surface Conduction Inc Microwave communication lines

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Barlow 1965, Screened Surface Waves and Some Possible Applications Proc IEE Vol. 112 No. 3, 3 1965, pp. 477 482 *
Barlow 1968; High Frequency Coaxial Cables, Proc IEE, 115 No. 2, 2 1968, pp. 243 246 *
Barlow 1969, Hybrid Tem Dial Surface Wave in Coaxial Cable Proc IEE, 116, No. 4, 4 1969, pp. 489 494 *
Barlow et al.; 1953, Surface Waves, Proc IEE, 100, pt. III, 11 1953, pp. 329, 337 338 *
Barlow et al.; 1954, An Experimental Investigation of the Properties of Corrugated Cylindrical Surface waveguides, Proc IEE, 101, PT. III, 1954, pp. 182 188 *
Barlow, 1967; New Features of Wave Propogation Not Subject to Cutoff Between Two Parallel Guiding Surfaces, Proc IEE, 114, No. 4, 4 67, pp. 421 427 *
Discussion, Screened Surface Waves and Some Possible Applications, Proc IEE Vol. 112, No. 10, 10 1965, pp. 1894 1895 *
Millington et al.; Riccati Approach to the Propogation of Axially Symmetric Waves in a Coaxial Guide, Proc IEE, 115, No. 8, 8 1968, pp. 1079 1088 *

Cited By (239)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051450A (en) * 1975-04-03 1977-09-27 National Research Development Corporation Waveguides
US4114121A (en) * 1976-01-16 1978-09-12 National Research Development Corporation Apparatus and methods for launching and screening electromagnetic waves in the dipole mode
US4216449A (en) * 1977-02-11 1980-08-05 Bbc Brown Boveri & Company Limited Waveguide for the transmission of electromagnetic energy
US4318064A (en) * 1977-05-20 1982-03-02 Patelhold Patentverwertungs- & Elektro-Holding Ag Resonator for high frequency electromagnetic oscillations
US4271399A (en) * 1978-04-24 1981-06-02 Nippon Electric Co., Ltd. Dielectric resonator for VHF to microwave region
US7338615B2 (en) * 1996-10-09 2008-03-04 Qinetiq Limited Dielectric media
US20030151033A1 (en) * 1996-10-09 2003-08-14 Qinetiq Limited Dielectric media
US6091025A (en) * 1997-07-29 2000-07-18 Khamsin Technologies, Llc Electrically optimized hybird "last mile" telecommunications cable system
US6241920B1 (en) 1997-07-29 2001-06-05 Khamsin Technologies, Llc Electrically optimized hybrid “last mile” telecommunications cable system
US6684030B1 (en) 1997-07-29 2004-01-27 Khamsin Technologies, Llc Super-ring architecture and method to support high bandwidth digital “last mile” telecommunications systems for unlimited video addressability in hub/star local loop architectures
US6239379B1 (en) 1998-07-29 2001-05-29 Khamsin Technologies Llc Electrically optimized hybrid “last mile” telecommunications cable system
US20010045875A1 (en) * 2000-05-25 2001-11-29 Murata Manufacturing Co., Ltd. Coaxial resonator, filter, duplexer, and communication device
US6894587B2 (en) * 2000-05-25 2005-05-17 Murata Manufacturing Co., Ltd. Coaxial resonator, filter, duplexer, and communication device
WO2006019776A2 (en) * 2004-07-14 2006-02-23 William Marsh Rice University A method for coupling terahertz pulses into a coaxial waveguide
US20080309577A1 (en) * 2004-07-14 2008-12-18 Mittleman Daniel M Method for Coupling Terahertz Pulses Into a Coaxial Waveguide
WO2006019776A3 (en) * 2004-07-14 2010-06-10 William Marsh Rice University A method for coupling terahertz pulses into a coaxial waveguide
US9178282B2 (en) 2004-07-14 2015-11-03 William Marsh Rice University Method for coupling terahertz pulses into a coaxial waveguide
US9119127B1 (en) 2012-12-05 2015-08-25 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US10194437B2 (en) 2012-12-05 2019-01-29 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9788326B2 (en) 2012-12-05 2017-10-10 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9699785B2 (en) 2012-12-05 2017-07-04 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9930668B2 (en) 2013-05-31 2018-03-27 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10091787B2 (en) 2013-05-31 2018-10-02 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9467870B2 (en) 2013-11-06 2016-10-11 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9154966B2 (en) 2013-11-06 2015-10-06 At&T Intellectual Property I, Lp Surface-wave communications and methods thereof
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9661505B2 (en) 2013-11-06 2017-05-23 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9876584B2 (en) 2013-12-10 2018-01-23 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9794003B2 (en) 2013-12-10 2017-10-17 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9479266B2 (en) 2013-12-10 2016-10-25 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US10096881B2 (en) 2014-08-26 2018-10-09 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves to an outer surface of a transmission medium
US9755697B2 (en) 2014-09-15 2017-09-05 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9998932B2 (en) 2014-10-02 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9525210B2 (en) 2014-10-21 2016-12-20 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876587B2 (en) 2014-10-21 2018-01-23 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9948355B2 (en) 2014-10-21 2018-04-17 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9596001B2 (en) 2014-10-21 2017-03-14 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9960808B2 (en) 2014-10-21 2018-05-01 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9571209B2 (en) 2014-10-21 2017-02-14 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9577307B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9712350B2 (en) 2014-11-20 2017-07-18 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9531427B2 (en) 2014-11-20 2016-12-27 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9749083B2 (en) 2014-11-20 2017-08-29 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9831912B2 (en) 2015-04-24 2017-11-28 At&T Intellectual Property I, Lp Directional coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9967002B2 (en) 2015-06-03 2018-05-08 At&T Intellectual I, Lp Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9935703B2 (en) 2015-06-03 2018-04-03 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10396887B2 (en) 2015-06-03 2019-08-27 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10050697B2 (en) 2015-06-03 2018-08-14 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10686516B2 (en) 2015-06-11 2020-06-16 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10027398B2 (en) 2015-06-11 2018-07-17 At&T Intellectual Property I, Lp Repeater and methods for use therewith
US10341008B2 (en) 2015-06-11 2019-07-02 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10659212B2 (en) 2015-06-11 2020-05-19 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10142010B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10110295B2 (en) 2015-06-11 2018-10-23 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US10090601B2 (en) 2015-06-25 2018-10-02 At&T Intellectual Property I, L.P. Waveguide system and methods for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9882657B2 (en) 2015-06-25 2018-01-30 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9947982B2 (en) 2015-07-14 2018-04-17 At&T Intellectual Property I, Lp Dielectric transmission medium connector and methods for use therewith
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9806818B2 (en) 2015-07-23 2017-10-31 At&T Intellectual Property I, Lp Node device, repeater and methods for use therewith
US10074886B2 (en) 2015-07-23 2018-09-11 At&T Intellectual Property I, L.P. Dielectric transmission medium comprising a plurality of rigid dielectric members coupled together in a ball and socket configuration
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10225842B2 (en) 2015-09-16 2019-03-05 At&T Intellectual Property I, L.P. Method, device and storage medium for communications using a modulated signal and a reference signal
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10349418B2 (en) 2015-09-16 2019-07-09 At&T Intellectual Property I, L.P. Method and apparatus for managing utilization of wireless resources via use of a reference signal to reduce distortion
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices

Also Published As

Publication number Publication date
GB1207491A (en) 1970-10-07
NL6713572A (en) 1968-04-08
DE1665270A1 (en) 1971-02-11

Similar Documents

Publication Publication Date Title
US3668574A (en) Hybrid mode electric transmission line using accentuated asymmetrical dual surface waves
US2769148A (en) Electrical conductors
US3845426A (en) Dipole mode electromagnetic waveguides
US2797394A (en) Electrical conductor having composite central dielectric member
US2769147A (en) Wave propagation in composite conductors
US2796463A (en) Composite conductors
US2848696A (en) Electromagnetic wave transmission
US4118594A (en) Long distance coaxial cable with optical fibres
JPS63146306A (en) Transmission line with improved electrical signal transmission characteristic
US2787656A (en) Magnetically loaded conductors
US3238477A (en) High-impedance radio frequency coaxial line having ferrite sleeve in dielectric space
US2950454A (en) Helix wave guide
US3609613A (en) Low loss transmission-line transformer
JPH02113601A (en) Coaxial waveguide phase shifter
US2879318A (en) Shield for electric current apparatus
US2836798A (en) Microwave transmission lines
US2779925A (en) Composite coaxial resonator
US2769150A (en) Laminated conductor
US3601720A (en) Helical waveguide with varied wall impedance zones
US2736866A (en) Filter for transmission line
US3560889A (en) Termination for ultra-high-frequency and microwave transmission lines
US2034047A (en) Coaxial circuit with stranded inner conductor
US2831921A (en) Loaded laminated conductor
US3732511A (en) Waveguide mode filter
US3478281A (en) Tem mode directional coupler having dielectric compensating means