US3664863A - Carpets having a back-coating of in situ-formed polyurethane - Google Patents

Carpets having a back-coating of in situ-formed polyurethane Download PDF

Info

Publication number
US3664863A
US3664863A US3664863DA US3664863A US 3664863 A US3664863 A US 3664863A US 3664863D A US3664863D A US 3664863DA US 3664863 A US3664863 A US 3664863A
Authority
US
United States
Prior art keywords
carpet
polyether
carpet according
hydroxyl groups
carpets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Willem Dijkhuizen
Pieter Johannes Adrian Beersma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scholten Research NV
Original Assignee
Scholten Research NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scholten Research NV filed Critical Scholten Research NV
Application granted granted Critical
Publication of US3664863A publication Critical patent/US3664863A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4829Polyethers containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23907Pile or nap type surface or component
    • Y10T428/23986With coating, impregnation, or bond

Definitions

  • polyols selected polyisocyanates and catalyst.
  • the present invention relates to the application of backcoatings to carpets. More particularly it relates to the application of polyurethane coatings to the back of carpets.
  • carpets any fabric-like sheet material is contemplated, whether tufted, woven, knitted, felted, cemented or otherwise, and that the fabric may be a carpet, rug, mat, floor covering, floor tile, wall covering or the like.
  • the carpet back-cloth may consist of natural and/or synthetic textile materials, such as jute, hessian, nylon, polypropylene and the like.
  • the pile elements may also be built up of natural and/or synthetic textile materials, such as wool, nylon, polyacrylonitrile, polypropylene and the like.
  • Back-coating is widely used in the production of most types of carpets. Numerous related factors, including basic carpet construction, application techniques, the required characteristics of the finished carpet and, of course, cost determine whether to back-coat and what to use.
  • the main function of back-coating of carpets is adhesive.
  • Carpet properties which are directly effected by back-coating include the following.
  • pets of high pile density may have adequate tuft retention without a back-coating, tufted carpets have virtually no tuft retention, unless they are back-coated. With a suitable back-coating their tuft retention can be made excellent.
  • the tuft-retention of Wilton or Axminster carpets of low pile density may also considerably be enhanced by back-coating.
  • Antifray properties It is important to eliminate the fraying of cut edges of tufted carpets. To achieve complete antifray, an appreciable weight of coating is required, in order that all of the yarns in the carpet are contacted by the coating.
  • the back-coating will give a better handle to the carpet by introducing a certain degree of stiffness. It also affects the properties of the laid carpet; it prevents ruckling, imparts a high degree of resilience and prevents slipping of the carpet on a polished floor.
  • the back coating must have a long effectiveness. It should have a high tensile strength, it should not be dissolved by water and common solvents and not be affected by the components of the floor on which the carpet is laid. it should be capable of application by simple techniques and provide good adhesion for a secondary back-cloth.
  • Well known carpet backing compounds are styrene-butadiene copolymer latices, in which the copolymers may be carboxylated or not, natural rubber latices, emulsions of homoor copolymers of vinylacetate, acrylic acid esters and the like, and polyvinyl chloride plastisols. It has also been proposed to back-coat carpets with polyurethanes, either in the form of organic solutions of prepolymers, in the form of aqueous emulsions of blocked polymers or in the form of a foaming mixture.
  • the backing machine performs essentially two operations.
  • the first operation consists in distributing the coating material to the back of the carpet and the second consists in fixing permanently the coating thus applied by drying, gelation, vulcanization, curing or the like.
  • huge dryers usually of the hot air type, operating at temperatures up to 160 C. are needed.
  • An object of the present invention is to back-coat carpets with essentially non-cellular elastomeric polyurethanes, which are formed on the back of the carpet by in situ reaction of specific poly-ether-polyols and polyisocyanates.
  • anchorage of the tufts obtained in this way is much better than with polyurethane foam, the tensile strength of non-cellular polyurethanes being much higher than that of polyurethane foam.
  • a further object of the invention is to back-coat carpets with non-cellular elastomeric polyurethanes, which cure in situ on the back of the carpet at ambient temperature in relatively short time thus obviating the need for a separate heating process.
  • a further object is to provide new polyurethane backing compounds for carpets which give excellent tuft anchorage, antifray properties, improved handle and dimensional stability to the carpets.
  • Still another object is to provide novel back-coated carpets in which the backing material consists of selected polyurethanes, and which possess improved properties.
  • polyether-polyols which are used according to the invention are obtained by the addition of alkylene oxides having from two to four carbon atoms to compounds having three or more active hydrogen atoms.
  • alkylene oxides having from two to four carbon atoms
  • polyether-polyols are formed with contain only primary hydroxyl groups.
  • Such polyetherpolyols cannot be used in the present invention.
  • acid catalysts for the addition tend to produce polyetherpolyols having partly primary and secondary hydroxyl-groups in their molecules.
  • These polyether-polyols, carrying both primary and secondary hydroxyl groups, are preferably used as the polyol component in the back-coating mixture according to the invention.
  • any of the acid catalyst which have been employed to carry out alkylene oxide additions may be used to prepare the polyethers.
  • Typical acid catalysts which are preferably used in our invention are mineral acids or Lewis acid catalysts, such as boron trifluoride, tribromide of trichloride, and the chlorides of aluminium tin, iron and zinc.
  • Lewis acid catalysts such as boron trifluoride, tribromide of trichloride, and the chlorides of aluminium tin, iron and zinc.
  • complexes of Lewis acid catalysts and other organic or inorganic compounds may also be used.
  • catalysts have proved to be boron trifluoride and its complexes.
  • the amount of catalysts used in the condensation is not critical. An operable range is from 0,l to 1,0 percent, based on the weight of the polyether reaction mixture.
  • the residual acid constituents in the polyether ob- 'tained may be left therein as such or they may be partially or be used as such in the process according to the invention.
  • such polyether-polyols are applied after a part of their secondary hydroxyl groups have been capped with hydroxyethyl groups through reaction with ethylene oxide. The simultaneous presence of secondary and primary hydroxyl groups in the polyether-polyols thus obtained improves the results to be obtained by the present invention.
  • the hydroxyl number of the polyether-polyols should be within the range of 100 to 365 and preferably in the range of 200 to 300.
  • the polyether-polyol should be of a liquid or semiliquid nature at ambient temperatures or slightly above that.
  • Typical polyhydroxyl compounds suitable as starting materials for the preparation of the polyethers are triols, such as glycerol, trimethylol propane and hexanetriol, tetrols, such as erythritol and pentaerythritol, pentols, such as arabitol and xylitol, hexols, such as sorbitol and mannitol, glycosides, such as methyl glucoside, ethylene glycol glucoside and glycerol glucoside and monoand polysaccharides, such as arabinose, glucose, sucrose, lactose, dextrin and starch.
  • triols such as glycerol, trimethylol propane and hexanetriol
  • tetrols such as erythritol and pentaerythritol
  • pentols such as arabitol and xylitol
  • hexols such as
  • polyhydroxyl compounds may also be used. These polyhydroxyl compounds are preferably reacted in a substantially dry state with the alkylene oxide, although small amounts of water may be present.
  • alkylene oxides which may be reacted with the polyhydroxyl compounds to form the polyether useful in this invention are those which have from two to four carbon atoms, such as ethylene oxide, propylene oxide, l,2-butylene oxide, 1,3-butylene oxide, 2,3-butylene oxide and isobutylene oxide. These alkylene oxides may be used singly (with the exception of ethylene oxide) or in admixture. Propylene oxide is the preferred alkylene oxide in our invention. Since ethylene oxide produces polyethers containing only primary hydroxylgroups, this alkylene oxide is only used together with other alkylene oxides. It is employed in relatively low quantities in order to introduce the desired amount of primary hydroxyl groups in polyether-polyols which otherwise do not contain primary hydroxyl groups.
  • organic polyisocyanates containing at least two isocyanate groups per mol are all those which are liquid or semi-liquid under the conditions of use. For this reason it may be necessary to apply heat to certain polyisocyanates, in order to raise their temperature above their melting points, or to add a minor amount of a solvent. The liquid or semi-liquid, melted polyisocyanate may then be mixed with the polyether.
  • Suitable organic polyisocyanates include 2,4 tolylene diisocyonate, 2,6 tolylene diisocyanate, commercially available mixtures containing 65 or 80 percent of 2,4 tolylene diisocyanate and 35 or percent of 2,6 tolylene diisocyanate, 1,3 benzene diisocyanate, 1,4 benzene diisocyanate, technical or pure 4,4 diphenylmethane diisocyanate, polymethylene polyphenylisocyanate, 3,3'dimethyl diphenylmethane diisocyanate and l, l-diphenylcyclclohexyl 4,4-diisocyanate.
  • liquid or semi-liquid prepolymers especially those which contain predetermined proportions of the selected polyethers.
  • polyfunctional isocyanates which are produced from polyisocyanates and water with biuret formation are also to be considered, e.g. a liquid triisocyanate obtained from 3 mols of hexamethylene diisocyanate and 1 mol of water.
  • Polycarbodiimides with terminal free isocyanate groups are also suitable. Due to their low vapor pressure and resulting low toxicity the liquid or semi-liquid polyvalent polyisocyanates having an average functionality higher than 2 are preferred.
  • polyisocyanates may likewise be employed.
  • acidity of the polyisocyanate is too high, it may be necessary to neutralize the acid residues by addition of basic compounds, such as tertiary amines.
  • the polyether containing hydroxyl groups and the polyisocyanate are used in relative amounts corresponding to a NCO/OH ratio within the range of 0,95164 to 1,5. 0,95 NCO/OH ratios outside these limits, the physical properties of the polyurethane resins are generally somewhat less good.
  • the NCO/OH ratio is from about 1,01 to 1,20.
  • the catalysts which are needed to make the reaction mixture curable at ambient temperatures comprise organometal compounds or metal salts of carboxylic acids derived from polyvalent metals such as tin, cobalt, lead, cadmium, titane, and zinc.
  • Typical of such catalysts are dibutyltin dilaurate, dibutyltin di-2-ethylhexoate, dibutyltin diversatate, stannous octoate and the like. These catalysts may be present in amounts ranging from 0,05 to 2,0 percent based on the weight of the reaction mixture. They are advantageously used in combination with amine type catalysts, such as triethylene diamine, tetramethylbutane diamine and the like.
  • the intimate mixture of the reactants is made by pumping said reactants or premixed compounds thereof to the mixing chamber of a commercial polyurethane machine from where it is dispensed in the form of fine particles or as a thin layer, for instance, by means of a spraying nozzle. It is evenly deposited on the back of the carpet to be coated, where it is left to cure. Within a couple of minutes the coating will have lost its tack and the carpet may be stored by winding the same on rollers. If desired, the back-coated carpet, while still being in a tacky state, may be contacted with a second layer of hessian or burlap. The sandwich is then passed through a pair of nip rollers and allowed to cure. In this way a secondary cloth-back with a very neat appearance is obtained.
  • the reaction mixture which forms the polyurethane elastomer should not substantially foam. Since water reacts with isocyanates with formation of carbon dioxide, its content should be as low as possible. Therefore the reactants should be virtually anhydrous and it is desirable to include a water scavenger in the reaction mixture, such as molecular sieves, hydrolysable esters or the like, like orthoformic acid esters or titanic acid esters.
  • a water scavenger such as molecular sieves, hydrolysable esters or the like, like orthoformic acid esters or titanic acid esters.
  • Other substances which may be added to the reaction mixture are pigments, fillers, plasticizers, anti oxidants, surfactants, stabilizers and the like.
  • the surfactants may be added in order to increase the penetration of the polyurethane in the backing cloth and around the piles so as to firmly bond the pile to the backing cloth.
  • small amounts of diluting agents which decrease the viscosity of the reaction mixture, may also be added to increase the penetration.
  • the back-coated carpets made according to the invention exhibit a very good tuft anchorage, and have a pleasant handle and a desirable flexibility.
  • the abrasion resistance and the dimensional stability is very high as shown by wear trials.
  • the carpets perfectly withstand a heat ageing test and have a distinct chemical inertness.
  • EXAMPLE I A mixture is prepared according to the following formula: 75 parts of an acid catalyzed dextrose and propylene oxide based polyol, hydroxyl-number 280, containing secondary and primary hydroxyl groups 2,2 parts of sodium aluminium silicate 0,4 part of dibutyltin diversatate 0,35 part of tetramethylbutane diamine This premixed compound is pumped into the mixing head of a two-component polyurethane spraying device.
  • the other component consists of 64,2 parts of 4,4'-diphenylmethane diisocyanate.
  • the reaction mixture is deposited on the back of a tufted carpet consisting of jute back-cloth and nylon piles, in an amount of 250 g/m".
  • the reaction mixture reacts and cures at ambient temperature in a couple of minutes, to yield a back coated carpet.
  • the anchorage of the tufts in the carpet and the wear resistance of the carpet are very good.
  • EXAMPLE 2 A premix is made of the following ingredients 100 parts of an acid catalyzed starch and propylene oxide based polyol, hydroxyl-number 220, containing secondary and primary hydroxyl groups 5 parts of methylene chloride 3 parts of sodium aluminium silicate 0,4 part of dibutyltin dialurate 0,4 part of tetramethylbutane diamine. This compound is fed as one component to a two component spraying gun, the other component consisting of 56 parts of 4,4'-diphenylmethane diisocyanate. The mixture is sprayed on a polypropylene fabric tufted with polypropene yarns. lt cures in situ in a very short time at ambient temperature. The adhesion of the polyurethane to the mat is excellent. The tuft anchorage is very good.
  • EXAMPLE 3 A mixture of the following composition is prepared: 100 parts of a base catalyzed addition product of glycerol and propylene oxide, hydroxyl numer 260.
  • This mixture is pumped into the mixing head of a two-component polyurethane spraying device.
  • the other component consists of 67,1 parts of 4,4-diphenylmethane diisocyanate.
  • the reaction mixture is sprayed on the back of a tufted carpet consisting of jute cloth and nylon loop piles in an amount of 320 g/m Another jute cloth is contacted with the tacky reaction mixture and the secondary backed carpet is passed through a pair of nip rollers and allowed to cure at ambient temperature.
  • the average tuft bind as measured by a dynamometer is 6,2 kg per loop.
  • the adhesion of the secondary back cloth is rather good.
  • the average tuft bind is 6,8 kg per loop, whereas the addition of the secondary back cloth also has improved.
  • Back-coated carpet comprising tufted carpet with a backing material consisting essentially of 200-320 g/m of a substantially non-cellular elastomeric polyurethane as the in situ product of reaction of a substantially anhydrous mixture of a liquid or semi-liquid polyether polyol containing secondary hydroxyl groups and having a hydroxyl number of to 365 selected from the group consisting of addition products of a polyhydroxyl compound having from three to nine hydroxyl groups and an alkylene oxide having from three to four carbon atoms, addition products of a polyhydroxyl compound having from three to nine hydroxyl groups, an alkylene oxide having from three to four carbon atoms and ethylene oxide, and mixtures of such addition products, and an aromatic polyisocyanate selected from the group consisting of 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-benzene diisocyanate, 1,4-benzene diisocyanate, 4,4-diphenylmethane
  • polyhydroxyl compound is a glycoside, a monosaccharide or a polysaccharide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Carpets (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Laminated Bodies (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Carpets are back-coated with essentially non-cellular elastomeric polyurethanes, formed and cured in situ at ambient temperature from a mixture of selected polyether-polyols, selected polyisocyanates and catalyst.

Description

United States Patent Dijkhuizen et a1. 5] May 23, 1972 54] CARPETS HAVING A BACK-COATING [56] References Cited F IN ITU-F RNIED P YUREIHANE 0 s 0 0L UNITED STATES PATENTS [72] Inventors: Willem Dlikhuizen, Zuid-Laren; Pieter Johannes Adrianus Beersma Hare, both ggfrlinn ..117/161 X Netherlands 3,505,252 4 1970 Brotherton et a1 ..117/161 x [73] Assignee: Scholten Research N.V., Foxhol, Netherlands FOREIGN PATENTS OR APPLICATIONS 22 F] d: M 19 1969 224,254 l/1959 Australia ..161/67 1 908,188 10/1962 Great Britain ..117/161 21 App1.No.: 825,959
Primary ExaminerWilliam D. Martin Assistant ExaminerMathew R. P. Perrone,.lr. [3O] Fore'gn Application Pnomy Data Attorney-Wenderoth, Lind & Ponack May 25, 1968 Great Britain ..25,096/68 ABSTRACT [52] U.S.Cl. ..117/161 KP, 156/306, 156/328, Carpets are bacbcoated with essentially nomceuular 51/66, 61/150 elastomeric polyurethanes, fonned and cured in situ at am- [51] Int.Cl. ..B44dl/09,D04I1l/58 biem temperature from a mixture of Selected polyethep [58] Field ofSearch ..117/161 KP; 156/306, 328;
polyols, selected polyisocyanates and catalyst.
1 1 Claims, N0 Drawings CARPETS HAVING A BACK-COATING OF IN SITU- FORMED POLYURETHANE The present invention relates to the application of backcoatings to carpets. More particularly it relates to the application of polyurethane coatings to the back of carpets.
When reference herein is made to carpets, it will be understood that any fabric-like sheet material is contemplated, whether tufted, woven, knitted, felted, cemented or otherwise, and that the fabric may be a carpet, rug, mat, floor covering, floor tile, wall covering or the like. The carpet back-cloth may consist of natural and/or synthetic textile materials, such as jute, hessian, nylon, polypropylene and the like. The pile elements may also be built up of natural and/or synthetic textile materials, such as wool, nylon, polyacrylonitrile, polypropylene and the like.
Back-coating is widely used in the production of most types of carpets. Numerous related factors, including basic carpet construction, application techniques, the required characteristics of the finished carpet and, of course, cost determine whether to back-coat and what to use.
The main function of back-coating of carpets is adhesive.
Carpet properties which are directly effected by back-coating include the following.
l. Tuft retention or pile lock. Whereas closely woven .car-
pets of high pile density may have adequate tuft retention without a back-coating, tufted carpets have virtually no tuft retention, unless they are back-coated. With a suitable back-coating their tuft retention can be made excellent. The tuft-retention of Wilton or Axminster carpets of low pile density may also considerably be enhanced by back-coating.
2. Antifray properties. It is important to eliminate the fraying of cut edges of tufted carpets. To achieve complete antifray, an appreciable weight of coating is required, in order that all of the yarns in the carpet are contacted by the coating.
Appearance of the carpet. The back-coating will give a better handle to the carpet by introducing a certain degree of stiffness. It also affects the properties of the laid carpet; it prevents ruckling, imparts a high degree of resilience and prevents slipping of the carpet on a polished floor.
4. Dimensional stability. By locking the fibers together and by slowing their moisture loss and regain, a back-coating increases the dimensional stability of the carpet.
The back coating must have a long effectiveness. It should have a high tensile strength, it should not be dissolved by water and common solvents and not be affected by the components of the floor on which the carpet is laid. it should be capable of application by simple techniques and provide good adhesion for a secondary back-cloth.
Well known carpet backing compounds are styrene-butadiene copolymer latices, in which the copolymers may be carboxylated or not, natural rubber latices, emulsions of homoor copolymers of vinylacetate, acrylic acid esters and the like, and polyvinyl chloride plastisols. It has also been proposed to back-coat carpets with polyurethanes, either in the form of organic solutions of prepolymers, in the form of aqueous emulsions of blocked polymers or in the form of a foaming mixture.
In all these cases the carpet coming from the carpet producing machine must be transferred to a separate carpet backing machine. The backing machine performs essentially two operations. The first operation consists in distributing the coating material to the back of the carpet and the second consists in fixing permanently the coating thus applied by drying, gelation, vulcanization, curing or the like. For the latter operation huge dryers, usually of the hot air type, operating at temperatures up to 160 C. are needed.
An object of the present invention is to back-coat carpets with essentially non-cellular elastomeric polyurethanes, which are formed on the back of the carpet by in situ reaction of specific poly-ether-polyols and polyisocyanates. The
anchorage of the tufts obtained in this way is much better than with polyurethane foam, the tensile strength of non-cellular polyurethanes being much higher than that of polyurethane foam.
A further object of the invention is to back-coat carpets with non-cellular elastomeric polyurethanes, which cure in situ on the back of the carpet at ambient temperature in relatively short time thus obviating the need for a separate heating process.
A further object is to provide new polyurethane backing compounds for carpets which give excellent tuft anchorage, antifray properties, improved handle and dimensional stability to the carpets.
Still another object is to provide novel back-coated carpets in which the backing material consists of selected polyurethanes, and which possess improved properties.
According to the method of the present invention an essentially anhydrous, intimate mixture of a. one or more liquid or semi-liquid polyether-polyols containing wholly or partially secondary hydroxy groups, having hydroxyl numbers in the range of 365, and which are obtained by the addition of one or more alkylene oxides having from three to four carbon atoms or ethylene oxide and at least one other alkylene oxide having three to four carbon atoms to one or more polyhydroxyl compounds having at least three and preferably from three to nine hydroxyl groups, and
b. one or more liquid or semi-liquid organic polyisocyanates containing at least two isocyanate groups per mol, in which the ratio between NCO- and OH-groups is within the range from about 0,95 to about 1,5 l, and one or more catalysts for the formation of polyurethanes is applied to the back of a carpet and allowed to react in situ.
It is highly surprising that the curing of the system under these circumstances is almost complete, which contributes very much to the high strength of the new back-coatings.
The specific polyether-polyols which are used according to the invention are obtained by the addition of alkylene oxides having from two to four carbon atoms to compounds having three or more active hydrogen atoms. When ethylene oxide is used for this addition reaction polyether-polyols are formed with contain only primary hydroxyl groups. Such polyetherpolyols cannot be used in the present invention. When propylene or butylene oxides are used for the addition reaction, acid catalysts for the addition tend to produce polyetherpolyols having partly primary and secondary hydroxyl-groups in their molecules. These polyether-polyols, carrying both primary and secondary hydroxyl groups, are preferably used as the polyol component in the back-coating mixture according to the invention.
Any of the acid catalyst which have been employed to carry out alkylene oxide additions may be used to prepare the polyethers. Typical acid catalysts, which are preferably used in our invention are mineral acids or Lewis acid catalysts, such as boron trifluoride, tribromide of trichloride, and the chlorides of aluminium tin, iron and zinc. In addition, complexes of Lewis acid catalysts and other organic or inorganic compounds may also be used.
Particularly effective catalysts have proved to be boron trifluoride and its complexes. The amount of catalysts used in the condensation is not critical. An operable range is from 0,l to 1,0 percent, based on the weight of the polyether reaction mixture. The residual acid constituents in the polyether ob- 'tained may be left therein as such or they may be partially or be used as such in the process according to the invention. In a preferred embodiment of the invention such polyether-polyols are applied after a part of their secondary hydroxyl groups have been capped with hydroxyethyl groups through reaction with ethylene oxide. The simultaneous presence of secondary and primary hydroxyl groups in the polyether-polyols thus obtained improves the results to be obtained by the present invention.
The hydroxyl number of the polyether-polyols should be within the range of 100 to 365 and preferably in the range of 200 to 300. The polyether-polyol should be of a liquid or semiliquid nature at ambient temperatures or slightly above that.
Typical polyhydroxyl compounds suitable as starting materials for the preparation of the polyethers are triols, such as glycerol, trimethylol propane and hexanetriol, tetrols, such as erythritol and pentaerythritol, pentols, such as arabitol and xylitol, hexols, such as sorbitol and mannitol, glycosides, such as methyl glucoside, ethylene glycol glucoside and glycerol glucoside and monoand polysaccharides, such as arabinose, glucose, sucrose, lactose, dextrin and starch. In general polyhydroxyl compounds with cylic nulei are preferred, since they yield polyurethane resins with outstanding properties.
Mixtures of these polyhydroxyl compounds may also be used. These polyhydroxyl compounds are preferably reacted in a substantially dry state with the alkylene oxide, although small amounts of water may be present.
The alkylene oxides which may be reacted with the polyhydroxyl compounds to form the polyether useful in this invention are those which have from two to four carbon atoms, such as ethylene oxide, propylene oxide, l,2-butylene oxide, 1,3-butylene oxide, 2,3-butylene oxide and isobutylene oxide. These alkylene oxides may be used singly (with the exception of ethylene oxide) or in admixture. Propylene oxide is the preferred alkylene oxide in our invention. Since ethylene oxide produces polyethers containing only primary hydroxylgroups, this alkylene oxide is only used together with other alkylene oxides. It is employed in relatively low quantities in order to introduce the desired amount of primary hydroxyl groups in polyether-polyols which otherwise do not contain primary hydroxyl groups.
Representative examples of organic polyisocyanates containing at least two isocyanate groups per mol are all those which are liquid or semi-liquid under the conditions of use. For this reason it may be necessary to apply heat to certain polyisocyanates, in order to raise their temperature above their melting points, or to add a minor amount of a solvent. The liquid or semi-liquid, melted polyisocyanate may then be mixed with the polyether.
I Suitable organic polyisocyanates include 2,4 tolylene diisocyonate, 2,6 tolylene diisocyanate, commercially available mixtures containing 65 or 80 percent of 2,4 tolylene diisocyanate and 35 or percent of 2,6 tolylene diisocyanate, 1,3 benzene diisocyanate, 1,4 benzene diisocyanate, technical or pure 4,4 diphenylmethane diisocyanate, polymethylene polyphenylisocyanate, 3,3'dimethyl diphenylmethane diisocyanate and l, l-diphenylcyclclohexyl 4,4-diisocyanate. Instead of the simple polyisocyanates, it is possible to use liquid or semi-liquid prepolymers, especially those which contain predetermined proportions of the selected polyethers. Furthermore polyfunctional isocyanates which are produced from polyisocyanates and water with biuret formation are also to be considered, e.g. a liquid triisocyanate obtained from 3 mols of hexamethylene diisocyanate and 1 mol of water. Polycarbodiimides with terminal free isocyanate groups are also suitable. Due to their low vapor pressure and resulting low toxicity the liquid or semi-liquid polyvalent polyisocyanates having an average functionality higher than 2 are preferred.
Mixtures of polyisocyanates may likewise be employed. In case the acidity of the polyisocyanate is too high, it may be necessary to neutralize the acid residues by addition of basic compounds, such as tertiary amines.
In accordance with this invention the polyether containing hydroxyl groups and the polyisocyanate are used in relative amounts corresponding to a NCO/OH ratio within the range of 0,95164 to 1,5. 0,95 NCO/OH ratios outside these limits, the physical properties of the polyurethane resins are generally somewhat less good. Preferably the NCO/OH ratio is from about 1,01 to 1,20.
The catalysts which are needed to make the reaction mixture curable at ambient temperatures comprise organometal compounds or metal salts of carboxylic acids derived from polyvalent metals such as tin, cobalt, lead, cadmium, titane, and zinc. Typical of such catalysts are dibutyltin dilaurate, dibutyltin di-2-ethylhexoate, dibutyltin diversatate, stannous octoate and the like. These catalysts may be present in amounts ranging from 0,05 to 2,0 percent based on the weight of the reaction mixture. They are advantageously used in combination with amine type catalysts, such as triethylene diamine, tetramethylbutane diamine and the like.
The intimate mixture of the reactants is made by pumping said reactants or premixed compounds thereof to the mixing chamber of a commercial polyurethane machine from where it is dispensed in the form of fine particles or as a thin layer, for instance, by means of a spraying nozzle. It is evenly deposited on the back of the carpet to be coated, where it is left to cure. Within a couple of minutes the coating will have lost its tack and the carpet may be stored by winding the same on rollers. If desired, the back-coated carpet, while still being in a tacky state, may be contacted with a second layer of hessian or burlap. The sandwich is then passed through a pair of nip rollers and allowed to cure. In this way a secondary cloth-back with a very neat appearance is obtained.
It should be noted that in order to get the best performance of the polyurethane resin, the reaction mixture which forms the polyurethane elastomer should not substantially foam. Since water reacts with isocyanates with formation of carbon dioxide, its content should be as low as possible. Therefore the reactants should be virtually anhydrous and it is desirable to include a water scavenger in the reaction mixture, such as molecular sieves, hydrolysable esters or the like, like orthoformic acid esters or titanic acid esters.
Other substances, which may be added to the reaction mixture are pigments, fillers, plasticizers, anti oxidants, surfactants, stabilizers and the like. The surfactants, for instance, may be added in order to increase the penetration of the polyurethane in the backing cloth and around the piles so as to firmly bond the pile to the backing cloth. In some instances small amounts of diluting agents, which decrease the viscosity of the reaction mixture, may also be added to increase the penetration. These agents will not perform as blowing agents, because of the thin layers which are applied to the back of the carpet, a usual coating consisting of about 200 250 g polyurethane mix per m The back-coated carpets made according to the invention exhibit a very good tuft anchorage, and have a pleasant handle and a desirable flexibility. The abrasion resistance and the dimensional stability is very high as shown by wear trials. The carpets perfectly withstand a heat ageing test and have a distinct chemical inertness.
The following examples illustrate various embodiments of this invention. The parts referred to are by weight.
EXAMPLE I A mixture is prepared according to the following formula: 75 parts of an acid catalyzed dextrose and propylene oxide based polyol, hydroxyl-number 280, containing secondary and primary hydroxyl groups 2,2 parts of sodium aluminium silicate 0,4 part of dibutyltin diversatate 0,35 part of tetramethylbutane diamine This premixed compound is pumped into the mixing head of a two-component polyurethane spraying device.
The other component consists of 64,2 parts of 4,4'-diphenylmethane diisocyanate. The reaction mixture is deposited on the back of a tufted carpet consisting of jute back-cloth and nylon piles, in an amount of 250 g/m". The reaction mixture reacts and cures at ambient temperature in a couple of minutes, to yield a back coated carpet. The anchorage of the tufts in the carpet and the wear resistance of the carpet are very good.
EXAMPLE 2 A premix is made of the following ingredients 100 parts of an acid catalyzed starch and propylene oxide based polyol, hydroxyl-number 220, containing secondary and primary hydroxyl groups 5 parts of methylene chloride 3 parts of sodium aluminium silicate 0,4 part of dibutyltin dialurate 0,4 part of tetramethylbutane diamine. This compound is fed as one component to a two component spraying gun, the other component consisting of 56 parts of 4,4'-diphenylmethane diisocyanate. The mixture is sprayed on a polypropylene fabric tufted with polypropene yarns. lt cures in situ in a very short time at ambient temperature. The adhesion of the polyurethane to the mat is excellent. The tuft anchorage is very good.
EXAMPLE 3 A mixture of the following composition is prepared: 100 parts of a base catalyzed addition product of glycerol and propylene oxide, hydroxyl numer 260.
5 parts of methylene chloride 0,4 part of dibutyltin diversatate 0,35 part of tetramethylbutane diamine.
This mixture is pumped into the mixing head of a two-component polyurethane spraying device. The other component consists of 67,1 parts of 4,4-diphenylmethane diisocyanate. The reaction mixture is sprayed on the back of a tufted carpet consisting of jute cloth and nylon loop piles in an amount of 320 g/m Another jute cloth is contacted with the tacky reaction mixture and the secondary backed carpet is passed through a pair of nip rollers and allowed to cure at ambient temperature.
The average tuft bind as measured by a dynamometer is 6,2 kg per loop. The adhesion of the secondary back cloth is rather good. When the polyetherpolyol is replaced by an ethylene oxide capped hydroxypropylether of glycerol with hydroxyl number 260 the average tuft bind is 6,8 kg per loop, whereas the addition of the secondary back cloth also has improved.
We claim l. Back-coated carpet comprising tufted carpet with a backing material consisting essentially of 200-320 g/m of a substantially non-cellular elastomeric polyurethane as the in situ product of reaction of a substantially anhydrous mixture of a liquid or semi-liquid polyether polyol containing secondary hydroxyl groups and having a hydroxyl number of to 365 selected from the group consisting of addition products of a polyhydroxyl compound having from three to nine hydroxyl groups and an alkylene oxide having from three to four carbon atoms, addition products of a polyhydroxyl compound having from three to nine hydroxyl groups, an alkylene oxide having from three to four carbon atoms and ethylene oxide, and mixtures of such addition products, and an aromatic polyisocyanate selected from the group consisting of 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-benzene diisocyanate, 1,4-benzene diisocyanate, 4,4-diphenylmethane diisocyanate, polymethylene polyphenylisocyanate, 3,3- dimethyl diphenylmethane diisocyanate, 1,1-diphenylcyclohexyl-4,4-diisocyanate and mixtures thereof, the ratio between NCO groups and OH groups being within the range 2. The carpet according to claim 1 in which the polyetherpolyol also contains primary hydroxyl groups and has been obtained by an acid catalysed addition of one or more alkylene oxides having from three to four carbon atoms to one or more polyhydroxyl compounds having from three to nine hydroxyl groups.
3. The carpet according to claim 1 in which the polyetherpolyol also contains primary hydroxyl groups and has been obtained by capping a polyether-polyol which contains strictly secondary hydroxyl groups with ethylene oxide.
4. The carpet according to claim 1 in which the alkylene oxide is propylene oxide.
5. The carpet according to claim 1 in which the polyhydroxyl compound contains a cyclic nucleus.
6. The carpet according to claim 5 in which the polyhydroxyl compound is a glycoside, a monosaccharide or a polysaccharide.
7. The carpet according to claim 1 in which the polyisocyanate is 4,4'-diphenylmethane diisocyanate.
8. The carpet according to claim 1 in which the ratio between NCO-groups and OH-groups is from about 1.01 to about 1.20: l.
9. The carpet according to claim 1 in which the intimate mixture of one or more polyether-polyols, polyisocyanates and catalysts is allowed to cure at ambient temperature.
10. The carpet according to claim 1 in which the intimate mixture of one or more polyether-polyols, polyisocyanates and catalysts also contains a water scavenger.
11. Back-coated carpets according to claim 1, tufted with average tuft bond of at least 6.2 kg per loop.

Claims (10)

  1. 2. The carpet according to claim 1 in which the polyether-polyol also contains primary hydroxyl groups and has been obtained by an acid catalysed addition of one or more alkylene oxides having from three to four carbon atoms to one or more polyhydroxyl compounds having from three to nine hydroxyl groups.
  2. 3. The carpet according to claim 1 in which the polyether-polyol also contains primary hydroxyl groups and has been obtained by capping a polyether-polyol which contains strictly secondary hydroxyl groups with ethylene oxide.
  3. 4. The carpet according to claim 1 in which the alkylene oxide is propylene oxide.
  4. 5. The carpet according to claim 1 in which the polyhydroxyl compound contains a cyclic nucleus.
  5. 6. The carpet according to claim 5 in which the polyhydroxyl compound is a glycoside, a monosaccharide or a polysaccharide.
  6. 7. The carpet according to claim 1 in which the polyisocyanate is 4,4''-diphenylmethane diisocyanate.
  7. 8. The carpet according to claim 1 in which the ratio between NCO-groups and OH-groups is from about 1.01 to about 1.20 : 1.
  8. 9. The carpet according to claim 1 in which the intimate mixture of one or more polyether-polyols, polyisocyanates and catalysts is allowed to cure at ambient temperature.
  9. 10. The carpet according to claim 1 in which the intimate mixture of one or more polyether-polyols, polyisocyanates and catalysts also contains a water scavenger.
  10. 11. Back-coated carpets according to claim 1, tufted with average tuft bond of at least 6.2 kg per loop.
US3664863D 1968-05-25 1969-05-19 Carpets having a back-coating of in situ-formed polyurethane Expired - Lifetime US3664863A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2509668 1968-05-25

Publications (1)

Publication Number Publication Date
US3664863A true US3664863A (en) 1972-05-23

Family

ID=10222162

Family Applications (1)

Application Number Title Priority Date Filing Date
US3664863D Expired - Lifetime US3664863A (en) 1968-05-25 1969-05-19 Carpets having a back-coating of in situ-formed polyurethane

Country Status (5)

Country Link
US (1) US3664863A (en)
BE (1) BE733617A (en)
DE (1) DE1926285A1 (en)
FR (1) FR2009322A1 (en)
GB (1) GB1250169A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3895149A (en) * 1973-07-05 1975-07-15 Atlantic Richfield Co Carpet backed with thixotropic polyurethane adhesive
US4296159A (en) * 1980-09-29 1981-10-20 The Dow Chemical Company Polyurethane backed carpet
US4515846A (en) * 1984-04-09 1985-05-07 The Dow Chemical Company Polyurethane backed carpet formed with two catalysts
US5159012A (en) * 1991-11-29 1992-10-27 Textile Rubber & Chemical Co., Inc. Process for the manufacture of polyurethane elastomers
WO1995023691A1 (en) * 1994-03-03 1995-09-08 Milliken Research Corporation Cushion-backed carpet
US20020132085A1 (en) * 2000-11-24 2002-09-19 Higgins Kenneth B. Textile product and method
US20030104205A1 (en) * 2001-11-30 2003-06-05 Brodeur Edouard A. Moisture barrier and energy absorbing cushion
US6575248B2 (en) 2000-05-17 2003-06-10 Schlumberger Technology Corporation Fuel cell for downhole and subsea power systems
US20030161990A1 (en) * 2001-07-20 2003-08-28 Higgins Kenneth B. Residential carpet product and method
US20030170420A1 (en) * 2001-07-20 2003-09-11 Higgins Kenneth B. Residential carpet product and method
US20050004245A1 (en) * 2003-07-03 2005-01-06 Glen Hamrick Polyurethane coating process and padding
US20050025930A1 (en) * 2003-07-30 2005-02-03 Glen Hamrick Carpet manufactured with polyurethane coating process and having integral padding
US20050091936A1 (en) * 2003-11-05 2005-05-05 Galloway Kerry T. Carpeting systems, methods and products
US20050266205A1 (en) * 2004-05-25 2005-12-01 New Spirit Backing, Llc Polyurethane roller coating process for carpet backing
US20060144012A1 (en) * 2004-12-01 2006-07-06 Norman Manning Recycled energy absorbing underlayment and moisture barrier for hard flooring system
US7182989B2 (en) 2002-07-31 2007-02-27 Milliken & Company Flooring system and method
US20080010527A1 (en) * 2006-06-26 2008-01-10 Inventec Corporation Method of solving BIST failure of CPU by means of BIOS and maximizing system performance
US7785437B2 (en) 2003-09-26 2010-08-31 L&P Property Management Company Anti-microbial carpet underlay and method of making
US8910588B2 (en) 2004-05-25 2014-12-16 Kusters Zima Corporation Polyurethane roller coating device for carpet backing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2440271C2 (en) * 1974-08-22 1983-03-24 Bayer Ag, 5090 Leverkusen Process for backing floor coverings with polyurethane
EP0427295A1 (en) * 1985-05-28 1991-05-15 The Dow Chemical Company A process for preparing a polyurethane backed substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2939851A (en) * 1957-05-23 1960-06-07 Houdry Process Corp Preparation of urethanes wherein triethylene diamine is used as the catalyst
GB908188A (en) * 1959-04-25 1962-10-17 Bayer Ag Process for coating or impregnating materials
US3314845A (en) * 1964-07-23 1967-04-18 Du Pont Method of flocking and subsequently developing latently crimpable fibers and article produced thereby
US3505252A (en) * 1962-07-25 1970-04-07 Union Carbide Corp Polymeric products of unsaturated diisocyanates (v)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2939851A (en) * 1957-05-23 1960-06-07 Houdry Process Corp Preparation of urethanes wherein triethylene diamine is used as the catalyst
GB908188A (en) * 1959-04-25 1962-10-17 Bayer Ag Process for coating or impregnating materials
US3505252A (en) * 1962-07-25 1970-04-07 Union Carbide Corp Polymeric products of unsaturated diisocyanates (v)
US3314845A (en) * 1964-07-23 1967-04-18 Du Pont Method of flocking and subsequently developing latently crimpable fibers and article produced thereby

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3895149A (en) * 1973-07-05 1975-07-15 Atlantic Richfield Co Carpet backed with thixotropic polyurethane adhesive
US4296159A (en) * 1980-09-29 1981-10-20 The Dow Chemical Company Polyurethane backed carpet
US4515846A (en) * 1984-04-09 1985-05-07 The Dow Chemical Company Polyurethane backed carpet formed with two catalysts
US5159012A (en) * 1991-11-29 1992-10-27 Textile Rubber & Chemical Co., Inc. Process for the manufacture of polyurethane elastomers
WO1995023691A1 (en) * 1994-03-03 1995-09-08 Milliken Research Corporation Cushion-backed carpet
US5545276A (en) * 1994-03-03 1996-08-13 Milliken Research Corporation Process for forming cushion backed carpet
US5948500A (en) * 1994-03-03 1999-09-07 Milliken & Company Method for forming cushioned carpet tile with woven backing
US6203881B1 (en) * 1994-03-03 2001-03-20 Milliken & Company Cushion backed carpet
US6468623B1 (en) 1994-03-03 2002-10-22 Milliken & Company Cushioned back carpet
KR100332309B1 (en) * 1994-03-03 2002-11-23 밀리켄 리서치 코포레이션 Cushion-backed carpet
US6575248B2 (en) 2000-05-17 2003-06-10 Schlumberger Technology Corporation Fuel cell for downhole and subsea power systems
US20020132085A1 (en) * 2000-11-24 2002-09-19 Higgins Kenneth B. Textile product and method
US20030170420A1 (en) * 2001-07-20 2003-09-11 Higgins Kenneth B. Residential carpet product and method
US20030161990A1 (en) * 2001-07-20 2003-08-28 Higgins Kenneth B. Residential carpet product and method
US20030104205A1 (en) * 2001-11-30 2003-06-05 Brodeur Edouard A. Moisture barrier and energy absorbing cushion
US7182989B2 (en) 2002-07-31 2007-02-27 Milliken & Company Flooring system and method
US20050004245A1 (en) * 2003-07-03 2005-01-06 Glen Hamrick Polyurethane coating process and padding
US20050025930A1 (en) * 2003-07-30 2005-02-03 Glen Hamrick Carpet manufactured with polyurethane coating process and having integral padding
US7875343B2 (en) 2003-09-26 2011-01-25 L & P Property Management Company Anti-microbial carpet underlay and method of making
US20100285298A1 (en) * 2003-09-26 2010-11-11 L&P Property Management Company Anti-microbial carpet underlay and method of making
US7785437B2 (en) 2003-09-26 2010-08-31 L&P Property Management Company Anti-microbial carpet underlay and method of making
US20050091936A1 (en) * 2003-11-05 2005-05-05 Galloway Kerry T. Carpeting systems, methods and products
US7638008B2 (en) 2004-05-25 2009-12-29 New Spirit Backing Llc Polyurethane roller coating process for carpet backing
US20050266205A1 (en) * 2004-05-25 2005-12-01 New Spirit Backing, Llc Polyurethane roller coating process for carpet backing
US8910588B2 (en) 2004-05-25 2014-12-16 Kusters Zima Corporation Polyurethane roller coating device for carpet backing
US20060144012A1 (en) * 2004-12-01 2006-07-06 Norman Manning Recycled energy absorbing underlayment and moisture barrier for hard flooring system
US20110073239A1 (en) * 2004-12-01 2011-03-31 L & P Property Management Company Method of making recycled energy absorbing underlayment and moisture barrier for hard flooring system
US20080010527A1 (en) * 2006-06-26 2008-01-10 Inventec Corporation Method of solving BIST failure of CPU by means of BIOS and maximizing system performance

Also Published As

Publication number Publication date
FR2009322A1 (en) 1970-01-30
DE1926285A1 (en) 1969-12-04
BE733617A (en) 1969-11-03
GB1250169A (en) 1971-10-20

Similar Documents

Publication Publication Date Title
US3664863A (en) Carpets having a back-coating of in situ-formed polyurethane
AU723191B2 (en) Preparation of filled reactive polyurethane carpet backing formulations using an in-line continuous mixing process
US6780895B2 (en) Polyurethane carpet backings with improved tuft bind
US4035529A (en) Coating the back of a textile floor covering with a polyurethane foam
AU719798B2 (en) Carpet backing precoats, laminate coats, and foam coats prepared from polyurethane formulations including fly ash
AU576096B2 (en) Polyurethane-forming composition for backing textiles
US4483894A (en) Process for applying polyurethane foams to substrates and product made thereby
JPH0323569B2 (en)
US20070088103A1 (en) Composite article and method of manufacture using an isocyanate-terminated prepolymer as binder
US6299715B1 (en) Urethane adhesive-laminated carpeting
EP0813559B1 (en) Carpets with polyurethane foam carpet backings by use of catalysts
JPS62501716A (en) Manufacturing method of polyurethane backing base material
US20100086708A1 (en) Bio-based carpet materials
EP0407084B1 (en) Process for preparing polyurethane-backed substrates, and the substrates so produced
US4515846A (en) Polyurethane backed carpet formed with two catalysts
US6518348B1 (en) Carpet backing compounds thickened by hydrophobically-modified ethylene-oxide-based urethane block copolymers
WO2008127934A1 (en) Polyurethane carpet backing systems based on natural oil polyols and polymer polyols
WO1998041681A1 (en) Process for preparing carpets having polyurethane backings obtained from polyurethane latex formulations
EP3022354B1 (en) Textiles attached with low density polyurethane foams made using a combination of frothing and blowing methods
WO1997043326A1 (en) Mechanically frothed polyurethane foam prepared from a polyurethane formulation including an organo-metallic catalyst and a tertiary amine catalyst
US6706362B2 (en) Sodium silicate coating process and products incorporating same
US5462766A (en) Polyurethane carpet backing process based on polymeric MDI quasi-prepolymers
WO1998025984A1 (en) Preparation of filed reactive polyurethane carpet backing formulations using an in-line continuous mixing process
EP1008447A2 (en) Process for preparing foam cushions having "TPU" laminate