US3656873A - Pulsatile by-pass blood pump - Google Patents

Pulsatile by-pass blood pump Download PDF

Info

Publication number
US3656873A
US3656873A US87487A US3656873DA US3656873A US 3656873 A US3656873 A US 3656873A US 87487 A US87487 A US 87487A US 3656873D A US3656873D A US 3656873DA US 3656873 A US3656873 A US 3656873A
Authority
US
United States
Prior art keywords
chamber
container
flexible
pressure
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US87487A
Inventor
Peter Schiff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IABP Corp A DE CORP
Original Assignee
Peter Schiff
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peter Schiff filed Critical Peter Schiff
Application granted granted Critical
Publication of US3656873A publication Critical patent/US3656873A/en
Assigned to IABP CORPORATION A DE CORP reassignment IABP CORPORATION A DE CORP ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SCHIFF PETER
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/424Details relating to driving for positive displacement blood pumps
    • A61M60/427Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being hydraulic or pneumatic
    • A61M60/43Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being hydraulic or pneumatic using vacuum at the blood pump, e.g. to accelerate filling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/109Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems
    • A61M60/113Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems in other functional devices, e.g. dialysers or heart-lung machines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/30Medical purposes thereof other than the enhancement of the cardiac output
    • A61M60/36Medical purposes thereof other than the enhancement of the cardiac output for specific blood treatment; for specific therapy
    • A61M60/38Blood oxygenation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/845Constructional details other than related to driving of extracorporeal blood pumps
    • A61M60/851Valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/89Valves
    • A61M60/892Active valves, i.e. actuated by an external force
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/89Valves
    • A61M60/894Passive valves, i.e. valves actuated by the blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/89Valves
    • A61M60/894Passive valves, i.e. valves actuated by the blood
    • A61M60/896Passive valves, i.e. valves actuated by the blood having flexible or resilient parts, e.g. flap valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/03Heart-lung

Definitions

  • ABSTRACT A by-pass pump system especially adapted for use in assisting or temporarily replacing the circulatory function of the heart in which a pair of highly elastic collapsible containers are coupled to one another through a resilient flap valve.
  • Each flexible chamber is positioned within an associated housing whose interior pressure is regulated to control the expansion and contraction of the flexible housings. Blood enters the first of said chambers causing the chamber to fill when the blood pressure is greater than the pressure of the surrounding housing.
  • the one-way valve mechanism enables the blood filling the first flexible chamber to enter the second flexible chamber when the interior pressure of the second flexible chamber is lower than that of the first chamber. Conversely, if the pressure within the interior of the second resilient chamber is greater than that within the first flexible container, the oneway valve structure prevents reverse flow.
  • Pneumatic means is coupled to the housing surrounding the second flexible container to cause the blood to be pumped through an outlet opening provided in the second flexible container in order to enter into the arterial system at a rate substantially equal to the normal pumping rate of the patient.
  • a second one-way valve mechanism is provided in the aforesaid outlet opening to prevent reverse flow.
  • the action of the flexible containers upon the blood is non-occlusive due to the pneumatic controls utilized, as well as the nature of the design of the chambers.
  • the one-way valve mechanisms may alternatively be of a flap valve form or a form in which the closure portions of the valve are highly elastic to permit ready flow of the blood in a first direction while preventing flow in the reverse direction.
  • one-way valve structures cooperate with their associated valve mounts to provide positive reliable operation and simple straightforward removal and insertion.
  • the present invention relates to pumping systems and more 7 BACKGROUND
  • blood is removed from the body of a patient at a low pressure level and is pumped into the arterial system at a higher pressure.
  • portions of the normal-circulatory system are by-passed in this manner to permit surgery to be performed upon the affected parts or organs such as, for example, the heart itself.
  • the pumping function was achieved primarily .through the use of a roller pump.
  • roller pump The characteristic of a roller pump is such as to progressively compress an elongated length of tubing, which acts as a conduit for blood flow, through the use of several rollers rollingly and compressingly engaging the tubing in a successive fashion so as to force the blood through the tube and thereby either replace or supplement the natural heart function.
  • Conventional roller pumps have several disadvantages as compared to the natural heart. Among these are the fact that the roller pump is occlusive and thereby compresses and severely damages blood cells by compressing the cells between the two surfaces of the tubing due to the compressive action of the rollers upon the tubing.
  • the roller pump is a positive displacement pump having no controlled output pressure limits or input suctions limits situations where the tubing delivering blood to the roller pump may become blocked for any reason.
  • the tubing may burst or develop an excessive vacuum condition causing nitrogen to be extracted from the blood to an extent where the survival of the patient becomes endangered.
  • Continuous outflow of blood from a conventional roller pump is undesirable since such operation fails to emulate the pulsatile nature of the natural heart.
  • a pumping system which most closely emulates the operation of the natural heart and which should therefore be characterized by providing: continuous innerflow of blood to the pump and a high pressure pulsatile outflow; means for limiting pressure at the outflow to a safe level even in the presence of obstructions in the outflow; means for adjustably controlling vacuum and pressure levels at the inflow end of the pump so as to accommodate the requirements of a particular application or patient; means for providing non-occlusive pumping action anda design which enables the system to be rapidly synchronized to operate in synchronism with the operation of a normal heart through the use of a design having low mechanical inertia in order to greatly enhance pump response time.
  • the present invention is comprised of a pair of highly resilient containers each mounted within an associated pressure controlled housing.
  • the flexible containers are joined through a common connection having a one-way valve mechanism which permits fluid flow in a first direction while preventing any reverse fluid flow.
  • the flexible container at the input end of the pump is permitted to fill at a rate dependent upon the pressure differential existing across the flexible walls of the container. Transfer of the incoming flow from the input side container to the output side container is a function of the pressure gradient across the one-way valve mechanism.
  • the output side flexible container is provided with an outlet port containing a second one-way valve mechanism to permit fluid flow only in the output direction while preventing any reverse flow.
  • Pulsatile pumping means are coupled to an inlet port of the housing containing the flexible container of the output side to deliver any pulsatile high pressure output flow to the patients arterial system.
  • the walls forming each of the flexible containers are quite thin and highly resilient to provide for quick response to pressure differentials across the flexible walls and to provide positive non-occlusive pumping action.
  • the one-way valve mechanisms and their associated valve mounting means are desimied so as to enhance the seating of the valve during nonnal operation while at the same time providing for simple rapid removal and/or replacement of the valve assembly.
  • Another object of the present invention is to provide a novel non-occlusive pumping system comprised of at least two flexible chambers and pressure operated enclosures therefore which, together with connecting one-way valve mechanisms cooperate to emulate the operating characteristics of the natural heart.
  • Another object of the present invention is to provide a novel one-way valve design for use in by-pass pumping systems of the non-occlusive type.
  • FIG. 1 is a block diagram showing a total by-pass system.
  • FIG. 2 is a sectional view showing a by-pass pump designed in accordance with the principles of the present invention.
  • FIG. 3 is a sectional view showing one of the flap valve' mechanisms of FIG. 2 in greater detail.
  • FIG. 4 is an exploded perspective view showing one physical form of the pump of FIG. 2.
  • FIG. 5 is a sectional elevational view of another preferred embodiment of the present invention.
  • FIGS. 6a and 6b are sectional and top plan views respectively, showing one of the valves of FIG. 5 in greater detail.
  • FIG. 7 is a sectional view showing the details of the liners used in FIGS. 2 and 5.
  • FIGS. 8 and 9 are sectional views of further embodiments of FIG. 5.
  • FIG. 1 illustrates a total by-pass system incorporating a blood pump.
  • blood is taken from the venous system of a patient 1 and passes through an oxygenator 8 provided to oxygenate the blood as a substitute for function normally performed by the patients lungs due to the fact that the lungs in both the right and left side of the heart have been bypassed.
  • the oxygenator removes carbon dioxide and replenishes the blood with oxygen.
  • a pulsatile blood pump 11 receives blood from oxygenator 8 and increases blood pressure from a pressure level equivalent to several millimeters of mercury which is a level normally found in the venous system of a patient, to a mean pressure of millimeters of mercury which is a pressure normally found in the arterial system of a human.
  • the output blood flow is then passed through a heat exchanger unit 4 provided to lower the patients blood temperature level for surgery and also adjustable to increase blood temperature upon the termination of surgery.
  • Unit 4 also serves to add heat dissipated by the blood due to the long extracorporeal path which the blood follows in moving through the total by-pass system.
  • the low temperature during surgery reduces the oxygen consumption of the patient and therefore permits the patient to safely survice a substantially long time interval during which the mechanical by-pass system provides its supportive functions.
  • the blood, after passing through heat exchanger 4 is returned to the arterial system of the patient.
  • Desirable by-pass pump characteristics which can clearly be seen to closely emulate the properties of a natural heart can be summarized as follows:
  • the pump should provide a continuous venous inflow and a high pressure pulsatile arterial outflow.
  • the pump should provide safe limiting pressures at the outflow end even in the presence of obstructions which may occur at the outflow.
  • the pump should provide a means for readily adjusting and controlling vacuum and pressure levels at the inflow side to enable the pump to function at a variety of filing modes to suit the requirements of various oxygenators and by-pass 5 systems. Examples are gravity filling, filling at a controlled vacuum, and filling at a controlled inlet pressure as is required by some membrane oxygenators of recent design.
  • the pump should provide non-occlusive blood flow since any contact between two occlusive surfaces may cause excessive blood cell damage due to abrasion and/or due to the noncompatible nature of present synthetic materials with blood.
  • the pump must exhibit a low blood damage or hemolysis factor which may be accomplished through a design incorporating low blood turbulance, selection of proper materials and a non-occlusive construction.
  • the driving mechanism must be capable of being synchronized to the operation of the natural heart with sufficient rapidity to provide proper phase relationships to the heart which requires a design of low mechanical inertia and small delay so as to prevent pump response from being either too slow or too late. This design characteristic generally restricts the pump driving means to hydraulic or pneumatic operation as opposed to mechanically driven devices.
  • the design objectives may be accomplished by the pulsatile by-pass pump shown in schematic fashion in the cross-sectional view of FIG. 2.
  • the pump assembly of FIG. 2 is comprised of an atrium chamber 17 and a ventricle chamber 30 which are similar in design and function to corresponding portions of a natural heart.
  • the venous return line 14 which may be coupled to the patient through any suitable manner (or through any oxygenator 8, as shown in FIG. 1) is coupled into the interior of atrium 17 through an inlet port 17a.
  • Incoming blood passes through atrium 17 and a common conduit 22 containing one-way flap valve 21 so as to enter ventricle 30 through its inlet port 300.
  • the blood leaves the ventricle 30 through outlet port 30b and conduit 28 which contains one-way flap valve 26.
  • Ventricular conduit 28 may be connected to the arterial system of the patient (or heat exchanger unit 4, as shown in FIG. 1).
  • valve mechanisms and 26 are so arranged to respectively permit free flow in the directions from inlet conduit 14 to outlet conduit 28 while preventing reverse flow therethrough.
  • Atrium l7 and ventricle 30 are preferably comprised of a pair of substantially flat sheets of a material which is elastic and compatible with the blood so as not to have any effect upon the characteristics or composition of the blood as a result of the physical contact therebetween.
  • the highly resilient elastic sheets are preferably cemented to one another along their marginal surfaces so as to air-tightly join the sheets to one another and thereby define the atrium and ventrical enclosures 17 and 30, respectively, as well as the associated connections therebetween.
  • Ventricle 30 is positioned within a rigid chamber 13 having an opening 31 for connection to pneumatic actuator 27.
  • the application of a slight vacuum into the interior of chamber 13 to pneumatic actuator 27 serves to separate the two cooperating portions of sheets 24 and 25 which form ventricle 30, to provide a suction within the interior of the ventricle.
  • blood is drawn from atrium 17 through one-way valve 21 into ventricle 30.
  • One-way valve 26 is closed as a result of the suction developed within ventricle and the high pressure level in conduit 28 on the output side of the system.
  • the pneumatic actuator is then operated to periodically pressurize the interior of chamber 13 causing the flexible membrane portion of sheets 24 and 25 to transmit this pressure condition to the blood contained within ventricle 30.
  • ventricle 30 Due to the action of one-way valves 21 and 26, the blood is constrained to flow through outlet port 30b and one-way valve 26 as soon as the pressure within ventricle 30 is greater than the pressure within the outlet end of conduit 28. Valve 21 is closed during this phase since the pressure at its left-hand side is less than the pressure at its right-hand side. In this manner, ventricle 30 is operated to repetitively fill and empty to simulate a pumping pulsatile operation.
  • Atrium l7 performs the dual functions of acting as a buffer between the pulsatile operation of ventricle 30 and the continuous venous return flow condition at inlet conduit 14 as well as controlling the vacuum of pressure within conduit 14 to adjustably selected values. Since the portions of elastic sheets 24 and 25 perform a limp bladder, the atrium operates as a reservoir which stores the blood draining into it through the venous return line 14. Upon demand of ventricle 30, blood is drained from atrium 17 through the connecting conduit 22 and one-way valve 21 into ventricle 30. The suction or negative pressure condition within ventricle 30 during its filling stage is transferred to atrium 17 when the atrium is drained of blood and is no longer capable of supplying adequate blood as a result of insufficient blow flow entering atrium 17.
  • Isolation of the pulsatile suction or negative pressure developed by ventricle 30 due to collapse of atrium 17 in the presence of insufficient blood flow occurs as a result of the pressure differential across the interior and exterior surfaces of the portions of sheets 24 and 25 forming atrium 17.
  • the pressure or suction within the interior of chamber 12 may be controlled through the connection of the pressure of vacuum generating source 19 to opening 18.
  • expansion or contraction of the atrium 17 may occur at pressures other than atmospheric, if desired.
  • atrium 17 is a flexible and elastic structure, any pressures or suction across its walls will be directly transferred to the enclosed fluid and to input line 14 at any time during which the atrium is not at its completely full or completely empty state. Therefore, the pressure or suction within closed chamber 12 is normally selected to be that level which appears to be at the input venous return line 14 during normal operation and this input pressure or suction can be effectively controlled to accommodate the particular by-pass or partial support function for which it is provided.
  • FIG. 3 shows a detailed sectional view of a suitable valve design which may be employed in the system of FIG. 2.
  • fluid flow through conduit 22 is from left to right relative to FIG. 3, with the left-hand end of conduit 22 being connected to atrium 17 and the right-hand or downstream end thereof being connected to ventricle 30.
  • Fluid flow through the valve structure occurs whenever the pressure on its left-hand side is greater than the pressure on its right-hand side and further wherein the pressure differential is of a sufficient magnitude to overcome the restriction imposed by the two valve flap portions 34 and 36.
  • the flaps 34 and 36 are each formed of an elastic material capable of resuming its normal configuration (shown in solid line fashion in FIG.
  • valve flaps 34 and 36 are forced apart to permit flow from left to right.
  • flaps 34 and 36 are forced into engagement with one another so as to isolate the left and right-hand portions of conduit 22.
  • valve design does not obstruct the central flow pattern of blood flowing therethrough so as to minimize turbulance and pressure loss across the valve.
  • the surfaces that come into engagement upon valve closure is limited to the marginal tip portions of flaps 34 and 36. Due to their flexible nature, the flaps tend to distribute the reverse fluid pressure evenly along the contact surface so as to significantly reduce the surface contact therebetween and thereby minimize resultant damage to blood cells passing therethrough.
  • This structure compares favorably with valve designs in which one or both surfaces thereof are comprised of valve seats formed of a rigid inelastic material.
  • FIG. 4 shows an exploded perspective view which illustrates the physical form of the pump assembly.
  • the covers 40 and 44 are each 4 provided with complementary shaped cavities for receiving each of the components of the pump assembly, which recesses and/or cavities have been designated by like primed numerals.
  • the cover halves 40 and 44 when joined together further define the closed chambers 12 and 13 shown in schematic fashion in FIG. 2.
  • FIG. 4 shows the connecting conduits 18 and 31 as being provided in cover member 44, it should be understood that any other arrangement may be utilized.
  • Cover member 44 is provided with a plurality of spaced threaded fasteners 47 adapted to align with associated openings 48 provided in cover member 40.
  • At least the ex treme end portions of threaded members 47 are arranged to extend beyond the upper edge of cover member 40 so as to threadedly engage suitable tapped members such as, for example, thumb screws (not shown for purposes of simplicity).
  • the membrane assembly 42 is provided with a similar arrangement of openings 49 for receiving the threaded fastening members 47.
  • the pump when fully assembled is further provided with a support stand 46 suitably joined to cover member 44 so as to hold the assembly at a predetermined inclined angle. This arrangement causes gravity to aid in the collection of blood in both the atrium and ventricle compartments 17 and 36 to thereby expedite blood flow.
  • Liner structure 42 may be utilized as a disposable item and thereby is readily replaceable.
  • the assembly 42 may be a single sheet which cooperates with cover member 40 to form the atrium 17, ventricle 30 and associated connecting conduits whereby the recesses provided in cover member 44 may be utilized to serve as the enclosed chambers 12 and 13.
  • suitable sealing means may be provided in the immediate region of the inlet and outlet openings of each of the flexible chambers to isolate the differing pressure conditions between the chambers.
  • the sheets forming atrium 17 may come into contact during those times in which the chamber is empty and the pressure surrounding the chamber is greater than the internal pressure. Since the pressure within closed chamber 12 is static, abrasive damage to the blood is minimum even under those condition. However, the pulsatile actuating forces imparted to ventricle 30 may result in occlusive pumping, which is undesirable. This shortcoming may be remedied by providing photocell means and cooperating detector means each arranged above and below the cooperating sheets to detect the absence of fluid within the chambers and thereby automatically terminate operation of the pneumatic actuator 27 to prevent the exertion of occlusive pressure upon the blood when the chamber is nearly empty. In the case where only a single flexible sheet is utilized to form the above mentioned chambers, only a single light source and photocell detector combination need be provided to control the deenergization of the actuator 27.
  • FIG. 5 shows another alternative embodiment of the present invention which provides superior non-occlusive operation as compared with the embodiments of FIG. 4 and which is comprised of atrium chamber 62, a ventricle chamber 63, an inflow or venous return 50 and an outflow connection 65.
  • Valve assembly 55 serves to connect atrium chamber 62, ventricle chamber 63, while valve assembly 66 controls the outflow from ventricle 63.
  • the ventricle chamber 63 is defined by flexible membrane 57 and the interior contour of housing 54.
  • Membrane 57 also serves as the barrier member for separating the ventricle chamber 63 from the chamber 61 which is defined by membrane 57 and the interior contour of housing member 52.
  • Connection 31 serves as a means for coupling the pulsatile pneumatic actuator to hollow chamber 61 and thereby exert pulsatile pressure upon the ventricle chamber 63.
  • membrane 59 serves as the means for isolating atrium chamber 62 from hollow chamber 66 which is defined by the interior contour of housing member 56 and membrane 59.
  • Connection 16 serves as the means for connecting an adjustable pressure of vacuum source to chamber 60.
  • Housing members 52, 54 and 56 may be machined molded or otherwise formed preferably from a transparent material.
  • Membranes 57 and 59 are preferably formed of a flexible nonstretching material such as polyurethane or dacron reinforced silicon rubber. Liners of this design, while thin and quite flexible, do not stretch.
  • Housing portion 54 is constructed so that atrium chamber 62 and ventricle chamber 63 each have a slightly larger radius than the curved liners when they are in their fully expanded state so as to provide non-occlusive pumping action.
  • Liners 57 and 59 also provide the seals between chambers 60-62 and 61-63 eliminating the need for additional gaskets which would otherwise be required for sealing against the possibility of air or fluid leaks.
  • the three housing sections and membranes are preferably held together by threaded members and cooperating thumb screws (not shown) which may be substantially similar in nature to those shown in FIG. 4.
  • the design of the housing sections make the liners and valves readily accessible for cleaning, removal and/or displacement. Liners and valve assemblies are preferably of the disposable type.
  • Atrium chamber 62 provides continuous venous return flow despite the pulsatile operation of ventricle chamber 63, as well as regulating venous return vacuum or pressures at desired levels.
  • the latter function is obtained by sealing input line 50 from ventricle 63 as atrium 62 is emptied. This is carried out by liner 59 which when moved to its uppermost position cooperates with the circular shaped protruding rim 64 to provide a temporary and yet effective seal therebetween so as to isolate the low pressure state of ventricle chamber 63 from the higher pressure state of the venous return flow line 50.
  • the antrium chamber is again free to be filled and the temporary seal formed between liner 59 and rim 64 is removed.
  • the valve design of the pump assembly of FIG. 5 is rather unique and is shown in detail in FIGS. 6a and 6b.
  • the valve is formed of a flexible resilient material such as, for example, silicone rubber.
  • the valve is provided with an annular seating rim 85 which is partially fitted within a retaining flange 90, cut or otherwise formed in the appropriate housing portion 54 of the pump body.
  • the lower seating surface 89 provided in housing portion 54 is diagonally aligned relative to the direction of flow so that the force exerted by reverse flow urges the valve more firmly into the mounting recess in such a manner that the diagonally aligned surface portion 89 causes the downward force exerted upon the valve assembly to urge the seating flange of the valve assembly outwardly and upwardly against the undercut portion 90 of the recess.
  • the angle of the seating surface 89 prevents the valve body from being displaced or otherwise moved from its normal position when high reverse pressures are exerted upon the valve.
  • the three flaps of the valve whose mating edges are defined by slits 87a, 87 b and 87c are easily urged apart to permit fluid flow in the normal normal (upward, in the case of FIG. 5) direction.
  • the slightly outward force component present during the opening of the valve flaps serves to urge the annular flange 85 outward and retain the valve firmly seated within its associated recess so as to prevent high flow rates from urging the valve assembly from its seated position.
  • the flaps are each provided with substantially V-shaped lips 84 which mate with adjoining lips to provide good sealing in the case of reverse fluid flow (i.e., in the downward direction relative to FIG. 5).
  • the advantages of the valve assembly shown and described hereinabove are such that no obstruction in the central flow pattern occurs, the valve surfaces are formed of a plastic material to minimize blood damages and to be highly compatible with the blood, as well as providing for simple and rapid removal and/or insertion of the valves without the need for any special tools.
  • the seating flange provides the additional function of sealing against the possibility of leakage between housing portion 54 and outflow conduit 65. Fitting 65 may be attached to the pump body portion 54 by any suitable fastening means (not shown) for purposes of simplicity.
  • liners in the embodiments of FIGS. 2, 4 and 5 that, while flexible, do not stretch and thereby make the pump occlusive and which furthermore provide adequate protection against breakage.
  • 1 have devised a dual liner.
  • these liners are preferably designed in accordance with the principles shown in'FIG. 7 wherein a pair of plastic liners 71 and 72, preferably formed of polyurethane, are bonded together along their marginal edges by means of silicone rubber as shown at 73 and 74.
  • a pair of plastic liners 71 and 72 preferably formed of polyurethane
  • the silicone rubber is further employed to bond the liners 59 and 57 to the housing portions and these sections of silicone rubber are shown as 75,75 and 76,76, respectively. Bonding in this manner facilitates handling and assembly of the liners and further provides a good seal between the air and blood cavities provided within the pump assembly of FIG. 5.
  • a small amount of water in the form of droplets 77 is provided and these water droplets are sealed between the liners 71 and 72 to aid in lubrication of the liners as well as preventing undue wearing of the liners due to abrasive contact therebetween which would otherwise occur in the absence of the water droplets.
  • the droplets 77 further enhance the flexibility of the liners 71 and 72 since a portion of the water droplets are absorbed by the material.
  • Two thin liners respond more rapidly than one heavy liner in that the stresses in the liner material are reduced, resulting in a greatly improved flex life.
  • FIG. 5 Another modification in the embodiment of FIG. 5 concerns the operation of the atrium 62.
  • Continuous venous return flow is an important factor. Continuity of flow can occur only if the atrium chamber is partially filled, so that the venous return blood can flow into the atrium at all times instead of only part of the time and in a pulsatile fashion.
  • an adjustable clamp 57 is placed in line 50. By adjusting threaded member 57a, return flow may be accordingly regulated.
  • the housing portion 56 is provided with a narrow opening 560 for reciprocally mounting plunger 96 which is provided with a widened portion 96a resting upon liner 59. Scale graduations 56b may be provided along the length of the plunger 96 to indicate the blood level within the atrium.
  • the reservoir of blood within atrium 62 enables a constant atrium pressure to be maintained despite volume changes within the atrium.
  • FIG. 9 A still further modification of the embodiment of FIG. 8 is shown in FIG. 9, wherein the plunger 96, shown therein, is provided with a relief valve opening 96b which communicates with an opening 96c at the opposite end thereof. Whenever the atrium is filled with blood, plunger 96 is pushed upwardly whereby opening 960 is sealed by a surrounding sleeve 98 positioned within opening 560. This causes pressure to build up in the chamber due to the provision of a small capacity air pressure pump Q9 coupled to conduit 18.
  • plunger 96 moves vertically downward so as to unseal opening 96d, providing a relief passage through to opening 960, enabling the pressure to be vented from chamber 60 into the atmosphere whereby operation of plunger 96' automatically regulates the venous return blood flow.
  • the present invention provides a novel by-pass pumping system for use as an assistive blood pump or as a temporary substitute for the natural heart and whose design is such as to closely emulate the normal heart functions and characteristics to provide highly reliable and effective operation in such applications.
  • Means for converting a low pressure fluid flow to a high pressure pulsatile flow comprising:
  • first and second flexible fluid receiving containers adapted to be readily expanded or compressed, each container having an inlet and an outlet port;
  • one-way valve means mounted within said first conduit
  • first and second chambers respectively enclosing said first and second flexible containers
  • actuator means for alternately pressurizing and depressing said second chamber at an adjustable predetermined rate to urge fluid delivered to said second flexible container from said first flexible container outwardly through said second conduit in a pulsatile manner.
  • said one-way valve means includes means adapted to permit fluid flow from said first to said second flexible container while preventing fluid flow in the reverse direction.
  • the device of claim 1 further comprising:
  • second one-way valve means mounted within said second conduit means for permitting fluid flow from said second flexible container while preventing fluid flow in the reverse direction.
  • valve means is comprised of a pair of flap members diagonally aligned within said first conduit means to form a V-shaped configuration when closed whereby said flaps are curved near their free ends to cause engagement therebetween only in the marginal region of said flap free ends in the presence of reverse fluid flow.
  • valve means is comprised of a plurality of arcuate shaped flap members diagonally aligned within said first conduit means to form a dome-shaped configuration when closed, whereby said flaps are provided with V-shaped flanges along their free ends to cause engagement therebetween only in the marginal region of said flap flanges in the presence of reverse fluid flow.
  • said flexible conduits are each formed from a pair of thin sheets of a flexible material whose marginal engaging portions are joined by a suitable adhesive means to air-tightly seal said containers as well as defining their perimeters.
  • Means for converting a low pressure fluid flow to a high pressure pulsatile flow comprising:
  • the fluid receiving compartments each having an inlet and an outlet port
  • one-way valve means mounted within said first conduit; input means connecting the inlet port of said one of said fluid receiving compartments to receive a low pressure fluid flow;
  • the flexible membrane of said fluid receiving compartment being incapable of engaging the entire surface area of said tapered surface.
  • said one-way valve means includes means adapted to permit fluid flow from said first to said second chamber fluid receiving compartment flexible container while preventing fluid flow in the reverse direction.
  • the device of claim 7 further comprising:
  • second one-way valve means mounted within said second conduit means for permitting fluid flow from said second chamber fluid receiving compartment while preventing fluid flow in the reverse direction.
  • valve means is comprised of a plurality of arcuate shaped flap members diagonally aligned within said first conduit means to form a ill) dome-shaped configuration when closed, whereby said flaps are provided with V-shaped flanges along their free ends to cause engagement therebetween only in the marginal region of said flap flanges in the presence of reverse fluid flow.
  • said tapered interior surface being provided with an annular shaped rim projecting from said surface at a location intermediate said apex and said membrane for cooperating with said member to isolate the input connecting means from said second conduit means when the second conduit means exerts a negative pressure upon the first chamber fluid receiving compartment.
  • the device of claim 1 including means responsive to the nearly total collapse of said first flexible container for deactivating said actuator means.
  • said means for maintaining the pressure in the non-fluid receiving compartment of said first container includes means for regulating the pressure level in said first container in inverse proportion to the amount of blood in said first container.
  • said regulating means further comprises an adjustable clamp provided in the inlet part of said first fluid receiving container.
  • the device of claim 16 further comprising plunger means having a first end resting upon the membrane of said container and a second end extending outwardly from the non-fluid receiving compartment of said first container whereby the length of sai second end extending beyond said first chamber is employed to determine the adjustment of said adjustable clamp.
  • said pressure regulating means is further comprised of plunger means having a first end resting on the membrane of said first container and a second end extending outwardly from said first container;
  • said plunger means having a first opening at said second end communicating with a second opening at a point intermediate the first and second ends thereof whereby said second opening is sealed by said first container when the level of fluid in said first container is high and whereby said second opening communicates with the interior of said first chamber when the fluid level in said first container is low.

Abstract

A by-pass pump system especially adapted for use in assisting or temporarily replacing the circulatory function of the heart in which a pair of highly elastic collapsible containers are coupled to one another through a resilient flap valve. Each flexible chamber is positioned within an associated housing whose interior pressure is regulated to control the expansion and contraction of the flexible housings. Blood enters the first of said chambers causing the chamber to fill when the blood pressure is greater than the pressure of the surrounding housing. The one-way valve mechanism enables the blood filling the first flexible chamber to enter the second flexible chamber when the interior pressure of the second flexible chamber is lower than that of the first chamber. Conversely, if the pressure within the interior of the second resilient chamber is greater than that within the first flexible container, the one-way valve structure prevents reverse flow. Pneumatic means is coupled to the housing surrounding the second flexible container to cause the blood to be pumped through an outlet opening provided in the second flexible container in order to enter into the arterial system at a rate substantially equal to the normal pumping rate of the patient. A second one-way valve mechanism is provided in the aforesaid outlet opening to prevent reverse flow. The action of the flexible containers upon the blood is non-occlusive due to the pneumatic controls utilized, as well as the nature of the design of the chambers. The one-way valve mechanisms may alternatively be of a flap valve form or a form in which the closure portions of the valve are highly elastic to permit ready flow of the blood in a first direction while preventing flow in the reverse direction. In one preferred design the one-way valve structures cooperate with their associated valve mounts to provide positive reliable operation and simple straightforward removal and insertion.

Description

nited States Patent stunt 1151 3,05,73 14 Apr.1,197
[54] PULSATILE BY-PASS BLOOD PUMP Peter Schiff, Box 117, Schwenksville, Pa. 19473 22 Filedz N0v.6, 1970 21 Appl.No.: 87,487
[72] Inventor:
[52] [1.8. CI. ..417/395, 128/1 R, 3/1,
3,541,612 11/1970 Carney ..128/1 RX Primary Examiner-Carlton R. Croyle Assistant Examiner-Richard E. Gluck Attorney-Ostrolenk, Faber, Gerb & Soffen [5 7] ABSTRACT A by-pass pump system especially adapted for use in assisting or temporarily replacing the circulatory function of the heart in which a pair of highly elastic collapsible containers are coupled to one another through a resilient flap valve. Each flexible chamber is positioned within an associated housing whose interior pressure is regulated to control the expansion and contraction of the flexible housings. Blood enters the first of said chambers causing the chamber to fill when the blood pressure is greater than the pressure of the surrounding housing. The one-way valve mechanismenables the blood filling the first flexible chamber to enter the second flexible chamber when the interior pressure of the second flexible chamber is lower than that of the first chamber. Conversely, if the pressure within the interior of the second resilient chamber is greater than that within the first flexible container, the oneway valve structure prevents reverse flow. Pneumatic means is coupled to the housing surrounding the second flexible container to cause the blood to be pumped through an outlet opening provided in the second flexible container in order to enter into the arterial system at a rate substantially equal to the normal pumping rate of the patient. A second one-way valve mechanism is provided in the aforesaid outlet opening to prevent reverse flow. The action of the flexible containers upon the blood is non-occlusive due to the pneumatic controls utilized, as well as the nature of the design of the chambers. The one-way valve mechanisms may alternatively be of a flap valve form or a form in which the closure portions of the valve are highly elastic to permit ready flow of the blood in a first direction while preventing flow in the reverse direction.
In one preferred design the one-way valve structures cooperate with their associated valve mounts to provide positive reliable operation and simple straightforward removal and insertion.
18 Claims, 10 Drawing Figures PATENTEDAPR 18 I912 3, 656, 873
% a WMH55449 NVENTOR.
PULSATILE BY-PASS BLOOD rum The present invention relates to pumping systems and more 7 BACKGROUND During open-heart surgery or in applications where it is desired to assist the circulatory function of a failing heart, blood is removed from the body of a patient at a low pressure level and is pumped into the arterial system at a higher pressure. Quite often, portions of the normal-circulatory system are by-passed in this manner to permit surgery to be performed upon the affected parts or organs such as, for example, the heart itself. Until recently, the pumping function was achieved primarily .through the use of a roller pump. The characteristic of a roller pump is such as to progressively compress an elongated length of tubing, which acts as a conduit for blood flow, through the use of several rollers rollingly and compressingly engaging the tubing in a successive fashion so as to force the blood through the tube and thereby either replace or supplement the natural heart function. Conventional roller pumps have several disadvantages as compared to the natural heart. Among these are the fact that the roller pump is occlusive and thereby compresses and severely damages blood cells by compressing the cells between the two surfaces of the tubing due to the compressive action of the rollers upon the tubing. Furthermore, the roller pump is a positive displacement pump having no controlled output pressure limits or input suctions limits situations where the tubing delivering blood to the roller pump may become blocked for any reason. As a result, the tubing may burst or develop an excessive vacuum condition causing nitrogen to be extracted from the blood to an extent where the survival of the patient becomes endangered. Continuous outflow of blood from a conventional roller pump is undesirable since such operation fails to emulate the pulsatile nature of the natural heart.
It is therefore most important to provide a pumping system which most closely emulates the operation of the natural heart and which should therefore be characterized by providing: continuous innerflow of blood to the pump and a high pressure pulsatile outflow; means for limiting pressure at the outflow to a safe level even in the presence of obstructions in the outflow; means for adjustably controlling vacuum and pressure levels at the inflow end of the pump so as to accommodate the requirements of a particular application or patient; means for providing non-occlusive pumping action anda design which enables the system to be rapidly synchronized to operate in synchronism with the operation of a normal heart through the use of a design having low mechanical inertia in order to greatly enhance pump response time.
The present invention is comprised of a pair of highly resilient containers each mounted within an associated pressure controlled housing. The flexible containers are joined through a common connection having a one-way valve mechanism which permits fluid flow in a first direction while preventing any reverse fluid flow. The flexible container at the input end of the pump is permitted to fill at a rate dependent upon the pressure differential existing across the flexible walls of the container. Transfer of the incoming flow from the input side container to the output side container is a function of the pressure gradient across the one-way valve mechanism.
The output side flexible container is provided with an outlet port containing a second one-way valve mechanism to permit fluid flow only in the output direction while preventing any reverse flow. Pulsatile pumping means are coupled to an inlet port of the housing containing the flexible container of the output side to deliver any pulsatile high pressure output flow to the patients arterial system. The walls forming each of the flexible containers are quite thin and highly resilient to provide for quick response to pressure differentials across the flexible walls and to provide positive non-occlusive pumping action.
In a preferred embodiment, the one-way valve mechanisms and their associated valve mounting means are desimied so as to enhance the seating of the valve during nonnal operation while at the same time providing for simple rapid removal and/or replacement of the valve assembly.
It is therefore one object of the present invention to provide a novel non-occlusive pumping system for use in either assisting or by-passing normal heart function.
Another object of the present invention is to provide a novel non-occlusive pumping system comprised of at least two flexible chambers and pressure operated enclosures therefore which, together with connecting one-way valve mechanisms cooperate to emulate the operating characteristics of the natural heart.
Another object of the present invention is to provide a novel one-way valve design for use in by-pass pumping systems of the non-occlusive type.
These as well as other objects of the present invention will become apparent when reading the accompanying description and drawings in which:
FIG. 1 is a block diagram showing a total by-pass system.
FIG. 2 is a sectional view showing a by-pass pump designed in accordance with the principles of the present invention.
FIG. 3 is a sectional view showing one of the flap valve' mechanisms of FIG. 2 in greater detail.
FIG. 4 is an exploded perspective view showing one physical form of the pump of FIG. 2.
FIG. 5 is a sectional elevational view of another preferred embodiment of the present invention.
FIGS. 6a and 6b are sectional and top plan views respectively, showing one of the valves of FIG. 5 in greater detail.
FIG. 7 is a sectional view showing the details of the liners used in FIGS. 2 and 5.
FIGS. 8 and 9 are sectional views of further embodiments of FIG. 5.
FIG. 1 illustrates a total by-pass system incorporating a blood pump. As shown therein, blood is taken from the venous system of a patient 1 and passes through an oxygenator 8 provided to oxygenate the blood as a substitute for function normally performed by the patients lungs due to the fact that the lungs in both the right and left side of the heart have been bypassed. The oxygenator removes carbon dioxide and replenishes the blood with oxygen. A pulsatile blood pump 11 receives blood from oxygenator 8 and increases blood pressure from a pressure level equivalent to several millimeters of mercury which is a level normally found in the venous system of a patient, to a mean pressure of millimeters of mercury which is a pressure normally found in the arterial system of a human. The output blood flow is then passed through a heat exchanger unit 4 provided to lower the patients blood temperature level for surgery and also adjustable to increase blood temperature upon the termination of surgery. Unit 4 also serves to add heat dissipated by the blood due to the long extracorporeal path which the blood follows in moving through the total by-pass system. The low temperature during surgery reduces the oxygen consumption of the patient and therefore permits the patient to safely survice a substantially long time interval during which the mechanical by-pass system provides its supportive functions. The blood, after passing through heat exchanger 4, is returned to the arterial system of the patient.
Desirable by-pass pump characteristics, which can clearly be seen to closely emulate the properties of a natural heart can be summarized as follows:
l. The pump should provide a continuous venous inflow and a high pressure pulsatile arterial outflow.
2. The pump should provide safe limiting pressures at the outflow end even in the presence of obstructions which may occur at the outflow.
3. The pump should provide a means for readily adjusting and controlling vacuum and pressure levels at the inflow side to enable the pump to function at a variety of filing modes to suit the requirements of various oxygenators and by-pass 5 systems. Examples are gravity filling, filling at a controlled vacuum, and filling at a controlled inlet pressure as is required by some membrane oxygenators of recent design.
4. The pump should provide non-occlusive blood flow since any contact between two occlusive surfaces may cause excessive blood cell damage due to abrasion and/or due to the noncompatible nature of present synthetic materials with blood.
5. The pump must exhibit a low blood damage or hemolysis factor which may be accomplished through a design incorporating low blood turbulance, selection of proper materials and a non-occlusive construction.
6. The driving mechanism must be capable of being synchronized to the operation of the natural heart with sufficient rapidity to provide proper phase relationships to the heart which requires a design of low mechanical inertia and small delay so as to prevent pump response from being either too slow or too late. This design characteristic generally restricts the pump driving means to hydraulic or pneumatic operation as opposed to mechanically driven devices.
The design objectives may be accomplished by the pulsatile by-pass pump shown in schematic fashion in the cross-sectional view of FIG. 2.
The pump assembly of FIG. 2 is comprised of an atrium chamber 17 and a ventricle chamber 30 which are similar in design and function to corresponding portions of a natural heart. The venous return line 14 which may be coupled to the patient through any suitable manner (or through any oxygenator 8, as shown in FIG. 1) is coupled into the interior of atrium 17 through an inlet port 17a. Incoming blood passes through atrium 17 and a common conduit 22 containing one-way flap valve 21 so as to enter ventricle 30 through its inlet port 300. The blood leaves the ventricle 30 through outlet port 30b and conduit 28 which contains one-way flap valve 26. Ventricular conduit 28 may be connected to the arterial system of the patient (or heat exchanger unit 4, as shown in FIG. 1).
The valve mechanisms and 26 are so arranged to respectively permit free flow in the directions from inlet conduit 14 to outlet conduit 28 while preventing reverse flow therethrough.
Atrium l7 and ventricle 30 are preferably comprised of a pair of substantially flat sheets of a material which is elastic and compatible with the blood so as not to have any effect upon the characteristics or composition of the blood as a result of the physical contact therebetween. The highly resilient elastic sheets are preferably cemented to one another along their marginal surfaces so as to air-tightly join the sheets to one another and thereby define the atrium and ventrical enclosures 17 and 30, respectively, as well as the associated connections therebetween.
Ventricle 30 is positioned within a rigid chamber 13 having an opening 31 for connection to pneumatic actuator 27. The application of a slight vacuum into the interior of chamber 13 to pneumatic actuator 27 serves to separate the two cooperating portions of sheets 24 and 25 which form ventricle 30, to provide a suction within the interior of the ventricle. As a result, blood is drawn from atrium 17 through one-way valve 21 into ventricle 30. One-way valve 26 is closed as a result of the suction developed within ventricle and the high pressure level in conduit 28 on the output side of the system. The pneumatic actuator is then operated to periodically pressurize the interior of chamber 13 causing the flexible membrane portion of sheets 24 and 25 to transmit this pressure condition to the blood contained within ventricle 30. Due to the action of one- way valves 21 and 26, the blood is constrained to flow through outlet port 30b and one-way valve 26 as soon as the pressure within ventricle 30 is greater than the pressure within the outlet end of conduit 28. Valve 21 is closed during this phase since the pressure at its left-hand side is less than the pressure at its right-hand side. In this manner, ventricle 30 is operated to repetitively fill and empty to simulate a pumping pulsatile operation.
Atrium l7 performs the dual functions of acting as a buffer between the pulsatile operation of ventricle 30 and the continuous venous return flow condition at inlet conduit 14 as well as controlling the vacuum of pressure within conduit 14 to adjustably selected values. Since the portions of elastic sheets 24 and 25 perform a limp bladder, the atrium operates as a reservoir which stores the blood draining into it through the venous return line 14. Upon demand of ventricle 30, blood is drained from atrium 17 through the connecting conduit 22 and one-way valve 21 into ventricle 30. The suction or negative pressure condition within ventricle 30 during its filling stage is transferred to atrium 17 when the atrium is drained of blood and is no longer capable of supplying adequate blood as a result of insufficient blow flow entering atrium 17. This suction within atrium 17 causes the opposing sheet portions forming atrium 17 to collapse upon one another and thereby effectively isolate the filling phase suction imparted upon atrium 17 by ventricle 30 from reaching input line 14. As more blood becomes available and enters input line 14, its slightly positive pressure causes a separation of the membrane portions forming atrium 17 to reinitiate blood flow from atrium 17 into ventricle 30.
Isolation of the pulsatile suction or negative pressure developed by ventricle 30 due to collapse of atrium 17 in the presence of insufficient blood flow occurs as a result of the pressure differential across the interior and exterior surfaces of the portions of sheets 24 and 25 forming atrium 17. By placing atrium 17 within closed chamber 12, the pressure or suction within the interior of chamber 12 may be controlled through the connection of the pressure of vacuum generating source 19 to opening 18. Thus, expansion or contraction of the atrium 17 may occur at pressures other than atmospheric, if desired. Since atrium 17 is a flexible and elastic structure, any pressures or suction across its walls will be directly transferred to the enclosed fluid and to input line 14 at any time during which the atrium is not at its completely full or completely empty state. Therefore, the pressure or suction within closed chamber 12 is normally selected to be that level which appears to be at the input venous return line 14 during normal operation and this input pressure or suction can be effectively controlled to accommodate the particular by-pass or partial support function for which it is provided.
FIG. 3 shows a detailed sectional view of a suitable valve design which may be employed in the system of FIG. 2. As shown in FIG. 3, fluid flow through conduit 22 is from left to right relative to FIG. 3, with the left-hand end of conduit 22 being connected to atrium 17 and the right-hand or downstream end thereof being connected to ventricle 30. Fluid flow through the valve structure occurs whenever the pressure on its left-hand side is greater than the pressure on its right-hand side and further wherein the pressure differential is of a sufficient magnitude to overcome the restriction imposed by the two valve flap portions 34 and 36. The flaps 34 and 36 are each formed of an elastic material capable of resuming its normal configuration (shown in solid line fashion in FIG. 3) until the appropriate pressure differential exists across the valve structure whereby the valve flaps 34 and 36 are forced apart to permit flow from left to right. When the pressure differential is reversed, flaps 34 and 36 are forced into engagement with one another so as to isolate the left and right-hand portions of conduit 22.
One important characteristic of the valve design shown in FIG. 3 is that the valve design does not obstruct the central flow pattern of blood flowing therethrough so as to minimize turbulance and pressure loss across the valve. Furthermore, the surfaces that come into engagement upon valve closure is limited to the marginal tip portions of flaps 34 and 36. Due to their flexible nature, the flaps tend to distribute the reverse fluid pressure evenly along the contact surface so as to significantly reduce the surface contact therebetween and thereby minimize resultant damage to blood cells passing therethrough. This structure compares favorably with valve designs in which one or both surfaces thereof are comprised of valve seats formed of a rigid inelastic material.
FIG. 4 shows an exploded perspective view which illustrates the physical form of the pump assembly. A pair of completaining valve assembly 26). The covers 40 and 44 are each 4 provided with complementary shaped cavities for receiving each of the components of the pump assembly, which recesses and/or cavities have been designated by like primed numerals. The cover halves 40 and 44, when joined together further define the closed chambers 12 and 13 shown in schematic fashion in FIG. 2. Although FIG. 4 shows the connecting conduits 18 and 31 as being provided in cover member 44, it should be understood that any other arrangement may be utilized. Cover member 44 is provided with a plurality of spaced threaded fasteners 47 adapted to align with associated openings 48 provided in cover member 40. At least the ex treme end portions of threaded members 47 are arranged to extend beyond the upper edge of cover member 40 so as to threadedly engage suitable tapped members such as, for example, thumb screws (not shown for purposes of simplicity). In a like manner, the membrane assembly 42 is provided with a similar arrangement of openings 49 for receiving the threaded fastening members 47. The pump, when fully assembled is further provided with a support stand 46 suitably joined to cover member 44 so as to hold the assembly at a predetermined inclined angle. This arrangement causes gravity to aid in the collection of blood in both the atrium and ventricle compartments 17 and 36 to thereby expedite blood flow. Liner structure 42 may be utilized as a disposable item and thereby is readily replaceable.
As an obvious alternative, in the arrangement shown in FIG. 4, the assembly 42 may be a single sheet which cooperates with cover member 40 to form the atrium 17, ventricle 30 and associated connecting conduits whereby the recesses provided in cover member 44 may be utilized to serve as the enclosed chambers 12 and 13. In such a case, suitable sealing means may be provided in the immediate region of the inlet and outlet openings of each of the flexible chambers to isolate the differing pressure conditions between the chambers.
The sheets forming atrium 17 may come into contact during those times in which the chamber is empty and the pressure surrounding the chamber is greater than the internal pressure. Since the pressure within closed chamber 12 is static, abrasive damage to the blood is minimum even under those condition. However, the pulsatile actuating forces imparted to ventricle 30 may result in occlusive pumping, which is undesirable. This shortcoming may be remedied by providing photocell means and cooperating detector means each arranged above and below the cooperating sheets to detect the absence of fluid within the chambers and thereby automatically terminate operation of the pneumatic actuator 27 to prevent the exertion of occlusive pressure upon the blood when the chamber is nearly empty. In the case where only a single flexible sheet is utilized to form the above mentioned chambers, only a single light source and photocell detector combination need be provided to control the deenergization of the actuator 27.
FIG. 5 shows another alternative embodiment of the present invention which provides superior non-occlusive operation as compared with the embodiments of FIG. 4 and which is comprised of atrium chamber 62, a ventricle chamber 63, an inflow or venous return 50 and an outflow connection 65.
Valve assembly 55 serves to connect atrium chamber 62, ventricle chamber 63, while valve assembly 66 controls the outflow from ventricle 63. The ventricle chamber 63 is defined by flexible membrane 57 and the interior contour of housing 54. Membrane 57 also serves as the barrier member for separating the ventricle chamber 63 from the chamber 61 which is defined by membrane 57 and the interior contour of housing member 52. Connection 31 serves as a means for coupling the pulsatile pneumatic actuator to hollow chamber 61 and thereby exert pulsatile pressure upon the ventricle chamber 63.
In like fashion, membrane 59 serves as the means for isolating atrium chamber 62 from hollow chamber 66 which is defined by the interior contour of housing member 56 and membrane 59. Connection 16 serves as the means for connecting an adjustable pressure of vacuum source to chamber 60. Housing members 52, 54 and 56 may be machined molded or otherwise formed preferably from a transparent material. Membranes 57 and 59 are preferably formed of a flexible nonstretching material such as polyurethane or dacron reinforced silicon rubber. Liners of this design, while thin and quite flexible, do not stretch. Housing portion 54 is constructed so that atrium chamber 62 and ventricle chamber 63 each have a slightly larger radius than the curved liners when they are in their fully expanded state so as to provide non-occlusive pumping action. Liners 57 and 59 also provide the seals between chambers 60-62 and 61-63 eliminating the need for additional gaskets which would otherwise be required for sealing against the possibility of air or fluid leaks. The three housing sections and membranes are preferably held together by threaded members and cooperating thumb screws (not shown) which may be substantially similar in nature to those shown in FIG. 4. The design of the housing sections make the liners and valves readily accessible for cleaning, removal and/or displacement. Liners and valve assemblies are preferably of the disposable type.
Atrium chamber 62 provides continuous venous return flow despite the pulsatile operation of ventricle chamber 63, as well as regulating venous return vacuum or pressures at desired levels. The latter function is obtained by sealing input line 50 from ventricle 63 as atrium 62 is emptied. This is carried out by liner 59 which when moved to its uppermost position cooperates with the circular shaped protruding rim 64 to provide a temporary and yet effective seal therebetween so as to isolate the low pressure state of ventricle chamber 63 from the higher pressure state of the venous return flow line 50. When sufficient blood flow is again made available in excess of the pressures in chamber 60, the antrium chamber is again free to be filled and the temporary seal formed between liner 59 and rim 64 is removed.
The valve design of the pump assembly of FIG. 5 is rather unique and is shown in detail in FIGS. 6a and 6b. The valve is formed of a flexible resilient material such as, for example, silicone rubber. The valve is provided with an annular seating rim 85 which is partially fitted within a retaining flange 90, cut or otherwise formed in the appropriate housing portion 54 of the pump body. The lower seating surface 89 provided in housing portion 54 is diagonally aligned relative to the direction of flow so that the force exerted by reverse flow urges the valve more firmly into the mounting recess in such a manner that the diagonally aligned surface portion 89 causes the downward force exerted upon the valve assembly to urge the seating flange of the valve assembly outwardly and upwardly against the undercut portion 90 of the recess. In other words, the angle of the seating surface 89 prevents the valve body from being displaced or otherwise moved from its normal position when high reverse pressures are exerted upon the valve. During normal fluid flow, the three flaps of the valve whose mating edges are defined by slits 87a, 87 b and 87c are easily urged apart to permit fluid flow in the normal normal (upward, in the case of FIG. 5) direction. The slightly outward force component present during the opening of the valve flaps serves to urge the annular flange 85 outward and retain the valve firmly seated within its associated recess so as to prevent high flow rates from urging the valve assembly from its seated position.
The flaps are each provided with substantially V-shaped lips 84 which mate with adjoining lips to provide good sealing in the case of reverse fluid flow (i.e., in the downward direction relative to FIG. 5). The advantages of the valve assembly shown and described hereinabove are such that no obstruction in the central flow pattern occurs, the valve surfaces are formed of a plastic material to minimize blood damages and to be highly compatible with the blood, as well as providing for simple and rapid removal and/or insertion of the valves without the need for any special tools. In the case of ventricle outflow valve 66, the seating flange provides the additional function of sealing against the possibility of leakage between housing portion 54 and outflow conduit 65. Fitting 65 may be attached to the pump body portion 54 by any suitable fastening means (not shown) for purposes of simplicity.
It is important to provide liners in the embodiments of FIGS. 2, 4 and 5 that, while flexible, do not stretch and thereby make the pump occlusive and which furthermore provide adequate protection against breakage. In order to incorporate these characteristics into the pump, 1 have devised a dual liner. For example, considering each liner half 24 and 25 of the embodiment of FIG. 2, or either of the liners 57 and 59 in FIG. 5, these liners are preferably designed in accordance with the principles shown in'FIG. 7 wherein a pair of plastic liners 71 and 72, preferably formed of polyurethane, are bonded together along their marginal edges by means of silicone rubber as shown at 73 and 74. In the case of the embodiment shown in FIG. 5, for example, the silicone rubber is further employed to bond the liners 59 and 57 to the housing portions and these sections of silicone rubber are shown as 75,75 and 76,76, respectively. Bonding in this manner facilitates handling and assembly of the liners and further provides a good seal between the air and blood cavities provided within the pump assembly of FIG. 5.
A small amount of water in the form of droplets 77 is provided and these water droplets are sealed between the liners 71 and 72 to aid in lubrication of the liners as well as preventing undue wearing of the liners due to abrasive contact therebetween which would otherwise occur in the absence of the water droplets. The droplets 77 further enhance the flexibility of the liners 71 and 72 since a portion of the water droplets are absorbed by the material. Two thin liners respond more rapidly than one heavy liner in that the stresses in the liner material are reduced, resulting in a greatly improved flex life.
Another modification in the embodiment of FIG. 5 concerns the operation of the atrium 62. Continuous venous return flow is an important factor. Continuity of flow can occur only if the atrium chamber is partially filled, so that the venous return blood can flow into the atrium at all times instead of only part of the time and in a pulsatile fashion. To obtain the desired operation, an adjustable clamp 57 is placed in line 50. By adjusting threaded member 57a, return flow may be accordingly regulated.
As an alternative method, the air pressure in the atrium may be increased to reduce the venous flow. In order to simplify the adjustment of the adjustable clamp, a small plunger is positioned in the air chamber 60 which cooperates with the atrium 62, whereby the plunger moves either up or down as shown by arrow 95 to indicate when the atrium is full and more atrium pressure is therefore necessary or to indicate when the clamp must be further closed. To facilitate observation of the plunger, the apparatus shown in FIG. 8 may be set upside down relative to the orientation of FIG. 5 so that the atrium chamber is positioned above the ventricle chamber. The operation of the pump, however, remains the same. As shown in FIG. 8, the housing portion 56 is provided with a narrow opening 560 for reciprocally mounting plunger 96 which is provided with a widened portion 96a resting upon liner 59. Scale graduations 56b may be provided along the length of the plunger 96 to indicate the blood level within the atrium. The reservoir of blood within atrium 62 enables a constant atrium pressure to be maintained despite volume changes within the atrium.
A still further modification of the embodiment of FIG. 8 is shown in FIG. 9, wherein the plunger 96, shown therein, is provided with a relief valve opening 96b which communicates with an opening 96c at the opposite end thereof. Whenever the atrium is filled with blood, plunger 96 is pushed upwardly whereby opening 960 is sealed by a surrounding sleeve 98 positioned within opening 560. This causes pressure to build up in the chamber due to the provision of a small capacity air pressure pump Q9 coupled to conduit 18. As the atrium chamber empties, plunger 96 moves vertically downward so as to unseal opening 96d, providing a relief passage through to opening 960, enabling the pressure to be vented from chamber 60 into the atmosphere whereby operation of plunger 96' automatically regulates the venous return blood flow.
It can be seen from the foregoing description that the present invention provides a novel by-pass pumping system for use as an assistive blood pump or as a temporary substitute for the natural heart and whose design is such as to closely emulate the normal heart functions and characteristics to provide highly reliable and effective operation in such applications.
Although there has been described a preferred embodiment of this novel invention, many variations and modifications will now be apparent to those skilled in the art. Therefore, this invention is to be limited, not by the specific disclosure herein, but only by the appending claims.
The embodiments of the invention in which an exclusive privilege or property is claimed are defined as follows:
1. Means for converting a low pressure fluid flow to a high pressure pulsatile flow comprising:
first and second flexible fluid receiving containers adapted to be readily expanded or compressed, each container having an inlet and an outlet port;
a first conduit connecting the inlet port of said second container to the outlet port of said first container;
one-way valve means mounted within said first conduit;
means connecting the inlet port of said first container to receive a low pressure fluid flow;
second conduit means connected to said second container outlet port for delivering the output flow of said second container;
first and second chambers respectively enclosing said first and second flexible containers;
means for maintaining the pressure in said first chamber at a predetermined constant level;
actuator means for alternately pressurizing and depressing said second chamber at an adjustable predetermined rate to urge fluid delivered to said second flexible container from said first flexible container outwardly through said second conduit in a pulsatile manner.
2. The device of claim 1 wherein said one-way valve means includes means adapted to permit fluid flow from said first to said second flexible container while preventing fluid flow in the reverse direction.
3. The device of claim 1 further comprising:
second one-way valve means mounted within said second conduit means for permitting fluid flow from said second flexible container while preventing fluid flow in the reverse direction.
4. The device of claim 1 wherein said valve means is comprised of a pair of flap members diagonally aligned within said first conduit means to form a V-shaped configuration when closed whereby said flaps are curved near their free ends to cause engagement therebetween only in the marginal region of said flap free ends in the presence of reverse fluid flow.
5. The device of claim 1 wherein said valve means is comprised of a plurality of arcuate shaped flap members diagonally aligned within said first conduit means to form a dome-shaped configuration when closed, whereby said flaps are provided with V-shaped flanges along their free ends to cause engagement therebetween only in the marginal region of said flap flanges in the presence of reverse fluid flow.
6. The device of claim I wherein said flexible conduits are each formed from a pair of thin sheets of a flexible material whose marginal engaging portions are joined by a suitable adhesive means to air-tightly seal said containers as well as defining their perimeters.
7. Means for converting a low pressure fluid flow to a high pressure pulsatile flow comprising:
first and second chambers;
a flexible membrane in each of said chambers dividing each chamber into a fluid and non-fluid receiving compartment;
the fluid receiving compartments each having an inlet and an outlet port;
a first conduit connecting the inlet port of one of said fluid receiving compartments to the outlet port of the remaining fluid receiving compartment;
one-way valve means mounted within said first conduit; input means connecting the inlet port of said one of said fluid receiving compartments to receive a low pressure fluid flow;
second conduit means connected to the outlet port of the remaining one of said fluid receiving compartments for delivering the output fluid flow of said second container;
means coupled to the non-fluid receiving compartment of said first chamber for maintaining the pressure therein at a predetermined constant level;
means coupled to the non-fluid receiving compartmentof said second chamber for alternately pressurizing and depressurizing the non-fluid receiving compartment of said second chamber at an adjustable predetermined rate to urge fluid delivered thereto from the fluid receiving compartment of said first chamber outwardly through said second conduit in a pulsatile manner.
8. The device of claim 7 wherein said flexible membranes are formed of a flexible non-stretching material.
9. The device of claim 7 wherein the interior surface of the first chamber forming a portion of said first fluid receiving compartment has a substantially tapered configuration;
the flexible membrane of said fluid receiving compartment being incapable of engaging the entire surface area of said tapered surface.
10. The device of claim 7 wherein said one-way valve means includes means adapted to permit fluid flow from said first to said second chamber fluid receiving compartment flexible container while preventing fluid flow in the reverse direction.
11. The device of claim 7 further comprising:
second one-way valve means mounted within said second conduit means for permitting fluid flow from said second chamber fluid receiving compartment while preventing fluid flow in the reverse direction.
12. The device of claim 7 wherein said valve means is comprised of a plurality of arcuate shaped flap members diagonally aligned within said first conduit means to form a ill) dome-shaped configuration when closed, whereby said flaps are provided with V-shaped flanges along their free ends to cause engagement therebetween only in the marginal region of said flap flanges in the presence of reverse fluid flow.
13. The device of claim 9 wherein the outlet port of said first chamber fluid receiving compartment is positioned at the apex of said tapered interior surface;
said tapered interior surface being provided with an annular shaped rim projecting from said surface at a location intermediate said apex and said membrane for cooperating with said member to isolate the input connecting means from said second conduit means when the second conduit means exerts a negative pressure upon the first chamber fluid receiving compartment.
14. The device of claim 1 including means responsive to the nearly total collapse of said first flexible container for deactivating said actuator means.
15. The device of claim 7 wherein said means for maintaining the pressure in the non-fluid receiving compartment of said first container includes means for regulating the pressure level in said first container in inverse proportion to the amount of blood in said first container.
16. The device of claim 15 wherein said regulating means further comprises an adjustable clamp provided in the inlet part of said first fluid receiving container.
17. The device of claim 16 further comprising plunger means having a first end resting upon the membrane of said container and a second end extending outwardly from the non-fluid receiving compartment of said first container whereby the length of sai second end extending beyond said first chamber is employed to determine the adjustment of said adjustable clamp.
18. The device of claim 15 wherein said pressure regulating means is further comprised of plunger means having a first end resting on the membrane of said first container and a second end extending outwardly from said first container;
said plunger means having a first opening at said second end communicating with a second opening at a point intermediate the first and second ends thereof whereby said second opening is sealed by said first container when the level of fluid in said first container is high and whereby said second opening communicates with the interior of said first chamber when the fluid level in said first container is low.

Claims (18)

1. Means for converting a low pressure fluid flow to a high pressure pulsatile flow comprising: first and second flexible fluid receiving containers adapted to be readily expanded or compressed, each container having an inlet and an outlet port; a first conduit connecting the inlet port of said second container to the outlet port of said first container; one-way valve means mounted within said first conduit; means connecting the inlet port of said first container to receive a low pressure fluid flow; second conduit means connected to said second container outlet port for delivering the output flow of said second container; first and second chambers respectively enclosing said first and second flexible containers; means for maintaining the pressure in said first chamber at a predetermined constant level; actuator means for alternately pressurizing and depressing said second chamber at an adjustable predetermined rate to urge fluid delivered to said second flexible container from said first flexible container outwardly through said second conduit in a pulsatile manner.
2. The device of claim 1 wherein said one-way valve means includes means adapted to permit fluid flow from said first to said second flexible container while preventing fluid flow in the reverse direction.
3. The device of claim 1 further comprising: second one-way valve means mounted within said second conduit means for permitting fluid flow from said second flexible container while preventing fluid flow in the reverse direction.
4. The device of claim 1 wherein said valve means is comprised of a pair of flap members diagonally aligned within said first conduit means to form a V-shaped configuration when closed whereby said flaps are curved near their free ends to cause engagement therebetween only in the marginal region of said flap free ends in the presence of reverse fluid flow.
5. The device of claim 1 wherein said valve means is comprised of a plurality of arcuate shaped flap members diagonally aligned within said first conduit means to form a dome-shaped configuration when closed, whereby said flaps are provided with V-shaped flanges along their free ends to cause engagement therebetween only in the marginal region of said flap flanges in the presence of reverse fluid flow.
6. The device of claim 1 wherein said flexible conduits are each formed from a pair of thin sheets of a flexible material whose marginal engaging portions are joined by a suitable aDhesive means to air-tightly seal said containers as well as defining their perimeters.
7. Means for converting a low pressure fluid flow to a high pressure pulsatile flow comprising: first and second chambers; a flexible membrane in each of said chambers dividing each chamber into a fluid and non-fluid receiving compartment; the fluid receiving compartments each having an inlet and an outlet port; a first conduit connecting the inlet port of one of said fluid receiving compartments to the outlet port of the remaining fluid receiving compartment; one-way valve means mounted within said first conduit; input means connecting the inlet port of said one of said fluid receiving compartments to receive a low pressure fluid flow; second conduit means connected to the outlet port of the remaining one of said fluid receiving compartments for delivering the output fluid flow of said second container; means coupled to the non-fluid receiving compartment of said first chamber for maintaining the pressure therein at a predetermined constant level; means coupled to the non-fluid receiving compartment of said second chamber for alternately pressurizing and depressurizing the non-fluid receiving compartment of said second chamber at an adjustable predetermined rate to urge fluid delivered thereto from the fluid receiving compartment of said first chamber outwardly through said second conduit in a pulsatile manner.
8. The device of claim 7 wherein said flexible membranes are formed of a flexible non-stretching material.
9. The device of claim 7 wherein the interior surface of the first chamber forming a portion of said first fluid receiving compartment has a substantially tapered configuration; the flexible membrane of said fluid receiving compartment being incapable of engaging the entire surface area of said tapered surface.
10. The device of claim 7 wherein said one-way valve means includes means adapted to permit fluid flow from said first to said second chamber fluid receiving compartment flexible container while preventing fluid flow in the reverse direction.
11. The device of claim 7 further comprising: second one-way valve means mounted within said second conduit means for permitting fluid flow from said second chamber fluid receiving compartment while preventing fluid flow in the reverse direction.
12. The device of claim 7 wherein said valve means is comprised of a plurality of arcuate shaped flap members diagonally aligned within said first conduit means to form a dome-shaped configuration when closed, whereby said flaps are provided with V-shaped flanges along their free ends to cause engagement therebetween only in the marginal region of said flap flanges in the presence of reverse fluid flow.
13. The device of claim 9 wherein the outlet port of said first chamber fluid receiving compartment is positioned at the apex of said tapered interior surface; said tapered interior surface being provided with an annular shaped rim projecting from said surface at a location intermediate said apex and said membrane for cooperating with said member to isolate the input connecting means from said second conduit means when the second conduit means exerts a negative pressure upon the first chamber fluid receiving compartment.
14. The device of claim 1 including means responsive to the nearly total collapse of said first flexible container for deactivating said actuator means.
15. The device of claim 7 wherein said means for maintaining the pressure in the non-fluid receiving compartment of said first container includes means for regulating the pressure level in said first container in inverse proportion to the amount of blood in said first container.
16. The device of claim 15 wherein said regulating means further comprises an adjustable clamp provided in the inlet part of said first fluid receiving container.
17. The device of claim 16 further comprising plunger means having a first end resting upon the mEmbrane of said container and a second end extending outwardly from the non-fluid receiving compartment of said first container whereby the length of said second end extending beyond said first chamber is employed to determine the adjustment of said adjustable clamp.
18. The device of claim 15 wherein said pressure regulating means is further comprised of plunger means having a first end resting on the membrane of said first container and a second end extending outwardly from said first container; said plunger means having a first opening at said second end communicating with a second opening at a point intermediate the first and second ends thereof whereby said second opening is sealed by said first container when the level of fluid in said first container is high and whereby said second opening communicates with the interior of said first chamber when the fluid level in said first container is low.
US87487A 1970-11-06 1970-11-06 Pulsatile by-pass blood pump Expired - Lifetime US3656873A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US8748770A 1970-11-06 1970-11-06

Publications (1)

Publication Number Publication Date
US3656873A true US3656873A (en) 1972-04-18

Family

ID=22205482

Family Applications (1)

Application Number Title Priority Date Filing Date
US87487A Expired - Lifetime US3656873A (en) 1970-11-06 1970-11-06 Pulsatile by-pass blood pump

Country Status (1)

Country Link
US (1) US3656873A (en)

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016871A (en) * 1975-03-06 1977-04-12 Peter Schiff Electronic synchronizer-monitor system for controlling the timing of mechanical assistance and pacing of the heart
US4047844A (en) * 1975-12-08 1977-09-13 Searle Cardio-Pulmonary Systems Inc. Blood pumping system
US4080958A (en) * 1976-02-27 1978-03-28 Datascope Corporation Apparatus for aiding and improving the blood flow in patients
FR2502499A1 (en) * 1981-03-27 1982-10-01 Farcot Jean Christian APPARATUS FOR BLOOD RETROPERFUSION, PARTICULARLY FOR THE TREATMENT OF INFARCTUS BY ARTERIAL BLOOD INJECTION IN CORONARY SINUS
US4427470A (en) 1981-09-01 1984-01-24 University Of Utah Vacuum molding technique for manufacturing a ventricular assist device
US4473423A (en) 1982-05-03 1984-09-25 University Of Utah Artificial heart valve made by vacuum forming technique
US4479761A (en) * 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to externally applied pressures
US4479760A (en) * 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
US4479762A (en) * 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
US4573883A (en) * 1985-03-01 1986-03-04 Baylor College Of Medicine Disposable blood pump
US4648877A (en) * 1984-03-30 1987-03-10 Astra-Tech Aktiebolag Blood pump
US4750868A (en) * 1985-09-20 1988-06-14 Astra-Tech Aktiebolag Pump with continuous inflow and pulsating outflow
US4838889A (en) * 1981-09-01 1989-06-13 University Of Utah Research Foundation Ventricular assist device and method of manufacture
US4938766A (en) * 1987-08-28 1990-07-03 Jarvik Robert K Prosthetic compliance devices
US4976729A (en) * 1988-08-15 1990-12-11 University Of Utah Research Foundation Elliptical artificial heart
US4994078A (en) * 1988-02-17 1991-02-19 Jarvik Robert K Intraventricular artificial hearts and methods of their surgical implantation and use
US5032112A (en) * 1989-11-22 1991-07-16 Baxter International Inc. Dual source intravenous administration set having an intravenous pump
EP0457074A1 (en) * 1990-05-18 1991-11-21 Forschungsgesellschaft für Biomedizinische Technik e.V. Displacement pump for pumping blood
US5092879A (en) * 1988-02-17 1992-03-03 Jarvik Robert K Intraventricular artificial hearts and methods of their surgical implantation and use
FR2681789A1 (en) * 1991-09-30 1993-04-02 Nippon Zeon Co Apparatus for circulatory assistance
US5324422A (en) * 1993-03-03 1994-06-28 Baxter International Inc. User interface for automated peritoneal dialysis systems
US5350357A (en) * 1993-03-03 1994-09-27 Deka Products Limited Partnership Peritoneal dialysis systems employing a liquid distribution and pumping cassette that emulates gravity flow
US5431626A (en) * 1993-03-03 1995-07-11 Deka Products Limited Partnership Liquid pumping mechanisms for peritoneal dialysis systems employing fluid pressure
US5438510A (en) * 1993-03-03 1995-08-01 Deka Products Limited Partnership User interface and monitoring functions for automated peritoneal dialysis systems
US5474683A (en) * 1993-03-03 1995-12-12 Deka Products Limited Partnership Peritoneal dialysis systems and methods employing pneumatic pressure and temperature-corrected liquid volume measurements
ES2094700A1 (en) * 1995-05-30 1997-01-16 Serv Reg Salud Com Madrid Blood pump and application thereof
US5628908A (en) * 1993-03-03 1997-05-13 Deka Products Limited Partnership Peritoneal dialysis systems and methods employing a liquid distribution and pump cassette with self-contained air isolation and removal
WO2000072897A1 (en) * 1999-05-27 2000-12-07 East Carolina University Pulse wave generator for cardiopulmonary bypass and extracorporeal oxygenation apparatus
US6358023B1 (en) * 2000-08-23 2002-03-19 Paul Guilmette Moment pump
US20030017066A1 (en) * 2001-07-19 2003-01-23 Baxter International Inc. Apparatus, flexible bag and method for dispensing
US20030017056A1 (en) * 2001-07-19 2003-01-23 Baxter International Inc. Pump having flexible liner and merchandiser having such a pump
WO2003033910A1 (en) * 2001-10-16 2003-04-24 Baxter International Inc. Pump having flexible liner and compounding apparatus having such a pump
US20030220608A1 (en) * 2002-05-24 2003-11-27 Bruce Huitt Method and apparatus for controlling medical fluid pressure
US20030220598A1 (en) * 2002-05-24 2003-11-27 Don Busby Automated dialysis system
US20030220607A1 (en) * 2002-05-24 2003-11-27 Don Busby Peritoneal dialysis apparatus
US20040007588A1 (en) * 2001-07-19 2004-01-15 Baxter International Inc. Flexible bag for use in manufacturing
US6682698B2 (en) * 2001-08-23 2004-01-27 Michigan Critical Care Consultants, Inc. Apparatus for exchanging gases in a liquid
US20040144799A1 (en) * 2003-01-24 2004-07-29 Baxter International Inc. Liquid dispenser and flexible bag therefor
US20040144800A1 (en) * 2003-01-24 2004-07-29 Baxter International, Inc. Liquid dispenser and flexible bag therefor
US6770024B1 (en) 2000-03-28 2004-08-03 Stony Brook Surgical Innovations, Inc. Implantable counterpulsation cardiac assist device
US20050011908A1 (en) * 2003-07-16 2005-01-20 Baxter International, Inc. Dispenser and pressure/vacuum converting machine
US20050234385A1 (en) * 1999-09-03 2005-10-20 Baxter International Inc. Blood processing systems with fluid flow cassette with a pressure actuated pump chamber and in-line air trap
US20060132247A1 (en) * 2004-12-20 2006-06-22 Renesas Technology Corp. Oscillator and charge pump circuit using the same
US20080015493A1 (en) * 2003-11-05 2008-01-17 Baxter International Inc. Medical fluid pumping system having real time volume determination
US20080033346A1 (en) * 2002-12-31 2008-02-07 Baxter International Inc. Pumping systems for cassette-based dialysis
US20080058697A1 (en) * 2006-04-14 2008-03-06 Deka Products Limited Partnership Heat exchange systems, devices and methods
US20080208111A1 (en) * 2007-02-27 2008-08-28 Deka Products Limited Partnership Peritoneal Dialysis Sensor Apparatus Systems, Devices and Methods
US20080216898A1 (en) * 2007-02-27 2008-09-11 Deka Products Limited Partnership Cassette System Integrated Apparatus
US20090012457A1 (en) * 2007-07-05 2009-01-08 Baxter International Inc. Dialysis system having disposable cassette and interface therefore
US20090008331A1 (en) * 2007-02-27 2009-01-08 Deka Products Limited Partnership Hemodialysis systems and methods
US20090099498A1 (en) * 2007-10-12 2009-04-16 Deka Products Limited Partnership Systems, Devices and Methods for Cardiopulmonary Treatment and Procedures
US20090112151A1 (en) * 2007-10-30 2009-04-30 Baxter International Inc. Dialysis system having integrated pneumatic manifold
US20090198174A1 (en) * 2000-02-10 2009-08-06 Baxter International Inc. System for monitoring and controlling peritoneal dialysis
US20090281484A1 (en) * 2003-10-28 2009-11-12 Baxter International Inc. Peritoneal dialysis machine
US20100051529A1 (en) * 2008-08-27 2010-03-04 Deka Products Limited Partnership Dialyzer cartridge mounting arrangement for a hemodialysis system
US20110092894A1 (en) * 2008-01-23 2011-04-21 Deka Research & Development Pump cassette and methods for use in medical treatment system using a plurality of fluid lines
US20110098624A1 (en) * 2001-02-14 2011-04-28 Mccotter Craig Method and apparatus for treating renal disease with hemodialysis utilizing pulsatile pump
US8357298B2 (en) 2007-02-27 2013-01-22 Deka Products Limited Partnership Hemodialysis systems and methods
US8366316B2 (en) 2006-04-14 2013-02-05 Deka Products Limited Partnership Sensor apparatus systems, devices and methods
US8393690B2 (en) 2007-02-27 2013-03-12 Deka Products Limited Partnership Enclosure for a portable hemodialysis system
US8409441B2 (en) 2007-02-27 2013-04-02 Deka Products Limited Partnership Blood treatment systems and methods
US8425471B2 (en) 2007-02-27 2013-04-23 Deka Products Limited Partnership Reagent supply for a hemodialysis system
US8485793B1 (en) * 2007-09-14 2013-07-16 Aprolase Development Co., Llc Chip scale vacuum pump
US8491184B2 (en) 2007-02-27 2013-07-23 Deka Products Limited Partnership Sensor apparatus systems, devices and methods
US8562834B2 (en) 2007-02-27 2013-10-22 Deka Products Limited Partnership Modular assembly for a portable hemodialysis system
US8708950B2 (en) 2010-07-07 2014-04-29 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US8715235B2 (en) 2007-07-05 2014-05-06 Baxter International Inc. Dialysis system having disposable cassette and heated cassette interface
US8992462B2 (en) 2002-07-19 2015-03-31 Baxter International Inc. Systems and methods for performing peritoneal dialysis
US9028691B2 (en) 2007-02-27 2015-05-12 Deka Products Limited Partnership Blood circuit assembly for a hemodialysis system
US9078971B2 (en) 2008-01-23 2015-07-14 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US9115709B2 (en) 1999-07-20 2015-08-25 Deka Products Limited Partnership Fluid pumping apparatus for use with a removable fluid pumping cartridge
EP3015122A1 (en) * 2014-11-03 2016-05-04 B. Braun Avitum AG Attachment assembly for attaching a fluid bag to a fluid warmer of a system for extracorporeal blood treatment
US9514283B2 (en) 2008-07-09 2016-12-06 Baxter International Inc. Dialysis system having inventory management including online dextrose mixing
US9517295B2 (en) 2007-02-27 2016-12-13 Deka Products Limited Partnership Blood treatment systems and methods
US9561318B2 (en) 2002-04-11 2017-02-07 Deka Products Limited Partnership System and method for delivering a target volume of fluid
US9582645B2 (en) 2008-07-09 2017-02-28 Baxter International Inc. Networked dialysis system
US9597442B2 (en) 2007-02-27 2017-03-21 Deka Products Limited Partnership Air trap for a medical infusion device
US9675745B2 (en) 2003-11-05 2017-06-13 Baxter International Inc. Dialysis systems including therapy prescription entries
US9675744B2 (en) 2002-05-24 2017-06-13 Baxter International Inc. Method of operating a disposable pumping unit
US9724458B2 (en) 2011-05-24 2017-08-08 Deka Products Limited Partnership Hemodialysis system
US9861732B2 (en) 2011-11-04 2018-01-09 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
WO2018051091A1 (en) * 2016-09-14 2018-03-22 Haemaflow Limited Blood pump
US10201647B2 (en) 2008-01-23 2019-02-12 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US10201650B2 (en) 2009-10-30 2019-02-12 Deka Products Limited Partnership Apparatus and method for detecting disconnection of an intravascular access device
US10537671B2 (en) 2006-04-14 2020-01-21 Deka Products Limited Partnership Automated control mechanisms in a hemodialysis apparatus
US20200038565A1 (en) * 2016-09-29 2020-02-06 Zammi Instrumental Ltda Pump for artificial circulatory assistance and a pumping system
US10578098B2 (en) 2005-07-13 2020-03-03 Baxter International Inc. Medical fluid delivery device actuated via motive fluid
US10729839B2 (en) * 2017-10-03 2020-08-04 Baxter International Inc. Modular medical fluid management assemblies, machines and methods
US11179516B2 (en) 2017-06-22 2021-11-23 Baxter International Inc. Systems and methods for incorporating patient pressure into medical fluid delivery
US11371498B2 (en) 2018-03-30 2022-06-28 Deka Products Limited Partnership Liquid pumping cassettes and associated pressure distribution manifold and related methods
US11478578B2 (en) 2012-06-08 2022-10-25 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods
US11541157B2 (en) 2019-06-18 2023-01-03 Michigan Critical Care Consultants, Inc. Membrane oxygenator with gas exchange fiber lumen access based on fiber effective length
US11833281B2 (en) 2008-01-23 2023-12-05 Deka Products Limited Partnership Pump cassette and methods for use in medical treatment system using a plurality of fluid lines
US11957820B2 (en) 2016-09-14 2024-04-16 Haemaflow Limited Blood pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3190229A (en) * 1961-06-09 1965-06-22 Turowski Erwin Method and apparatus for conveying liquids
US3541612A (en) * 1968-07-11 1970-11-24 Homer C Carney Fluid actuated and regulated artificial implantable heart system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3190229A (en) * 1961-06-09 1965-06-22 Turowski Erwin Method and apparatus for conveying liquids
US3541612A (en) * 1968-07-11 1970-11-24 Homer C Carney Fluid actuated and regulated artificial implantable heart system

Cited By (257)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016871A (en) * 1975-03-06 1977-04-12 Peter Schiff Electronic synchronizer-monitor system for controlling the timing of mechanical assistance and pacing of the heart
US4047844A (en) * 1975-12-08 1977-09-13 Searle Cardio-Pulmonary Systems Inc. Blood pumping system
US4080958A (en) * 1976-02-27 1978-03-28 Datascope Corporation Apparatus for aiding and improving the blood flow in patients
FR2502499A1 (en) * 1981-03-27 1982-10-01 Farcot Jean Christian APPARATUS FOR BLOOD RETROPERFUSION, PARTICULARLY FOR THE TREATMENT OF INFARCTUS BY ARTERIAL BLOOD INJECTION IN CORONARY SINUS
US4459977A (en) * 1981-03-27 1984-07-17 Veronique Pizon Coronary sinus retroperfusion apparatus for the treatment of myocardial ischemia
US4838889A (en) * 1981-09-01 1989-06-13 University Of Utah Research Foundation Ventricular assist device and method of manufacture
US4427470A (en) 1981-09-01 1984-01-24 University Of Utah Vacuum molding technique for manufacturing a ventricular assist device
US4473423A (en) 1982-05-03 1984-09-25 University Of Utah Artificial heart valve made by vacuum forming technique
US4479761A (en) * 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to externally applied pressures
US4479760A (en) * 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
US4479762A (en) * 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
US4648877A (en) * 1984-03-30 1987-03-10 Astra-Tech Aktiebolag Blood pump
AU577841B2 (en) * 1984-03-30 1988-10-06 Astra-Tech Aktiebolag Blood pump
US4573883A (en) * 1985-03-01 1986-03-04 Baylor College Of Medicine Disposable blood pump
US4750868A (en) * 1985-09-20 1988-06-14 Astra-Tech Aktiebolag Pump with continuous inflow and pulsating outflow
US4938766A (en) * 1987-08-28 1990-07-03 Jarvik Robert K Prosthetic compliance devices
US5092879A (en) * 1988-02-17 1992-03-03 Jarvik Robert K Intraventricular artificial hearts and methods of their surgical implantation and use
US4994078A (en) * 1988-02-17 1991-02-19 Jarvik Robert K Intraventricular artificial hearts and methods of their surgical implantation and use
US4976729A (en) * 1988-08-15 1990-12-11 University Of Utah Research Foundation Elliptical artificial heart
US5032112A (en) * 1989-11-22 1991-07-16 Baxter International Inc. Dual source intravenous administration set having an intravenous pump
EP0457074A1 (en) * 1990-05-18 1991-11-21 Forschungsgesellschaft für Biomedizinische Technik e.V. Displacement pump for pumping blood
FR2681789A1 (en) * 1991-09-30 1993-04-02 Nippon Zeon Co Apparatus for circulatory assistance
US5324422A (en) * 1993-03-03 1994-06-28 Baxter International Inc. User interface for automated peritoneal dialysis systems
US5350357A (en) * 1993-03-03 1994-09-27 Deka Products Limited Partnership Peritoneal dialysis systems employing a liquid distribution and pumping cassette that emulates gravity flow
US5421823A (en) * 1993-03-03 1995-06-06 Deka Products Limited Partnership Peritoneal dialysis methods that emulate gravity flow
US5431626A (en) * 1993-03-03 1995-07-11 Deka Products Limited Partnership Liquid pumping mechanisms for peritoneal dialysis systems employing fluid pressure
US5438510A (en) * 1993-03-03 1995-08-01 Deka Products Limited Partnership User interface and monitoring functions for automated peritoneal dialysis systems
US5474683A (en) * 1993-03-03 1995-12-12 Deka Products Limited Partnership Peritoneal dialysis systems and methods employing pneumatic pressure and temperature-corrected liquid volume measurements
US5628908A (en) * 1993-03-03 1997-05-13 Deka Products Limited Partnership Peritoneal dialysis systems and methods employing a liquid distribution and pump cassette with self-contained air isolation and removal
US5931648A (en) * 1995-05-30 1999-08-03 Servicio Regional De Salud, De La Consejeria De Salud De La Comunidad De Madrid Vacuum actuated tubular blood pumping device with active values and application of the same
ES2094700A1 (en) * 1995-05-30 1997-01-16 Serv Reg Salud Com Madrid Blood pump and application thereof
WO2000072897A1 (en) * 1999-05-27 2000-12-07 East Carolina University Pulse wave generator for cardiopulmonary bypass and extracorporeal oxygenation apparatus
US6620121B1 (en) 1999-05-27 2003-09-16 East Carolina University Pulse wave generator for cardiopulmonary bypass and extracorporeal oxygenation apparatus
US9115709B2 (en) 1999-07-20 2015-08-25 Deka Products Limited Partnership Fluid pumping apparatus for use with a removable fluid pumping cartridge
US9593678B2 (en) 1999-07-20 2017-03-14 Deka Products Limited Partnership System, method, and apparatus for utilizing a pumping cassette
US9593679B2 (en) 1999-07-20 2017-03-14 Deka Products Limited Partnership Fluid pumping apparatus for use with a removable fluid pumping cartridge
US9494150B2 (en) 1999-07-20 2016-11-15 Deka Products Limited Partnership Pump chamber configured to contain a residual fluid volume for inhibiting the pumping of a gas
US9494151B2 (en) 1999-07-20 2016-11-15 Deka Products Limited Partnership System, method, and apparatus for utilizing a pumping cassette
US20060178612A9 (en) * 1999-09-03 2006-08-10 Baxter International Inc. Blood processing systems with fluid flow cassette with a pressure actuated pump chamber and in-line air trap
US20050234385A1 (en) * 1999-09-03 2005-10-20 Baxter International Inc. Blood processing systems with fluid flow cassette with a pressure actuated pump chamber and in-line air trap
US8172789B2 (en) 2000-02-10 2012-05-08 Baxter International Inc. Peritoneal dialysis system having cassette-based-pressure-controlled pumping
US20110028892A1 (en) * 2000-02-10 2011-02-03 Baxter International Inc. Peritoneal dialysis system having cassette-based-pressure-controlled pumping
US10322224B2 (en) 2000-02-10 2019-06-18 Baxter International Inc. Apparatus and method for monitoring and controlling a peritoneal dialysis therapy
US20090198174A1 (en) * 2000-02-10 2009-08-06 Baxter International Inc. System for monitoring and controlling peritoneal dialysis
US8206339B2 (en) 2000-02-10 2012-06-26 Baxter International Inc. System for monitoring and controlling peritoneal dialysis
US9474842B2 (en) 2000-02-10 2016-10-25 Baxter International Inc. Method and apparatus for monitoring and controlling peritoneal dialysis therapy
US8323231B2 (en) 2000-02-10 2012-12-04 Baxter International, Inc. Method and apparatus for monitoring and controlling peritoneal dialysis therapy
US8286656B2 (en) 2000-03-28 2012-10-16 Pptt Llc Implantable counterpulsation cardiac assist device
US20090118568A1 (en) * 2000-03-28 2009-05-07 Pptt Llc Implantable counterpulsation cardiac assist device
US6770024B1 (en) 2000-03-28 2004-08-03 Stony Brook Surgical Innovations, Inc. Implantable counterpulsation cardiac assist device
US20040236171A1 (en) * 2000-03-28 2004-11-25 Rastegar Jahangir S. Implantable counterpulsation cardiac assist device
US7481760B2 (en) * 2000-03-28 2009-01-27 Pptt Llc Implantable counterpulsation cardiac assist device
US6358023B1 (en) * 2000-08-23 2002-03-19 Paul Guilmette Moment pump
US20110098624A1 (en) * 2001-02-14 2011-04-28 Mccotter Craig Method and apparatus for treating renal disease with hemodialysis utilizing pulsatile pump
US20040094573A1 (en) * 2001-07-19 2004-05-20 Baxter International Inc. Flow control apparatus for use in dispensing fluent material
US20040007588A1 (en) * 2001-07-19 2004-01-15 Baxter International Inc. Flexible bag for use in manufacturing
US20030017056A1 (en) * 2001-07-19 2003-01-23 Baxter International Inc. Pump having flexible liner and merchandiser having such a pump
US20030017066A1 (en) * 2001-07-19 2003-01-23 Baxter International Inc. Apparatus, flexible bag and method for dispensing
US6769231B2 (en) 2001-07-19 2004-08-03 Baxter International, Inc. Apparatus, method and flexible bag for use in manufacturing
US6682698B2 (en) * 2001-08-23 2004-01-27 Michigan Critical Care Consultants, Inc. Apparatus for exchanging gases in a liquid
WO2003033910A1 (en) * 2001-10-16 2003-04-24 Baxter International Inc. Pump having flexible liner and compounding apparatus having such a pump
US6905314B2 (en) 2001-10-16 2005-06-14 Baxter International Inc. Pump having flexible liner and compounding apparatus having such a pump
US10576194B2 (en) 2002-04-11 2020-03-03 Deka Products Limited Partnership System and method for delivering a target volume of fluid
US9713667B2 (en) 2002-04-11 2017-07-25 Deka Products Limited Partnership System and method for delivering a target volume of fluid
US9561318B2 (en) 2002-04-11 2017-02-07 Deka Products Limited Partnership System and method for delivering a target volume of fluid
US9561317B2 (en) 2002-04-11 2017-02-07 Deka Products Limited Partnership System and method for delivering a target volume of fluid
US20110040244A1 (en) * 2002-05-24 2011-02-17 Baxter International Inc. Automated dialysis system including a piston and stepper motor
US7500962B2 (en) 2002-05-24 2009-03-10 Baxter International Inc. Medical fluid machine with air purging pump
US9775939B2 (en) 2002-05-24 2017-10-03 Baxter International Inc. Peritoneal dialysis systems and methods having graphical user interface
US10751457B2 (en) 2002-05-24 2020-08-25 Baxter International Inc. Systems with disposable pumping unit
US20070149913A1 (en) * 2002-05-24 2007-06-28 Don Busby Automated dialysis pumping system
US20030220608A1 (en) * 2002-05-24 2003-11-27 Bruce Huitt Method and apparatus for controlling medical fluid pressure
US20060113249A1 (en) * 2002-05-24 2006-06-01 Robert Childers Medical fluid machine with air purging pump
US20030220598A1 (en) * 2002-05-24 2003-11-27 Don Busby Automated dialysis system
US10137235B2 (en) 2002-05-24 2018-11-27 Baxter International Inc. Automated peritoneal dialysis system using stepper motor
US20030220607A1 (en) * 2002-05-24 2003-11-27 Don Busby Peritoneal dialysis apparatus
US8075526B2 (en) 2002-05-24 2011-12-13 Baxter International Inc. Automated dialysis system including a piston and vacuum source
US6953323B2 (en) 2002-05-24 2005-10-11 Baxter International Inc. Medical fluid pump
US9511180B2 (en) 2002-05-24 2016-12-06 Baxter International Inc. Stepper motor driven peritoneal dialysis machine
US9504778B2 (en) 2002-05-24 2016-11-29 Baxter International Inc. Dialysis machine with electrical insulation for variable voltage input
US20100087777A1 (en) * 2002-05-24 2010-04-08 Baxter International Inc. Peritoneal dialysis machine with variable voltage input control scheme
US6939111B2 (en) 2002-05-24 2005-09-06 Baxter International Inc. Method and apparatus for controlling medical fluid pressure
US7789849B2 (en) 2002-05-24 2010-09-07 Baxter International Inc. Automated dialysis pumping system using stepper motor
US7815595B2 (en) 2002-05-24 2010-10-19 Baxter International Inc. Automated dialysis pumping system
US6814547B2 (en) 2002-05-24 2004-11-09 Baxter International Inc. Medical fluid pump
US20070213651A1 (en) * 2002-05-24 2007-09-13 Don Busby Automated dialysis pumping system using stepper motor
US9675744B2 (en) 2002-05-24 2017-06-13 Baxter International Inc. Method of operating a disposable pumping unit
US9744283B2 (en) 2002-05-24 2017-08-29 Baxter International Inc. Automated dialysis system using piston and negative pressure
US7153286B2 (en) 2002-05-24 2006-12-26 Baxter International Inc. Automated dialysis system
US20030217962A1 (en) * 2002-05-24 2003-11-27 Robert Childers Medical fluid pump
US20030220609A1 (en) * 2002-05-24 2003-11-27 Robert Childers Medical fluid pump
US8376999B2 (en) 2002-05-24 2013-02-19 Baxter International Inc. Automated dialysis system including touch screen controlled mechanically and pneumatically actuated pumping
US8066671B2 (en) 2002-05-24 2011-11-29 Baxter International Inc. Automated dialysis system including a piston and stepper motor
US8403880B2 (en) 2002-05-24 2013-03-26 Baxter International Inc. Peritoneal dialysis machine with variable voltage input control scheme
US8506522B2 (en) 2002-05-24 2013-08-13 Baxter International Inc. Peritoneal dialysis machine touch screen user interface
US20110144569A1 (en) * 2002-05-24 2011-06-16 Baxter International Inc. Peritoneal dialysis machine touch screen user interface
US8684971B2 (en) 2002-05-24 2014-04-01 Baxter International Inc. Automated dialysis system using piston and negative pressure
US8529496B2 (en) 2002-05-24 2013-09-10 Baxter International Inc. Peritoneal dialysis machine touch screen user interface
US8679054B2 (en) 2002-07-19 2014-03-25 Baxter International Inc. Pumping systems for cassette-based dialysis
US8740837B2 (en) 2002-07-19 2014-06-03 Baxter International Inc. Pumping systems for cassette-based dialysis
US8740836B2 (en) 2002-07-19 2014-06-03 Baxter International Inc. Pumping systems for cassette-based dialysis
US20110106003A1 (en) * 2002-07-19 2011-05-05 Baxter International Inc. Dialysis system and method for cassette-based pumping and valving
US8992462B2 (en) 2002-07-19 2015-03-31 Baxter International Inc. Systems and methods for performing peritoneal dialysis
US10525184B2 (en) 2002-07-19 2020-01-07 Baxter International Inc. Dialysis system and method for pumping and valving according to flow schedule
US9795729B2 (en) 2002-07-19 2017-10-24 Baxter International Inc. Pumping systems for cassette-based dialysis
US11020519B2 (en) 2002-07-19 2021-06-01 Baxter International Inc. Systems and methods for performing peritoneal dialysis
US9283312B2 (en) 2002-07-19 2016-03-15 Baxter International Inc. Dialysis system and method for cassette-based pumping and valving
US20080033346A1 (en) * 2002-12-31 2008-02-07 Baxter International Inc. Pumping systems for cassette-based dialysis
US8206338B2 (en) 2002-12-31 2012-06-26 Baxter International Inc. Pumping systems for cassette-based dialysis
US7007824B2 (en) 2003-01-24 2006-03-07 Baxter International Inc. Liquid dispenser and flexible bag therefor
US20040144800A1 (en) * 2003-01-24 2004-07-29 Baxter International, Inc. Liquid dispenser and flexible bag therefor
US20040144799A1 (en) * 2003-01-24 2004-07-29 Baxter International Inc. Liquid dispenser and flexible bag therefor
US7237691B2 (en) 2003-01-24 2007-07-03 Baxter International Inc. Flexible bag for fluent material dispenser
US20050011908A1 (en) * 2003-07-16 2005-01-20 Baxter International, Inc. Dispenser and pressure/vacuum converting machine
US8070709B2 (en) 2003-10-28 2011-12-06 Baxter International Inc. Peritoneal dialysis machine
US8900174B2 (en) 2003-10-28 2014-12-02 Baxter International Inc. Peritoneal dialysis machine
US20090281484A1 (en) * 2003-10-28 2009-11-12 Baxter International Inc. Peritoneal dialysis machine
US10117986B2 (en) 2003-10-28 2018-11-06 Baxter International Inc. Peritoneal dialysis machine
US7776006B2 (en) 2003-11-05 2010-08-17 Baxter International Inc. Medical fluid pumping system having real time volume determination
US20080015493A1 (en) * 2003-11-05 2008-01-17 Baxter International Inc. Medical fluid pumping system having real time volume determination
US9675745B2 (en) 2003-11-05 2017-06-13 Baxter International Inc. Dialysis systems including therapy prescription entries
US20060132247A1 (en) * 2004-12-20 2006-06-22 Renesas Technology Corp. Oscillator and charge pump circuit using the same
US10590924B2 (en) 2005-07-13 2020-03-17 Baxter International Inc. Medical fluid pumping system including pump and machine chassis mounting regime
US10670005B2 (en) 2005-07-13 2020-06-02 Baxter International Inc. Diaphragm pumps and pumping systems
US10578098B2 (en) 2005-07-13 2020-03-03 Baxter International Inc. Medical fluid delivery device actuated via motive fluid
US11384748B2 (en) 2005-07-13 2022-07-12 Baxter International Inc. Blood treatment system having pulsatile blood intake
US10871157B2 (en) 2006-04-14 2020-12-22 Deka Products Limited Partnership Fluid pumping systems, devices and methods
US8870549B2 (en) 2006-04-14 2014-10-28 Deka Products Limited Partnership Fluid pumping systems, devices and methods
US20110218600A1 (en) * 2006-04-14 2011-09-08 Deka Products Limited Partnership Heat exchange systems, devices and methods
US10302075B2 (en) 2006-04-14 2019-05-28 Deka Products Limited Partnership Fluid pumping systems, devices and methods
US8366316B2 (en) 2006-04-14 2013-02-05 Deka Products Limited Partnership Sensor apparatus systems, devices and methods
US10537671B2 (en) 2006-04-14 2020-01-21 Deka Products Limited Partnership Automated control mechanisms in a hemodialysis apparatus
US11419965B2 (en) 2006-04-14 2022-08-23 Deka Products Limited Partnership Pumping cassette
US20080058697A1 (en) * 2006-04-14 2008-03-06 Deka Products Limited Partnership Heat exchange systems, devices and methods
US11725645B2 (en) 2006-04-14 2023-08-15 Deka Products Limited Partnership Automated control mechanisms and methods for controlling fluid flow in a hemodialysis apparatus
US11754064B2 (en) 2006-04-14 2023-09-12 Deka Products Limited Partnership Fluid pumping systems, devices and methods
US8292594B2 (en) 2006-04-14 2012-10-23 Deka Products Limited Partnership Fluid pumping systems, devices and methods
US8968232B2 (en) * 2006-04-14 2015-03-03 Deka Products Limited Partnership Heat exchange systems, devices and methods
US11828279B2 (en) 2006-04-14 2023-11-28 Deka Products Limited Partnership System for monitoring and controlling fluid flow in a hemodialysis apparatus
US8926294B2 (en) 2007-02-27 2015-01-06 Deka Products Limited Partnership Pumping cassette
US9517295B2 (en) 2007-02-27 2016-12-13 Deka Products Limited Partnership Blood treatment systems and methods
US8273049B2 (en) 2007-02-27 2012-09-25 Deka Products Limited Partnership Pumping cassette
US11793915B2 (en) 2007-02-27 2023-10-24 Deka Products Limited Partnership Hemodialysis systems and methods
US8888470B2 (en) 2007-02-27 2014-11-18 Deka Products Limited Partnership Pumping cassette
US11779691B2 (en) 2007-02-27 2023-10-10 Deka Products Limited Partnership Pumping cassette
US8246826B2 (en) 2007-02-27 2012-08-21 Deka Products Limited Partnership Hemodialysis systems and methods
US10077766B2 (en) 2007-02-27 2018-09-18 Deka Products Limited Partnership Pumping cassette
US8721879B2 (en) 2007-02-27 2014-05-13 Deka Products Limited Partnership Hemodialysis systems and methods
US8985133B2 (en) 2007-02-27 2015-03-24 Deka Products Limited Partnership Cassette system integrated apparatus
US8317492B2 (en) 2007-02-27 2012-11-27 Deka Products Limited Partnership Pumping cassette
US8992189B2 (en) 2007-02-27 2015-03-31 Deka Products Limited Partnership Cassette system integrated apparatus
US8992075B2 (en) 2007-02-27 2015-03-31 Deka Products Limited Partnership Sensor apparatus systems, devices and methods
US8562834B2 (en) 2007-02-27 2013-10-22 Deka Products Limited Partnership Modular assembly for a portable hemodialysis system
US8545698B2 (en) 2007-02-27 2013-10-01 Deka Products Limited Partnership Hemodialysis systems and methods
US9028691B2 (en) 2007-02-27 2015-05-12 Deka Products Limited Partnership Blood circuit assembly for a hemodialysis system
US11633526B2 (en) 2007-02-27 2023-04-25 Deka Products Limited Partnership Cassette system integrated apparatus
US11529444B2 (en) 2007-02-27 2022-12-20 Deka Products Limited Partnership Blood treatment systems and methods
US9987407B2 (en) 2007-02-27 2018-06-05 Deka Products Limited Partnership Blood circuit assembly for a hemodialysis system
US9115708B2 (en) 2007-02-27 2015-08-25 Deka Products Limited Partnership Fluid balancing systems and methods
US9951768B2 (en) 2007-02-27 2018-04-24 Deka Products Limited Partnership Cassette system integrated apparatus
US9272082B2 (en) 2007-02-27 2016-03-01 Deka Products Limited Partnership Pumping cassette
US8357298B2 (en) 2007-02-27 2013-01-22 Deka Products Limited Partnership Hemodialysis systems and methods
US9302037B2 (en) 2007-02-27 2016-04-05 Deka Products Limited Partnership Hemodialysis systems and methods
US11154646B2 (en) 2007-02-27 2021-10-26 Deka Products Limited Partnership Hemodialysis systems and methods
US8366655B2 (en) 2007-02-27 2013-02-05 Deka Products Limited Partnership Peritoneal dialysis sensor apparatus systems, devices and methods
US8393690B2 (en) 2007-02-27 2013-03-12 Deka Products Limited Partnership Enclosure for a portable hemodialysis system
US10851769B2 (en) 2007-02-27 2020-12-01 Deka Products Limited Partnership Pumping cassette
US8499780B2 (en) 2007-02-27 2013-08-06 Deka Products Limited Partnership Cassette system integrated apparatus
US10441697B2 (en) 2007-02-27 2019-10-15 Deka Products Limited Partnership Modular assembly for a portable hemodialysis system
US8721884B2 (en) 2007-02-27 2014-05-13 Deka Products Limited Partnership Hemodialysis systems and methods
US8042563B2 (en) 2007-02-27 2011-10-25 Deka Products Limited Partnership Cassette system integrated apparatus
US8409441B2 (en) 2007-02-27 2013-04-02 Deka Products Limited Partnership Blood treatment systems and methods
US10500327B2 (en) 2007-02-27 2019-12-10 Deka Products Limited Partnership Blood circuit assembly for a hemodialysis system
US10098998B2 (en) 2007-02-27 2018-10-16 Deka Products Limited Partnership Air trap for a medical infusion device
US9535021B2 (en) 2007-02-27 2017-01-03 Deka Products Limited Partnership Sensor apparatus systems, devices and methods
US9539379B2 (en) 2007-02-27 2017-01-10 Deka Products Limited Partnership Enclosure for a portable hemodialysis system
US9555179B2 (en) 2007-02-27 2017-01-31 Deka Products Limited Partnership Hemodialysis systems and methods
US7967022B2 (en) 2007-02-27 2011-06-28 Deka Products Limited Partnership Cassette system integrated apparatus
US20080208111A1 (en) * 2007-02-27 2008-08-28 Deka Products Limited Partnership Peritoneal Dialysis Sensor Apparatus Systems, Devices and Methods
US8425471B2 (en) 2007-02-27 2013-04-23 Deka Products Limited Partnership Reagent supply for a hemodialysis system
US20090008331A1 (en) * 2007-02-27 2009-01-08 Deka Products Limited Partnership Hemodialysis systems and methods
US8491184B2 (en) 2007-02-27 2013-07-23 Deka Products Limited Partnership Sensor apparatus systems, devices and methods
US9597442B2 (en) 2007-02-27 2017-03-21 Deka Products Limited Partnership Air trap for a medical infusion device
US9603985B2 (en) 2007-02-27 2017-03-28 Deka Products Limited Partnership Blood treatment systems and methods
US20080216898A1 (en) * 2007-02-27 2008-09-11 Deka Products Limited Partnership Cassette System Integrated Apparatus
US9649418B2 (en) 2007-02-27 2017-05-16 Deka Products Limited Partnership Pumping cassette
US8459292B2 (en) 2007-02-27 2013-06-11 Deka Products Limited Partnership Cassette system integrated apparatus
US20080253912A1 (en) * 2007-02-27 2008-10-16 Deka Products Limited Partnership Pumping Cassette
US9677554B2 (en) 2007-02-27 2017-06-13 Deka Products Limited Partnership Cassette system integrated apparatus
US9700660B2 (en) 2007-02-27 2017-07-11 Deka Products Limited Partnership Pumping cassette
US8715235B2 (en) 2007-07-05 2014-05-06 Baxter International Inc. Dialysis system having disposable cassette and heated cassette interface
US20110166507A1 (en) * 2007-07-05 2011-07-07 Baxter International Inc. Dialysis systems and methods having disposable cassette and interface therefore
US8328758B2 (en) 2007-07-05 2012-12-11 Baxter International Inc. Dialysis systems and methods having disposable cassette and interface therefore
US20090012457A1 (en) * 2007-07-05 2009-01-08 Baxter International Inc. Dialysis system having disposable cassette and interface therefore
US7909795B2 (en) 2007-07-05 2011-03-22 Baxter International Inc. Dialysis system having disposable cassette and interface therefore
US8485793B1 (en) * 2007-09-14 2013-07-16 Aprolase Development Co., Llc Chip scale vacuum pump
US20090099498A1 (en) * 2007-10-12 2009-04-16 Deka Products Limited Partnership Systems, Devices and Methods for Cardiopulmonary Treatment and Procedures
US8105265B2 (en) 2007-10-12 2012-01-31 Deka Products Limited Partnership Systems, devices and methods for cardiopulmonary treatment and procedures
US20110163033A1 (en) * 2007-10-30 2011-07-07 Baxter International Inc. Noise-reducing dialysis systems and methods of reducing noise in dialysis systems
US10471192B2 (en) 2007-10-30 2019-11-12 Baxter International Inc. Pressure manifold system for dialysis
US7905853B2 (en) 2007-10-30 2011-03-15 Baxter International Inc. Dialysis system having integrated pneumatic manifold
US20090112151A1 (en) * 2007-10-30 2009-04-30 Baxter International Inc. Dialysis system having integrated pneumatic manifold
US9623168B2 (en) 2007-10-30 2017-04-18 Baxter International Inc. Pressure manifold system for dialysis
US8465446B2 (en) 2007-10-30 2013-06-18 Baxter International Inc. Noise-reducing dialysis systems and methods of reducing noise in dialysis systems
US11491321B2 (en) 2007-10-30 2022-11-08 Baxter International Inc. Pneumatic system having noise reduction features for a medical fluid machine
US8998836B2 (en) 2007-10-30 2015-04-07 Baxter International Inc. Noise-reducing dialysis systems and methods of reducing noise in dialysis systems
US8961444B2 (en) 2007-10-30 2015-02-24 Baxter International Inc. Pressure manifold system for dialysis
US9839775B2 (en) 2008-01-23 2017-12-12 Deka Products Limited Partnership Disposable components for fluid line autoconnect systems and methods
US8840581B2 (en) 2008-01-23 2014-09-23 Deka Products Limited Partnership Disposable components for fluid line autoconnect systems and methods
US9987410B2 (en) 2008-01-23 2018-06-05 Deka Products Limited Partnership Fluid line autoconnect apparatus and methods for medical treatment system
US20110098635A1 (en) * 2008-01-23 2011-04-28 Deka Research & Development Fluid flow occluder and methods of use for medical treatment systems
US10201647B2 (en) 2008-01-23 2019-02-12 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US11833281B2 (en) 2008-01-23 2023-12-05 Deka Products Limited Partnership Pump cassette and methods for use in medical treatment system using a plurality of fluid lines
US9022969B2 (en) 2008-01-23 2015-05-05 Deka Products Limited Partnership Fluid line autoconnect apparatus and methods for medical treatment system
US9028440B2 (en) 2008-01-23 2015-05-12 Deka Products Limited Partnership Fluid flow occluder and methods of use for medical treatment systems
US20110106002A1 (en) * 2008-01-23 2011-05-05 Deka Research & Development Fluid line autoconnect apparatus and methods for medical treatment system
US20110092894A1 (en) * 2008-01-23 2011-04-21 Deka Research & Development Pump cassette and methods for use in medical treatment system using a plurality of fluid lines
US9839776B2 (en) 2008-01-23 2017-12-12 Deka Products Limited Partnership Fluid flow occluder and methods of use for medical treatment systems
US20110125085A1 (en) * 2008-01-23 2011-05-26 Deka Research & Development Disposable components for fluid line autoconnect systems and methods
US9248225B2 (en) 2008-01-23 2016-02-02 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US11364329B2 (en) 2008-01-23 2022-06-21 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US11478577B2 (en) 2008-01-23 2022-10-25 Deka Products Limited Partnership Pump cassette and methods for use in medical treatment system using a plurality of fluid lines
US9358332B2 (en) 2008-01-23 2016-06-07 Deka Products Limited Partnership Pump cassette and methods for use in medical treatment system using a plurality of fluid lines
US20110092893A1 (en) * 2008-01-23 2011-04-21 Deka Research & Development Medical treatment system and methods using a plurality of fluid lines
US9078971B2 (en) 2008-01-23 2015-07-14 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US9514283B2 (en) 2008-07-09 2016-12-06 Baxter International Inc. Dialysis system having inventory management including online dextrose mixing
US9582645B2 (en) 2008-07-09 2017-02-28 Baxter International Inc. Networked dialysis system
US9690905B2 (en) 2008-07-09 2017-06-27 Baxter International Inc. Dialysis treatment prescription system and method
US10561780B2 (en) 2008-07-09 2020-02-18 Baxter International Inc. Dialysis system having inventory management including online dextrose mixing
US9697334B2 (en) 2008-07-09 2017-07-04 Baxter International Inc. Dialysis system having approved therapy prescriptions presented for selection
US20100051529A1 (en) * 2008-08-27 2010-03-04 Deka Products Limited Partnership Dialyzer cartridge mounting arrangement for a hemodialysis system
US8771508B2 (en) 2008-08-27 2014-07-08 Deka Products Limited Partnership Dialyzer cartridge mounting arrangement for a hemodialysis system
US10201650B2 (en) 2009-10-30 2019-02-12 Deka Products Limited Partnership Apparatus and method for detecting disconnection of an intravascular access device
US8708950B2 (en) 2010-07-07 2014-04-29 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US9366781B2 (en) 2010-07-07 2016-06-14 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US9724458B2 (en) 2011-05-24 2017-08-08 Deka Products Limited Partnership Hemodialysis system
US10780213B2 (en) 2011-05-24 2020-09-22 Deka Products Limited Partnership Hemodialysis system
US11779689B2 (en) 2011-05-24 2023-10-10 Deka Products Limited Partnership Blood treatment systems and methods
US11103625B2 (en) 2011-05-24 2021-08-31 Deka Products Limited Partnership Blood treatment systems and methods
US11890403B2 (en) 2011-05-24 2024-02-06 Deka Products Limited Partnership Hemodialysis system
US9861732B2 (en) 2011-11-04 2018-01-09 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US10881778B2 (en) 2011-11-04 2021-01-05 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US9981079B2 (en) 2011-11-04 2018-05-29 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US11478578B2 (en) 2012-06-08 2022-10-25 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods
CN105561413B (en) * 2014-11-03 2018-09-25 B·布莱恩·阿维图姆股份公司 Attachment assembly for the fluid warmer that fluid pouch is attached to the system for extracorporeal blood treatment
CN105561413A (en) * 2014-11-03 2016-05-11 B·布莱恩·阿维图姆股份公司 Attachment assembly for attaching a fluid bag to a fluid warmer of a system for extracorporeal blood treatment
EP3015122A1 (en) * 2014-11-03 2016-05-04 B. Braun Avitum AG Attachment assembly for attaching a fluid bag to a fluid warmer of a system for extracorporeal blood treatment
US9987412B2 (en) 2014-11-03 2018-06-05 B. Braun Avitum Ag Attachment assembly for attaching a fluid bag to a fluid warmer of a system for extracorporeal blood treatment
US11957820B2 (en) 2016-09-14 2024-04-16 Haemaflow Limited Blood pump
WO2018051091A1 (en) * 2016-09-14 2018-03-22 Haemaflow Limited Blood pump
US20200038565A1 (en) * 2016-09-29 2020-02-06 Zammi Instrumental Ltda Pump for artificial circulatory assistance and a pumping system
US11179516B2 (en) 2017-06-22 2021-11-23 Baxter International Inc. Systems and methods for incorporating patient pressure into medical fluid delivery
US11672894B2 (en) 2017-10-03 2023-06-13 Baxter International Inc. Modular medical fluid management assemblies, machines and methods
US10729839B2 (en) * 2017-10-03 2020-08-04 Baxter International Inc. Modular medical fluid management assemblies, machines and methods
US11598329B2 (en) 2018-03-30 2023-03-07 Deka Products Limited Partnership Liquid pumping cassettes and associated pressure distribution manifold and related methods
US11371498B2 (en) 2018-03-30 2022-06-28 Deka Products Limited Partnership Liquid pumping cassettes and associated pressure distribution manifold and related methods
US11541157B2 (en) 2019-06-18 2023-01-03 Michigan Critical Care Consultants, Inc. Membrane oxygenator with gas exchange fiber lumen access based on fiber effective length

Similar Documents

Publication Publication Date Title
US3656873A (en) Pulsatile by-pass blood pump
AU611311B2 (en) Blood recovery system and method
US3332746A (en) Pulsatile membrane oxygenator apparatus
US3639084A (en) Mechanism for control pulsatile fluid flow
US5931646A (en) Blood delivery instrument for regulating the amount of blood stored in an accumulator independent of the pumping operation
US5024613A (en) Blood recovery system and method
US8246530B2 (en) Nondestructive fluid transfer device
US3955557A (en) Blood pump for use in an artificial heart or such purpose
US3608729A (en) Disposable dialyser pack with adsorbent
US4735726A (en) Plasmapheresis by reciprocatory pulsatile filtration
EP0104897A3 (en) Single needle alternating blood flow system
US4573883A (en) Disposable blood pump
JPS58209358A (en) Blood collecting and injecting apparatus
ATE68981T1 (en) CARDIOPULMONARY RESUSCITATION DEVICE.
US3152340A (en) Artificial heart
EP0449786B1 (en) Cardiac assist device
KR920000460B1 (en) Blood pump
US3864248A (en) Pressure modulator for an artificial blood circuit
US7367959B2 (en) Device for cardiocirculatory assistance
US4474538A (en) Method and apparatus for circulating or pumping organo-biological liquids, in particular blood
KR101638251B1 (en) Blood dialyzing apparatus
US6368080B1 (en) Continuous fluid injection pump
US4284502A (en) Apparatus for treating uremic patients
CA2060902A1 (en) Combined hemofiltration and hemodialysis system
CA1310872C (en) Fluid recovery and transfer system

Legal Events

Date Code Title Description
AS Assignment

Owner name: IABP CORPORATION A DE CORP

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SCHIFF PETER;REEL/FRAME:004445/0504

Effective date: 19850731

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)