Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3653841 A
Publication typeGrant
Publication date4 Apr 1972
Filing date19 Dec 1969
Priority date19 Dec 1969
Publication numberUS 3653841 A, US 3653841A, US-A-3653841, US3653841 A, US3653841A
InventorsKlein Bernard
Original AssigneeHoffmann La Roche
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Methods and compositions for determining glucose in blood
US 3653841 A
Abstract
Colorimetric methods and compositions for quantitatively determining the glucose content of blood plasma or serum by heating a deproteinized sample of blood plasma or serum with an alkaline ferricyanide solution, followed by the addition of ferric ions and a 5-(2-pyridyl)-2H-1,4-benzodiazepine or water soluble salts thereof to produce a brilliant purple colored solution which can be quantitated by standard colorimetric means.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Klein [451 Apr. 4, 1972 [54] METHODS AND COMPOSITIONS FOR DETERMINING GLUCOSEIN BLOOD OTHER PUBLICATIONS Hawk et a1., Practical Physiological Chemistry, 13th ed., Me-

[72] Inventor: Bernard Klein, New Hyde Park, NY. Hill QP514H4, 95 P- 567, 575 Assignee Hoffman La Roche I Nu N J Aloe Scientific Co., Catalog 103, p. 1011, 1041, 1065, 1073 I nc., ey,

22 Filed; 19, 19 9 Primary Examiner-Morris O. Wolk Assistant Examiner-R. M. Reese [21] APPI'NO: 8 At'torneySamuel L. Welt, Jon S. Saxe, Bernard S. Leon,

Gerald S. Rosen and R. Hain Swope [52] US. Cl. ..23/230 R, 23/230 B, 252/408,

260/239.3'D ABSTRACT [3;] int. ..C09k 3/2273?! Colorimetric methods and compositions for quantitatively 1 e o m 2SZ'I4O8 determining the glucose content of blood plasma or serum-by heating a deproteinized sample of blood plasma or serum with [56] R f cted an alkaline ferricyanide solution, followed by the addition'of e erences l ferric ions and a 5(2-pyridyl)-2H-l,4-benzodiazepine or UNITED STATES PATENTS water soluble salts thereof to produce a brilliant purple colored solution which can be quantitated by standard 3,098,717 7/1963 Ferrari, Jr ..23/230 colorimetric means 3,449,081 6/1969 Hughes ..23/253 3,506,404 4/1970 Evans et a1. ..23/230 B 11 Claims, 3 Drawing Figures SAMPLE O PLATE O0 O0 SAMPLE ml/min F WM 0,0I5 0.|o

DIALYZER DMC 19.9,;- 0 i N, SALINE 0.100 3140 MIXERS I i -l-@-f- AIR 0065 1.60 G; Fe (CN)? 0.!00 3.40

n AIR 0065 L60 A HEATING I U FeCl 0.073 200 BATH H2 I Q REAGENT 0.0m 2450 l I 3W6 wAsTE F/C 0.065 1.60 Cg PROPORTIOI'VING I 'Q TUBE SIZE INCHES RECORDER 5B0nm AUTOMATED GLUCOSE ANALYSIS FLOW DIAGRAM Patented April 4, 1972 2 Sheets-Sheet 2 SBOnm M FIG. 2

1 I I v 0 50 I00 200 300 40 mg GLUCOSE IOOml E C O (I) \0 1 I l 1 1 l 1 l 1' BACKGROUND OF THE INVENTION The need for a quantitatively accurate method for the deter- 5 B is selected from mination of glucose in blood, e.g. plasma and serum, using small amounts of specimen, yet which is simple enough to be effectively utilized in the clinical situation and sufficiently economical for mass screening has long been felt. In addition, it has been considered most desirable that such a method be readily adaptable to an automated sequential or continuous flow system in order that a great many samples may be processed rapidly and with the highest possible accuracy. There is a need forsuch an automated sequential or continuous flow of system which is capable of highly accurate results before the diagnostic testing of large numbers of persons for the incidence of diabetes among them. A simple accurate test, which is both rapid and reliable, is of great value as an aid in the detection and treatment of diabetes and as an adjunct to routine screening operations in clinics and for periodic screening of patients in hospitals, nursing homes and similar institutrons.

Many techniques have been developed for quantitatively determining the glucose content of blood, plasma or serum. One such technique utilizes the enzyme glucose oxidase which catalyzes the oxidation of glucose to gluconic acid. In the more common test, this enzyme is combined with a substance having a peroxidative activity which induces the oxidation of an indicator such as o-toluidine in the presence of hydrogen peroxide formed by the glucose oxidase. This method, though specific, has proved to be too complex, expensive and time consuming for general use.

Other further metric techniques which are adaptable to automated procedures have been found to be not sufficiently sensitive for todays standards or undesirable in that they require comparatively large volume of specimen.

The diagnostic compositions and methods of the present invention provide a reliable, convenient test for the quantitating of glucose in the blood as well as affording a method whereby the quantitative determination may be carried out in a continuous sequential or flow system. Further, the diagnostic compositions and methods of the present invention overcome many of the disadvantages of the prior art methods of determining glucose in blood by not requiring a high degree of laboratory skill and technology using a small specimen volume, yet being highly accurate in the clinical situation.

BRIEF SUMMARY OF THE INVENTION In accordance with the invention, a 5-(2-pyridyl)-2H-l,4- benzodiazepine or water soluble salt thereof preferably in combination with a buffer, is added with an aqueous solution of ferric chloride to deproteinized plasma or serum which has been treated with an aqueous alkaline ferricyanide solution, whereby a purple solution is obtained which can be quantitated as to its glucose content by standard colorimetric means.

DETAILED DESCRIPTION OF THE INVENTION In accordance with the invention a compound selected from the group consisting of compounds of the formula wherein A is selected from the group consisting of and and CH,; R is selected from the group consisting of halogen, hydrogen, trifluoromethyl, nitro and amino; R, is selected from the group consisting of H R1---Rg 9 hydrogen, lower alkyl and 1 Re C uHzn sisting of hydrogen, hydroxy, lower alkyl, lower alkoxy and lower alkanoyloxy; R is Z-pyridyl; R is selected from the group consisting of lower alkyl and hydrogen; R is selected and R and R where taken together with their attached nitrogen atom form a radical selected from the group consisting of piperazinyl, lower alkyl substituted piperazinyl, pyrrolidinyl, lower alkyl substituted pyrrolidinyl, piperidinyl and lower alkyl substituted piperidinyl; R is lower alkyl; and R is selected from the group consisting of lower alkyl and hydrogen and water soluble salts thereof, preferably in combination with a buffer, is added with an aqueous solution of ferric chloride to deproteinized blood plasma or serum which has been treated with an aqueous alkaline ferricyanide solution, whereby a purple solution is obtained which can be quantitated by standard colorimetric means.

Examples of benzodiazepine compounds of formula I above which are particularly suitable as the color-forming reagent in the process of this invention include the following:

7-bromo-l ,3-dihydro-l-[4-(4-methyl-l-piperazinyl)butyl]- 5-(2-pyridal)-2H-l ,4-benzodiazepin-2-one;

7-aminol ,3-dihydro-5-( 2-pyridyl)-2H-l ,4-benzodiazepin- 2-one;

benzodiazepin-2-one;

2H- 1 ,4-benzodiazepinel -yl)propyl]urea whose preparation is disclosed in US. Pat. No. 3,464,978 issued Sept. 2, 1969;

benzodiazepine;

7-amino-l ,3-dihydrol -methyl-5-( 2-pyridyl)- l H- l ,4-

benzodiazepine;

7-bromol ,3-dihydro-( 3-dimethylaminopropyl)-5-( 2- pyridyl)-2H- l ,4-benzodiazepin-2-one;

7-bromol ,3-dihydro-5-(2-pyridyl)-2I-I-l ,4-benzodiazepin- 2-one-4-oxide;

7-bromol ,3-dihydro-5-( 2-pyridyl)-2H- l ,4-benzodiazepin- 2-one;

7-bromol ,3-dihydrol B-hydroxypropyl)-2-( 2-pyridyl 2H- 1 ,4-benzodiazepin-2-one; and

7-bromo-5-( 2-pyridyl)-l ,3.-dihydrol 3-( N- cyanomethylamino )propyl]2I-I- 1 ,4-benzodiazepin-2-one whose preparation is disclosed in US. Pat. No. 3,464,978.

The term lower alkyl as used throughout this specification includes both straight and branched chain alkyl groups having from one to seven carbon atoms such as methyl, ethyl, propyl, isopropyl and the like. The term lower alkanoyloxy" refers to both straight chain and branched chain aliphatic carboxylic acid moieties such as acetoxy, propionyloxy, butyryloxy and the like. The term halogen includes bromine, chlorine, fluorine and iodine. Also included within-the purview of the present invention are the water soluble acid addition salts of the compounds of formula I above. Any conventional water soluble acid addition salts of the compounds of formula I above may be utilized in the process of this invention to quantitatively determine the iron content of aqueous solutions. Among the acid addition salts which can be utilized in accordance with this invention, includes salts of compounds of the formula I with organic or inorganic acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, acetic acid, formic acid, succinic acid, maleic acid, ptoluenesulfonic acid and the like.

The color differentiation with varying concentrations of ferrous ions produced by the compound of formula I above is such that the concentration of ferrous ions produced by the instant diagnostic reagent composition in situ can easily be determined by standard colorimetric instruments. Furthermore, the compounds of formula I are not sensitive to extraneous sources and therefore are not affected by trace contaminants. The method of this invention provides a simple colorimetric means for quantitatively determining the glucose content of blood plasma and serum.

In accordance with the present invention the glucose content of blood plasma or serum can be determined by first heating a deproteinized sample with an aqueous solution containing ferricyanide ions to form an aqueous solution containing gluconic acid and ferrocyanide ions, cooling the solution and adding an aqueous solution containing ferric ions and a compound of formula I above wherein ferricyanide and ferrous ions are formed and the ferrous ions thus produced react with the compound of formula I, preferably in the presence of a buffer, to produce a brilliant deep purple color and colorimetrically quantitating the amount of glucose present in the sample. This procedure provides a simple and quick method for quantitatively determining the glucose content of a blood sample which is ideally suited for routine diagnostic use.

In accordance with the present invention, the specimen to be tested is initially treated with a conventional neutral deproteinizing agent such as, for example, an aqueous solution of either sodium or barium hydroxide and zinc sulfate, or an acidic deproteinizing agent such as, for example, tungstic acid or trichloroacetic' acid. Of these, tungstic acid or an aqueous solution of barium hydroxide and zinc sulfate are preferred. The specimen is well mixed with the deproteinizing agent and centrifuged at high speed to obtain a clear supemate. A 0.1 ml. aliquot of the superna'te is then heated to from 90 C. to about 100 C. preferably about 95 C. with 2.0 ml. of an aqueous alkaline solution containing ferricyanide ions. The mixture is rapidly cooled after about 5 minutes heating and treated with 2.0 ml. of an aqueous solution containing ferric ions such as, for example, ferric chloride, and 2.0 ml. of an aqueous solution of a compound of the formula I. The solutions are mixed and the absorbance of the violet blue color which develops over about 10 minutes is measured at 580 nm against both a standard glucose solution similarly treated and a reagent blank.

The solution containing ferricyanide ions can be made from any water soluble ferricyanide salt which does not otherwise interfere with the reaction such as, for example, potassium ferricyanide and sodium ferricyanide. Potassium ferricyanide is preferred in the practice of the present invention. This reagent may be made in quantity if so desired and used as needed. The

appropriate amount of potassium ferricyanide is dissolved in an aqueous alkaline medium'such as, for example, a 2 percent sodium carbonate solution. The quantity of ferricyanide salt utilized in preparing the reagent is variable. However, a sufficient quantity must be utilized to react with all the glucose in the specimen to furnish a positive indication of elevated glucose blood levels when the diagnostic method of the present invention is being utilized as a diagnostic or a mass screening tool.

Generally, it is preferred that for each ml. of blood plasma or serum tested, the reagent solution contain from about l.8 x 10" moles to about 7.0 X 10 moles of ferricyanide salt, preferably from about 3.5 X 10" moles to about 5.0 X 10" moles per ml. of plasma or serum utilized.

The quantity of ferric ions added to the sample ferricyanide ion mixture is again variable. However, it is preferred to utilize a quantity of ferric ion slightly in excess of the molar quantity of ferricyanide ions added to the sample. The utilization of such an excess insures that there will be sufficient ferric ions present to react with the ferrocyanide ions generated by the initial reaction between the ferricyanideions and the glucose in the sample. The ferric ions may be supplied as any water soluble ferric salt which does not interfere with the diagnostic determination such as, for example, ferric chloride, ferric nitrate, ferric sulfate and the like. Of these, ferric chloride is preferred.

The quantity of the compound of formula I which is added to the aqueous mixture is variable. In all instances, however, there must be a sufficient quantity of the compound of formula I present to react with all of the ferrous ions generated bythe reaction between the ferric ions and the ferrocyanide ions. This quantity is most conveniently determined by equating the quantity of the compound of formula I with that of the ferric ions to insure the stoichiometry of the chelation reaction.

It is preferred to maintain the test medium at a pH of about 4.0 to about 5 .0, preferably about 4.5. This can most easily be accomplished by adding suitable buffers to the ferric ion reagent and the reagent containing the compound of formula I. Buffering these reagents also makes them stable in aqueous solution when they are made up in quantity for large scale laboratory testing.

In general, any recognized buffer pair suitable for the maintenance of such a pH range as described above can be utilized.

Preferably, there can be utilized as a buffer pair a water soluble salt of acetic acid and acetic acid. Of the water soluble salts of acetic acid sodium acetate is preferred. However, ammonium acetate, potassium acetate or other water soluble salt of acetic acid can be used, if desired. Although the quantities of the buffer pair comprising a water soluble acetic acid salt and acetic acid are variable, the present invention contemplates the use of a sufficient quantity of the acidcomponent, e.g. acetic acid, to provide a final test sample having a pH in the range of from about 4.5 to about 5.5. By final test sample is meant a solution containing the ferricyanide ions, the ferric ions and the benzodiazepine color reagent. In general, there is contemplated the preparation of a solution of both the ferric ions and the benzodiazepine color former which contains per liter about 1.0 mole of a water soluble salt of acetic acid to about 1.0 to about 2.0 moles of acetic acid.

From the foregoing description it is evident that thecompositions of the present invention may be utilized or handled as prepared aqueous stock solutions, aqueous concentrates or in a dry powder form. In either the concentrate or the powder form, sufficient buffering agents are added to stabilize the compositions when the working dilutions are made and maintain the pH of the reaction mixture at between 4.5 and 5.5 preferably about 4.8.

In utilizing the compositions of the present invention, the addition of the compound of formula I to the test system immediately produces the desired purple coloration. The color deepens as the reaction proceeds to completion. The reaction mixture ceases to undergo anycolor changes discernible to the naked eye after it has been allowed to stand for a short time at room temperature. Accordingly, in order to insure uniform coloring, the aqueous solution should be aliowed to stand until its color appears to have become constant. In general, it has been found that the full development of the purple color will occur over a period of from about 5 to minutes after the addition of the compound of formula I. In most cases 10 minutes is a sufficient period of time to allow for full color development.

The quantitation of the glucose in the colored sample can be carried out by any conventional colorimetric method utilizing standard spectrophotometers such as a Beckman Spectrophotometer, Coleman Spectrophotometer and the like.

The principle of the diagnostic method according to the present invention is based on a series of coupled reactions. Initially, glucose present in the sample undergoing analysis reduces the ferricyanide ion in the added first reagent to ferrocyanide ions, in turn form ferricyanide ions and ferrous ions with the addition of the second reagent which comprises a source of ferric ions such as, for example, ferric chloride, a buffer and a compound of the formula I. The ferrous ions thus generated react with the compound of the formula I to produce a brilliant deep purple color. The purple color is thereafter colorimetrically measured and the glucose content of the sample quantitatively determined.

The quantitative determination of the glucose content in a specimen is carried out as follows: the optical density of the purple color developed in the sample by the method of the present invention is measured against a reagent blank at 580 nm utilizing a standard spectrophotometer such as, for example, a Coleman Spectrophotometer, employing a cuvette with a 19 mm. light path. The quantity of glucose in the specimen is determined in the conventional manner from the absorbance of the specimen with reference to the absorbance of the color produced by a glucose standard similarly treated. The glucose content of the specimen is calculated in accordance with the following formula:

Glucose content of specimen (mg./ 100 ml.)

Absorbance of specimen Absorbance of standard As indicated heretofore, the present invention provides an extremely important diagnostic tool. In addition, the method of the present invention affords a rapid and accurate determination of the glucose content of body fluids such as plasma or serum with results that are characterized by a high degree of reproducibility.

In another aspect of the present invention, the analytical compositions as described are utilized in a method of analyzing the glucose content of body fluids automatically by discrete sequential sampling or by continuous flow apparatus. The latter method consists essentially of mixing specimens in continuous flow with normal saline, dialyzing the mixture to produce an aqueous protein-free solution containing the glucose, mixing the aqueous solution with an aqueous alkaline solution containing ferricyanide ions, passing the resulting mixture through a heating bath to raise the temperature thereof to about95 C., mixing the heated aqueous solution with an aqueous solution of a ferric salt and a compound of the formula I at a constant pH of from about 4.5 to about 5.5 and passing the resulting solution through an apparatus which quantitatively determines the glucose content thereof photometrically.

FIG. 1 is a schematic flow diagram illustrating a continuous flow automated system for analyzing glucose in biological fluids utilizing the diagnostic composition of the present invention.

FIG. 2 is a recording of the photometric response obtained when utilizing the automated system of FIG. 1.

FIG. 3 is a plot in terms of absorbance of the photometric response illustrated in FIG. 2.

In FIG. 1, a continuous flow automated testing system is,

showriglgrnati cally wherein a specimen sample to be tested, i.e. serum or plasma, is drawn up in sequence from separate sample cups in thesample plate which rotates at a constant speed to provide the system with 20-60 specimen samples with a 2:1 wash ratio per hour. A sample, so drawn, is mixed in flow with normal saline and passed through a glass mixing coil of conventional design. After the mixture has passed through the mixing coil, it is next pumped through a dialyzer module that is provided with a cellophane membrane or the like through which the glucose passes in aqueous solution by dialysis. The dialyzer module is maintained at a constant temperature of 37 C. The residual, non-diffusable portion of the sample is discarded. As the aqueous glucose solution passes through the dialyzer module membrane it is admixed with an aqueous alkaline solution containing ferricyanide ions, preferably in the form of potassium ferricyanide, the glucose and the ferricyanide ions are passed in solution through a heating bath which raises the temperature of the mixture to C. As this passage takes place the glucose and ferricyanide ions are reacting to form gluconic acid and ferrocyanide ions. The heated aqueous stream is then mixed in continuous flow with an aqueous solution containing ferric ions, preferably in the form of ferric chloride, and a reagent stream comprising the 5-(2-pyridyl)-2H-l ,4-benzodiazepine color reagent of formula I. The color reagent, preferably 7-bromo-l,3-dihydro-l- 3-dimethylaminopropyl)-5-( 2-pyridyl)-2I-I- l ,4- benzodiazepine-2-one is maintained at a pH of about 4.5 to 5.5, preferably at about 5.0. The mixture is then passed through a second mixing coil. As the mixture is in transit through this coil, the ferric ions and ferrocyanide ions react to form ferricyanide ions and ferrous ions which in turn react with the benzodiazepine color reagent to form a brilliant purple coloration. Photometric measurements are then performed at 580 nm in a 15 mm. flow-cell colorimeter, i.e., the absorbance of the solution to be tested is measured at 580 nm in a flow-cell colorimeter using a 580 nm filter. The results of the colorimetric readings are recorded on a conventionalrecording mechanism.

The continuous flow system illustrated in FIG. 1 aspirates at a rate of 20 to 60 specimens/hour. The rate of flow in ml./min. of the materials entering the system according to a preferred technique is illustrated in FIG. 1. The materials entering the system are pumped into it by any suitable pumping means adjusted to maintain the rate of flow illustrated in FIG. 1. The mechanism for the system of the present invention can be conveniently provided by a manifold assembly prepared in accordance with the system illustrated in FIG. 1 adaptable to the Technicon Autoanalyzer.

In FIG. 2 the absorbance of solutions containing graduated amounts of glucose, e.g. 50 mg./ ml., 100 mg./ 100 ml. etc. are plotted as a graph against concentration.

In FIG. 3 the photometric response of solutions containing different concentrations of glucose is demonstrated. The drawing illustrates four separate experiments, each of which represents passage through the automated system of FIG. 1 of a sequence of at least three solutions having glucose concentrations in the order of low to high to low, such as, for example, 50 mg. per 100 ml. to 400 mg. per 100 ml. to 50 mg. per 100 ml. These experiments were conducted to illustrate the sensitivity of the automated system. The difference in the response curve for similar concentration sequences represents a variance in the speed with which they were passed through the system.

The reagents utilized in connection with the automated procedure of glucose determination comprise aqueous solutions of a ferricyanide reagent, a ferric ion containing reagent and and the buffered color forming reagent. The ferricyanide reagent comprises sufficient ferricyanide to react with all the glucose in the sample, for example, 0.1 I5 g. potassium ferricyanide dissolved in 1 liter of 0.05 percent sodium hydroxide and 0.9 percent sodium chloride. The ferric ion containing solutions comprises suflicient ferric ions to react with all the ferrocyanide ions formed in the initial reaction, for example, 0. 2 7 g. ferric chloride dissolved in 1 liter of distilled water and buffered to a pH of about 4.5 with a sodium acetate/acetic acid buffer couple. The color-forming reagent comprises sufficient color-forming compound to react with the ferrous in the ions formed by the reaction of the ferric ions and the ferrocya nide ions, for'example, 2.0 g. of a compound of formula I, 82.0 g. of ammonium acetate and approximately 60.0 ml. of glacial acetic acid in a liter of distilled water. The pH of the solution is maintained between about 4.4 and 4.6.

In the practice of the invention according to the automated procedure, iron-free distilled water is pumped through the system for 10 minutes. The system is then switched to reagent and the pumping is continued until a steady base line is obtained on the recorder chart. The base line is set to 0.01A (95 percent transmission).

The standards in the sample tray are aspirated at a rate of 20 to 60' (2:1 wash ratio) samples per hour. The specimens to be analyzed are then sampled, with a standard glucose specimen which is aspirated intermittently to insure qualitative control. p The glucose content of each specimen is determined by reference to a calibration curve prepared by plotting the corrected absorbances of the glucose standards against concentrations in mg./ 100 ml. Table l sets forth a comparison of results obtained when 10 randomly selected plasma specimens were analyzed utilizing the automated and manual glucose procedures of the present invention.

TABLE I Comparison of Manual and Automated Glucose Analysis (mg/100 ml.)

Specimen No. Manual Automated Difference In Table II, the recovery of glucose added to pooled serum aliquots is given. An average recovery of 99.3 percent (range 94.2-l03.5 percent was realized.)

TABLE II.--RECOVERY OF GLUCOSE ADDED TO SERUM For a fuller understanding of the nature and objects of the present invention, reference may be had to the following examples which are given merely as further illustrations of the invention and are not to be construed in a limiting sense.

EXAMPLE 1 To a stirred solution off 22.0 g. of 7-bromo-l,3-dihydro-5- (2-pyridyl)-2H l,4-benzodiazepin 2-one in 55.0 ml. of dry N,N-dimethylformamide was treated with 11.0 ml. of a methanolic solution of sodium methoxide (0.0835 mole of 75 4 EXAMPLE 2 The 7-bromol ,3-dihydrol-( 3-dimethylaminopropyl )-5 2 was dissolved in sufficient methanol to provide a 10 percent solution. This solution was then saturated with hydrogen chloride. A sufficient amount of ether was added to cause turbidity. The resultant mixture was allowed to cool for several hours. 7-Bromol ,3-dihydrol 3-dimethylaminopropyl)-5-( 2 9y y 2H 1L .-.l2=nm iiaz9p n: 1e d ydr9.h. 2n'ds precipitated out on standing and was separated by filtration. The salt was recrystallized from a methanol-ether mixture as pale yellow prisms, MP. l8l-l 83 dec.

EXAMPLE 3 This example demonstrates the applicability of the test method to either blood serum or plasma.

In the method, aliquots of plasma or serum were added in 0.1 ml. quantities to 2.4 ml. of a tungstic acid solution prepared by mixing one volume 10 percent sodium tungstate and 8 volumes N/ l2 sulfuric acid. Each mixture was well mixed and then centrifuged at 2,500 rpm. for IS minutes. A 0.1 ml. aliquot of the clear supernatant liquid was treated with 2.0 ml. of a ferricyanide solution which had been prepared by dissolving 0.1 15 g. of potassium ferricyanide in one liter of a 2 percent aqueous solution of sodium carbonate. ,The deproteinized fluid ferricyanide mixture was heated for 5 minutes in a boiling water bath, rapidly cooled to about 25 C. and treated with 2.0 ml. of a ferric ion reagent prepared by dissolving 0.27 g. ferric chloride hexahydrate in one liter of an acetate buffer comprising 272.0 g. sodium acetate and 294.0

- ml. glacial acetic acid, and 2.0 ml. of a solution prepared by dissolving 2.0 g. of the compound produced in Example 2 in one liter of 1M acetate bufl'er. The solutions were thoroughly mixed and the absorbance of the violet blue color that develops was measured after about 10 minutes against a reagent blank at 580 nm in a Coleman Spectrophotometer using a cuvette with a 19 mm. light path.

The glucose content of the specimens was obtained by reference to a calibration curve prepared by plotting the absorbances (A) given by standard glucose solutions treated in the same manner against concentration or by the Beer-Lambert formula. Utilizing 4.0 mcg. glucose/0.1 ml. as a standard, the concentration of the specimen was calculated according to the formula:

(Absorbance of Specimen/Absorbance of Standard) x l00 mg. glucose/ ml.

For comparative purposes, glucose analyses were also conducted on a like number of samples utilizing a modified Folin- Wu procedure as described by B D. Tonks in American Journal of Clinical Pathology, 22:1009, (l952).

The results obtained utilizing the aforesaid two techniques 2? 595.1%?! thef ll w s il Benzediazeplne test Folin-Wu Difference Specimen (mg. glucose/ (mg. glucose] (mg. glucose] Difference,- number 100 ml.) 100 ml.) 100 ml.) percent The comparative data obtained utilizing plasma specimens was completely analogous to that with serum.

Utilizing similar reagents and quantities as were employed in Example 3, tests were conducted utilizing the compound prepared in Example 2 and comparing the results with the glucose content deproteinized plasma prepared as described in B. Klein in Clinical Chemistry, 5; 62, (1959) and designated Somogyi filtrates.

The results obtained are set forth in the following table:

In an analogous manner to that employed in Examples 3 and 4, serum specimens from 20 randomly selected blood samples obtained from healthy individuals and hospitalized patients were tested for glucose content. For comparative purposes, the glucose content of the same blood sample was also determined utilizing a standard glucose oxidase procedure. The glucose oxidase procedure employed herein is described in detail by R. Richterich and J. P. Colombo in Klin. Woch., 40, 1208, (1962) and A. Saifer and S. Gerstenfeld in J. Lab. Clin. Med., 51, 448, (1958).

The results obtained utilizing the two techniques are set forth in the following table:

Comparison of Glucose Analyses (milligrams glucose/100 ml.)

1. A process for quantitating the glucose content of blood serum or plasma comprising:

a. treating a deproteinized sample of blood serum or plasma with an aqueous alkaline solution containing a source of ferricyanide ions;

b. heating the mixture from step (a) to a temperature of from about 90C. to about l00C.;

c. adding to the mixture from step (b) a source of ferric iron ions;

d. reacting the mixture of step (c) with a benzodiazepine compound selected from the group of the compounds of the formula wherein A is selected from the group consisting of and B is selected from the group of hydrogen, lower alkyl and C uHzn rt is an integer from 2 t o 7 R3 is selected from the group consisting of hydrogen, hydroxy, lower alkylIlower allioxy a nd lower alkanoyloxy; R is Z-pyridyl; R is selected from the group consisting of lower alkyl, hydrogen,

and

GEN

gnd R and "R6, where taken together with their attached nitrogenatom, from a radical selected from the group consisting of piperazinyl, lower alkyl substituted piperazinyl, pyrrolidinyl, lower alkyl substituted pyrrolidinyl, piperidinyl, and lower alkyl substituted piperidinyl; R is lower alkyl; and R is selected from the group consisting of lower alkyl and hydrogen, and water soluble acid addition salts thereof; and

e. colorimetrically quantitating the glucose present by means of said color.

2. The process in accordance with claim 1 wherein said source of ferric ions consists essentially of an aqueous solution of ferric chloride buffered to a pH of between from about 4.0 to about 5.0.

3. The process in accordance with claim 1 wherein said benzodiazepine compound is added as an aqueous solution buffered to a pH of from about 4.0 toabout 5.0.

4. The process in accordance with claim 1 wherein said benzodiazepine compound is selected from the group consisting of 7-bromo-l ,3-dihydro-l-( 3-dimethylaminopropyl)-5-(2- pyridyl)-2H-l,4-benzodiazepin-2-one and water soluble acid addition salts thereof.

1 1 l2 5. A process for quantitating the glucose content of blood 7. The process in accordance with claim 5 wherein said j serum or plasma comprising: buffer present in the aqueous solution containing ferric a. treating a deproteinized sample of blood serum or plasma chloride and the aqueous solution containing the with an aqueous alkaline solution containing a source of benzodiazepine compound is a buffer pair comprising a water ferricyanide ions; 5 soluble salt of acetic acid and acetic acid.

b. heating the mixture from step (a) to a temperature of 8 A method for the quantitative analysis of the glucose confrom about 90C. to about 100C; tent of blood plasma or serum consisting essentially of providc. adding tov the mixture of step (b) an aqueous solution ing in continuous flow, the sequential steps comprising:

containing ferric chloride and abuffer; a. combining in continuous flow a measured specimen of d. adding to the mixture of step (c) an aqueous solution 10 plasma or serum with an isotonic solution of sodium containing a buffer and a benzodiazepine compound chloride; selected from the group consisting of compounds of the b. passing said mixture through a separating zone, thereby formula separating by dialysis in said zone from said mixture a clear aqueous solution; c. mixing said clear aqueous solution with a reagent com- N-B H prising an alkaline aqueous solution of a water soluble ferricyanide salt; R, d. passing said aqueous mixture through heating means thereby raising the temperature thereof to from about A I 95C. to about iooc.;'

e. mixing said heated aqueous mixture by concurrent flow h i A i selected from the group consisting of with a first reagent comprising a buffered aqueous solution of a ferric iron salt and a second reagent comprising a buffered, aqueous solution of a color-forming compound \m selected from the group consisting of compounds of the i l formula and R2 N-B H R; 0 B is selected from the group consisting of A/ 3 o wt, I wherein A is selected from the group consisting of and Cl-l,; R is selected from the group consisting of 1 halogen, hydrogen, trifluoromethyl, nitro, and amino; R, is selected from the group consisting of 40 and H C='N r; R1 Rs 4 \O r H B is selected from the group consisting of hydrogen, lower alkyl and 0 Rs -H o HhN and --CH,--; R, is selected from the group consisting of RB halogen, hydrogen, trifluoromethyl, nitro, and amino; R, is

selected from'the group consisting of n is an integer from 2 to 7; R; is selected from t h e group consisting of hydrogen, hydroxy, lower alkyl, lower allioxy and H lower alkanoyloxy; R, is 2-pyridyl; R is selected from the group consisting of lower alkyl; hydrogen,

fiNH2 hydrogen, lower alkyl and and s GEN CnH2nN jl ld R and R where taken together with their attached nitrogen atom, fonn a radical selected from the group consist- M ing of piperazinyl, lower alkyl substituted piperazinyl, pyrn is an integer from 2 to 7; R is selected from the gr o gn rolidinyl, lower alkyl substituted pyrrolidinyl, piperidinyl, and sisting of hydrogen, hydroxy, lower alkyl, lower alkoxy and lower alkyl substituted piperidinyl; R is lower alkyl; and R, is lower alkanoyloxy; R is 2-pyridyl; R is selected from the selected from the group consisting of lower alkyl and group consisting of lower alkyl; hydrogen, hydrogen and water soluble acid addition salts thereof; and

e. colorimetrically quantitating the glucose present by means of said color.

6. The process in accordance with claim 5 wherein said source of ferricyanide ions is potassium ferricyanide. and

GEN

; and R and R;, where taken together with their attached nitrogen atom, form a radical selected from the group consisting of piperazinyl, lower alkyl substituted piperazinyl, pyrrolidinyl, lower alkyl substituted pyrrolidinyl, piperidinyl, and

lower alkyl substituted piperidinyl; R is lower alkyl; and R is selected from the group consisting of lower alkyl and hydrogen thereof and water soluble acid addition salts thereof thereby forming a colored solution; and

f. flowing said colored solution to an analyzing zone and photometrically determining quantitatively the amount of glucose present during the flow of said colored solution through said analyzing zone.

9. The method in accordance with claim 8 wherein said first reagent and said second reagent are buffered to a pH of from about 4.0 to about 5.0 with a buffer pair comprising a water soluble salt of acetic acid and acetic acid.

10. The method in accordance with claim 8 wherein said colorforming compound is selected from the group consisting of 7-bromo-l ,3-dihydrol 3-dimethylaminopropyl)-5-( 2- pyridyl)-2H-1,4-benzodiazepin-2-one and water soluble acid addition salts thereof.

11. The method in accordance with claim 8 wherein said water soluble ferricyanide salt is potassium ferricyanide and said ferric iron salt is ferric chloride.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3098717 *27 Apr 195923 Jul 1963Technicon InstrFluid treatment method and apparatus with double-flow colorimeter
US3449081 *29 Mar 196510 Jun 1969Electronic Instr CoTest kit
US3506404 *19 Dec 196714 Apr 1970Hoffmann La RocheColorimetric method for determining iron in blood
Non-Patent Citations
Reference
1 *Aloe Scientific Co., Catalog 103, p. 1011, 1041, 1065, 1073
2 *Hawk et al., Practical Physiological Chemistry, 13th ed., McGraw Hill Co., QP514H4, 1954, p. 567, 575
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3920969 *31 Jan 197418 Nov 1975Berglas Robert EDigital glucose analyzer
US4095948 *22 Jul 197620 Jun 1978Hoffmann-La Roche Inc.Determination of uric acid
US4319883 *26 Mar 198016 Mar 1982Atto CorporationMethod for determining catecholic compounds and their related compounds
US4645742 *18 Jul 198424 Feb 1987Baker John RMaterials for determining fructosamine levels in blood samples
US4953552 *21 Apr 19894 Sep 1990Demarzo Arthur PBlood glucose monitoring system
US5571723 *3 May 19935 Nov 1996Evans; Cody A.Method of testing for diabetes that reduces the effect of interfering substances
US6103033 *4 Mar 199815 Aug 2000Therasense, Inc.Process for producing an electrochemical biosensor
US6120676 *4 Jun 199919 Sep 2000Therasense, Inc.Method of using a small volume in vitro analyte sensor
US6134461 *4 Mar 199817 Oct 2000E. Heller & CompanyElectrochemical analyte
US6143164 *16 Dec 19987 Nov 2000E. Heller & CompanySmall volume in vitro analyte sensor
US6162611 *3 Jan 200019 Dec 2000E. Heller & CompanySubcutaneous glucose electrode
US617575230 Apr 199816 Jan 2001Therasense, Inc.Analyte monitoring device and methods of use
US625126024 Aug 199826 Jun 2001Therasense, Inc.Potentiometric sensors for analytic determination
US62844784 Dec 19964 Sep 2001E. Heller & CompanySubcutaneous glucose electrode
US62997576 Oct 19999 Oct 2001Therasense, Inc.Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US632916122 Sep 200011 Dec 2001Therasense, Inc.Subcutaneous glucose electrode
US633879021 Apr 199915 Jan 2002Therasense, Inc.Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US646149627 Oct 19998 Oct 2002Therasense, Inc.Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US648404610 Jul 200019 Nov 2002Therasense, Inc.Electrochemical analyte sensor
US651471829 Nov 20014 Feb 2003Therasense, Inc.Subcutaneous glucose electrode
US65514946 Apr 200022 Apr 2003Therasense, Inc.Small volume in vitro analyte sensor
US656550921 Sep 200020 May 2003Therasense, Inc.Analyte monitoring device and methods of use
US65761016 Oct 199910 Jun 2003Therasense, Inc.Small volume in vitro analyte sensor
US659112527 Jun 20008 Jul 2003Therasense, Inc.Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US659274517 May 200015 Jul 2003Therasense, Inc.Method of using a small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US66168194 Nov 19999 Sep 2003Therasense, Inc.Small volume in vitro analyte sensor and methods
US661893415 Jun 200016 Sep 2003Therasense, Inc.Method of manufacturing small volume in vitro analyte sensor
US665462516 Jun 200025 Nov 2003Therasense, Inc.Mass transport limited in vivo analyte sensor
US674974028 Dec 200115 Jun 2004Therasense, Inc.Small volume in vitro analyte sensor and methods
US688155128 Jan 200319 Apr 2005Therasense, Inc.Subcutaneous glucose electrode
US694251828 Dec 200113 Sep 2005Therasense, Inc.Small volume in vitro analyte sensor and methods
US697370631 Mar 200313 Dec 2005Therasense, Inc.Method of making a transcutaneous electrochemical sensor
US697589325 Nov 200313 Dec 2005Therasense, Inc.Mass transport limited in vivo analyte sensor
US700334011 Nov 200221 Feb 2006Abbott Diabetes Care Inc.Electrochemical analyte sensor
US705843717 Apr 20036 Jun 2006Therasense, Inc.Methods of determining concentration of glucose
US722553512 Sep 20035 Jun 2007Abbott Diabetes Care, Inc.Method of manufacturing electrochemical sensors
US73811845 Nov 20033 Jun 2008Abbott Diabetes Care Inc.Sensor inserter assembly
US746226415 Jul 20059 Dec 2008Abbott Diabetes Care Inc.Subcutaneous glucose electrode
US755006912 Sep 200323 Jun 2009Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US756335015 Sep 200321 Jul 2009Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US75820596 Sep 20071 Sep 2009Abbott Diabetes Care Inc.Sensor inserter methods of use
US762043831 Mar 200617 Nov 2009Abbott Diabetes Care Inc.Method and system for powering an electronic device
US772141216 Aug 200525 May 2010Abbott Diabetes Care Inc.Method of making an electrochemical sensor
US77668294 Nov 20053 Aug 2010Abbott Diabetes Care Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US781123126 Dec 200312 Oct 2010Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US78605447 Mar 200728 Dec 2010Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US786139730 Oct 20074 Jan 2011Abbott Diabetes Care Inc.Method of making an electrochemical sensor
US78698536 Aug 201011 Jan 2011Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US787921330 Oct 20071 Feb 2011Abbott Diabetes Care Inc.Sensor for in vitro determination of glucose
US78856996 Aug 20108 Feb 2011Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US790600930 Jul 200815 Mar 2011Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US79099847 Feb 200822 Mar 2011Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US79209077 Jun 20075 Apr 2011Abbott Diabetes Care Inc.Analyte monitoring system and method
US79288508 May 200819 Apr 2011Abbott Diabetes Care Inc.Analyte monitoring system and methods
US797677822 Jun 200512 Jul 2011Abbott Diabetes Care Inc.Blood glucose tracking apparatus
US798884528 Jan 20082 Aug 2011Abbott Diabetes Care Inc.Integrated lancing and measurement device and analyte measuring methods
US799605420 Feb 20069 Aug 2011Abbott Diabetes Care Inc.Electrochemical analyte sensor
US80294426 Sep 20074 Oct 2011Abbott Diabetes Care Inc.Sensor inserter assembly
US80666394 Jun 200429 Nov 2011Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US806685831 Oct 200729 Nov 2011Abbott Diabetes Care Inc.Analyte sensor with insertion monitor, and methods
US808392429 Sep 200927 Dec 2011Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US808392829 Sep 200927 Dec 2011Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US808392929 Sep 200927 Dec 2011Abbott Diabetes Care Inc.Small volume in vitro sensor and methods of making
US808716229 Sep 20093 Jan 2012Abbott Diabetes Care Inc.Methods of making small volume in vitro analyte sensors
US809122031 Oct 200710 Jan 2012Abbott Diabetes Care Inc.Methods of making small volume in vitro analyte sensors
US810345629 Jan 200924 Jan 2012Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US810547630 Jul 200731 Jan 2012Abbott Diabetes Care Inc.Integrated lancing and measurement device
US811224029 Apr 20057 Feb 2012Abbott Diabetes Care Inc.Method and apparatus for providing leak detection in data monitoring and management systems
US81142707 Feb 200814 Feb 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US811427129 Sep 200914 Feb 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US811773430 Oct 200721 Feb 2012Abbott Diabetes Care Inc.Method of making an electrochemical sensor
US811899229 Sep 200921 Feb 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US811899329 Sep 200921 Feb 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US81236861 Mar 200728 Feb 2012Abbott Diabetes Care Inc.Method and apparatus for providing rolling data in communication systems
US812392929 Sep 200928 Feb 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US813622030 Oct 200720 Mar 2012Abbott Diabetes Care Inc.Method of making an electrochemical sensor
US814264230 Jul 200827 Mar 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US814264329 Sep 200927 Mar 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US814911729 Aug 20093 Apr 2012Abbott Diabetes Care Inc.Analyte monitoring system and methods
US815306329 Sep 200910 Apr 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US816282930 Mar 200924 Apr 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US816316429 Sep 200924 Apr 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US816805130 Oct 20071 May 2012Abbott Diabetes Care Inc.Sensor for determination of glucose
US81756739 Nov 20098 May 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US817771621 Dec 200915 May 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US818267029 Sep 200922 May 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US818267129 Sep 200922 May 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US818604413 Apr 200729 May 2012Abbott Diabetes Care Inc.Method of manufacturing small volume in vitro analyte sensors
US818718311 Oct 201029 May 2012Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US818789529 Sep 200929 May 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US819261129 Sep 20095 Jun 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US821136329 Sep 20093 Jul 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US822168529 Sep 200917 Jul 2012Abbott Diabetes Care Inc.Small volume in vitro sensor and methods of making
US822441310 Oct 200817 Jul 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US822655518 Mar 200924 Jul 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US822655728 Dec 200924 Jul 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US822655827 Sep 201024 Jul 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US822681529 Sep 200924 Jul 2012Abbott Diabetes Care Inc.Small volume in vitro sensor and methods of making
US822689131 Mar 200624 Jul 2012Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US823153230 Apr 200731 Jul 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US823589621 Dec 20097 Aug 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US823624212 Feb 20107 Aug 2012Abbott Diabetes Care Inc.Blood glucose tracking apparatus and methods
US825503117 Mar 200928 Aug 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US82603929 Jun 20084 Sep 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US826299629 Sep 200911 Sep 2012Abbott Diabetes Care Inc.Small volume in vitro sensor and methods of making
US82657269 Nov 200911 Sep 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US826814429 Sep 200918 Sep 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US826816329 Sep 200918 Sep 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US826824328 Dec 200918 Sep 2012Abbott Diabetes Care Inc.Blood glucose tracking apparatus and methods
US827212529 Sep 200925 Sep 2012Abbott Diabetes Care Inc.Method of manufacturing in vitro analyte sensors
US827302213 Feb 200925 Sep 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US827322730 Oct 200725 Sep 2012Abbott Diabetes Care Inc.Sensor for in vitro determination of glucose
US827324129 Sep 200925 Sep 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US82754399 Nov 200925 Sep 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US828745427 Sep 201016 Oct 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US83065989 Nov 20096 Nov 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US833371410 Sep 200618 Dec 2012Abbott Diabetes Care Inc.Method and system for providing an integrated analyte sensor insertion device and data processing unit
US834633618 Mar 20091 Jan 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US834633730 Jun 20091 Jan 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US835382921 Dec 200915 Jan 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US835709121 Dec 200922 Jan 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US836290418 Apr 201129 Jan 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US836661430 Mar 20095 Feb 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US837200521 Dec 200912 Feb 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US837226129 Sep 200912 Feb 2013Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US837737829 Sep 200919 Feb 2013Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US838027311 Apr 200919 Feb 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US839194517 Mar 20095 Mar 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US84091317 Mar 20072 Apr 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US841474912 Nov 20089 Apr 2013Abbott Diabetes Care Inc.Subcutaneous glucose electrode
US841475029 Sep 20109 Apr 2013Abbott Diabetes Care Inc.Subcutaneous glucose electrode
US842574312 Mar 201023 Apr 2013Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US842575829 Sep 200923 Apr 2013Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US844975829 Sep 200928 May 2013Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US84563018 May 20084 Jun 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US84619858 May 200811 Jun 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US84633516 Aug 201011 Jun 2013Abbott Diabetes Care Inc.Electrochemical analyte sensor
US846542530 Jun 200918 Jun 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US847302131 Jul 200925 Jun 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US847322023 Jan 201225 Jun 2013Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US848058019 Apr 20079 Jul 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US851223920 Apr 200920 Aug 2013Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US851224330 Sep 200520 Aug 2013Abbott Diabetes Care Inc.Integrated introducer and transmitter assembly and methods of use
US85327318 May 200910 Sep 2013Abbott Diabetes Care Inc.Methods of determining analyte concentration
US854540328 Dec 20061 Oct 2013Abbott Diabetes Care Inc.Medical device insertion
US857162429 Dec 200429 Oct 2013Abbott Diabetes Care Inc.Method and apparatus for mounting a data transmission device in a communication system
US858559110 Jul 201019 Nov 2013Abbott Diabetes Care Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US85888812 Mar 200719 Nov 2013Abbott Diabetes Care Inc.Subcutaneous glucose electrode
US85931093 Nov 200926 Nov 2013Abbott Diabetes Care Inc.Method and system for powering an electronic device
US859328720 Jul 201226 Nov 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US85971893 Mar 20093 Dec 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US859757523 Jul 20123 Dec 2013Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US86029917 Jun 201010 Dec 2013Abbott Diabetes Care Inc.Analyte sensor introducer and methods of use
US861215916 Feb 200417 Dec 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US861370329 May 200824 Dec 2013Abbott Diabetes Care Inc.Insertion devices and methods
US861707121 Jun 200731 Dec 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US862290325 May 20127 Jan 2014Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US862290621 Dec 20097 Jan 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US864161921 Dec 20094 Feb 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US864726920 Apr 200911 Feb 2014Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US86498413 Apr 200711 Feb 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US865075129 Sep 200918 Feb 2014Abbott Diabetes Care Inc.Methods of making small volume in vitro analyte sensors
US865204320 Jul 201218 Feb 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US866062717 Mar 200925 Feb 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US866509130 Jun 20094 Mar 2014Abbott Diabetes Care Inc.Method and device for determining elapsed sensor life
US866646916 Nov 20074 Mar 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US86686453 Jan 200311 Mar 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US867081530 Apr 200711 Mar 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US867284427 Feb 200418 Mar 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US867651321 Jun 201318 Mar 2014Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US868818830 Jun 20091 Apr 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US870128229 Sep 200922 Apr 2014Abbott Diabetes Care Inc.Method for manufacturing a biosensor
US870618010 Jun 201322 Apr 2014Abbott Diabetes Care Inc.Electrochemical analyte sensor
US872829713 Apr 200620 May 2014Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US873218815 Feb 200820 May 2014Abbott Diabetes Care Inc.Method and system for providing contextual based medication dosage determination
US873434630 Apr 200727 May 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US873434817 Mar 200927 May 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US87381093 Mar 200927 May 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US87415903 Apr 20073 Jun 2014Abbott Diabetes Care Inc.Subcutaneous glucose electrode
US87445453 Mar 20093 Jun 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US876465730 Mar 20121 Jul 2014Abbott Diabetes Care Inc.Medical device inserters and processes of inserting and using medical devices
US876505927 Oct 20101 Jul 2014Abbott Diabetes Care Inc.Blood glucose tracking apparatus
US877118316 Feb 20058 Jul 2014Abbott Diabetes Care Inc.Method and system for providing data communication in continuous glucose monitoring and management system
US877488724 Mar 20078 Jul 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US879517630 Jul 20075 Aug 2014Abbott Diabetes Care Inc.Integrated sample acquisition and analyte measurement device
US880853113 Jan 200519 Aug 2014Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US884055326 Feb 200923 Sep 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US885210130 Sep 20097 Oct 2014Abbott Diabetes Care Inc.Method and apparatus for providing analyte sensor insertion
US886219817 Dec 201214 Oct 2014Abbott Diabetes Care Inc.Method and system for providing an integrated analyte sensor insertion device and data processing unit
US888013718 Apr 20034 Nov 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US891585028 Mar 201423 Dec 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US892031928 Dec 201230 Dec 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US89302033 Feb 20106 Jan 2015Abbott Diabetes Care Inc.Multi-function analyte test device and methods therefor
US893366425 Nov 201313 Jan 2015Abbott Diabetes Care Inc.Method and system for powering an electronic device
US89743861 Nov 200510 Mar 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US899333131 Aug 201031 Mar 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods for managing power and noise
US900092922 Nov 20137 Apr 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods
US901133129 Dec 200421 Apr 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US901133230 Oct 200721 Apr 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US90147737 Mar 200721 Apr 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US90172595 Aug 201428 Apr 2015Abbott Diabetes Care Inc.Integrated sample acquisition and analyte measurement device
US903576730 May 201319 May 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods
US90399752 Dec 201326 May 2015Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US90429532 Mar 200726 May 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US90666943 Apr 200730 Jun 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US906669512 Apr 200730 Jun 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US906669727 Oct 201130 Jun 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US906670917 Mar 201430 Jun 2015Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US907247721 Jun 20077 Jul 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US907860717 Jun 201314 Jul 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US909529027 Feb 20124 Aug 2015Abbott Diabetes Care Inc.Method and apparatus for providing rolling data in communication systems
US917745610 Jun 20133 Nov 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods
US918609824 Mar 201117 Nov 2015Abbott Diabetes Care Inc.Medical device inserters and processes of inserting and using medical devices
US921599224 Mar 201122 Dec 2015Abbott Diabetes Care Inc.Medical device inserters and processes of inserting and using medical devices
US922670128 Apr 20105 Jan 2016Abbott Diabetes Care Inc.Error detection in critical repeating data in a wireless sensor system
US923486319 May 201412 Jan 2016Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US923486419 Aug 201412 Jan 2016Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US925917523 Oct 200616 Feb 2016Abbott Diabetes Care, Inc.Flexible patch for fluid delivery and monitoring body analytes
US926545324 Mar 201123 Feb 2016Abbott Diabetes Care Inc.Medical device inserters and processes of inserting and using medical devices
US927166927 Apr 20151 Mar 2016Abbott Diabetes Care Inc.Method for integrated sample acquisition and analyte measurement device
US929159219 May 201422 Mar 2016Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US931419531 Aug 201019 Apr 2016Abbott Diabetes Care Inc.Analyte signal processing device and methods
US93141983 Apr 201519 Apr 2016Abbott Diabetes Care Inc.Analyte monitoring system and methods
US931660919 May 201419 Apr 2016Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US932046129 Sep 201026 Apr 2016Abbott Diabetes Care Inc.Method and apparatus for providing notification function in analyte monitoring systems
US932389815 Nov 201326 Apr 2016Abbott Diabetes Care Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US932671429 Jun 20103 May 2016Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US93267165 Dec 20143 May 2016Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US933293329 Sep 201410 May 2016Abbott Diabetes Care Inc.Method and apparatus for providing analyte sensor insertion
US934159119 May 201417 May 2016Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US935166930 Sep 201031 May 2016Abbott Diabetes Care Inc.Interconnect for on-body analyte monitoring device
US93809715 Dec 20145 Jul 2016Abbott Diabetes Care Inc.Method and system for powering an electronic device
US939888210 Sep 200626 Jul 2016Abbott Diabetes Care Inc.Method and apparatus for providing analyte sensor and data processing device
US94025441 Feb 20102 Aug 2016Abbott Diabetes Care Inc.Analyte sensor and apparatus for insertion of the sensor
US940257011 Dec 20122 Aug 2016Abbott Diabetes Care Inc.Analyte sensor devices, connections, and methods
US947781123 Jun 200525 Oct 2016Abbott Diabetes Care Inc.Blood glucose tracking apparatus and methods
US948042119 Aug 20131 Nov 2016Abbott Diabetes Care Inc.Integrated introducer and transmitter assembly and methods of use
US949815930 Oct 200722 Nov 2016Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US952196830 Sep 200520 Dec 2016Abbott Diabetes Care Inc.Analyte sensor retention mechanism and methods of use
US957253428 Jun 201121 Feb 2017Abbott Diabetes Care Inc.Devices, systems and methods for on-skin or on-body mounting of medical devices
US95749143 Mar 201421 Feb 2017Abbott Diabetes Care Inc.Method and device for determining elapsed sensor life
US96100349 Nov 20154 Apr 2017Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US962541319 May 201518 Apr 2017Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US963606824 Jun 20162 May 2017Abbott Diabetes Care Inc.Analyte sensor and apparatus for insertion of the sensor
US964905711 May 201516 May 2017Abbott Diabetes Care Inc.Analyte monitoring system and methods
US966205717 Feb 201630 May 2017Abbott Diabetes Care Inc.Integrated sample acquisition and analyte measurement method
US96686844 Mar 20106 Jun 2017Abbott Diabetes Care Inc.Self-powered analyte sensor
US966916216 Mar 20166 Jun 2017Abbott Diabetes Care Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US968718330 Mar 201227 Jun 2017Abbott Diabetes Care Inc.Medical device inserters and processes of inserting and using medical devices
US969371327 Jun 20164 Jul 2017Abbott Diabetes Care Inc.Analyte sensor devices, connections, and methods
US973058410 Feb 201415 Aug 2017Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US974386229 Mar 201229 Aug 2017Abbott Diabetes Care Inc.Systems and methods for transcutaneously implanting medical devices
US97438631 Jun 201629 Aug 2017Abbott Diabetes Care Inc.Method and system for powering an electronic device
US97504398 Apr 20165 Sep 2017Abbott Diabetes Care Inc.Method and apparatus for providing notification function in analyte monitoring systems
US975044427 Apr 20165 Sep 2017Abbott Diabetes Care Inc.Interconnect for on-body analyte monitoring device
US20020053523 *28 Dec 20019 May 2002Therasense, Inc.Small volume in vitro analyte sensor and methods
US20020084196 *28 Dec 20014 Jul 2002Therasense, Inc.Small volume in vitro analyte sensor and methods
US20020148739 *28 Dec 200117 Oct 2002Therasense, Inc.Small Volume in Vitro Analyte Sensor and Methods
US20020157948 *28 Dec 200131 Oct 2002Therasense, Inc.Small Volume in Vitro Analyte Sensor and Methods
US20030088166 *11 Nov 20028 May 2003Therasense, Inc.Electrochemical analyte sensor
US20030134347 *28 Jan 200317 Jul 2003Therasense, Inc.Subcutaneous glucose electrode
US20030199744 *17 Apr 200323 Oct 2003Therasense, Inc.Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US20030201194 *9 Jun 200330 Oct 2003Therasense, Inc.Small volume in vitro analyte sensor
US20040054267 *15 Sep 200318 Mar 2004Therasense, Inc.Small volume in vitro analyte sensor
US20040060818 *12 Sep 20031 Apr 2004Therasense, Inc.Small volume in vitro analyte sensor and methods of making
US20040225230 *12 Jun 200411 Nov 2004Therasense, Inc.Small volume in vitro analyte sensor and methods
US20050058873 *12 Sep 200317 Mar 2005Arthur Alan R.Integral fuel cartridge and filter
US20050121322 *24 Jan 20059 Jun 2005Therasense, Inc.Analyte monitoring device and methods of use
US20060003398 *15 Jul 20055 Jan 2006Therasense, Inc.Subcutaneous glucose electrode
US20060042080 *16 Aug 20052 Mar 2006Therasense, Inc.Method of making an electrochemical sensor
US20060091006 *17 Nov 20054 May 2006Yi WangAnalyte sensor with insertion monitor, and methods
US20070106135 *4 Nov 200510 May 2007Abbott Diabetes Care, Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US20070151869 *2 Mar 20075 Jul 2007Abbott Diabetes Care, Inc.Subcutaneous Glucose Electrode
US20070215491 *3 Apr 200720 Sep 2007Abbott Diabetes Care, Inc.Subcutaneous Glucose Electrode
US20080004512 *6 Sep 20073 Jan 2008Funderburk Jeffery VSensor inserter assembly
US20080021295 *30 Jul 200724 Jan 2008Yi WangSample Acquisition and Analyte Measurement Device
US20080027302 *30 Jul 200731 Jan 2008Therasense, Inc.Integrated Sample Acquisition and Analyte Measurement Device
US20080041506 *17 Aug 200721 Feb 2008Aijun HuangAlloy and method of treating titanium aluminide
US20080064941 *6 Sep 200713 Mar 2008Funderburk Jeffery VSensor inserter methods of use
US20080076997 *31 Aug 200727 Mar 2008Abbott Diabetes Care, Inc.Analyte monitoring device and methods of use
US20080139798 *20 Sep 200712 Jun 2008Dharmacon, Inc.siRNA targeting myeloid cell leukemia sequence 1
US20080194990 *28 Jan 200814 Aug 2008Abbott Diabetes Care, Inc.Integrated Lancing And Measurement Device And Analyte Measuring Methods
US20080275423 *30 Oct 20076 Nov 2008Therasense, Inc.Method of making an electrochemical sensor
US20080276455 *30 Oct 200713 Nov 2008Therasense, Inc.method of making an electrochemical sensor
US20080277292 *7 Feb 200813 Nov 2008Therasense, Inc.Small Volume In Vitro Analyte Sensor
US20080281175 *30 Oct 200713 Nov 2008Therasense, Inc.Method of making an electrochemical sensor
US20080281176 *30 Oct 200713 Nov 2008Therasense, Inc.Method of making an electrochemical sensor
US20080281177 *30 Oct 200713 Nov 2008Therasense, Inc.method of making an electrochemical sensor
US20080283396 *31 Oct 200720 Nov 2008Abbot Diabetes Care, Inc.Analyte Sensor with Insertion Monitor, and Methods
US20090014328 *31 Oct 200715 Jan 2009Abbott Diabetes Care Inc.Small Volume in vitro Analyte Sensor and Methods of Making
US20090137889 *12 Nov 200828 May 2009Adam HellerSubcutaneous Glucose Electrode
US20090171182 *29 Dec 20042 Jul 2009Abbott Diabetes Care Inc.Method and apparatus for mounting a data transmission device in a communication system
US20090216102 *26 Feb 200927 Aug 2009James SayAnalyte Monitoring Device and Methods of Use
US20090260985 *7 May 200922 Oct 2009Abbott Diabetes Care Inc.Analyte sensor with insertion monitor, and methods
US20090260986 *8 May 200922 Oct 2009Abbott Diabetes Care Inc.Analyte sensor with insertion monitor, and methods
US20090270764 *8 May 200929 Oct 2009Abbott Diabetes Care Inc.Methods of determining concentration of ketone bodies
US20100012519 *29 Sep 200921 Jan 2010Feldman Benjamin JSmall Volume In Vitro Sensor and Methods of Making
US20100012526 *29 Sep 200921 Jan 2010Feldman Benjamin JSmall Volume In Vitro Sensor and Methods of Making
US20100015692 *29 Sep 200921 Jan 2010Feldman Benjamin JSmall Volume In Vitro Sensor and Methods of Making
US20100076287 *29 Sep 200925 Mar 2010Feldman Benjamin JSmall Volume In Vitro Analyte Sensor and Methods of Making
US20100087721 *30 Sep 20098 Apr 2010Abbott Diabetes Care Inc.Method and Apparatus for Providing Analyte Sensor Insertion
US20100185066 *24 Jan 201022 Jul 2010Eyesense AgApparatus for measuring blood glucose concentrations
US20100213057 *26 Feb 200926 Aug 2010Benjamin FeldmanSelf-Powered Analyte Sensor
US20100213082 *4 Mar 201026 Aug 2010Benjamin FeldmanSelf-Powered Analyte Sensor
US20100312078 *18 Aug 20109 Dec 2010Abbott Diabetes Care Inc.Analyte Monitoring Device and Methods of Use
US20110021895 *29 Sep 201027 Jan 2011Abbott Diabetes Care Inc.Subcutaneous Glucose Electrode
US20110060196 *31 Aug 201010 Mar 2011Abbott Diabetes Care Inc.Flexible Mounting Unit and Cover for a Medical Device
DE2658101A1 *22 Dec 197614 Jul 1977Gambro AgVerfahren zur messung der konzentration von niedrigmolekularen verbindungen in komplexen medien, vorzugsweise bei medizinischen behandlungen, und vorrichtung zur durchfuehrung des verfahrens
Classifications
U.S. Classification436/95, 436/53
International ClassificationG01N33/66
Cooperative ClassificationG01N33/66
European ClassificationG01N33/66