US3652176A - Turbine wheel containment device - Google Patents

Turbine wheel containment device Download PDF

Info

Publication number
US3652176A
US3652176A US29875A US3652176DA US3652176A US 3652176 A US3652176 A US 3652176A US 29875 A US29875 A US 29875A US 3652176D A US3652176D A US 3652176DA US 3652176 A US3652176 A US 3652176A
Authority
US
United States
Prior art keywords
turbine
turbine wheel
recess
blades
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US29875A
Inventor
Richard E Walsh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUDSTRAND CORP
Original Assignee
SUDSTRAND CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUDSTRAND CORP filed Critical SUDSTRAND CORP
Application granted granted Critical
Publication of US3652176A publication Critical patent/US3652176A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/02Shutting-down responsive to overspeed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/04Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
    • F01D21/045Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position special arrangements in stators or in rotors dealing with breaking-off of part of rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/04Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
    • F01D21/06Shutting-down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type

Definitions

  • a containment construction for a radial turbine having a generally radially disposed inlet and an axially disposed outlet 52 :rs. Cl "4156?, 4215/1205, 411s/213 with a Stationary bacbplate disposed opposite the outlet that 251;]
  • Fnti mgfslgbssl 136 31 has a conically diverging recess therein that receives a com- 1 o plementary rotating diverging conical shoulder on the turbine wheel hub so that upon overspeed bursting of the turbine [56]
  • References Clted wheel, the conical recess assists in containing the turbine UNITED STATES PATENTS wheel, there also being provided stationary stator blades completely surrounding the turbine wheel which assist in con- 1,488,931 4/1924 Marechal ..4l5/ 106 mining the turbine wheel upon exceeding the burst spee 3,175,804 3/1965 Bunger ..415/9 I 3,506,373 4/1970 Danker et a
  • a turbine assembly for a radial turbine that contains the fragmented turbine wheel within the turbine housing upon burst and reduces the destructive energy level of the fragmented pieces to a safe value.
  • the containment device according to the present invention has an advantage over the various braking devices of the prior art in that the former does not become effective until after turbine wheel fragmentation.
  • Radial flow turbines are known generally to include a relatively flat back-plate and a bell-shaped exhaust plate together defining a generally radial inlet and an axially extending outlet.
  • the turbine wheel disposed between the two plates, turns the radial inlet flow axially towards the centrally disposed outlet, as it is driven by the expanding gases.
  • the turbine wheel is formed by an axially curved hub from which the turbine blades extend radially with the outlet sides of the blades being generally free.
  • One means for assisting containment of the turbine wheel is the provision of a knifeedged annular recess in the back-plate that cooperates with an annular knife-edged shoulder on the turbine hub which extends into the recess so that upon turbine fragmentation, the knife-edged recess tends to hold the fragmented pieces radially inwardly as well as resist axial movement of the fragmented pieces toward the outlet, it being understood that the back-plate is on the opposite side of the turbine wheel from the outlet.
  • the knife-edged recess which is in fact a conically diverging recess in the back-plate, delays the movement of the fragmented parts toward the turbine inlet and outlet. As a result of this delay, the destructive energy level of the fragmented parts is reduced to a level significantly reducing to damage to the inlet and the outlet as well as the potential damage to surrounding equipment.
  • the present turbine is provided with stationary inlet stator blades completely surrounding the tips of the turbine blades. With sufficient strength, the stator blades acting in conjunction with the recess in the back-plate noted above can completely con tain the fragmented parts in the turbine housing.
  • a further feature of the present invention is in the provision of a tri-bu'rst hub which includes three equally spaced radial slots in the turbine wheel. This has the advantage of providing more uniform fracture upon turbine burst and reduces the fragmented particle size thus reducing the energy level of any given piece of the turbine wheel. Additionally, the weakening slots provide predictable burst configurations which must be contained.
  • the problem of containment involves not only the features described above, but also other parameters such as the configuration of the turbine wheel, the thickness of the back-plate, the thickness of the exhaust plate, the length of the exhaust plate, and the number of fastening elements interconnecting the back-plate to the exhaust plate.
  • a radial turbine 10 is illustrated generally including a housing 12, an inlet scroll 14, a turbine wheel 16, an outlet shroud l8 and an output shaft 20.
  • turbine assembly 10 is as a prime mover in an emergency hydraulic power supply system such as shown in the copending application of Richard W. Reynolds entitled Emergency Hydraulic Power System," Ser. No. 16,841 filed Mar. 5, 1970, assigned to the assignee of the present invention. It should be understood, however, that the turbine burst containment means according to the present invention are applicable to turbines in a wide variety of applicatrons.
  • a generally annular frame plate 23 is provided which may be the primary support for the turbine assembly.
  • the frame member 23 has a cylindrical central portion 24 with a central bore 26 therethrough which supports an axially extending annular flange 27 on a turbine back-plate 30.
  • the back-plate 30 is generally annular in configuration and is rigidly fixed to the frame member 23 by a plurality of annularly arrayed fasteners 32.
  • Fixed to the periphery of the backplate 30 in annular recess 34 is an annular stator blade ring 35 that has a plurality of turbine inlet stator blades 37 machined thereon.
  • Stator blades 37 are not radially disposed with respect to the axis of the turbine wheel, but are angularly related toward the direction of rotation of the turbine wheel as is known to those skilled in the art.
  • the stator blades 37 extend completely around the turbine wheel 16 and are of sufficient strength to assist in providing the radial containment of the turbine wheel 16 upon burst.
  • the free, or right ends, of the turbine blades 37 fit and may be welded in suitable recesses in a bell-shaped exhaust plate 40.
  • the exhaust plate 40 is fixed to the nozzle ring 35 by a plurality of pins 42 extending through both the exhaust plate 40 and the stator blade ring 35.
  • Pins 42 are welded to plate 40 and ring 35 and are preferably equal in number to one-half the number of stator blades 37.
  • the number of pins 42 is of importance since the exhaust plate 40 does provide an axial containment function.
  • the thickness of exhaust plate 40 is sufficient to prevent fracture upon turbine burst when employed with the other containment features of the present invention.
  • the outlet shroud 18 is a generally conical sheet metal exhaust duct 43 fixed to the open end of the bell-shaped exhaust plate 40.
  • the inlet scroll 14 also has a sheet metal member 44 connected at one side as at 48 to the stator blade ring 35 and at the other side of the outlet shroud 43 as indicated at 50 and the outlet plate 40 as indicated at 52.
  • the turbine output shaft has a first enlarged portion 55 rotatably supported in a main bearing 57.
  • Another bearing may be provided for supporting shaft 20 spaced from the bearing shown.
  • Bearing 57 is seated within recess 58 in the backplate flange 27 and is retained at its left side by snap ring 61 in enlarged portion 55 of shaft 20, which limits rightward movement of the shaft 20 with respect to the frame plate 23.
  • sleeve 62 is provided surrounding a further enlarged portion 64 on shaft 20.
  • the left end of the sleeve engages the inner race of bearing 57 and the right end engages a sealing ring 65 of shaft seal assembly 68.
  • Extending from the enlarged portion 64 of the output shaft is a reduced cantilevered portion 70 which supports the turbine wheel 16.
  • the turbine wheel 16 is seen to include a bell-shaped hub member 72 with its small end 73 adjacent the outlet, and large end 74 adjacent back-plate 30.
  • the hub 72 receives an adapter ring 75 which supports sealing ring 65 and has an annular nose engaging the enlarged flange portion 64 on the output shaft. Suitable means are provided for keying hub 72 to shaft portion 70.
  • a threaded fastener 78 on the threaded end of shaft portion 70 locates the hub 72 axially on the output shaft.
  • Hub 72 has a concave exterior surface 79 that turns the expanding inlet gases from a radial direction to an axial direction as is well known to those skilled in the turbine art. Extending radially with respect to surface 79 and formed integrally with the hub 72 are a plurality of turbine blades 81 that have free ends 82 adjacent the back-plate, free ends 83 adjacent the stator blades 37, and arcuate free ends 85 adjacent the exhaust plate 40. While not apparent from the view of the turbine shown, the blades 81 lie generally in a radial plane, i.e., a plane including the axis of shaft 20, adjacent the inlet thereof, and then turn in a direction opposite the direction of flow adjacent the outlet portions thereof.
  • a radial plane i.e., a plane including the axis of shaft 20, adjacent the inlet thereof, and then turn in a direction opposite the direction of flow adjacent the outlet portions thereof.
  • the hub 72 has three radial slots as at 88 that assist in providing a clean tri-segment failure of the turbine wheel.
  • the slots are equiangularly related, and as illustrated, each extends longitudinally completely through the hub 72 and radially outwardly from bore 87, but the slots are insignificant enough to maintain the integrity required of the hub 72.
  • the adapter provides a seal on shaft 70 against loss of pressure through slots 88, and each slot receives an adapter projection 89, locking the adapter and wheel for rotation together.
  • the triburst slotted hub increases the likelihood of the hub failing in three reasonably uniform segmented pieces, thus reducing the possibility of a very large piece of the turbine fragmenting which would have a higher destructive energy level because of its greater mass.
  • the primary containment means is an annular recess 90 in the back-plate 30, facing and partially encapsulating a projecting shoulder 91 on the turbine hub 72.
  • the recess 90 is defined in part by a frustoconical surface 93 extending axially rearwardly from back-plate surface 94 and radially outwardly.
  • Frusto-conical surface 93 has approximately a thirty degree relationship with the axis of turbine wheel 16.
  • the surfaces 93 and 94 define generally what is termed a "knife edge,” which assists in holding the fragmented turbine parts radially as well as axially, upon burst, against the tendency of the turbine fragments to move radially and axially toward the inlet and outlet ducting.
  • the shoulder 91 also has a frusto-conical surface 97 adjacent and complementary to the recess surface 93. Shoulder 91 and surface 97 project radiallyoutwardly and axially rearwardly into the recess 90 as is apparent from the drawing.
  • the outer diameter of surface 97 is preferably smaller than the inner diameter of surface 93 in order for the projection on the wheel to enter the recess in the housing.
  • the shoulder 91 Upon turbine burst, the shoulder 91 enters and engages the recess 90 with the surfaces 97 and 93 frictionally engaging and braking the rotating material. Because of the angular relationship of these surfaces there is an inward retention of the fragmented pieces tending to hold the' pieces both away from the inlet blades 37 and away from the outlet or exhaust plate 40.
  • the retention shoulder 93 constrains the material to pivot about the shoulder, thus applying some axial component in the movement.
  • the angular diverging configuration of the recess-90 is of significance since tests, in which the surfaces 93 and 97 were not undercut by cylindrical and parallel to the shaft axis, resulted in a failure in exhaust plate 40 as well as an outward bulging of the back-plate 30.
  • the fragments more promptly pivot about the shoulders of the cylindrical surfaces and move toward the inlet before sufficient dissipation of energy.
  • the decrease in the effectiveness of such a modified recess was substantiated by a reduced scraping of the hub segments on the cylindrical step on the back-plate.
  • a rotary turbine comprising; a turbine wheel having a hub and a plurality of blades extending therefrom, housing means surrounding said wheel, inlet nozzle means associated with the blades, exhaust passage means associated with the blades, and means to assist in containment of the turbine wheel upon exceeding the burst speed thereof including an annular recess on said housing means that increases in diameter axially away from the turbine wheel, said turbine wheel being formed with a shoulder extending toward said recess, said recess being generally conical and diverging away from said turbine wheel, said shoulder being generally conical and complementary to said recess.
  • a radial flow turbine assembly comprising: a rotary turbine wheel having a hub with blades extending from the hub, housing means surrounding said turbine wheel and defining generally radially disposed turbine inlet means and generally axially disposed turbine outlet means, containment means for minimizing turbine wheel burst damage including annual recess means within said housing having a first portion of predetermined diameter and a second portion of greater diameter spaced axially further from said turbine wheel than said first diameter portion, and projection means on said turbine wheel extending into said recess means.
  • a radial flow turbine as defined in claim 2 including means surrounding the inlet portion of the turbine blades for assisting in containment of the turbine wheel.
  • a radial flow turbine assembly comprising: a rotary turbine wheel having a hub with blades extending from the hub, housing means surrounding said turbine wheel and defining generally radially disposed turbine inlet means and generally axially disposed turbine outlet means, containment means for minimizing turbine wheel burst damage including annular recess means within said housing means having a first portion of predetermined diameter and a second portion of greater diameter spaced axially further from said turbine wheel than said fust diameter portion, projection means on said turbine wheel extending into said recess means, said projection means on said turbine wheel being a continuous annular projection on the turbine hub, said projection being spaced normally a substantial distance from the tips of the turbine blades, said recess means being closely adjacent said annular projection and being located in the housing means on the side of the turbine wheel opposite said outlet means, said recess means being generally conical and diverging away from said first diameter portion, said projection means being conical and diverging into said recess means, and means surrounding the inlet portion of the turbine blades for assisting in contain

Abstract

A containment construction for a radial turbine having a generally radially disposed inlet and an axially disposed outlet with a stationary back-plate disposed opposite the outlet that has a conically diverging recess therein that receives a complementary rotating diverging conical shoulder on the turbine wheel hub so that upon overspeed bursting of the turbine wheel, the conical recess assists in containing the turbine wheel, there also being provided stationary stator blades completely surrounding the turbine wheel which assist in containing the turbine wheel upon exceeding the burst speed.

Description

United States Patent Walsh [45] Mar. 28, 1972 [54] TURBINE WHEEL CONTAINMENT I FOREIGN PATENTS 0R APPLlCATlONS DEVICE 624,166 7/1961 Canada ..415/9 [72] Inventor: Richard E. Walsh, Rockford, Ill.
Primary Examiner-Henry F. Raduazo [73] Ass'gnee' Sudstmnd Corporation Attorney-Hofgren, Wegner, Allen, Stellman and McCord [22] Filed: Apr. 20, 1970 [57] ABSTRACT 21 Appl. No.: 29,875
A containment construction for a radial turbine having a generally radially disposed inlet and an axially disposed outlet 52 :rs. Cl "4156?, 4215/1205, 411s/213 with a Stationary bacbplate disposed opposite the outlet that 251;] Fnti mgfslgbssl 136 31 has a conically diverging recess therein that receives a com- 1 o plementary rotating diverging conical shoulder on the turbine wheel hub so that upon overspeed bursting of the turbine [56] References Clted wheel, the conical recess assists in containing the turbine UNITED STATES PATENTS wheel, there also being provided stationary stator blades completely surrounding the turbine wheel which assist in con- 1,488,931 4/1924 Marechal ..4l5/ 106 mining the turbine wheel upon exceeding the burst spee 3,175,804 3/1965 Bunger ..415/9 I 3,506,373 4/1970 Danker et a1. ..415/ 106 8 Claims, 1 Drawing Figure fi7*= 52 T m a 75 204-: 64. A f
-l /0 i l TURBINE WHEEL CONTAINMENT DEVICE BACKGROUND OF THE INVENTION As is well known to those skilled in the turbine art, turbine power devices are most efficient at extremely high speeds, and the high centrifugal forces acting on the turbine sheet will, upon an excessive speed, cause disintegration of the turbine wheel under the resulting centrifugal forces.
It is extremely desirable both from a safety standpoint and for the protection of surrounding equipment that the turbine wheel be contained within the turbine housing upon burst and/or that the energy level of the fractured parts be reduced to a minimum.
This problem is particularly acute in radial turbines which are known to have radial inlets an axially disposed outlets defined by bell-shaped outlet plates. In such turbines it has been found that upon exceeding the burst speed there is a problem of radial containment since centrifugal forces naturally tend to throw the fragmented parts of the turbine wheel radially outwardly toward the turbine inlet. In some constructions, the turbine wheel fragments also have a tendency to move axially out the outlet at a high energy level, fracturing or causing severe damage to the outlet plate and also to associated equipment near the outlet.
There have in the past been provided devices for reducing the problem of turbine burst damage. For example, there have been devised speed responsive brakes which act upon a predetermined turbine overspeed to brake the turbine .wheel either to a complete stop or within its operating range. There are several disadvantages to such constructions, one being that the speed sensing and braking mechanisms add significantly to the weight and complexity of the turbine assembly. Another is that the burst speed of a specific turbine wheel is difficult to determine without test, and after test obviously too late, so that there is a considerable difficulty in selecting the predetermined overspeed at which the turbine overspeed brake becomes activated. The only solution to this problem is to select a turbine overspeed well below the estimated burst speed of the turbine wheel. It is apparent this seriously limits the usefulness of the turbine itself since it may shut down on overspeed conditions which are not at all within the danger range.
SUMMARY OF THE INVENTION In accordance with the present invention, a turbine assembly is provided for a radial turbine that contains the fragmented turbine wheel within the turbine housing upon burst and reduces the destructive energy level of the fragmented pieces to a safe value. The containment device according to the present invention has an advantage over the various braking devices of the prior art in that the former does not become effective until after turbine wheel fragmentation.
Radial flow turbines are known generally to include a relatively flat back-plate and a bell-shaped exhaust plate together defining a generally radial inlet and an axially extending outlet. The turbine wheel, disposed between the two plates, turns the radial inlet flow axially towards the centrally disposed outlet, as it is driven by the expanding gases. The turbine wheel is formed by an axially curved hub from which the turbine blades extend radially with the outlet sides of the blades being generally free.
One means according to the present invention for assisting containment of the turbine wheel is the provision of a knifeedged annular recess in the back-plate that cooperates with an annular knife-edged shoulder on the turbine hub which extends into the recess so that upon turbine fragmentation, the knife-edged recess tends to hold the fragmented pieces radially inwardly as well as resist axial movement of the fragmented pieces toward the outlet, it being understood that the back-plate is on the opposite side of the turbine wheel from the outlet. Thus, the knife-edged recess, which is in fact a conically diverging recess in the back-plate, delays the movement of the fragmented parts toward the turbine inlet and outlet. As a result of this delay, the destructive energy level of the fragmented parts is reduced to a level significantly reducing to damage to the inlet and the outlet as well as the potential damage to surrounding equipment.
To assist in containing the radial movement of the fragmented pieces in addition to the recess noted above, the present turbine is provided with stationary inlet stator blades completely surrounding the tips of the turbine blades. With sufficient strength, the stator blades acting in conjunction with the recess in the back-plate noted above can completely con tain the fragmented parts in the turbine housing.
A further feature of the present invention is in the provision of a tri-bu'rst hub which includes three equally spaced radial slots in the turbine wheel. This has the advantage of providing more uniform fracture upon turbine burst and reduces the fragmented particle size thus reducing the energy level of any given piece of the turbine wheel. Additionally, the weakening slots provide predictable burst configurations which must be contained.
It should be understood that the problem of containment involves not only the features described above, but also other parameters such as the configuration of the turbine wheel, the thickness of the back-plate, the thickness of the exhaust plate, the length of the exhaust plate, and the number of fastening elements interconnecting the back-plate to the exhaust plate.
BRIEF DESCRIPTION OF THE DRAWING The drawing illustrates a fragmentary section of a radial turbine incorporating the containment means of the present invention.
' DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to the drawing, a radial turbine 10 is illustrated generally including a housing 12, an inlet scroll 14, a turbine wheel 16, an outlet shroud l8 and an output shaft 20.
As is well known to those skilled in this art, hot gases entering the inlet scroll 14 flow radially inwardly across and against the blades of the turbine wheel 16 rotating the turbine wheel with the exhaust gases flowing out the outlet shroud 18. The turbine wheel 16 is drivingly connected to shaft 20 and rotates the same providing a mechanical output which may drive a suitable reducing gear box.
One application for the turbine assembly 10 is as a prime mover in an emergency hydraulic power supply system such as shown in the copending application of Richard W. Reynolds entitled Emergency Hydraulic Power System," Ser. No. 16,841 filed Mar. 5, 1970, assigned to the assignee of the present invention. It should be understood, however, that the turbine burst containment means according to the present invention are applicable to turbines in a wide variety of applicatrons.
Referring in more detail to the construction of the present turbine, a generally annular frame plate 23 is provided which may be the primary support for the turbine assembly. The frame member 23 has a cylindrical central portion 24 with a central bore 26 therethrough which supports an axially extending annular flange 27 on a turbine back-plate 30.
The back-plate 30 is generally annular in configuration and is rigidly fixed to the frame member 23 by a plurality of annularly arrayed fasteners 32. Fixed to the periphery of the backplate 30 in annular recess 34 is an annular stator blade ring 35 that has a plurality of turbine inlet stator blades 37 machined thereon. Stator blades 37 are not radially disposed with respect to the axis of the turbine wheel, but are angularly related toward the direction of rotation of the turbine wheel as is known to those skilled in the art. The stator blades 37 extend completely around the turbine wheel 16 and are of sufficient strength to assist in providing the radial containment of the turbine wheel 16 upon burst. The free, or right ends, of the turbine blades 37 fit and may be welded in suitable recesses in a bell-shaped exhaust plate 40. The exhaust plate 40 is fixed to the nozzle ring 35 by a plurality of pins 42 extending through both the exhaust plate 40 and the stator blade ring 35. Pins 42 are welded to plate 40 and ring 35 and are preferably equal in number to one-half the number of stator blades 37. The number of pins 42 is of importance since the exhaust plate 40 does provide an axial containment function. Moreover, the thickness of exhaust plate 40 is sufficient to prevent fracture upon turbine burst when employed with the other containment features of the present invention.
The outlet shroud 18 is a generally conical sheet metal exhaust duct 43 fixed to the open end of the bell-shaped exhaust plate 40. The inlet scroll 14 also has a sheet metal member 44 connected at one side as at 48 to the stator blade ring 35 and at the other side of the outlet shroud 43 as indicated at 50 and the outlet plate 40 as indicated at 52.
The turbine output shaft has a first enlarged portion 55 rotatably supported in a main bearing 57. Another bearing may be provided for supporting shaft 20 spaced from the bearing shown. Bearing 57 is seated within recess 58 in the backplate flange 27 and is retained at its left side by snap ring 61 in enlarged portion 55 of shaft 20, which limits rightward movement of the shaft 20 with respect to the frame plate 23. For
, locating the opposite side of bearing 57 with respect to the shaft, sleeve 62 is provided surrounding a further enlarged portion 64 on shaft 20. The left end of the sleeve engages the inner race of bearing 57 and the right end engages a sealing ring 65 of shaft seal assembly 68. Extending from the enlarged portion 64 of the output shaft is a reduced cantilevered portion 70 which supports the turbine wheel 16.
The turbine wheel 16 is seen to include a bell-shaped hub member 72 with its small end 73 adjacent the outlet, and large end 74 adjacent back-plate 30. The hub 72 receives an adapter ring 75 which supports sealing ring 65 and has an annular nose engaging the enlarged flange portion 64 on the output shaft. Suitable means are provided for keying hub 72 to shaft portion 70. A threaded fastener 78 on the threaded end of shaft portion 70 locates the hub 72 axially on the output shaft.
Hub 72 has a concave exterior surface 79 that turns the expanding inlet gases from a radial direction to an axial direction as is well known to those skilled in the turbine art. Extending radially with respect to surface 79 and formed integrally with the hub 72 are a plurality of turbine blades 81 that have free ends 82 adjacent the back-plate, free ends 83 adjacent the stator blades 37, and arcuate free ends 85 adjacent the exhaust plate 40. While not apparent from the view of the turbine shown, the blades 81 lie generally in a radial plane, i.e., a plane including the axis of shaft 20, adjacent the inlet thereof, and then turn in a direction opposite the direction of flow adjacent the outlet portions thereof.
To provide a somewhat uniform predictable burst configuration, the hub 72 has three radial slots as at 88 that assist in providing a clean tri-segment failure of the turbine wheel. The slots are equiangularly related, and as illustrated, each extends longitudinally completely through the hub 72 and radially outwardly from bore 87, but the slots are insignificant enough to maintain the integrity required of the hub 72. The adapter provides a seal on shaft 70 against loss of pressure through slots 88, and each slot receives an adapter projection 89, locking the adapter and wheel for rotation together. The triburst slotted hub increases the likelihood of the hub failing in three reasonably uniform segmented pieces, thus reducing the possibility of a very large piece of the turbine fragmenting which would have a higher destructive energy level because of its greater mass.
The primary containment means according to the present invention is an annular recess 90 in the back-plate 30, facing and partially encapsulating a projecting shoulder 91 on the turbine hub 72. The recess 90 is defined in part by a frustoconical surface 93 extending axially rearwardly from back-plate surface 94 and radially outwardly. Frusto-conical surface 93 has approximately a thirty degree relationship with the axis of turbine wheel 16. The surfaces 93 and 94 define generally what is termed a "knife edge," which assists in holding the fragmented turbine parts radially as well as axially, upon burst, against the tendency of the turbine fragments to move radially and axially toward the inlet and outlet ducting. The shoulder 91 also has a frusto-conical surface 97 adjacent and complementary to the recess surface 93. Shoulder 91 and surface 97 project radiallyoutwardly and axially rearwardly into the recess 90 as is apparent from the drawing. The outer diameter of surface 97 is preferably smaller than the inner diameter of surface 93 in order for the projection on the wheel to enter the recess in the housing.
Upon turbine burst, the shoulder 91 enters and engages the recess 90 with the surfaces 97 and 93 frictionally engaging and braking the rotating material. Because of the angular relationship of these surfaces there is an inward retention of the fragmented pieces tending to hold the' pieces both away from the inlet blades 37 and away from the outlet or exhaust plate 40.
While the primary tendency is for the material to fly radially outward on rupture, the retention shoulder 93 constrains the material to pivot about the shoulder, thus applying some axial component in the movement. p
While the recess 90 in shoulder 91 will not completely contain the axial movement of the fragments toward the inlet 37 and the outlet 18 in all cases foran indefinite time, there is a braking function in the recess which delays the egress of the fragments axially until the destructive energy level is dissipated so low that for all essential purposes containment is achieved. r
The angular diverging configuration of the recess-90 is of significance since tests, in which the surfaces 93 and 97 were not undercut by cylindrical and parallel to the shaft axis, resulted in a failure in exhaust plate 40 as well as an outward bulging of the back-plate 30. The fragments more promptly pivot about the shoulders of the cylindrical surfaces and move toward the inlet before sufficient dissipation of energy. The decrease in the effectiveness of such a modified recess was substantiated by a reduced scraping of the hub segments on the cylindrical step on the back-plate.
I claim:
1. A rotary turbine comprising; a turbine wheel having a hub and a plurality of blades extending therefrom, housing means surrounding said wheel, inlet nozzle means associated with the blades, exhaust passage means associated with the blades, and means to assist in containment of the turbine wheel upon exceeding the burst speed thereof including an annular recess on said housing means that increases in diameter axially away from the turbine wheel, said turbine wheel being formed with a shoulder extending toward said recess, said recess being generally conical and diverging away from said turbine wheel, said shoulder being generally conical and complementary to said recess.
2. A radial flow turbine assembly, comprising: a rotary turbine wheel having a hub with blades extending from the hub, housing means surrounding said turbine wheel and defining generally radially disposed turbine inlet means and generally axially disposed turbine outlet means, containment means for minimizing turbine wheel burst damage including annual recess means within said housing having a first portion of predetermined diameter and a second portion of greater diameter spaced axially further from said turbine wheel than said first diameter portion, and projection means on said turbine wheel extending into said recess means.
3. A radial flow turbine assembly as defined in claim 2, wherein said projection means on said turbine wheel is a continuous annular projection on the turbine hub, said projection being spaced a substantial radial distance from the tips of the turbine blades, said recess means being closely adjacent said annular projection and being located in the housing means on the side of the turbine wheel opposite said outlet means.
4. A radial flow turbine assembly as defined in claim 2, wherein said recess means is generally conical and diverges away from said first diameter portion and is located in the housing means on the side of the turbine wheel opposite said outlet means.
5. A radial fiow turbine assembly as defined in claim 4, wherein said projection means is conical and diverges into said recess means, and the conical surfaces on the projection and in the recess define braking means for dissipating energy of the turbine wheel on rupture.
6. A radial flow turbine as defined in claim 2, including means surrounding the inlet portion of the turbine blades for assisting in containment of the turbine wheel.
7. A radial flow turbine as defined in claim 6, wherein said means surrounding the inlet portion of the turbine blades includes a plurality of stationary stator blades extending completely toward said turbine wheel blades.
8. A radial flow turbine assembly, comprising: a rotary turbine wheel having a hub with blades extending from the hub, housing means surrounding said turbine wheel and defining generally radially disposed turbine inlet means and generally axially disposed turbine outlet means, containment means for minimizing turbine wheel burst damage including annular recess means within said housing means having a first portion of predetermined diameter and a second portion of greater diameter spaced axially further from said turbine wheel than said fust diameter portion, projection means on said turbine wheel extending into said recess means, said projection means on said turbine wheel being a continuous annular projection on the turbine hub, said projection being spaced normally a substantial distance from the tips of the turbine blades, said recess means being closely adjacent said annular projection and being located in the housing means on the side of the turbine wheel opposite said outlet means, said recess means being generally conical and diverging away from said first diameter portion, said projection means being conical and diverging into said recess means, and means surrounding the inlet portion of the turbine blades for assisting in containment of the turbine wheel.
I! k '0' t

Claims (8)

1. A rotary turbine comprising; a turbine wheel having a hub and a plurality of blades extending therefrom, housing means surrounding said wheel, inlet nozzle means associated with the blades, exhaust passage means associated with the blades, and means to assist in containment of the turbine wheel upon exceeding the burst speed therEof including an annular recess on said housing means that increases in diameter axially away from the turbine wheel, said turbine wheel being formed with a shoulder extending toward said recess, said recess being generally conical and diverging away from said turbine wheel, said shoulder being generally conical and complementary to said recess.
2. A radial flow turbine assembly, comprising: a rotary turbine wheel having a hub with blades extending from the hub, housing means surrounding said turbine wheel and defining generally radially disposed turbine inlet means and generally axially disposed turbine outlet means, containment means for minimizing turbine wheel burst damage including annual recess means within said housing having a first portion of predetermined diameter and a second portion of greater diameter spaced axially further from said turbine wheel than said first diameter portion, and projection means on said turbine wheel extending into said recess means.
3. A radial flow turbine assembly as defined in claim 2, wherein said projection means on said turbine wheel is a continuous annular projection on the turbine hub, said projection being spaced a substantial radial distance from the tips of the turbine blades, said recess means being closely adjacent said annular projection and being located in the housing means on the side of the turbine wheel opposite said outlet means.
4. A radial flow turbine assembly as defined in claim 2, wherein said recess means is generally conical and diverges away from said first diameter portion and is located in the housing means on the side of the turbine wheel opposite said outlet means.
5. A radial flow turbine assembly as defined in claim 4, wherein said projection means is conical and diverges into said recess means, and the conical surfaces on the projection and in the recess define braking means for dissipating energy of the turbine wheel on rupture.
6. A radial flow turbine as defined in claim 2, including means surrounding the inlet portion of the turbine blades for assisting in containment of the turbine wheel.
7. A radial flow turbine as defined in claim 6, wherein said means surrounding the inlet portion of the turbine blades includes a plurality of stationary stator blades extending completely toward said turbine wheel blades.
8. A radial flow turbine assembly, comprising: a rotary turbine wheel having a hub with blades extending from the hub, housing means surrounding said turbine wheel and defining generally radially disposed turbine inlet means and generally axially disposed turbine outlet means, containment means for minimizing turbine wheel burst damage including annular recess means within said housing means having a first portion of predetermined diameter and a second portion of greater diameter spaced axially further from said turbine wheel than said first diameter portion, projection means on said turbine wheel extending into said recess means, said projection means on said turbine wheel being a continuous annular projection on the turbine hub, said projection being spaced normally a substantial distance from the tips of the turbine blades, said recess means being closely adjacent said annular projection and being located in the housing means on the side of the turbine wheel opposite said outlet means, said recess means being generally conical and diverging away from said first diameter portion, said projection means being conical and diverging into said recess means, and means surrounding the inlet portion of the turbine blades for assisting in containment of the turbine wheel.
US29875A 1970-04-20 1970-04-20 Turbine wheel containment device Expired - Lifetime US3652176A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2987570A 1970-04-20 1970-04-20

Publications (1)

Publication Number Publication Date
US3652176A true US3652176A (en) 1972-03-28

Family

ID=21851356

Family Applications (1)

Application Number Title Priority Date Filing Date
US29875A Expired - Lifetime US3652176A (en) 1970-04-20 1970-04-20 Turbine wheel containment device

Country Status (5)

Country Link
US (1) US3652176A (en)
JP (1) JPS4932882B1 (en)
DE (1) DE2117097C3 (en)
FR (1) FR2089945A5 (en)
GB (1) GB1342966A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589822A (en) * 1984-07-09 1986-05-20 Mici Limited Partnership Iv Centrifugal blood pump with impeller
US4606698A (en) * 1984-07-09 1986-08-19 Mici Limited Partnership Iv Centrifugal blood pump with tapered shaft seal
US4898518A (en) * 1988-08-31 1990-02-06 Minnesota Mining & Manufacturing Company Shaft driven disposable centrifugal pump
GB2225389A (en) * 1988-11-03 1990-05-30 Ingersoll Rand Co Turbine containment system
WO1992007180A1 (en) * 1990-10-22 1992-04-30 Sundstrand Corporation Radial turbine containment ring system
US5601406A (en) * 1994-12-21 1997-02-11 Alliedsignal Inc. Centrifugal compressor hub containment assembly
WO2000034628A1 (en) * 1998-12-07 2000-06-15 Pratt & Whitney Canada Corp. Impeller containment system
US6533541B1 (en) 2001-12-04 2003-03-18 Honeywell International, Inc. High energy particle arrestor for air turbine starters
EP1353041A1 (en) * 2002-04-12 2003-10-15 ABB Turbo Systems AG Turbocharger with means on the shaft to axially restrain said shaft in the event of the compressor bursting
US6767185B2 (en) 2002-10-11 2004-07-27 Honeywell International Inc. Turbine efficiency tailoring
WO2006131470A2 (en) * 2005-06-06 2006-12-14 Gebr. Becker Gmbh Radial fan
US20070253804A1 (en) * 2006-04-27 2007-11-01 Pratt & Whitney Canada Corp. Rotor containment element with frangible connections
US20080148728A1 (en) * 2006-12-20 2008-06-26 International Engine Intellectual Property Company, Llc Low-restriction turbine outlet housing
US20100077768A1 (en) * 2008-09-26 2010-04-01 Andre Leblanc Diffuser with enhanced surge margin
CN101228357B (en) * 2005-06-06 2010-12-29 格布尔·贝克尔有限责任公司 Radial fan
US20110083433A1 (en) * 2009-10-14 2011-04-14 Peter Stroph Explosion protection for a turbine and combustion engine
US20110308229A1 (en) * 2010-06-18 2011-12-22 Behzad Hagshenas Rotating catcher for impeller containment
US20120223526A1 (en) * 2006-03-14 2012-09-06 Cambridge Research And Development Limited Rotor and nozzle assembly for a radial turbine and method of operation
US20130000300A1 (en) * 2011-06-28 2013-01-03 Caterpillar Inc. Nozzled turbocharger turbine and associated engine and method
WO2013124614A1 (en) * 2012-02-23 2013-08-29 Napier Turbochargers Limited Turbocharger
US20140234091A1 (en) * 2011-12-27 2014-08-21 Mitsubishi Heavy Industries, Ltd. Turbine for turbocharger and method for assembling turbocharger
US9140138B2 (en) 2012-05-31 2015-09-22 Hamilton Sundstrand Corporation Turbomachine containment structure
US9926942B2 (en) 2015-10-27 2018-03-27 Pratt & Whitney Canada Corp. Diffuser pipe with vortex generators
US20190292946A1 (en) * 2018-03-22 2019-09-26 GM Global Technology Operations LLC Nested flange joint
US10570925B2 (en) 2015-10-27 2020-02-25 Pratt & Whitney Canada Corp. Diffuser pipe with splitter vane
US11199106B1 (en) 2020-08-21 2021-12-14 Hamilton Sundstrand Corporation Blade containment device
DE102010043198B4 (en) 2010-11-01 2022-06-02 Abb Schweiz Ag Burst protection for an exhaust gas turbocharger
US20230279785A1 (en) * 2020-08-07 2023-09-07 Concepts Nrec, Llc Flow Control Structures for Enhanced Performance and Turbomachines Incorporating the Same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2570436B1 (en) * 1984-09-14 1989-04-28 Hespel Claude TURBINE WITH PRESSURIZED HOT LIQUID EXPANSION AND DEVICES COMPRISING SUCH A TURBINE
CH676737A5 (en) * 1988-08-19 1991-02-28 Asea Brown Boveri IC engine exhaust turbocharger - has gas turbine rotor hub with rotary burst collar on side facing hub bearing
GB9721434D0 (en) * 1997-10-10 1997-12-10 Holset Engineering Co Improvements in or relating to compressors and turbines
DE102013215193A1 (en) * 2013-08-02 2015-02-05 Bayerische Motoren Werke Aktiengesellschaft turbocharger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1488931A (en) * 1921-10-26 1924-04-01 Marechal Paul Joseph Charles Turbo engine
CA624166A (en) * 1961-07-18 Fairchild Engine And Airplane Corporation Controlled turbine wheel failure
US3175804A (en) * 1963-04-01 1965-03-30 Bendix Corp Radial-flow turbine safety
US3506373A (en) * 1968-02-28 1970-04-14 Trw Inc Hydrodynamically balanced centrifugal impeller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA624166A (en) * 1961-07-18 Fairchild Engine And Airplane Corporation Controlled turbine wheel failure
US1488931A (en) * 1921-10-26 1924-04-01 Marechal Paul Joseph Charles Turbo engine
US3175804A (en) * 1963-04-01 1965-03-30 Bendix Corp Radial-flow turbine safety
US3506373A (en) * 1968-02-28 1970-04-14 Trw Inc Hydrodynamically balanced centrifugal impeller

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589822A (en) * 1984-07-09 1986-05-20 Mici Limited Partnership Iv Centrifugal blood pump with impeller
US4606698A (en) * 1984-07-09 1986-08-19 Mici Limited Partnership Iv Centrifugal blood pump with tapered shaft seal
US4898518A (en) * 1988-08-31 1990-02-06 Minnesota Mining & Manufacturing Company Shaft driven disposable centrifugal pump
GB2225389A (en) * 1988-11-03 1990-05-30 Ingersoll Rand Co Turbine containment system
GB2225389B (en) * 1988-11-03 1992-08-19 Ingersoll Rand Co Turbine including a rotor containment system
WO1992007180A1 (en) * 1990-10-22 1992-04-30 Sundstrand Corporation Radial turbine containment ring system
US5601406A (en) * 1994-12-21 1997-02-11 Alliedsignal Inc. Centrifugal compressor hub containment assembly
US5613830A (en) * 1994-12-21 1997-03-25 Alliedsignal Inc. Centrifugal compressor hub containment assembly
WO2000034628A1 (en) * 1998-12-07 2000-06-15 Pratt & Whitney Canada Corp. Impeller containment system
US6224321B1 (en) * 1998-12-07 2001-05-01 Pratt & Whitney Canada Inc. Impeller containment system
US6533541B1 (en) 2001-12-04 2003-03-18 Honeywell International, Inc. High energy particle arrestor for air turbine starters
US6814539B2 (en) 2001-12-04 2004-11-09 Honeywell International, Inc. High energy particle arrestor for air turbine starters
EP1353041A1 (en) * 2002-04-12 2003-10-15 ABB Turbo Systems AG Turbocharger with means on the shaft to axially restrain said shaft in the event of the compressor bursting
WO2003087541A1 (en) * 2002-04-12 2003-10-23 Abb Turbo Systems Ag Turbo charger with means on the shaft for axially securing of said shaft if the compressor wheel bursts
US7344362B2 (en) 2002-04-12 2008-03-18 Abb Turbo Systems Ag Turbocharger
CN1306148C (en) * 2002-04-12 2007-03-21 Abb涡轮系统有限公司 Turbo charger with means on the shaft for axially securing of said shaft if the compressor wheel bursts
US6767185B2 (en) 2002-10-11 2004-07-27 Honeywell International Inc. Turbine efficiency tailoring
US20040234373A1 (en) * 2002-10-11 2004-11-25 Martin Steven P. Turbine efficiency tailoring
US7066715B2 (en) 2002-10-11 2006-06-27 Honeywell International, Inc. Turbine efficiency tailoring
US7922466B2 (en) 2005-06-06 2011-04-12 Gebr. Becker Gmbh Radial fan
WO2006131470A2 (en) * 2005-06-06 2006-12-14 Gebr. Becker Gmbh Radial fan
WO2006131470A3 (en) * 2005-06-06 2007-04-19 Becker Gmbh Gebr Radial fan
US20110150637A1 (en) * 2005-06-06 2011-06-23 Gebr. Becker Gmbh Radial fan
US20090028730A1 (en) * 2005-06-06 2009-01-29 Bernhard Radermacher Radial fan
CN101228357B (en) * 2005-06-06 2010-12-29 格布尔·贝克尔有限责任公司 Radial fan
US8287229B2 (en) * 2006-03-14 2012-10-16 Cambridge Research And Development Limited Rotor and nozzle assembly for a radial turbine and method of operation
US8485775B2 (en) 2006-03-14 2013-07-16 Cambridge Research And Development Limited Rotor and nozzle assembly for a radial turbine and method of operation
US20120223526A1 (en) * 2006-03-14 2012-09-06 Cambridge Research And Development Limited Rotor and nozzle assembly for a radial turbine and method of operation
US20070253804A1 (en) * 2006-04-27 2007-11-01 Pratt & Whitney Canada Corp. Rotor containment element with frangible connections
US7874136B2 (en) 2006-04-27 2011-01-25 Pratt & Whitney Canada Corp. Rotor containment element with frangible connections
WO2007124559A1 (en) * 2006-04-27 2007-11-08 Pratt & Whitney Canada Corp. Rotor containment element with frangible connections
US7562528B2 (en) * 2006-12-20 2009-07-21 International Engine Intellectual Property Company Llc Low-restriction turbine outlet housing
US20080148728A1 (en) * 2006-12-20 2008-06-26 International Engine Intellectual Property Company, Llc Low-restriction turbine outlet housing
US20100077768A1 (en) * 2008-09-26 2010-04-01 Andre Leblanc Diffuser with enhanced surge margin
US8235648B2 (en) 2008-09-26 2012-08-07 Pratt & Whitney Canada Corp. Diffuser with enhanced surge margin
US8556573B2 (en) 2008-09-26 2013-10-15 Pratt & Whitney Cananda Corp. Diffuser with enhanced surge margin
US20110083433A1 (en) * 2009-10-14 2011-04-14 Peter Stroph Explosion protection for a turbine and combustion engine
US8528328B2 (en) * 2009-10-14 2013-09-10 Mtu Friedrichshafen Gmbh Explosion protection for a turbine and combustion engine
US20110308229A1 (en) * 2010-06-18 2011-12-22 Behzad Hagshenas Rotating catcher for impeller containment
US8807918B2 (en) * 2010-06-18 2014-08-19 Hamilton Sundstrand Corporation Rotating catcher for impeller containment
DE102010043198B4 (en) 2010-11-01 2022-06-02 Abb Schweiz Ag Burst protection for an exhaust gas turbocharger
US20130000300A1 (en) * 2011-06-28 2013-01-03 Caterpillar Inc. Nozzled turbocharger turbine and associated engine and method
US8857178B2 (en) * 2011-06-28 2014-10-14 Caterpillar Inc. Nozzled turbocharger turbine and associated engine and method
US9810225B2 (en) * 2011-12-27 2017-11-07 Mitsubishi Heavy Industries, Ltd. Turbine for turbocharger and method for assembling turbocharger
US20140234091A1 (en) * 2011-12-27 2014-08-21 Mitsubishi Heavy Industries, Ltd. Turbine for turbocharger and method for assembling turbocharger
WO2013124614A1 (en) * 2012-02-23 2013-08-29 Napier Turbochargers Limited Turbocharger
US9683578B2 (en) 2012-02-23 2017-06-20 Napier Turbochargers Limited Turbocharger
US9140138B2 (en) 2012-05-31 2015-09-22 Hamilton Sundstrand Corporation Turbomachine containment structure
US9926942B2 (en) 2015-10-27 2018-03-27 Pratt & Whitney Canada Corp. Diffuser pipe with vortex generators
US10502231B2 (en) 2015-10-27 2019-12-10 Pratt & Whitney Canada Corp. Diffuser pipe with vortex generators
US10570925B2 (en) 2015-10-27 2020-02-25 Pratt & Whitney Canada Corp. Diffuser pipe with splitter vane
US11215196B2 (en) 2015-10-27 2022-01-04 Pratt & Whitney Canada Corp. Diffuser pipe with splitter vane
US20190292946A1 (en) * 2018-03-22 2019-09-26 GM Global Technology Operations LLC Nested flange joint
US10612418B2 (en) * 2018-03-22 2020-04-07 GM Global Technology Operations LLC Nested flange joint
US20230279785A1 (en) * 2020-08-07 2023-09-07 Concepts Nrec, Llc Flow Control Structures for Enhanced Performance and Turbomachines Incorporating the Same
US11828188B2 (en) * 2020-08-07 2023-11-28 Concepts Nrec, Llc Flow control structures for enhanced performance and turbomachines incorporating the same
US11199106B1 (en) 2020-08-21 2021-12-14 Hamilton Sundstrand Corporation Blade containment device

Also Published As

Publication number Publication date
DE2117097B2 (en) 1974-07-25
FR2089945A5 (en) 1972-01-07
GB1342966A (en) 1974-01-10
DE2117097C3 (en) 1975-03-13
DE2117097A1 (en) 1971-11-04
JPS4932882B1 (en) 1974-09-03

Similar Documents

Publication Publication Date Title
US3652176A (en) Turbine wheel containment device
US6009701A (en) Ducted fan gas turbine engine having a frangible connection
US7484924B2 (en) Device for limiting turbine overspeed in a turbomachine
US3241813A (en) Turbine wheel burst containment means
US6073439A (en) Ducted fan gas turbine engine
US3728041A (en) Fluidic seal for segmented nozzle diaphragm
US3356339A (en) Turbine rotor
US5336044A (en) Blade containment system and method
US2419669A (en) Diffuser for centrifugal compressors
JPS6123804A (en) Turbine stage structure
US5029439A (en) Gas turbine engine including a turbine braking device
JP2002531760A (en) Impeller containment device
JPH079194B2 (en) Gas turbine engine cooling air transfer means
GB2323637A (en) Bearing support for ducted fan engine
US20120141294A1 (en) Gas turbine rotor containment
CA2883295A1 (en) Rub tolerant fan case
JP2016104980A (en) Blisk rim face undercut
JPH08232683A (en) Protective shield for turbo-engine
KR102229292B1 (en) Exhaust gas turbocharger
US2381187A (en) Fluid coupling
US6135712A (en) Turbomachine with mutual braking of concentric shafts
US2962257A (en) Turbine overspeed controls
US4503667A (en) Turbine overspeed limiter for turbomachines
US2976012A (en) Turbine overspeed protective system
US3582230A (en) Turbomachine with cooled rotor