US3650708A - Metal plating of substrates - Google Patents

Metal plating of substrates Download PDF

Info

Publication number
US3650708A
US3650708A US3650708DA US3650708A US 3650708 A US3650708 A US 3650708A US 3650708D A US3650708D A US 3650708DA US 3650708 A US3650708 A US 3650708A
Authority
US
United States
Prior art keywords
plastic
metal
article
component
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
William P Gallagher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Occidental Chemical Corp
Original Assignee
Hooker Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hooker Chemical Corp filed Critical Hooker Chemical Corp
Application granted granted Critical
Publication of US3650708A publication Critical patent/US3650708A/en
Assigned to OCCIDENTAL CHEMICAL CORPORATION reassignment OCCIDENTAL CHEMICAL CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE APRIL 1, 1982. Assignors: HOOKER CHEMICALS & PLASTICS CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • C23C18/26Roughening, e.g. by etching using organic liquids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/934Electrical process
    • Y10S428/935Electroplating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/936Chemical deposition, e.g. electroless plating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12542More than one such component
    • Y10T428/12549Adjacent to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12778Alternative base metals from diverse categories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31529Next to metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • Y10T428/31696Including polyene monomers [e.g., butadiene, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • Y10T428/31699Ester, halide or nitrile of addition polymer

Definitions

  • Suitable substrates include, but are not limited to, cellulosic and ceramic materials-such as cloth, paper, wood, cork, cardboard, clay, porcelain, leather, porous glass, asbestos, cement, and the like.
  • the foregoing metal salts and their alcohol are used in ionic media, preferably in aqueous solutions.
  • nonaqueous media can be employed such as alcohols, for example, methyl alcohol, ethyl alcohol, butyl alcohol, heptyl alcohol, decyl alcohol and the like. Mixtures of alcohol and water can be used. Also useful are ionic mixtures of alcohol with other miscible solvents of the types disclosed hereinbefore.
  • the solution concentration is generally in the range from about 0.1 weight percent metal salt or complex based on the total weight of the solution up to a saturated solution, preferably from about I to about 10 weight percent metal salt or complex.
  • the pH of the metal salt or complex solution can range from about 4 to 14, but is generally maintained in the basic range, i.e., greater than 7, and preferably from about l0 to about 13.
  • the copper pyrophosphate polyvinyl chloride were immersed in the phosphorus solution was prepared by adding the following ingredients to sesquisulfide solution for 3 minutes at 50 Centigrade and water followed by dilution to 6 liters of solution and filtering: transferred to an ammoniacal nickel sulfate bath at 65 Cen- 223 grams copper oxide, 2,660 grams tetrapotassium tigrade for minutes.
  • Each of the experiments were repeated yrophosphate trihydrate, 123 grams oxalic acid, 40 grams of replacing the nickel with a bath containing an ammoniacal 30 volume percent aqueous ammonia, and 61.2 grams of 70 30 solution of 5 percent of copper sulfate.

Abstract

Substrates, particularly plastics, are plated with metals by pretreatment of the substrate with phosphorus sesquisulfide in an organic solvent to deposit phosphorus sesquisulfide at the surface, followed by containing the treated surface with a metal salt or complex thereof, to form a metal-phosphorus-sulfur compound. The resulting treated surface is either conductive or is capable of catalyzing the reduction of a metal salt to produce a conductive surface. Such conductive surfaces are readily electroplated by conventional techniques.

Description

[ 1 Mar. 21, 1972 [54] METAL PLATING OF SUBSTRATES [72] Inventor: William P. Gallagher, Monroeville, Pa.
[73] Assignee: Hooker Chemical Corporation, Niagara Falls, NY.
[22] Filed: Mar. 30, 1970 [21] Appl. No.: 23,967
Related U.S. Application Data [63] Continuation-impart of Ser. No. 855,037, Sept. 3,
1969, abandoned.
[52] U.S. Cl ..29/195,117/47,117/71, 117/130, 117/160, 204/30 [51] Int. Cl ..B23p 3/00 [58] Field of Search ..l17/47, 130, 160, 71;204/30; 29/195 [56] References Cited UNITED STATES PATENTS 3,403,035 9/1968 Schneble et al ..l17/47 A 3,445,350 5/1969 Klinger et al ..1 17/47 A OTHER PUBLICATIONS Bayard, .l. J. Electrodeposition on Plastic Materials in Metal Industry, May 1970, p. 256.
' Primary Examiner-Ralph S. Kendall -Att0rney-Peter F. Casella, Donald C. Studley, Richard P.
Mueller and James F. Mudd [57] ABSTRACT Substrates, particularly plastics, are plated with metals by pretreatment of the substrate with phosphorus sesquisulfide in an organic solvent to deposit phosphorus sesquisulfide at the surface, followed by containing the treated surface with a metal salt or complex thereof, to form a metal-phosphorussulfur compound. The resulting treated surface is either conductive or is capable of catalyzing the reduction of a metal salt to produce a conductive surface. Such conductive surfaces are readily electroplated by conventional techniques.
40 Claims, No Drawings METAL PLATING OF SUBSTRATES REFERENCE TO PRIOR APPLICATION This is a continuation-in-part of application Ser. No. 855,037, filed Sept. 3, i969, and now abandoned.
BACKGROUND OF THE INVENTION There is a rapidly increasing demand for metal plated articles, for example, in the production of low cost plastic articles that have a simulated metal appearance. Such articles are in demand in such industries as automotive, home appliance, radio and television and for use in decorative containers and the like. Heretofore, the metal plating of plastics and the like has required many process steps, and generally such processes have been applicable to only one or a few related substrates. It was particularly surprising to find that plastics and the like could be plated with metal through the use of phosphorus sesquisulfide.
It is an object of this invention to provide a simple process for the metal plating of plastics. Another object of the invention is to provide a process that is applicable to the plating of many different substrates. A further object of the invention is to provide articles having an adherentmetal coating that is resistant to peeling, temperature cycling and corrosion. Such coatings are electrically conductive whereby static charges may be readily dissipated from the surfaces. The metal coatings further serve to protect the articles from abrasion, scratching and marring, reduce their porosity and improve their thermal conductivity. The process of this invention can be used for unidirectional mirrors and the like; water and liquid collecting devices and the like; protective coatings on houses, cars, boats, power line poles, street lights and the like; and in thermal control of clothing, houses and the like; and the like.
SUMMARY OF THE INVENTION This invention provides a process which comprises forming a metal-phosphorus-sulfur compound at the surface of a substrate to render the surface susceptible to conventional electroless plating and/or electrolytic plating. More particularly, this invention provides a process which comprises subjecting a substrate to phosphorus sesquisulfide so as to deposit phosphorus sesquisulfide at the surface and thereafter contacting the thus-treated surface with a solution of a metal salt or complex thereof to form a metal-phosphorus-sulfur compound. ln one aspect of the invention, the treated surface is subjected to electroless metal plating to deposit an electroless conductive coating on the surface. Thereafter, the article is electroplated so as to deposit an adherent metal coating of the desired thickness on the electroless conductive coating.
Also in accordance with the invention, there is provided an article having a metal-phosphorus-sulfur compound adherently formed at the surface of the substrate.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The process of this invention is applicable to substrates, such as plastics and to other substantially nonmetallic substrates. Suitable substrates include, but are not limited to, cellulosic and ceramic materials-such as cloth, paper, wood, cork, cardboard, clay, porcelain, leather, porous glass, asbestos, cement, and the like.
Typical plastics to which the process of this invention is applicable include the homopolymers and copolymers of ethylenically unsaturated aliphatic, alicyclic and aromatic hydrocarbons such as polyethylene, polypropylene, polybutene, ethylenepropylene copolymers; copolymers of ethylene or propylene with other olefins, polybutadiene; polymers of butadiene, polyisoprene, both natural and synthetic, polystyrene and polymers of pentene, hexene, heptene, octene, 2-methyl-propene, 4-methyl-hexene-l, bicyclo (2.2.1.)- 2-heptene, pentadiene, hexadiene, 2,3-dimethylbutadienel,3,4-vinylcyclohexene, cyclopentadiene, methylstyrene, and
the like. Other polymers useful in the invention include polyidene, indenecoumarone resins; polymers of acrylate esters and polymers of methacrylate esters, acrylate and methacrylate resins such as ethyl acrylate, n-butyl methacrylate, isobutyl methacrylate, ethyl methacrylate and methyl methacrylate; alkyd resins; cellulose derivatives such as cellulose acetate, cellulose acetate butyrate, cellulose nitrate, ethyl cellulose, hydroxyethyl cellulose, methyl cellulose and sodium carboxymethyl cellulose; epoxy resins; furan resins (furfuryl alcohol or furfural ketone); hydrocarbon resins from petroleum; isobutylene resins (polyisobutylene); isocyanate resins (polyurethanes); melamine resins such as melamine-formaldehyde and melamine-urea-formaldehyde; oleoresins; phenolic resins such as formaldehyde, phenolic-elastomer, phenolicepoxy, phenolic-polyamide, and phenolic-vinyl acetals; polyamide polymers, such as polyamides, polyamide-epoxy and particularly long chain synthetic polymeric amides containing recurring carbonamide groups as an integral part of the main polymer chain; polyester resins such as unsaturated polyesters of dibasic acids and dihyroxy compounds, and polyester elastomer and resorcinol resins such as resorcinol-formaldehyde, resorcinol-furfural, resorcinol-phenol-formaldehyde, resorcinal-polyamide and resorcinol-urea; rubbers such as natural rubber, synthetic polyisoprene, reclaimed rubber, chlorinated rubber, polybutadiene, cyclized rubber, butadiene-acrylonitrile rubber, butadiene-styrene rubber, and butyl rubber; neoprene rubber (polychloroprene); polysulfides (Thiokol); terpene resins; urea resins; vinyl resins such as polymers of vinyl acetal, vinyl acetate or vinyl alcohol-acetate copolymer, vinyl alcohol, vinyl chloride, vinyl butryal, vinyl chloride-acetate copolymer, vinyl pyrrolidone and vinylidene chloride copolymer; polyformaldehyde; polyphenylene oxide; polymers of diallyl phthalates and phthalates; polycarbonates of phosgene or thiophosgene and dihydroxy compounds such as bisphenols, thermoplastic polymers of bisphenols and epichlorohydrin (trade named Phenoxy polymers); graft copolymers and polymers of unsaturated hydrocarbons and an unsaturated monomer, such as graft copolymers of polybutadiene, styrene, and acrylonitrile, commonly called ABS resins, ABS-polyvinyl chloride polymers, recently introduced under the trade name of Cycovin; and acrylic polyvinyl chloride polymers, known by the trade name of Kydex 100.
The polymers of the invention can be used in the unfilled condition, or with fillers such as glass fiber, glass powder, glass beads, asbestos, talc and other mineral fillers, wood flour and other vegetable fillers, carbon it its various forms, dyes, pigments, waxes and the like.
The substrates of the invention can be in various physical forms, such as shaped articles, for example, moldings, sheets, rods, and the like; fibers, films and fabrics, and the like.
In the first step of the preferred process of the invention, the substrate is treated with phosphorus sesquisulfide. The phosphorous sesquisulfide can be utilized as a liquid or dis solved in a solvent. Suitable solvents or diluents for the phosphorus sesquisuflide are solvents that dissolve the phosphorus sesquisulfide and which preferably swell the surface of a plastic without detrimentally affecting the surface of the plastic. Such solvents include the halogenated hydrocarbons and halocarbons such as chloroform, methyl chloroform, phenyl chloroform, dichloroethylene, trichloroethylene, perchloroethylene, trichloroethane, dichloropropane, ethyl dibromide, ethyl chlorobromide, propylene dibromide, monochlorobenzene, monochlor'otoluene and the like; aromatic hydrocarbons such as benzene, toluene, xylene, ethyl benzene, naphthalene and the like; ketones such as acetone, methyl ethyl ketone, and the like; acetic acid; acetic acidtrichloroethylene mixtures; carbon disulfide; and the like.
When a solution of phosphorus sesquisulfide is employed in the process, the solution concentration is generally in the range from about 0.0001 weight percent of phosphorus sesquisulfide based on the weight of the solution up to a saturated solution, and preferably from about 0.5 to about 2.5 percent. Prior to contacting the substrate with the phosphorus sesquisulfide, liquid or solution, the surface of the substrate should be clean. When a solution is used, the solvent generally serves to clean the surface. A solvent wash may be desirable when liquid phosphorus sesquisulfide is employed. The phosphorus sesquisulfide treatment is generally conducted at a temperature below the softening point of the substrate, and below the boiling point of the solvent, if the solvent is used. Generally, the temperature is in the range of about to 135 Centigrade, but preferably in the range of about 15 to 75 Centigrade. The contact time varies depending on the nature of the substrate, the solvent and temperature, but is generally in the range ofabout 1 second to 1 hour or more, preferably in the range of about 1 to 20 minutes.
It has been found that subjection of the substrate to the solvent hereinbefore disclosed prior to subjection to the phosphorus sesquisulfide has a very marked effect on the adhesion of the final metal plated article. The temperature of the solvent is directly related to the adhesion realized. Generally, the temperature is in the range of about 30 Centigrade to the boiling point of the solvent, preferably about 50 to 100 and higher than the temperature of the solution of phosphorus sesquisulfide, ifa solution is used. The contact time varies depending on the nature of the substrate, solvent and temperature but preferably is l to 15 minutes.
As a result of the first treatment step, the phosphorus sesquisulfide is deposited at the surface of the substrate. By this is meant that the phosphorus sequisulfide can be located on the surface, embedded in the surface and embedded beneath the surface of the substrate. The location of the phosphorus sesquisulfide is somewhat dependent on the action ofthe solvent on the surface ifone is used.
Following the first treatment step, the substrate can be rinsed with a solvent, and then can be dried by merely exposing the substrate to the atmosphere or to inert atmospheres such as nitrogen, carbon dioxide, and the like, or by drying the surface with radiant heaters or in a conventional oven. Drying times can vary considerably, for example, from 1 second to 30 minutes or more, preferably seconds to minutes, more preferably 5 to 120 seconds. The rinsing and drying steps are optional.
In the second treatment step ofthe process of the invention, the phosphorus sesquisulfide treated substrate is contacted with a solution of a metal salt or a complex of a metal salt, which is capable of reacting with the phosphorus to form a metal-phosphorus-sulfur compound. The term metalphosphorussulfur compound used herein, means the metalphosphorus-sulfur coating which is formed at the surface of the substrate. Without being limited to theory, the metalphosphorus-sulfur compound may be an ionic compound or a solution (alloy). The metals generally employed are those of Groups IB, [18, WE, VB, VIB, VIIB, and VIII of the Periodic Table. The preferred metals are copper, silver, gold, chromium, vanadium, tantalum, cadmium, tungsten, molybdenum, and the like.
The metal salts that are used in the invention can contain a wide variety of anions. Suitable anions include the anions of mineral acids such as sulfate, chloride, bromide, iodide, fluoride, nitrate, phosphate, chlorate, perchlorate, borate, carbonate, cyanide, and the like. Also useful are the anions of organic acids such as formate, acetate, citrate, butyrate, valerate, caproate, stearate, oleate, palmitate, dimethylglyoxime, and the like. Generally, the unions of organic acids contain one to l8 carbon atoms.
Some useful metal salts include copper sulfate, copper chloride, silver nitrate, nickel chloride and nickel sulfate.
The metal salts can be complexed with a complexing agent that produces a solution having the basic pH 7). Particularly useful are the ammonical complexes of the metal salts, in which one to six ammonia molecules are complexed with the foregoing metal salts. Typical examples include NiSO '6NH NiSO.,'3NH CuSO,-4NH NiCl-6NH Ni(NO '4NH and the like. Other useful complexing agents include quinoline,
amines and pyridine. Useful complexes include compounds of the formula MX Q wherein M is the metal ion, X is chlorine or bromine and Q is quinoline. Typical examples include: COCIzQg, CoBr Q NiCl Q NiBr- .Q CuCl Q- CuBr Q and ZnCl Q Useful amine complexes include the mono- (ethylenediamine). bis-(ethylenedamine)-, tris(ethylenediamine)-, bis(l,2-propane diamine)-, and bisl,3-propanediamine)-complexes of salts such as copper sulfate. Typical pyridine complexes include NiCl (py) and CuCl (py) where py is pyridine.
The foregoing metal salts and their alcohol, are used in ionic media, preferably in aqueous solutions. However, nonaqueous media can be employed such as alcohols, for example, methyl alcohol, ethyl alcohol, butyl alcohol, heptyl alcohol, decyl alcohol and the like. Mixtures of alcohol and water can be used. Also useful are ionic mixtures of alcohol with other miscible solvents of the types disclosed hereinbefore. The solution concentration is generally in the range from about 0.1 weight percent metal salt or complex based on the total weight of the solution up to a saturated solution, preferably from about I to about 10 weight percent metal salt or complex. The pH of the metal salt or complex solution can range from about 4 to 14, but is generally maintained in the basic range, i.e., greater than 7, and preferably from about l0 to about 13.
The step of contacting the phosphorus sesquisulfide treated substrate with the solution of metal salt is generally conducted at a temperature below the softening point of the substrate, and below the boiling point of the solvent, if one is used. Generally, the temperature is in the range ofabout 30 to l 10 Centigrade, preferably from about 50 to Centigrade. The time of contact can vary considerably, depending on the nature of the substrate, the characteristics of the metal salts employed and the contact temperature. However, the time of contact is generally in the range of about 0.1 to 30 minutes, preferably about 5 to 10 minutes.
Depending on the conditions employed in the two treatment steps, the duration of the treatments, and the nature of the substrate treated, the resulting treated surface may be either (1) conductive, such that the surface can be readily electroplated by conventional techniques, or (2) non conductive. In the latter instance the treated surface contains active or catalytic sites that render the surface susceptible to further treatment by electroless plating process that produce a conductive coating on the plastic surface. Such a conductive coating is then capable of being plated by conventional electrolytic processes.
The treated substrates that result from contacting the phosphorus-sesquisulfide treated surface with a metal salt solution can be subjected to a process that has become known in the art as electroless plating or chemical plating. In a typical electroless plating process, a catalytic surface is contacted with a solution of metal salt under conditions in which the metallic ion of the metal salt is reduced to the metallic state and deposited on the catalytic surface. The use of this process with the products of this invention relies upon the catalytic metal sites deposited on the surface as a result of the treatment with the solution of metal salt or complex of this inven-' tion. A suitable chemical treating bath for the deposition ofa nickel coating on the catalytic surface produced in accordance with the process of the invention can comprise, for example, a solution ofnickel salt in an aqueous hypophosphite solution. Suitable hypophosphites include the alkali metal hypophosphites such as sodium hypophosphite and potassium hypophosphite, and the alkaline earth metal hypophosphites such as calcium hypophosphite and barium hypophosphite. Other suitable metal salts for use in the chemical treating bath include the metal salts described hereinbefore with respect to the metal salt treatment of the phosphorus-treated substrate of the invention. Other reducing media include formaldehyde, hydroquinone and hydrazinei Other agents, such as buffering agents, complexing agents, and other additives are included in the chemical plating solutions or baths.
The treated substrate of the invention that are conductive can be electroplated by the processes known in the art. The article is generally used as the cathode. The metal desired to be plated is generally dissolved in an aqueous plating bath,
EXAMPLE 16 A polypropylene plaque was immersed in a 50 bath containing trichloroethylene for 15 minutes and then treated as in although other media can be empoyed Generally a Soluble 5 Example 15. The resistance of the resulting treated plastic surmetal anode of the metal to be plated can be employed. In face was ohms t h sampie elec' some instances, however, a carbon anode or other inert anode f j to give 03mm seml'bnght mcke] SFnke and is used. Suitable metals, solutions and condition for elecmflthlckness of and Copper Phereom'rhe adheswn was deter troplating are described in Metal Finishing Guidebook Directommed to be 100 pounds per ry for 1967, published by Metals and Plastics Publications, 10 EXAMPLE 7 Inc. Westwood, N. .l.
The following examples serve to illustrate the invention but An epoxy resin-glass fiber resin laminate was immersed for are not intended to limit it. Unless specified otherwise, all tem- 5 minutes in a 1.3 percent solution of phosphorus sesquisulperatures are in degrees centigrade and parts are understood fide in methylene chloride at room temperature, dried in air to be expressed in parts by weight. for 10 seconds and then immersed for 10 minutes in an ammoniacal solution of nickel sulfate at 60 Centigrade. The re- EXAMPLE I sistance of the black preplate was 5,000 ohms per centimeter.
A sample of polypropylene Sheet was immersed for 2 The laminate was thereafter electroplated. minutes in a solution containing 2 percent by weight phosphorus sesquisulfide in a mixture of 700 milliliters of EXAMPLES 18-26 trichloroethylene, 700 milliliters of perchloroethylene and 14 A 2 percent solution of phosphorus sesquisulfide was milliliters of ethanol at 70 Centigrade. The sample was prepared in the following specified solvents. Thereafter, samthereafter immersed for 10 minutes in a solution of copper ples of polypropylene, ABS, phenolic resin, epoxy resin, and pyrophosphate at 60 Centigrade. The copper pyrophosphate polyvinyl chloride were immersed in the phosphorus solution was prepared by adding the following ingredients to sesquisulfide solution for 3 minutes at 50 Centigrade and water followed by dilution to 6 liters of solution and filtering: transferred to an ammoniacal nickel sulfate bath at 65 Cen- 223 grams copper oxide, 2,660 grams tetrapotassium tigrade for minutes. Each of the experiments were repeated yrophosphate trihydrate, 123 grams oxalic acid, 40 grams of replacing the nickel with a bath containing an ammoniacal 30 volume percent aqueous ammonia, and 61.2 grams of 70 30 solution of 5 percent of copper sulfate. in every instance, a percent by volume aqueous nitric acid. A red conductive metal-phosphorus-sulfur compound was formed. copper-phosphorus-sulfur coating was produced on the sur Example 50mm face of the polypropylene. Thereafter, layers of nickel and chrome were adherently bound to the polypropylene by elec- I trodeposition as follows: The article was plated in a bath of l: semi-bright nickel (Harshaw Co.) employed a current density 20 Trichloroethnne of 50 amperes per square foot, followed by plating in a bath of Benzene bright nickel (Harshaw Co.) at 50 amperes per square foot 13:12: current density and then plating in a chrome bath (Udylite 24 Decal,
Corp.) at 150 amperes per square foot current density. 40 25 Dimethylformamide 26 Dimethylsulfoxide EXAMPLES 2-14 Following the procedure of Example l, a metal-phosphorus- M L 27 sulfur coating was obtained on the following specified plastics Following the Procedure of Example 18 the following metal l a 2 percent Solunon of phosphorus sesqulsulfide salts were employed in the metal salt bath to obtain a metaltilchloioethylene and perchlgmethylene foilowed by phosphorus-sulfur compound: nickel chloride, nickel nitrate, Jectlon the thug-Framed plastic to the Speclfied metal Salt nickel acetate, nickel formate, nickel citrate, silver nitrate, baths. Table l specifies the plastic, metal salt bath and the apiron chloride and cobalt chloride pearance ofthe resulting metal-phosphorus-sulfur coating. r r A 7 EXAMPLE 28 EXAMPLE 15 Following the procedure of Example 18, the following sub- A molded polypropykne plaque was immersed f 5 strates were provided with an adherent metal coating: novolac minutes ina 1 percent solution of phosphorus sesquisulfide in resin cotton String, Teflon, cardboard leather, rubber, trichloroethylene at room temperature, rinsed with water and masonite, Ceramics Wood Lexi-m (Polycarbonate), nylon, immediately subjected for 10 minutes in an aqueous solution Polyacetyl, acryhcs (PleXigIass), and Polystyrenecontaining nickel sulfate (0.063 mole per liter) and ammonia (2.5 moles per liter) maintained at Centigrade. After dry- EXAMPLE 29 ing, the black plastic surface had a resistance of 10,000 ohms 60 An epoxy resin-glass fiber laminate was immersed for 5 per centimeter. rninutes at room temperature in a 1 percent solution of TABLE I Example Plastic Metal salt bath Appearance 2 Polypropylene. Copper pyrophosphate in water Red coating. 3 d Ammoniacal nickel sulfate Black coating. 4 Coppery coating. 5 0 Black coating. 6 y y Grey coating. 7 Poiyvinylacetate-polyvinylchloride Black coating. 3 Filled polyproplyene Black and yellow coating.
ABS 0 Slate colored coating.
. Copper pyrophosphate in water. Red coating. .do.. Transparent amber coating.
do Dull olive gray coating.
Brown and yellow coating.
phosphorus sesquisulfide dissolved in a 2:1 (by volume) solvent mixture of trichloroethylene and methylene chloride. After being rinsed in a water bath, the laminate was immersed for 15 minutes in an aqueous solution, at 65 Centigrade, containing nickel sulfate (0.063 mole per liter) and ammonia (2.5 mole per liter). The sample was rinsed with water and then immersed in an aqueous electroless copper bath for minutes at room temperature. The electroless copper bath had the following composition.
CuNO GH O l5 g. per liter NuHCO l0 g. perliter Rochelle salt 30 g. per liter NuOH 20 g. per liter Formaldehyde (3771) I00 ml. per liter After drying the sample was electroplated with 0.3-mil semi bright nickel and 1.7 mil acid copper.
EXAMPLE 30 An epoxy resin-glass fiber laminate was treated as in Example 29 except that an electroless nickel bath instead ofelectroless copper was used. The electroless nickel bath had the following composition.
NI$() 28.9 g. Sodium citrate 8.) g. Sodium hypophosphite l2.(l g. Magnesium sulfate 7.8 g. Writer 800 ml.
The sample was immersed in the bath at 85 Centigrade for l0 minutes, and then electroplated as described in Example 29.
EXAMPLE 31 A set of four polypropylene discs were immersed in a l percent solution of phosphorus sesquisulflde in perchloroethylene for minutes at about 32.5 C. and then for 15 minutes in a 70 C. aqueous copper chloride-ethylene diamine solution. A second set of four discs was subjected to the same procedure except that they were immersed for 2 minutes in perchloroethylene at 65 C. before subjection to the phosphorus sesquisulfide. Both sets of treated discs were thereafter identically washed, dried and electroplated to provide 3 mils of Watts nickel thereon. The average maximum adhesion of the first set of discs was determined to be 4.4 pounds per inch and the average maximum adhesion of the second set was found to be 32.8 pounds per inch.
Similar results are obtained when other solvents such as benzene, acetone and the like are employed as a treatment step prior to subjection to the phosphorus sesquisulfide,
EXAMPLE 32 Example l6 was repeated except that ABS was employed in place of the polypropylene and perchloroethylene was employed in place ofthe trichloroethylene.
Various changes and modifications can be made in the process and products ofthis invention without departing from the spirit and scope of the invention. Various embodiments of the invention disclosed herein serve to further illustrate the invention but are not intended to limit it.
I claim:
1. A process which comprises subjecting a substrate to phosphorus sesquisulfide to deposit phosphorus sesquisulfide at the surface of the substrate and thereafter subjecting the phosphorus sesquisulfide treated surface to a solution of a metal salt or complex thereof so as to form a metalphosphorus-sulfur coating, wherein said metal is selected from the Groups lB, IIB, IVB, VB, VIB, VIIB, and VIII of the Periodic Table.
2. A process wherein the treated substrate resulting from the process of claim I is subjected to electroless metal plating to deposit an electroless conductive coating on the treated substrate.
3. A process wherein the substrate resulting from the process of claim 2 is electroplated to deposit an adherent metal coating on the electroless conductive coating.
4. A process wherein the treated substrate resulting from the process of claim 1 is electroplated to deposit an adherent metal coating on the treated substrate.
5. A process which comprises subjecting a plastic to phosphorus sesquisulfide to deposit phosphorus sesquisulfide at the surface of the plastic and thereafter subjecting the phosphorus sesquisulfide treated substrate to a solution of metal salt or complex thereof which so as to form a metalphosphorus-sulfur coating, wherein said metal is selected from Groups IB, llB, lVB, VB, VlB, VllB, and VIII of the Periodic Table.
6. The process according to claim 5 wherein the plastic is subjected to a solution of phosphorus sesquisulfide dissolved in a solvent.
7. The process according to claim 6 wherein the solvent is a halogenated hydrocarbon.
8. The process according to claim 7 wherein the solvent is trichloroethylene.
9. The process according to claim 7 wherein the solvent is methylene chloride.
10. The process of claim 6 wherein the metal of said metal salt is selected from the group consisting of nickel and copper.
11. The process ofclaim 6 wherein the metal salt complex is a complex of ammonia, amines, quinolines or pyridines.
12. The process of claim 6 wherein the plastic is polypropylene, the phosphorus sesquisulfide is employed as a solution of phosphorus sesquisulfide dissolved in trichloroethylene, and the metal salt complex is a complex of nickel.
13. The process of claim 6 wherein the plastic is an epoxy resin, the phosphorus sesquisulfide is employed as a solution of phosphorus sesquisulfide dissolved in a mixture of trichloroethylene and methylene chloride, and the metal of the metal salt complex is nickel.
14. A process wherein the treated plastic surface resulting from the process of claim 6 is subjected to electroless metal plating to deposit an electroless conductive coating on the treated plastic surface.
15. A process wherein the plastic surface resulting from the process of claim 14 is electroplated to deposit an adherent metal coating on the electroless conductive coating.
16. A process wherein the treated plastic surface resulting from the process of claim 6 is electroplated to deposit an adherent metal coating on the treated plastic surface.
17. An article having a metal-phosphorus-sulfur coating adherently formed at the surface of a plastic, wherein said metal is selected from the Groups I8, I18, lVB, VB, VIB, V118, and VIII ofthe Periodic Table.
18. The plastic articles of claim 17 wherein at least one component of the plastic is a thermoplastic polymer.
19. The plastic article of claim 17 wherein at least one component of the plastic is polyproylene.
20. The plastic article of claim 17 wherein at least one component of the plastic is polyethylene.
21. The plastic article of claim 17 wherein at least one component of the plastic is polyvinyl chloride.
22. The plastic article ofclaim 17 wherein at least one component of the plastic is a graft copolymer of polybutadiene, styrene and acrylonitrile.
23. The article of claim 17 having an adherent electroless conductive coating deposited on the metal-phosphorus-sulfur coating.
24. The article of claim 23 having an adherent metal coating electrolytically deposited on the electroless conductive coatmg.
25. The plastic article ofclaim 24 wherein at least one component of the plastic is a thermoplastic polymer.
26. The plastic article of claim 24 wherein at least one component of the plastic is polypropylene.
27. The plastic article of claim 24 wherein at least one component of the plastic is polyethylene.
28v The plastic article of claim 24 wherein at least one component of the plastic is polyvinyl chloride.
29. The plastic article of claim 24 wherein at least one component of the plastic is a graft copolymer of polybutadiene, styrene and acrylonitrile.
30v The article of claim 17 having an adherent metal coating electrolytically deposited on the metal-phosphorus-sulfur coating.
31. The plastic article ofclaim 30 wherein at least one component of the plastic is a thermoplastic polymer.
32. The plastic article of claim 30 wherein at least one component of the plastic is polypropylene.
33. The plastic article of claim 30 wherein at least one component ofthe plastic is polyethylene.
34. The plastic article of claim 30 wherein at least one com ponent of the plastic is polyvinyl chloride.
35. The plastic article of claim 30 wherein at least one component of the plastic is a graft copolymer of polybutadiene, styrene and acrylonitrile.
36. A process wherein a plastic is subjected to a solvent and thereafter treated by the process of claim 5.
37. The process of claim 36 wherein the solvent is trichloroethylene and the plastic is polypropylene.
38. The process of claim 36 wherein the solvent is perchloroethylene and the plastic is a graft copolymer of polybutadiene, styrene and acrylonitrile.
39. The process of claim 1 wherein the metal salt complex is an ethylene diamine complex ofa copper salt.
40. The process of claim 5 wherein the metal salt complex is an ethylene diamine complex ofa copper salt.
P041050 UNlTEs STATES PATENT oFFlcE (5/69) In u a CE'NFECATE 0F COREQTWN 3,650,708 Dated March 21, 1972 Inventor) William P. Gallagher It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
in the Abstract, line 4, "containing" should read ----con1:actin:3
Column 2, line 14 "formaldehyde" should read --pheno1 formaldehyde---. Column 4, line 11, "alcohol" should read I ----complexes----.
Signed and sealed this 1st day of August 1972.
(SEAL) Attest:
EDWARD MQFLETCHERJ'R. ROBERT GOT'ISCHALK Attesting Officer Commissioner of Patents

Claims (39)

  1. 2. A process wherein the treated substrate resulting from the process of claim 1 is subjected to electroless metal plating to deposit an electroless conductive coating on the treated substrate.
  2. 3. A process wherein the substrate resulting from the process of claim 2 is electroplated to deposit an adherent metal coating on the electroless conductive coating.
  3. 4. A process wherein the treated substrate resulting from the process of claim 1 is electroplated to deposit an adherent metal coating on the treated substrate.
  4. 5. A process which comprises subjecting a plastic to phosphorus sesquisulfide to deposit phosphorus sesquisulfide at the surface of the plastic and thereafter subjecting the phosphorus sesquisulfide treated substrate to a solution of metal salt or complex thereof which so as to form a metal-phosphorus-sulfur coating, wherein said metal is selected from Groups IB, IIB, IVB, VB, VIB, VIIB, and VIII of the Periodic Table.
  5. 6. The process according to claim 5 wherein the plastic is subjected to a solution of phosphorus sesquisulfide dissolved in a solvent.
  6. 7. The process according to claim 6 wherein the solvent is a halogenated hydrocarbon.
  7. 8. The process according to claim 7 wherein the solvent is trichloroethylene.
  8. 9. The process according to claim 7 wherein the solvent is methylene chloride.
  9. 10. The process of claim 6 wherein the metal of said metal salt is selected from the group consisting of nickel and copper.
  10. 11. The process of claim 6 wherein the metal salt complex is a complex of ammonia, amines, quinolines or pyridines.
  11. 12. The process of claim 6 wherein the plastic is polypropylene, the phosphorus sesquisulfide is employed as a solution of phosphorus sesquisulfide dissolved in trichloroethylene, and the metal salt complex is a complex of nickel.
  12. 13. The process of claim 6 wherein the plastic is an epoxy resin, the phosphorus sesquisulfide is employed as a solution of phosphorus sesquisulfide dissolved in a mixture of trichloroethylene and methylene chloride, and the metal of the metal salt complex is nickel.
  13. 14. A process wherein the treated plastic surface resulting from the process of claim 6 is subjected to electroless metal plating to deposit an electroless conductive coating on the treated plastic surface.
  14. 15. A process wherein the plastic surface resulting from the process of claim 14 is electroplated to deposit an adherent metal coating on the electroless conductive coating.
  15. 16. A process wherein the treated plastic surface resulting from the process of claim 6 is electroplated to deposit an adherent metal coating on the treated plastic surface.
  16. 17. An article having a metal-phosphorus-sulfur coating adherently formed at the surface of a plastic, wherein said metal is selected from the Groups IB, IIB, IVB, VB, VIB, VIIB, and VIII of the Periodic Table.
  17. 18. The plastic articles of claim 17 wherein at least one component of the plastic is a thermoplastic polymer.
  18. 19. The plastic article of claim 17 wherein at least one component of the plastic is polyproylene.
  19. 20. The plastic article of claim 17 wherein at least one component of the plastic is polyethylene.
  20. 21. The plastic article of claim 17 wherein at least one component of the plastic is polyvinyl chloride.
  21. 22. The plastic article of claim 17 wherein at least one component of the plastic is a graft copolymer of polybutadiene, styrene and acrylonitrile.
  22. 23. The article of claim 17 having an adherent electroless conductive coating deposited on the metal-phosphorus-sulfur coating.
  23. 24. The article of claim 23 having an adherent metal coating electrolytically deposited on the electrolesS conductive coating.
  24. 25. The plastic article of claim 24 wherein at least one component of the plastic is a thermoplastic polymer.
  25. 26. The plastic article of claim 24 wherein at least one component of the plastic is polypropylene.
  26. 27. The plastic article of claim 24 wherein at least one component of the plastic is polyethylene.
  27. 28. The plastic article of claim 24 wherein at least one component of the plastic is polyvinyl chloride.
  28. 29. The plastic article of claim 24 wherein at least one component of the plastic is a graft copolymer of polybutadiene, styrene and acrylonitrile.
  29. 30. The article of claim 17 having an adherent metal coating electrolytically deposited on the metal-phosphorus-sulfur coating.
  30. 31. The plastic article of claim 30 wherein at least one component of the plastic is a thermoplastic polymer.
  31. 32. The plastic article of claim 30 wherein at least one component of the plastic is polypropylene.
  32. 33. The plastic article of claim 30 wherein at least one component of the plastic is polyethylene.
  33. 34. The plastic article of claim 30 wherein at least one component of the plastic is polyvinyl chloride.
  34. 35. The plastic article of claim 30 wherein at least one component of the plastic is a graft copolymer of polybutadiene, styrene and acrylonitrile.
  35. 36. A process wherein a plastic is subjected to a solvent and thereafter treated by the process of claim 5.
  36. 37. The process of claim 36 wherein the solvent is trichloroethylene and the plastic is polypropylene.
  37. 38. The process of claim 36 wherein the solvent is perchloroethylene and the plastic is a graft copolymer of polybutadiene, styrene and acrylonitrile.
  38. 39. The process of claim 1 wherein the metal salt complex is an ethylene diamine complex of a copper salt.
  39. 40. The process of claim 5 wherein the metal salt complex is an ethylene diamine complex of a copper salt.
US3650708D 1970-03-30 1970-03-30 Metal plating of substrates Expired - Lifetime US3650708A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2396770A 1970-03-30 1970-03-30

Publications (1)

Publication Number Publication Date
US3650708A true US3650708A (en) 1972-03-21

Family

ID=21818159

Family Applications (1)

Application Number Title Priority Date Filing Date
US3650708D Expired - Lifetime US3650708A (en) 1970-03-30 1970-03-30 Metal plating of substrates

Country Status (1)

Country Link
US (1) US3650708A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771977A (en) * 1971-12-27 1973-11-13 Hooker Chemical Corp Bearing surface
US3956528A (en) * 1974-11-15 1976-05-11 Minnesota Mining And Manufacturing Company Selective plating by galvanic action
US4063004A (en) * 1975-12-30 1977-12-13 Hooker Chemicals & Plastics Corporation Metal plating of plastics
US4166012A (en) * 1978-01-03 1979-08-28 Hooker Chemicals & Plastics Corp. Method of preparation of electrooptical elements
US4195679A (en) * 1977-12-12 1980-04-01 The Firestone Tire & Rubber Company Composition and product with improved adhesion between a metal member and a contiguous cured rubber skim stock
US4248632A (en) * 1971-03-30 1981-02-03 Schering Aktiengesellschaft Solution and process for the activation of surfaces for metallization
US4281034A (en) * 1980-04-03 1981-07-28 Sunbeam Corporation Plating on plastics by softening with trichloroethylene and methylene chloride bath
US4486512A (en) * 1982-02-10 1984-12-04 Mitsui Mining & Smelting Co., Ltd. Radioactive waste sealing container
US5308646A (en) * 1990-08-23 1994-05-03 Arizona Board Of Regents Method of simulating natural desert varnish
US5607228A (en) * 1993-12-27 1997-03-04 Koito Manufacturing Co., Ltd. Electromagnetically shielded discharge-type headlamp
US6468672B1 (en) 2000-06-29 2002-10-22 Lacks Enterprises, Inc. Decorative chrome electroplate on plastics
US20070201214A1 (en) * 2006-02-24 2007-08-30 Samsung Electro-Mechanics Co., Ltd. Core board comprising nickel layer, multilayer board and manufacturing method thereof
US8075684B2 (en) 2008-02-15 2011-12-13 Foster-Gardner, Inc. Compositions and methods for deep-seated coloration and/or staining of the surface terrain, construction material, boulders and rocks
US8936676B2 (en) 2008-02-15 2015-01-20 Foster-Gardner, Inc. Compositions and methods for coloration and/or staining of galvanized metal surfaces
US20160068965A1 (en) * 2013-04-21 2016-03-10 Sht Smart High Tech Ab Method for coating of carbon nanomaterials
DE102018133244A1 (en) 2018-12-20 2020-06-25 Umicore Galvanotechnik Gmbh Nickel-amine complex with a reduced tendency to form harmful degradation products

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3403035A (en) * 1964-06-24 1968-09-24 Process Res Company Process for stabilizing autocatalytic metal plating solutions
US3445350A (en) * 1965-10-11 1969-05-20 Borg Warner Metal plating of plastic materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3403035A (en) * 1964-06-24 1968-09-24 Process Res Company Process for stabilizing autocatalytic metal plating solutions
US3445350A (en) * 1965-10-11 1969-05-20 Borg Warner Metal plating of plastic materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Bayard, J. J. Electrodeposition on Plastic Materials in Metal Industry, May 1970, p. 256. *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248632A (en) * 1971-03-30 1981-02-03 Schering Aktiengesellschaft Solution and process for the activation of surfaces for metallization
US3771977A (en) * 1971-12-27 1973-11-13 Hooker Chemical Corp Bearing surface
US3956528A (en) * 1974-11-15 1976-05-11 Minnesota Mining And Manufacturing Company Selective plating by galvanic action
US4063004A (en) * 1975-12-30 1977-12-13 Hooker Chemicals & Plastics Corporation Metal plating of plastics
US4195679A (en) * 1977-12-12 1980-04-01 The Firestone Tire & Rubber Company Composition and product with improved adhesion between a metal member and a contiguous cured rubber skim stock
US4166012A (en) * 1978-01-03 1979-08-28 Hooker Chemicals & Plastics Corp. Method of preparation of electrooptical elements
US4281034A (en) * 1980-04-03 1981-07-28 Sunbeam Corporation Plating on plastics by softening with trichloroethylene and methylene chloride bath
US4486512A (en) * 1982-02-10 1984-12-04 Mitsui Mining & Smelting Co., Ltd. Radioactive waste sealing container
US5308646A (en) * 1990-08-23 1994-05-03 Arizona Board Of Regents Method of simulating natural desert varnish
US5607228A (en) * 1993-12-27 1997-03-04 Koito Manufacturing Co., Ltd. Electromagnetically shielded discharge-type headlamp
US6468672B1 (en) 2000-06-29 2002-10-22 Lacks Enterprises, Inc. Decorative chrome electroplate on plastics
US20070201214A1 (en) * 2006-02-24 2007-08-30 Samsung Electro-Mechanics Co., Ltd. Core board comprising nickel layer, multilayer board and manufacturing method thereof
US20100291488A1 (en) * 2006-02-24 2010-11-18 Samsung Electro-Mechanics Co., Ltd. Manufacturing method for multilayer core board
US8075684B2 (en) 2008-02-15 2011-12-13 Foster-Gardner, Inc. Compositions and methods for deep-seated coloration and/or staining of the surface terrain, construction material, boulders and rocks
US8936676B2 (en) 2008-02-15 2015-01-20 Foster-Gardner, Inc. Compositions and methods for coloration and/or staining of galvanized metal surfaces
US20160068965A1 (en) * 2013-04-21 2016-03-10 Sht Smart High Tech Ab Method for coating of carbon nanomaterials
US10156015B2 (en) * 2013-04-21 2018-12-18 Shenzhen Shen Rui Graphene Technology Co., Ltd. Method for coating of carbon nanomaterials
DE102018133244A1 (en) 2018-12-20 2020-06-25 Umicore Galvanotechnik Gmbh Nickel-amine complex with a reduced tendency to form harmful degradation products

Similar Documents

Publication Publication Date Title
US3650708A (en) Metal plating of substrates
US3620834A (en) Metal plating of substrates
US3479160A (en) Metal plating of plastic materials
US3652351A (en) Processes for etching synthetic polymer resins with alkaline alkali metal manganate solutions
US3620804A (en) Metal plating of thermoplastics
US3650803A (en) Metal plating of substrates
US3488166A (en) Method for activating plastics,subsequent metallization and article of manufacture resulting therefrom
US4063004A (en) Metal plating of plastics
US3524754A (en) Metal plating of plastics
US3523874A (en) Metal coating of aromatic polymers
US3629922A (en) Metal plating of plastics
US3607350A (en) Electroless plating of plastics
KR19980703108A (en) A method for selectively or partially electrolytic metallizing a substrate surface made of non-conductive material
US3544432A (en) Electroplating plastic articles
US3642584A (en) Process for metal plating of substrates
US3771973A (en) Metal plating of synthetic polymers
US3709727A (en) Metalizing substrates
US3867174A (en) Baths for activating the surface of plastics to be chemically metal-plated
US3619243A (en) No rerack metal plating of electrically nonconductive articles
US3650911A (en) Metallizing substrates
US3697296A (en) Electroless gold plating bath and process
US3556956A (en) Electroless plating of substrates
US3681511A (en) Uses of and improvements in the coating of substrates
US3666637A (en) Process for metallizing substrates
EP0625590B1 (en) Improvement of adhesion of metal coatings to resinous articles

Legal Events

Date Code Title Description
AS Assignment

Owner name: OCCIDENTAL CHEMICAL CORPORATION

Free format text: CHANGE OF NAME;ASSIGNOR:HOOKER CHEMICALS & PLASTICS CORP.;REEL/FRAME:004109/0487

Effective date: 19820330