US3646320A - Isothermal furnace - Google Patents

Isothermal furnace Download PDF

Info

Publication number
US3646320A
US3646320A US872940A US3646320DA US3646320A US 3646320 A US3646320 A US 3646320A US 872940 A US872940 A US 872940A US 3646320D A US3646320D A US 3646320DA US 3646320 A US3646320 A US 3646320A
Authority
US
United States
Prior art keywords
gas
envelope
furnace
vapor
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US872940A
Inventor
Carlo Rosatelli
Arvind Shroff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Application granted granted Critical
Publication of US3646320A publication Critical patent/US3646320A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0014Devices wherein the heating current flows through particular resistances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00171Controlling or regulating processes controlling the density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1092Shape defined by a solid member other than seed or product [e.g., Bridgman-Stockbarger]

Definitions

  • ABSTRACT A furnace providing an isothermal heating all along its height comprising a liquid which is heated for filling an envelope surrounding the volume to be heated with the vapor of this liquid and a system for filling the upper part of this envelope with a gas, not mixing with this vapor, for varying the operating height of the furnace.
  • the present invention relates to heating furnaces of the isothermic type.
  • Furnaces of this type have two drawbacks; they are hardly capable of achieving uniform temperature all along their structure and, on the other hand it is difficult to adjust the length of the heated zone, which is a fundamental necessity in certain applications.
  • a furnace comprising an envelope defining the enclosure to be heated; within said envelope an amount of liquid; means for heating said liquid for providing saturated vapor of said liquid within said envelope; and means for modifying the volume of the portion of said envelope filled with said vapor.
  • FIG. 1 shows a furnace according to the invention
  • FIG. 2 shows a modification
  • the furnace shown in FIG. 1 comprises a cylindrical volume surrounded by a double wall 2 defining a closed volume 2a in which a vaporizable liquid 3 has been enclosed.
  • a heating device 4 using the Joule effect is placed at the bottom of the cylindrical body 2a and the volume 1 is closed at its two ends if need be by screwed plugs 5 and 6.
  • An envelope 7 forming a heat shield improves the efficiency of the assembly by preventing external thermal energy losses.
  • the gas used should not be capable of reacting chemically, at the operating temperatures, with any other of the bodies it contacts, and may for example be argon or helium.
  • the liquid 3 is raised to boiling point by the heating device 4 and its vapor fills the whole of the closed volume 2.
  • the volume and the pressure at the operating temperature should be so related that the vapor is always saturated, i.e., in a state of equilibrium with the liquid.
  • volume 2a and the walls are the seat of a heat exchange phenomenon resulting from the equilibrium between the thermal energy lost to the exterior across the walls, and the thermal energy supplied at the same point which compensates the heat lost by the condensation of an appropriate quantity of vapor.
  • This liberation of heat corresponds to the thermal energy expended at the time of evaporation.
  • a furnace 40 cm. long according to the invention using liquefied lithium as a fiuid has isothermally produced a temperature of l,920 K. at a power of 2,500 watts, corresponding to watts per square centimeter of wall.
  • tubular enclosure and its walls are strictly isothermal over the whole of the length.
  • This length can be varied in the following manner:
  • This gas should have such a density that for all practical purposes it does not mix with the vapor present in the volume 2a. It propagates towards the top of the volume 2, so that the upper part of the volume is filled with gas. Accordingly, over the whole of the height portion of the volume 2a, there is no vapor, and accordingly no thermal exchange between the vapor and the wall. The temperature prevailing within the corresponding portion of the volume 2a is extremely low compared tothat prevailing in the remaining portion of the volume.
  • the height of the volume over which the furnace operates can be adjusted.
  • FIG. 2 shows a modified embodiment of the furnace of FIG. 1, wherein similar reference numbers designate similar parts.
  • the gas duct is connected at the upper part of the volume 2a, i.e., at the end which is opposite to that were the liquid container is located. This may be particularly useful if the density of the gas and that of the vapor are not very much different, since the separation of gas and vapor by density is facilited.
  • An isothermal furnace for heating material placed therein to a uniform temperature which comprises:
  • electrically operated heating means proximate the lower end of said furnace and in thermal contact with said fluid, for applying heat thereto and causing said liquid to vaporize, said vapor rising upwardly in said internal volume, condensing on the walls of said envelope and isothermally transferring heat energy to the material in said furnace enclosure;

Abstract

A furnace providing an isothermal heating all along its height comprising a liquid which is heated for filling an envelope surrounding the volume to be heated with the vapor of this liquid and a system for filling the upper part of this envelope with a gas, not mixing with this vapor, for varying the operating height of the furnace.

Description

United States Patent Rosatelli et a1.
ISOTHERMAL FURNACE Inventors: Carlo Rosatelli, University of Bologne, lta- 1y; Arvind Shroif, Paris, France Thomson-CS1 Oct. 31, 1969 Assignee:
Filed:
Appl. No.:
Foreign Application Priority Data Nov. 21, 1968 France ..174757 US. Cl. ..219/401, 165/38, 165/105,
219/209, 219/427, 219/440, 219/530 Int. Cl ..F27d 11/02 Field of Search ..219/426-427, 401
fly n II M Feb. 29, 1972 Primary ExaminerVolodymyr Y, Mayewsky Attorney-Kurt Kelman [57] ABSTRACT A furnace providing an isothermal heating all along its height comprising a liquid which is heated for filling an envelope surrounding the volume to be heated with the vapor of this liquid and a system for filling the upper part of this envelope with a gas, not mixing with this vapor, for varying the operating height of the furnace.
4 Claims, 2 Drawing Figures VII PAIENTEnrcaze m2 3. 646 320 sum 1 OF 2 W CARLO ROSATELL! kRlv/w 54mm EMT PATENTEnFEB29 m2 3, 646', 320
SHEET 2 OF 2 R73 HKEEW ISOTHERMAL FURNACE The present invention relates to heating furnaces of the isothermic type.
In number of industrial applications it is necessary to raise bodies to determinate temperatures, under perfectly isothermal conditions throughout the whole of the heated volume. In the field of the electrical energy, it is known, for example, to employ resistance furnaces operating by the Joule effect, electron bombardment furnaces, where the calorific energy is derived from an electron beam striking an anode which is formed by the body to be heated, and high-frequency furnaces in which the energy is supplied to the body to be heated, through the medium of a circuit wound around this body and wherein high-frequency alternating current is flowing.
Furnaces of this type have two drawbacks; they are hardly capable of achieving uniform temperature all along their structure and, on the other hand it is difficult to adjust the length of the heated zone, which is a fundamental necessity in certain applications.
It is an object of this invention, to avoid such drawbacks.
According to the invention there is provided a furnace comprising an envelope defining the enclosure to be heated; within said envelope an amount of liquid; means for heating said liquid for providing saturated vapor of said liquid within said envelope; and means for modifying the volume of the portion of said envelope filled with said vapor.
For a better understanding of the invention and to show how the same may be carried into effect, reference will be made to the drawing accompanying the ensuing description and in which:
FIG. 1 shows a furnace according to the invention; and
FIG. 2 shows a modification.
The furnace shown in FIG. 1, comprises a cylindrical volume surrounded by a double wall 2 defining a closed volume 2a in which a vaporizable liquid 3 has been enclosed. A heating device 4 using the Joule effect, is placed at the bottom of the cylindrical body 2a and the volume 1 is closed at its two ends if need be by screwed plugs 5 and 6. An envelope 7 forming a heat shield improves the efficiency of the assembly by preventing external thermal energy losses.
A duct from a source of gas under pressure 8 with an expansion valve 9, a pressure gauge 10 and a cock ll, communicates with said volume. The gas used should not be capable of reacting chemically, at the operating temperatures, with any other of the bodies it contacts, and may for example be argon or helium.
The operation of the furnace of the invention is as follows:
The liquid 3 is raised to boiling point by the heating device 4 and its vapor fills the whole of the closed volume 2. The volume and the pressure at the operating temperature should be so related that the vapor is always saturated, i.e., in a state of equilibrium with the liquid.
The physical laws governing the states of fluids as a function of temperature and pressure, indicate on the one hand that at a given pressure there is a maximum temperature of operation above which the whole of the fluid is evaporated and at which the mechanism described, which implies the simultaneous presence of the liquid and the vapor phases, can no longer take place, and on the other hand that at a given temperature there is a minimum pressure of operation below which the whole of the fluid is evaporated, with the same consequence.
If the temperature and pressure ranges are selected so that the vapor and liquid phases are present simultaneously, volume 2a and the walls are the seat of a heat exchange phenomenon resulting from the equilibrium between the thermal energy lost to the exterior across the walls, and the thermal energy supplied at the same point which compensates the heat lost by the condensation of an appropriate quantity of vapor. This liberation of heat corresponds to the thermal energy expended at the time of evaporation. By way of example, and in order to give some idea of the orders of magnitude involved, a furnace 40 cm. long according to the invention, using liquefied lithium as a fiuid has isothermally produced a temperature of l,920 K. at a power of 2,500 watts, corresponding to watts per square centimeter of wall.
Thus the tubular enclosure and its walls are strictly isothermal over the whole of the length.
This length can be varied in the following manner:
A neutral gas such as argon or neon, under a pressure higher than that prevailing in volume 2a, is caused to flow, by means of the arrangement 9, 10, 11, from the source 8 into the volume 2a. This gas should have such a density that for all practical purposes it does not mix with the vapor present in the volume 2a. It propagates towards the top of the volume 2, so that the upper part of the volume is filled with gas. Accordingly, over the whole of the height portion of the volume 2a, there is no vapor, and accordingly no thermal exchange between the vapor and the wall. The temperature prevailing within the corresponding portion of the volume 2a is extremely low compared tothat prevailing in the remaining portion of the volume.
Thus by controlling the quantity of gas admitted within the volume 2a, the height of the volume over which the furnace operates can be adjusted.
FIG. 2 shows a modified embodiment of the furnace of FIG. 1, wherein similar reference numbers designate similar parts. In this embodiment the gas duct is connected at the upper part of the volume 2a, i.e., at the end which is opposite to that were the liquid container is located. This may be particularly useful if the density of the gas and that of the vapor are not very much different, since the separation of gas and vapor by density is facilited.
Of course, the invention is not limited to the embodiments described and shown which were given solely by way of example, in particular in so far as the heating of the liquid, the nature of the gas or even the manner in which the pressure within the volume 2a may be varied, are concerned.
What is claimed is:
1. An isothermal furnace for heating material placed therein to a uniform temperature, which comprises:
1. a cylindrical, hermetically sealed, double-walled envelope, the inner and outer walls of said envelope defining therebetween an internal volume;
2. a pair of plugs for mating engagement with the upper and lower ends of said cylindrical envelope, said plugs and said cylindrical envelope defining a sealed furnace enclosure in which the material to be heated is placed;
3. a vaporizable liquid in said internal volume and normally lying at the bottom of said cylindrical double-walled envelope;
4. electrically operated heating means, proximate the lower end of said furnace and in thermal contact with said fluid, for applying heat thereto and causing said liquid to vaporize, said vapor rising upwardly in said internal volume, condensing on the walls of said envelope and isothermally transferring heat energy to the material in said furnace enclosure; and
5. means communicating with said internal volume through the outer wall of said cylindrical envelope for introducing, under pressure, a gas which is immiscible with said vapor, said gas displacing at least a portion of said vapor, whereby the amount of said furnace enclosure which is heated may be selectively varied by varying the amount of vapor displaced by said gas.
2. The furnace according to claim 1, further comprising a heat shield substantially surrounding said cylindrical envelope to inhibit thermal losses by radiation and convection therefrom; and said gas introducing means comprises a tank containing a quantity of said gas under pressure, an expansion valve connected to said tank, pipe means interconnecting said expansion valve with said cylindrical envelope, and a valve in said pipe means for controlling the amount of gas supplied to said internal volume.
3. The furnace according to claim 1, wherein said gas is argen.
4. The furnace according to claim 1, wherein said gas is neon.

Claims (8)

1. An isothermal furnace for heating material placed therein to a uniform temperature, which comprises: 1. a cylindrical, hermetically sealed, double-walled envelope, the inner and outer walls of said envelope defining therebetween an internal volume; 2. a pair of plugs for mating engagement with the upper and lower ends of said cylindrical envelope, said plugs and said cylindrical envelope defining a sealed furnace enclosure in which the material to be heated is placed; 3. a vaporizable liquid in said internal volume and normally lying at the bottom of said cylindrical double-walled envelope; 4. electrically operated heating means, proximate the lower end of said furnace and in thermal contact with said fluid, for applying heat thereto and causing said liquid to vaporize, said vapor rising upwardly in said internal volume, condensing On the walls of said envelope and isothermally transferring heat energy to the material in said furnace enclosure; and 5. means communicating with said internal volume through the outer wall of said cylindrical envelope for introducing, under pressure, a gas which is immiscible with said vapor, said gas displacing at least a portion of said vapor, whereby the amount of said furnace enclosure which is heated may be selectively varied by varying the amount of vapor displaced by said gas.
2. a pair of plugs for mating engagement with the upper and lower ends of said cylindrical envelope, said plugs and said cylindrical envelope defining a sealed furnace enclosure in which the material to be heated is placed;
2. The furnace according to claim 1, further comprising a heat shield substantially surrounding said cylindrical envelope to inhibit thermal losses by radiation and convection therefrom; and said gas introducing means comprises a tank containing a quantity of said gas under pressure, an expansion valve connected to said tank, pipe means interconnecting said expansion valve with said cylindrical envelope, and a valve in said pipe means for controlling the amount of gas supplied to said internal volume.
3. The furnace according to claim 1, wherein said gas is argon.
3. a vaporizable liquid in said internal volume and normally lying at the bottom of said cylindrical double-walled envelope;
4. electrically operated heating means, proximate the lower end of said furnace and in thermal contact with said fluid, for applying heat thereto and causing said liquid to vaporize, said vapor rising upwardly in said internal volume, condensing On the walls of said envelope and isothermally transferring heat energy to the material in said furnace enclosure; and
4. The furnace according to claim 1, wherein said gas is neon.
5. means communicating with said internal volume through the outer wall of said cylindrical envelope for introducing, under pressure, a gas which is immiscible with said vapor, said gas displacing at least a portion of said vapor, whereby the amount of said furnace enclosure which is heated may be selectively varied by varying the amount of vapor displaced by said gas.
US872940A 1968-11-21 1969-10-31 Isothermal furnace Expired - Lifetime US3646320A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR174757 1968-11-21

Publications (1)

Publication Number Publication Date
US3646320A true US3646320A (en) 1972-02-29

Family

ID=8657214

Family Applications (1)

Application Number Title Priority Date Filing Date
US872940A Expired - Lifetime US3646320A (en) 1968-11-21 1969-10-31 Isothermal furnace

Country Status (5)

Country Link
US (1) US3646320A (en)
AT (1) AT302249B (en)
DE (1) DE1958261B2 (en)
FR (1) FR1595711A (en)
GB (1) GB1269250A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965334A (en) * 1972-05-04 1976-06-22 N.V. Philips Corporation Heating device
US5057286A (en) * 1990-02-05 1991-10-15 The Japan Steel Works, Ltd. Vessel for use in hydrothermal synthesis
US6094523A (en) * 1995-06-07 2000-07-25 American Sterilizer Company Integral flash steam generator
US20100113705A1 (en) * 2008-09-25 2010-05-06 Brian Harrison Dual vessel reactor
US9649612B2 (en) 2008-09-25 2017-05-16 Rubreco Inc. Dual vessel reactor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU72212A1 (en) * 1975-04-04 1977-02-02
WO1998057741A2 (en) * 1997-06-18 1998-12-23 Arencibia Associates, Inc. Temperature controlled reaction vessel
US6955793B1 (en) 1997-06-18 2005-10-18 Arencibia Jr Jose P Temperature controlled reaction vessel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2616628A (en) * 1948-06-22 1952-11-04 Lloyd V Guild Temperature controlled gas analysis apparatus
US2762895A (en) * 1952-10-25 1956-09-11 Collins Radio Co Constant temperature device
US2820134A (en) * 1953-05-06 1958-01-14 Kobayashi Keigo Heating apparatus
US3281574A (en) * 1964-03-16 1966-10-25 Internat Oil Burner Company Pressurized baseboard-type electrical heater and method of charging same
US3517730A (en) * 1967-03-15 1970-06-30 Us Navy Controllable heat pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2616628A (en) * 1948-06-22 1952-11-04 Lloyd V Guild Temperature controlled gas analysis apparatus
US2762895A (en) * 1952-10-25 1956-09-11 Collins Radio Co Constant temperature device
US2820134A (en) * 1953-05-06 1958-01-14 Kobayashi Keigo Heating apparatus
US3281574A (en) * 1964-03-16 1966-10-25 Internat Oil Burner Company Pressurized baseboard-type electrical heater and method of charging same
US3517730A (en) * 1967-03-15 1970-06-30 Us Navy Controllable heat pipe

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965334A (en) * 1972-05-04 1976-06-22 N.V. Philips Corporation Heating device
US4136733A (en) * 1972-05-04 1979-01-30 U.S. Philips Corporation Heating device
US5057286A (en) * 1990-02-05 1991-10-15 The Japan Steel Works, Ltd. Vessel for use in hydrothermal synthesis
US6094523A (en) * 1995-06-07 2000-07-25 American Sterilizer Company Integral flash steam generator
US20100113705A1 (en) * 2008-09-25 2010-05-06 Brian Harrison Dual vessel reactor
US9403136B2 (en) * 2008-09-25 2016-08-02 Rubreco Inc. Dual vessel reactor
US9649612B2 (en) 2008-09-25 2017-05-16 Rubreco Inc. Dual vessel reactor
US9901890B2 (en) 2008-09-25 2018-02-27 Rubreco Inc. Dual vessel reactor

Also Published As

Publication number Publication date
FR1595711A (en) 1970-06-15
DE1958261A1 (en) 1970-06-04
DE1958261B2 (en) 1978-10-26
GB1269250A (en) 1972-04-06
AT302249B (en) 1972-10-10

Similar Documents

Publication Publication Date Title
US3677329A (en) Annular heat pipe
US3519067A (en) Variable thermal conductance devices
US3229759A (en) Evaporation-condensation heat transfer device
US3651240A (en) Heat transfer device
US6169852B1 (en) Rapid vapor generator
US3646320A (en) Isothermal furnace
US3450196A (en) Gas pressure control for varying thermal conductivity
US3654567A (en) Vapor discharge cell
JP2004521300A (en) Improved heater
US2759112A (en) Electron tube thermoelectric generator
US2762895A (en) Constant temperature device
US3782449A (en) Temperature stabilization system
US3712053A (en) Thermal-mechanical energy transducer device
US3272258A (en) Means for keeping a high degree of temperature stability within a chamber of substantial dimensions
US4260014A (en) Ebullient cooled power devices
US3187161A (en) Immersion heater control
KR101406285B1 (en) Dielectric Heating Apparatus and Dielectric Heating Method of using the same
US2616628A (en) Temperature controlled gas analysis apparatus
US3699343A (en) Condensation heated black body radiation source
US3444356A (en) Immersion heater
US1167894A (en) Heating apparatus.
US2129638A (en) Quick starting vapor motor
US2815423A (en) Electric control device
US3238781A (en) Pressure measuring devices
US3793993A (en) Vapor generator and control therefor