US3639245A - Developer power of thermoplastic special particles having conductive particles radially dispersed therein - Google Patents

Developer power of thermoplastic special particles having conductive particles radially dispersed therein Download PDF

Info

Publication number
US3639245A
US3639245A US746691A US3639245DA US3639245A US 3639245 A US3639245 A US 3639245A US 746691 A US746691 A US 746691A US 3639245D A US3639245D A US 3639245DA US 3639245 A US3639245 A US 3639245A
Authority
US
United States
Prior art keywords
particles
powder
conductivity
mho
developer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US746691A
Inventor
Robert B Nelson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Application granted granted Critical
Publication of US3639245A publication Critical patent/US3639245A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0819Developers with toner particles characterised by the dimensions of the particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0808Preparation methods by dry mixing the toner components in solid or softened state
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0821Developers with toner particles characterised by physical parameters
    • G03G9/0823Electric parameters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0825Developers with toner particles characterised by their structure; characterised by non-homogenuous distribution of components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0827Developers with toner particles characterised by their shape, e.g. degree of sphericity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/001Electric or magnetic imagery, e.g., xerography, electrography, magnetography, etc. Process, composition, or product
    • Y10S430/104One component toner

Definitions

  • ABSTRACT Flowable, heat fusible, dry powder suitable for use as a developer powder in electrographic recording which comprises thermoplastic, essentially spherical particles, the thermoplastic material of which has a conductivity of at most 10' mho/cm., in which are essentially completely embedded electrically conductive particles forming a radially disposed zone, said essentially spherical particles having:
  • This invention relates to a dry ink powder suitable for use in electrographic recording and a process for making such powder.
  • this invention relates to a developer powder having a good electrical conductivity in the presence of a relatively large impressed electric field, and low electrical conductivity (and hence good charge retention characteristics for the charge remaining on it) in the absence of this high impressed field.
  • this invention relates to dry developer particles for electrophotography which are magnetizable.
  • this invention relates to a developer powder which has a pressure dependent conductivity, being more conductive under the influence of an impressed magnetic field during development, and less conductive (and hence having better individual charge retention characteristics) in the absence of this impressed magnetic field.
  • Electrostatic electrophotography originally employed two component dry ink powders, often called triboelectric mixtures," for charge development of the electrostatic image. Recently dry powders in which all of the particles are of the same composition have been described.
  • the relatively conductive dry inks of U.S. Pat. No. 3,116,510 (Jan. 19, 1965; Charles P. West and Jacques Benveniste) contain thermoplastic resin particles in which about 35 to 55 percent of the total particle weight is carbon black dispersed throughout the resin particles.
  • U.S. Pat. No. 3,196,032 (July 20, 1965; David W. Seymour) an electrostatic printing ink having carbon powder partially embedded in or adhered to the surface of resin particles is prepared in a fluid bed reactor.
  • an exposed photoconductive sheet is contacted with conductive developer powder applied from a conductive surface, to which it is adhered, while creating a differential electrical field between the photoconductive sheet (i.e., field electrode) and the conductive surface containing the developer powder.
  • the developer powder is transferred selectively to the photoconductive sheet in the nonexposed areas. Separation of the photoconductive sheet from the source of supply of developer powder is made while still maintaining the influence of the electrical field, and provision can be made for continuing the attraction of the developer powder to the surface of the photoconductive sheet after such separation.
  • the developer powder in this process is electronically conductive, usually having a conductivity of at least l mho per centimeter (ohm"cm.' preferably to 10' mho per centimeter, at the applied electrical field (preferably at least 1,000 DC volts per centimeter).
  • Conductivity measurements are made with the developer powder compressed into a 1-centimeter cube between brass electrodes fitted in a rigid chamber, a pressure of 86 pounds per square inch (6.05 kg. per cm?) being applied across the sample before and during the measurement of conductance. If the developer powder is subsequently to be transferred from the photoconductive sheet to a receptor surface, it should also have electrical charge retention capability, to retain the electrical charge imparted to the developer particles by the applied electrical field during the development of the pattern on the field electrode.
  • the high conductivity of the developer particles desired to minimize voltage drop across them when they are in the electrical field, and the ability ofthe developer particles to retain the electrical charge, which characterizes high resistivity particles, are difficult to achieve satisfactorily, since one desirable characteristic is generally sacrificed to obtain the other.
  • the FIGURE is a plot of electrical conductivity vs. DC ap- I plied electrical field for developer particles of this invention.
  • the developer powders of this invention comprise thermoplastic, essentially spherical particles (i.e., spherules), the thermoplastic material of which has a conductivity of at most 10-" mho/cm, preferably at most 10" mho/cm, in which are essentially completely embedded electrically conductive particles forming a radially disposed layer or zone, said essentially spherical particleshaving an electronic conductivity which ranges monatonically without decreasing from between about 10' and about 10" mho/cm. (preferably between 10' and 10 mho/cm.) in a 100 v./cm. DC electrical field to between 10 and about 10' mho/cm.
  • dry ink powders are flowable to such an extent that they have a flowability angle of repose ranging from about to 125 and preferably from 1 10 to 125.
  • flowability is measured by feeding a thin stream of powder to the upper flat surface of a 3-inch diameter circular pedestal from a vibrating funnel, thereby creating a conical deposit of powder on the pedestal.
  • the angle of repose is defined by the angle measured between opposite sides of the conical deposit, i.e., the apex angle of the cone, at 25 C.
  • the dry ink powders of this invention and the thermoplastic materials used therein are preferably heat fusible in the range of 80 to 1 15 C., preferably from to 105 C.
  • the Durrans Mercury method as reported in SMS] 14 is employed.
  • Any heat fusible thermoplastic material having a conductivity of at most 10' mho/cm. may be used to form the spherules, although thermoplastic organic polymers are preferred.
  • suitable resins include B-stage (i.e., partially cured) phenol aldehyde polymers, polyvinyl acetate, epoxy resins, etc.
  • any highly electrically conductive material i.e., a material having a conductivity of at least 10 mho/cm., such as conductive carbon, metal, etc.
  • a material having a conductivity of at least 10 mho/cm. such as conductive carbon, metal, etc.
  • the electrically conductive particles may be used in powdered form as the electrically conductive particles forming the conductive zone of the dry ink particles, provided the resulting electrically conductive particles have an average diameter below millimicrons, preferably under 40 millimicrons.
  • Conductive carbon particles e.g., those available under the trade name Vulcan XC-72R, sold by Cabot-Corporation are preferred.
  • the amount of conductive material in the embeddedzone of the dry ink particle, the type of conductive material used, the particle size of the embedded conductive particles, and the location of the embedded zone can influence the conductivity of the dry ink powder.
  • the volume ratio of electrically conductive material to the total particle volume in the ink powder can be in the range of 001/100 to 4.0/100, although 0.1/100 to 1.5/100 is preferred.
  • the embedded zone of conductive particles is normally quite close to the surface of the ink particle and is preferably not thicker than one-tenth the radius of the essentially spherical developer particle. Although essentially all of the conductive particles are embedded, an occasional particle may protrude from the surface.
  • the conductivity of these developer particles is field dependent," i.e., the conductivity under high electrical fields differs from the conductivity under low electrical fields.
  • the electrical conductivity of the developer particles is a monatonically, nondecreasing function of the applied DC electrical field. It is preferred that the slope of the conductivity vs. applied electrical field curve also increases monatonically with the applied electrical field. This has been found to be extremely valuable for developer powders used in the process of French Pat. No.
  • Example E used the resin of Example A.
  • the resin of Example E was Epon 1002" (epichlorohy rin/blsphcnol A solid epoxy resin, melting olnt 75-85/C., cpoxlde equivalent 01600400, molecular weight of 1060, a trademarked product of Shell Chemica Company). 1
  • the size distribution data are percent by number greater than indicated sizes, which are in microns. For example in sample A, 96% of all the particles are larger than 3.7 50% are greater than 6.4 and 6% are greater than 12.6
  • CAB-O-SIL a trademarked product of Cabot Corporation.
  • Various other materials may be usefully incorporated in or on the developer particles of this invention, c.g., plasticizers, dyestuffs, pigments, magnetically permeable particles, etc.
  • Magnetically permeable particles having an average diameter of 1 micron or less are particularly preferred, including magnctite, barium ferrite, nickel zinc ferrite, chromium oxide, nickel oxide, etc.
  • a magnetically permeable core may also be used.
  • Powdered flow agents may also be added to the dry particles to improve their flow characteristics.
  • the conductivity of these dry ink powders is related to the applied electric field across the powder particles, and measurement of conductivity is therefore made under standard conditions of sample size, sample compression and applied electric field. The following test procedure is used for the conductivity measurements presented herein.
  • the sample of ink is placed in a test cell between two brass electrodes of circular cross section, each with a cross-scctional area of about 0.073 cm.”
  • An insulating cylindrical sleeve of polytetrafluoroethylene surrounds the ink and electrodes such that the ink sample is constrained to the shape ofa small pill box.
  • At least one of the electrodes is free to move like a piston in the insulating sleeve to provide a predetermined comprcssion on the sample.
  • the compression is obtained by placing a known weight on the movable electrode,
  • the voltage cannot be applied to the sample for longer than a fraction of a second or so, before considerable heat develops in the sample, changing its characteristics, or causing it to break down" entirely.
  • the applied voltage is rapidly in- 25 creased from about 0 to 2,000 v. or more (corresponding to 3 cial, high voltage ramp (or sweep) generator.
  • the current meter described earlier is replaced by a current-sampling resistor, typically of about 10,000 ohms. The voltage across this sampling resistor, as monitored by an oscilloscope,
  • the dry ink powder conductivity should be such that at high applied electric fields, it permits a relatively large current flow the development electrode to the intermediate photoconductivc imagcable surface during the development step, which is carried out with a relatively large series voltage impressed.
  • the powder should not be so conductive that after one layer is deposited on the intermediate photoconductive imageable surface it thereafter electrically shiclds subsequent layers of powder from the intermediate surface, accepting their charge but preventing their deposition as would happen with a highly conductive powder.
  • the conductivity should be considerably smaller so the powder which was deposited on the intermediate photoconductive imagcable surface retains its charge for a time period sufficient to permit transfer of the powder from the intermediate surface to a receptor sheet.
  • the electric field holding the powder to the intermediate surface in areas where it is deposited is still relatively strong, but the nature of the interface in these areas is insulating enough to prevent the charge to flow from the powder into the intermediate itself.
  • the lateral electric field from particle to particle is very small or zero, so the charge on the deposited particles does not leak laterally to the more conductive areas on the intermediate surrounding the deposited powder.
  • the electric field from layer to layer of deposited powder is smallaftcrdcvclopment, so the charge do es not readily leak from layers more rcmotcfrom thc intermediate surface to the' layers more adjacent to said surface. Thus all deposited particles remain strongly bound to the intermediate and retain their charge for a time.
  • a dry-powdered blend of appropriate composition is first obtained by any of several standard means, for example, by melting a resin, stirring in the solid filler, if any, allowing the mixture to cool, then grinding and classifying to the appropriate particle size range of approximately 1 to microns diameter.
  • This powder which is pseudocubical in shape is then spheroidized" by the following method: the powder is aspirated into a moving gas stream, preferably air, thus creating an aerosol.
  • This aerosol is directed at about 90 (:5") through a stream of hot air, which has been heated to about 900-1,l00 F., into a cooling chamber, where the powder is then allowed to settle by gravity while it cools.
  • the resulting powder is now made up of substantially spherical particles. It is then dry blended with conductive powder, such as conductive carbon black, and the mixture is directed at about 90 (i5) through a stream of gas, preferably air, heated to a temperature (e.g., 700800 F.) which can at least soften and desirably melt the thermoplastic resin in the particles and maintain that softened or melted condition for a period of time sufficient to permit the conductive powder to become essentially completely embedded, due to the effects of surface tension.
  • the particles are then collected, such as by cyclone separation, and are preferably blended with a flow agent, such as CAB-O-SIL (finely divided silica, a trademarked product of Cabot Corporation) to insure that it will be free flowing.
  • a flow agent such as CAB-O-SIL (finely divided silica, a trademarked product of Cabot Corporation) to insure that it will be free flowing.
  • the conductive material may be deposited, as a powder or as a continuous film, on the surface of the essentially spherical particles, and a thin film ofinsulative material, e.g., a resin, may be superimposed or deposited thereon to ef fectively embed the conductive material as a zone in the parti+ cles.
  • a thin film ofinsulative material e.g., a resin
  • the following procedure represents a preferred method for manufacturing the dry ink powder.
  • EXAMPLE A Four parts by weight of Epon 1004" (epichlorohydrin/bi sphenol A solid epoxy resin, melting point 95-105 C., epoxide equivalent of ENS-1,025, molecular weight of 1,400, a trademarked product of Shell Chemical Company) and 6 parts by weight of magnetite were blended thoroughly on a conventional heated-roll rubber mill. The resulting material was pulverized in an attrition-type grinder and was then classified in a standard air-centrifugal-type machine, the yield from which was about percent by weight in the desired particle size distribution range. Particle size analysis of the product showed it to be about 95% 1 .3u, 50% 4.1,u, 5% l2.6 .1r% (by number).
  • the final step in the process was to blend 0.1 percent by weight of a small particle size SiO flow agent to cause the powder to become sufficiently free flowing for use in the electropowder process.
  • This ink was coded A, and the conductivity vs. applied electrical field curve is shown in the FIGURE.
  • Table I shows the properties obtained when several other formulations (B-F) were prepared by the method given in the above example, and the conductivity vs. applied electrical field curves are presented in the FIGURE.
  • the two dotted lines in the FIGURE represented the upper and lower limits of conductivity over the range of applied DC electrical fields, as mentioned earlier.
  • thermoplastic, essentially spherical particles suitable for use as a developer powder in electrographic recording which comprises thermoplastic, essentially spherical particles, the thermoplastic material of which has a conductivity of at most 10 mho/cm., in which are essentially completely embedded electrically conductive particles having a conductivity of at least 10 mho/cm. and an average diameter below about 100 millimicrons forming a radially disposed zone, said essentially spherical particles having:
  • thermoplastic material is an organic resin

Abstract

Flowable, heat fusible, dry powder suitable for use as a developer powder in electrographic recording which comprises thermoplastic, essentially spherical particles, the thermoplastic material of which has a conductivity of at most 10 12 mho/cm., in which are essentially completely embedded electrically conductive particles forming a radially disposed zone, said essentially spherical particles having: A. AN ELECTRONIC CONDUCTIVITY RANGING MONATONICALLY WITHOUT DECREASING FROM BETWEEN ABOUT 10 11 AND 10 4 MHO/CM. IN A 100 V./CM. DC electrical field to between about 10 8 and 10 3 mho/cm. in a 10,000 v./cm. DC electrical field, B. A NUMBER AVERAGE PARTICLE DIAMETER BELOW 15 MICRONS, AND C. A VOLUME RATIO OF SAID ELECTRICALLY CONDUCTIVE PARTICLES TO SAID TOTAL PARTICLE VOLUME OF BETWEEN 0.01/100 AND 4/100.

Description

United States Patent Nelson Feb. 1, 1972 ..G03g9/02 WhQ F P; in? Y- D- elestrivcal field Field of Search ..252/62.l, 62.53, 62.54 between and mm/cma D.C. electrical field, References Cited b. 2snrcllumber average particle diameter below 15 microns, UNITED STATES PATENTS c. a volume ratio of said electrically conductive particles to said total particle volume of between 0.01/100 and 3,345,294 10/1967 Cooper ..252/62.l 4/100 7/ I965 Seymour ..252/65.1 8 Claims, 1 Drawing Figure 3 G q \g l z km" E F /0' 3L -15 M 6 R F f g -a b /0 we 5mm DEVELOPER POWER OF THERMOPLASTIC SPECIAL PARTICLES HAVING CONDUCTIVE PARTICLES RADIALLY DISPERSED THEREIN lnventor: Robert B. Nelson, Lake Elmo, Minn.
Assignee:
Company, Saint Paul, Minn.
July 22, 1968 Filed:
Appl. No.:
lnt. Cl.
Minnesota Mining and Manuiacturing Primary Examiner-George F. Lesmes Assistant Examiner-J. P. Brammer Attorney-Kinney, Alexander, Sell, Steldlt & Delahunt [57] ABSTRACT Flowable, heat fusible, dry powder suitable for use as a developer powder in electrographic recording which comprises thermoplastic, essentially spherical particles, the thermoplastic material of which has a conductivity of at most 10' mho/cm., in which are essentially completely embedded electrically conductive particles forming a radially disposed zone, said essentially spherical particles having:
a. an electronic conductivity ranging monatonically without decreasing from between about 10 and DEVELOPER POWER OF THERMOPLASTIC SPECIAL PARTICLES HAVING CONDUCTIVE PARTICLES RADIALLY DISPERSED TI-IEREIN This invention relates to a dry ink powder suitable for use in electrographic recording and a process for making such powder. In one aspect this invention relates to a developer powder having a good electrical conductivity in the presence of a relatively large impressed electric field, and low electrical conductivity (and hence good charge retention characteristics for the charge remaining on it) in the absence of this high impressed field. In still another aspect this invention relates to dry developer particles for electrophotography which are magnetizable. in still another aspect, this invention relates to a developer powder which has a pressure dependent conductivity, being more conductive under the influence of an impressed magnetic field during development, and less conductive (and hence having better individual charge retention characteristics) in the absence of this impressed magnetic field.
Electrostatic electrophotography originally employed two component dry ink powders, often called triboelectric mixtures," for charge development of the electrostatic image. Recently dry powders in which all of the particles are of the same composition have been described. The relatively conductive dry inks of U.S. Pat. No. 3,116,510 (Jan. 19, 1965; Charles P. West and Jacques Benveniste) contain thermoplastic resin particles in which about 35 to 55 percent of the total particle weight is carbon black dispersed throughout the resin particles. In U.S. Pat. No. 3,196,032 (July 20, 1965; David W. Seymour) an electrostatic printing ink having carbon powder partially embedded in or adhered to the surface of resin particles is prepared in a fluid bed reactor.
in a new electrographic process, described in French Pat. No. 1,456,993, an exposed photoconductive sheet is contacted with conductive developer powder applied from a conductive surface, to which it is adhered, while creating a differential electrical field between the photoconductive sheet (i.e., field electrode) and the conductive surface containing the developer powder. The developer powder is transferred selectively to the photoconductive sheet in the nonexposed areas. Separation of the photoconductive sheet from the source of supply of developer powder is made while still maintaining the influence of the electrical field, and provision can be made for continuing the attraction of the developer powder to the surface of the photoconductive sheet after such separation. The developer powder in this process is electronically conductive, usually having a conductivity of at least l mho per centimeter (ohm"cm.' preferably to 10' mho per centimeter, at the applied electrical field (preferably at least 1,000 DC volts per centimeter). Conductivity measurements are made with the developer powder compressed into a 1-centimeter cube between brass electrodes fitted in a rigid chamber, a pressure of 86 pounds per square inch (6.05 kg. per cm?) being applied across the sample before and during the measurement of conductance. If the developer powder is subsequently to be transferred from the photoconductive sheet to a receptor surface, it should also have electrical charge retention capability, to retain the electrical charge imparted to the developer particles by the applied electrical field during the development of the pattern on the field electrode. This may be accomplished by providing the developer particles with a highly resistive interior or core and a highly conductive surface or shell. However, the high conductivity of the developer particles desired to minimize voltage drop across them when they are in the electrical field, and the ability ofthe developer particles to retain the electrical charge, which characterizes high resistivity particles, are difficult to achieve satisfactorily, since one desirable characteristic is generally sacrificed to obtain the other.
It is therefore an object of this invention to provide new particles suitable for use as electrographic developers, particularly in the process of French Pat. No. 1,456,993, also referred to as the Electropowder process. Still another object of this invention is to provide powder particles having both high conductivity and good electrical charge retention. Yet another object is to provide a process for the manufacture of such developer particles.
The FIGURE is a plot of electrical conductivity vs. DC ap- I plied electrical field for developer particles of this invention.
The developer powders of this invention comprise thermoplastic, essentially spherical particles (i.e., spherules), the thermoplastic material of which has a conductivity of at most 10-" mho/cm, preferably at most 10" mho/cm, in which are essentially completely embedded electrically conductive particles forming a radially disposed layer or zone, said essentially spherical particleshaving an electronic conductivity which ranges monatonically without decreasing from between about 10' and about 10" mho/cm. (preferably between 10' and 10 mho/cm.) in a 100 v./cm. DC electrical field to between 10 and about 10' mho/cm. (preferably between 10 and 10 mho/cm.) in a 10,000 v./cm. DC electrical field, and having a number average diameter below 15, preferably below 10, microns. Preferably, the average particle size range is such that at least about 95 number percent of the particles have a diameter greater than about 2 microns, while no more than 5 number percent have a diameter greater than about 15 microns. These dry ink powders are flowable to such an extent that they have a flowability angle of repose ranging from about to 125 and preferably from 1 10 to 125. For purposes of this invention, flowability is measured by feeding a thin stream of powder to the upper flat surface of a 3-inch diameter circular pedestal from a vibrating funnel, thereby creating a conical deposit of powder on the pedestal. The angle of repose is defined by the angle measured between opposite sides of the conical deposit, i.e., the apex angle of the cone, at 25 C.
The dry ink powders of this invention and the thermoplastic materials used therein are preferably heat fusible in the range of 80 to 1 15 C., preferably from to 105 C. For determining fusion temperatures the Durrans Mercury method, as reported in SMS] 14, is employed. Any heat fusible thermoplastic material having a conductivity of at most 10' mho/cm. may be used to form the spherules, although thermoplastic organic polymers are preferred. Examples of suitable resins include B-stage (i.e., partially cured) phenol aldehyde polymers, polyvinyl acetate, epoxy resins, etc.
In general, any highly electrically conductive material (i.e., a material having a conductivity of at least 10 mho/cm., such as conductive carbon, metal, etc.) may be used in powdered form as the electrically conductive particles forming the conductive zone of the dry ink particles, provided the resulting electrically conductive particles have an average diameter below millimicrons, preferably under 40 millimicrons. Conductive carbon particles (e.g., those available under the trade name Vulcan XC-72R, sold by Cabot-Corporation) are preferred.
It has been found that the amount of conductive material in the embeddedzone of the dry ink particle, the type of conductive material used, the particle size of the embedded conductive particles, and the location of the embedded zone can influence the conductivity of the dry ink powder. Generally the volume ratio of electrically conductive material to the total particle volume in the ink powder can be in the range of 001/100 to 4.0/100, although 0.1/100 to 1.5/100 is preferred. The embedded zone of conductive particles is normally quite close to the surface of the ink particle and is preferably not thicker than one-tenth the radius of the essentially spherical developer particle. Although essentially all of the conductive particles are embedded, an occasional particle may protrude from the surface. The conductivity of these developer particles is field dependent," i.e., the conductivity under high electrical fields differs from the conductivity under low electrical fields. In fact, as mentioned earlier, the electrical conductivity of the developer particles is a monatonically, nondecreasing function of the applied DC electrical field. It is preferred that the slope of the conductivity vs. applied electrical field curve also increases monatonically with the applied electrical field. This has been found to be extremely valuable for developer powders used in the process of French Pat. No.
TABLE I Parts by weight Size distribution 3 Conductivity (ohm cm)" Pigment Resin 1 giarblpr i Silica 4 95% b% 100. v./cm. 10,000 v./cm.
e0 40 1. as .1 3. 7 e. 4 12. e 2. SXAO- 4x10-' 60 40 1.2 .1 3.1 6.7 13 0 3. 0x10 5 GXiO' 4O 1. 2 .1 2. 1 5. 8 12 3 3. 0X10 4. 1X10 16 6 83. 4 2 0 2. 2 7.0 31 1 5. 4X10" 2 0X10 50 1. 8 1 3. 0 7.8 13 6 2X10 K 0X10- 60 40 0. 8 1 1. 4 4. 8 22 0 6. 0X10 6. 6X10 1 Plgments'used are as follows: A, B, C, E-Magnetite (0.2%).8 micron diameter); D-Benzidine Yellow (Color Index No. 21090); F-niclrel zinc ferrite (0.20.8 micron diameter).
2 All Exam les except Example E used the resin of Example A. The resin of Example E was Epon 1002" (epichlorohy rin/blsphcnol A solid epoxy resin, melting olnt 75-85/C., cpoxlde equivalent 01600400, molecular weight of 1060, a trademarked product of Shell Chemica Company). 1
3 The size distribution data are percent by number greater than indicated sizes, which are in microns. For example in sample A, 96% of all the particles are larger than 3.7 50% are greater than 6.4 and 6% are greater than 12.6
4 CAB-O-SIL, a trademarked product of Cabot Corporation.
5 milllmicron diameter particle size, as measured by electron microscope.
1,456,993, since the developer particles display high conductivity under the high electrical field conditions of particle deposition on the field electrode and display lower conductivity (and hence better electrical charge retention) after they are removed from the high electrical field. As mentioned earlier, charge retention is particularly important when one desires to transfer the imagewisc pattern of developer particles from the field electrode to a receptor sheet without loss of particles. Although the mechanism is not completely understood, the field dependent conductivity of these particles is believed to be attributable to their being essentially completely immersed or embedded in the relatively insulative, thermoplastic material. At the higher electrical fields the electrical current is believed to tunnel" or pass through the thermoplastic material on the particle surface to reach the embedded zone or layer of conductive material. At the lower electrical fields the thermoplastic surface layer serves as an effective insulativc barrier to current flow, resulting in a lower particle conductivity and a higher electrical charge retention capability.
Various other materials may be usefully incorporated in or on the developer particles of this invention, c.g., plasticizers, dyestuffs, pigments, magnetically permeable particles, etc.
Magnetically permeable particles having an average diameter of 1 micron or less are particularly preferred, including magnctite, barium ferrite, nickel zinc ferrite, chromium oxide, nickel oxide, etc. A magnetically permeable core may also be used. Powdered flow agents may also be added to the dry particles to improve their flow characteristics.
The conductivity of these dry ink powders is related to the applied electric field across the powder particles, and measurement of conductivity is therefore made under standard conditions of sample size, sample compression and applied electric field. The following test procedure is used for the conductivity measurements presented herein.
The sample of ink is placed in a test cell between two brass electrodes of circular cross section, each with a cross-scctional area of about 0.073 cm.". An insulating cylindrical sleeve of polytetrafluoroethylene surrounds the ink and electrodes such that the ink sample is constrained to the shape ofa small pill box. At least one of the electrodes is free to move like a piston in the insulating sleeve to provide a predetermined comprcssion on the sample. The compression is obtained by placing a known weight on the movable electrode,
and typically one uses a 100 gram weight to give a pressure of l,370 g./cm. on the sample. One places enough ink into the cell such that the final electrode spacing under the above pressureis about 0.05 cm. to about 0.1 cm., and preferably as close to 0.05 cm. as possible. The final spacing is measured carefully using a cathctomctcr. A voltage is applied in a series circuit arrangement consisting of the ink sample, an electrical current mctcr (such as a Kcithlcy Model 601 Elcctromcteri, and the voltag'c'source. The ink conductivity is calculated from the voltage which appears across the sample electrodes and the current which flows through it in the usual manner. The voltage is varied and the resulting conductivity is calculated for various electric ficldsfrom about lO v/cm. to about from 1,000 to 4,000 v./cm. For fields higher than about 4,000
20 v./cm., the voltage cannot be applied to the sample for longer than a fraction of a second or so, before considerable heat develops in the sample, changing its characteristics, or causing it to break down" entirely. To measure the electrical conductivity at high fields, therefore, the applied voltage is rapidly in- 25 creased from about 0 to 2,000 v. or more (corresponding to 3 cial, high voltage ramp (or sweep) generator. To measure the current through the sample, when using the voltage sweep, the current meter described earlier is replaced by a current-sampling resistor, typically of about 10,000 ohms. The voltage across this sampling resistor, as monitored by an oscilloscope,
1 is proportional to the current flowing through the sample. Thc
voltage across the sample is also monitored on an oscil- ,loscope, using high voltage probes. Typically, the voltage across the current-sampling resistor is applied to the horizontal input to the oscilloscope, while the voltage across the ink sample itself is appliedto the vertical input to the same oscilloscope, giving a direct plot proportional to the current (ab- ;scissa) vs. voltage (ordinate) characteristics of the ink sample 3 on the oscilloscope screen, which is then photographed. From i this, the conductivity vs. field characteristics of the ink sample ,at very high fields can be calculated. The electrical conduc- Ltivity data given in Table l was obtained in the above manner. 1 The dry ink powder conductivity should be such that at high applied electric fields, it permits a relatively large current flow the development electrode to the intermediate photoconductivc imagcable surface during the development step, which is carried out with a relatively large series voltage impressed. However, the powder should not be so conductive that after one layer is deposited on the intermediate photoconductive imageable surface it thereafter electrically shiclds subsequent layers of powder from the intermediate surface, accepting their charge but preventing their deposition as would happen with a highly conductive powder. Additionally, at low or zero applied electric field, the conductivity should be considerably smaller so the powder which was deposited on the intermediate photoconductive imagcable surface retains its charge for a time period sufficient to permit transfer of the powder from the intermediate surface to a receptor sheet. After development is completed, the electric field holding the powder to the intermediate surface in areas where it is deposited is still relatively strong, but the nature of the interface in these areas is insulating enough to prevent the charge to flow from the powder into the intermediate itself. At the same time, the lateral electric field from particle to particle is very small or zero, so the charge on the deposited particles does not leak laterally to the more conductive areas on the intermediate surrounding the deposited powder. Furthermore, the electric field from layer to layer of deposited powder is smallaftcrdcvclopment, so the charge do es not readily leak from layers more rcmotcfrom thc intermediate surface to the' layers more adjacent to said surface. Thus all deposited particles remain strongly bound to the intermediate and retain their charge for a time.
In preparing the developer powders a dry-powdered blend of appropriate composition is first obtained by any of several standard means, for example, by melting a resin, stirring in the solid filler, if any, allowing the mixture to cool, then grinding and classifying to the appropriate particle size range of approximately 1 to microns diameter. This powder, which is pseudocubical in shape is then spheroidized" by the following method: the powder is aspirated into a moving gas stream, preferably air, thus creating an aerosol. This aerosol is directed at about 90 (:5") through a stream of hot air, which has been heated to about 900-1,l00 F., into a cooling chamber, where the powder is then allowed to settle by gravity while it cools. The resulting powder is now made up of substantially spherical particles. It is then dry blended with conductive powder, such as conductive carbon black, and the mixture is directed at about 90 (i5) through a stream of gas, preferably air, heated to a temperature (e.g., 700800 F.) which can at least soften and desirably melt the thermoplastic resin in the particles and maintain that softened or melted condition for a period of time sufficient to permit the conductive powder to become essentially completely embedded, due to the effects of surface tension. The particles are then collected, such as by cyclone separation, and are preferably blended with a flow agent, such as CAB-O-SIL (finely divided silica, a trademarked product of Cabot Corporation) to insure that it will be free flowing.
In an alternative preparation of the developer powders of this invention the conductive material may be deposited, as a powder or as a continuous film, on the surface of the essentially spherical particles, and a thin film ofinsulative material, e.g., a resin, may be superimposed or deposited thereon to ef fectively embed the conductive material as a zone in the parti+ cles.
The following procedure represents a preferred method for manufacturing the dry ink powder.
EXAMPLE A Four parts by weight of Epon 1004" (epichlorohydrin/bi sphenol A solid epoxy resin, melting point 95-105 C., epoxide equivalent of ENS-1,025, molecular weight of 1,400, a trademarked product of Shell Chemical Company) and 6 parts by weight of magnetite were blended thoroughly on a conventional heated-roll rubber mill. The resulting material was pulverized in an attrition-type grinder and was then classified in a standard air-centrifugal-type machine, the yield from which was about percent by weight in the desired particle size distribution range. Particle size analysis of the product showed it to be about 95% 1 .3u, 50% 4.1,u, 5% l2.6 .1r% (by number).
These particles, which are sharp edged and pseudocubical in shape, were then "spheroidized such that most of the particles were transformed into spherelike shapes or round-edged particles by the following process. The powder was fed to an air aspirator in a uniform stream of about 800 grams per hour. The aspirator sucks the particles into the airstream and disperses them, forming an aerosol. This aerosol was directed at 90 into a heated airstream, the temperature of which was about 950 1 ,000 F. The powder was then allowed to settle and was collected by filtration.
exactly as it was described above, except that the temperature of the hot a1rstream was ad usted to about 740 F. and the product was collected in a cyclone-type separator.
The final step in the process was to blend 0.1 percent by weight of a small particle size SiO flow agent to cause the powder to become sufficiently free flowing for use in the electropowder process. This ink was coded A, and the conductivity vs. applied electrical field curve is shown in the FIGURE.
Table I shows the properties obtained when several other formulations (B-F) were prepared by the method given in the above example, and the conductivity vs. applied electrical field curves are presented in the FIGURE. The two dotted lines in the FIGURE represented the upper and lower limits of conductivity over the range of applied DC electrical fields, as mentioned earlier.
What is claimed is:
l. Flowable, heat fusible, dry powder suitable for use as a developer powder in electrographic recording which comprises thermoplastic, essentially spherical particles, the thermoplastic material of which has a conductivity of at most 10 mho/cm., in which are essentially completely embedded electrically conductive particles having a conductivity of at least 10 mho/cm. and an average diameter below about 100 millimicrons forming a radially disposed zone, said essentially spherical particles having:
a. an electronic conductivity ranging monatonically without decreasing from between about 10" and 10 mho/cm. in a 100 v./cm. DC electrical field to between about 10 and 10' mho/cm. in a 10,000 v./cm. DC electrical field,
b. a number average particle diameter below 15 microns,
and
c. a volume ratio of said electrically conductive particles to said total particle volume of between 0.01/100 and 4/100.
2. The dry powder ofclaim 1 in which said essentially spherical particles contain therein magnetizable particles.
3. The dry powder of claim 1 in which said electrically con ductive particles are particles of highly conductive carbon having a conductivity of at least 10 mho/cm.
4. The dry powder of claim 1 in which the particle size range ofsaid spherical particles is such that at least about number percent of the particles have a diameter greater than about 2 microns and no more than 5 number percent have a diameter greater than 13 microns.
5. The dry powder of claim 1 in which said spherical particles have a flowability angle of repose between 80 and 125.
6. The dry powder of claim 1 in which said spherical particles have an electronic conductivity ranging monatonically without decreasing from between 10' and 10 mho/cm. in a v./cm. DC electrical field to between 10 and 10 mho/cm. in a 10,000 v./cm. DC electrical field.
7. The dry powder of claim 1 in which said thermoplastic material is an organic resin.
8. The dry powder of claim 1 which is heat fusible in the range offrom about 80 to 1 15 C.
UNITED STATES PATENT @FFECE CERTIFICATE OF CURREfiTEON Patent No. Dated February 1 1972 Inventor(s) Robert Nelson It is certified that error appears in the above-identified patent and that said Letters Patentare hereby corrected as shown below:
Col. 5, line 52 "5% l2.6u1r1/ 4(by number)" should read 5% 12.6u(by number) Signed and sealed this 18th day of July 1972.
SEAL) Attest:
EDWARD M.FLETCHER,JR. ROBERT GOTTSCHALK Commissioner of Patents Attesting Officer USCOMM'DC 60376-969 FORM PC3-1050 (10-69) e 0.5. aovznnnzm' ramrms OFFICE can o-ses-334.

Claims (7)

  1. 2. The dry powder of claim 1 in which said essentially spherical particles contain therein magnetizable particles.
  2. 3. The dry powder of claim 1 in Which said electrically conductive particles are particles of highly conductive carbon having a conductivity of at least 10 2 mho/cm.
  3. 4. The dry powder of claim 1 in which the particle size range of said spherical particles is such that at least about 95 number percent of the particles have a diameter greater than about 2 microns and no more than 5 number percent have a diameter greater than 13 microns.
  4. 5. The dry powder of claim 1 in which said spherical particles have a flowability angle of repose between 80* and 125* .
  5. 6. The dry powder of claim 1 in which said spherical particles have an electronic conductivity ranging monatonically without decreasing from between 10 9 and 10 5 mho/cm. in a 100 v./cm. DC electrical field to between 10 7 and 10 4 mho/cm. in a 10,000 v./cm. DC electrical field.
  6. 7. The dry powder of claim 1 in which said thermoplastic material is an organic resin.
  7. 8. The dry powder of claim 1 which is heat fusible in the range of from about 80* to 115* C.
US746691A 1968-07-22 1968-07-22 Developer power of thermoplastic special particles having conductive particles radially dispersed therein Expired - Lifetime US3639245A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US74669168A 1968-07-22 1968-07-22

Publications (1)

Publication Number Publication Date
US3639245A true US3639245A (en) 1972-02-01

Family

ID=25001922

Family Applications (1)

Application Number Title Priority Date Filing Date
US746691A Expired - Lifetime US3639245A (en) 1968-07-22 1968-07-22 Developer power of thermoplastic special particles having conductive particles radially dispersed therein

Country Status (13)

Country Link
US (1) US3639245A (en)
JP (1) JPS5840182B1 (en)
AT (1) AT307871B (en)
BE (1) BE736353A (en)
BR (1) BR6910891D0 (en)
CH (1) CH526136A (en)
DE (1) DE1937651C3 (en)
DK (1) DK130938B (en)
ES (1) ES369454A1 (en)
FR (1) FR2013449A1 (en)
GB (1) GB1282017A (en)
NL (2) NL159795B (en)
SE (1) SE346632B (en)

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2313132A1 (en) * 1972-03-16 1973-09-20 Oce Van Der Grinten Nv ELECTROPHOTOGRAPHIC PROCEDURE
JPS4917739A (en) * 1972-04-10 1974-02-16
FR2235404A1 (en) * 1973-06-29 1975-01-24 Minnesota Mining & Mfg
JPS5020729A (en) * 1973-06-22 1975-03-05
US3909258A (en) * 1972-03-15 1975-09-30 Minnesota Mining & Mfg Electrographic development process
DE2424350A1 (en) * 1974-05-20 1975-11-27 Turlabor Ag METHOD FOR ELECTROGRAPHIC IMAGE GENERATION AND DEVICE FOR EXECUTING THE METHOD
US3929658A (en) * 1972-11-02 1975-12-30 Du Pont Magnetic recording compositions and elements of low abrasiveness and process for making them
JPS5140137A (en) * 1974-10-01 1976-04-03 Mita Industrial Co Ltd
JPS5180235A (en) * 1975-01-09 1976-07-13 Ricoh Kk
JPS5196331A (en) * 1975-02-21 1976-08-24
JPS5298530A (en) * 1976-02-16 1977-08-18 Hitachi Metals Ltd Magnetic toner
JPS52104929A (en) * 1976-02-28 1977-09-02 Ricoh Co Ltd Dry developing agent powder
JPS52143028A (en) * 1976-05-24 1977-11-29 Hitachi Metals Ltd Electrostatic image developing apparatus
DE2729946A1 (en) * 1976-06-30 1978-01-05 Minnesota Mining & Mfg ELECTROGRAPHIC DEVELOPMENT PROCESS
US4082681A (en) * 1975-11-04 1978-04-04 Mita Industrial Company Magnetic developer for electrostatic photography and process for preparation thereof
US4108786A (en) * 1975-12-16 1978-08-22 Mita Industrial Company Ltd. Magnetic dry developer for electrostatic photography and process for preparation thereof
JPS5411740A (en) * 1977-06-29 1979-01-29 Hitachi Metals Ltd Magnetic toner
US4137188A (en) * 1975-11-07 1979-01-30 Shigeru Uetake Magnetic toner for electrophotography
US4146494A (en) * 1976-01-23 1979-03-27 Oce-Van De Grinten N.V. One-component developer powder and process for its preparation
JPS5441730A (en) * 1977-09-09 1979-04-03 Hitachi Metals Ltd Magnetic toner for heat fixing
US4148640A (en) * 1974-03-11 1979-04-10 Eastman Kodak Company Developer compositions having electrically conducting filaments in carrier particle matrix
US4174409A (en) * 1977-08-05 1979-11-13 Minnesota Mining And Manufacturing Company Depositing latent fingerprints and development thereof
US4176078A (en) * 1977-06-02 1979-11-27 Xerox Corporation Field dependent toner having chrome complex coated magnetic particles
JPS54153638A (en) * 1978-05-25 1979-12-04 Hitachi Metals Ltd Magnetic toner
JPS5511261A (en) * 1978-07-12 1980-01-26 Hitachi Metals Ltd Magnetic toner
JPS5511262A (en) * 1978-07-12 1980-01-26 Hitachi Metals Ltd Magnetic toner
US4185916A (en) * 1977-04-08 1980-01-29 Xerox Corporation Composite developer particles and apparatus for using same
US4189390A (en) * 1975-02-21 1980-02-19 Hitachi Metals, Ltd. One-component magnetic developer powder for developing electrostatic latent image and method of making same
US4210448A (en) * 1975-10-21 1980-07-01 Elfotec A.G. Process for electrophotographic image formation and transfer
US4212837A (en) * 1977-05-04 1980-07-15 Tokyo Shibaura Electric Co., Ltd. Method and apparatus for forming spherical particles of thermoplastic material
US4242434A (en) * 1975-11-26 1980-12-30 Ricoh Company, Ltd. Toner composition for multiple copy electrostatic photography
US4246331A (en) * 1973-11-30 1981-01-20 Sublistatic Holding Sa Electrophotographic developers containing sublaminate dyes
US4251616A (en) * 1976-01-07 1981-02-17 Sublistatic Holding Sa Magnetic toners and development process
US4259426A (en) * 1978-03-06 1981-03-31 Canon Kabushiki Kaisha Pressure fixable microcapsule toner and electrostatic image developing method
US4258644A (en) * 1977-08-05 1981-03-31 Minnesota Mining And Manufacturing Company Depositing latent fingerprints and development thereof
US4262076A (en) * 1978-03-06 1981-04-14 Minolta Camera Kabushiki Kaisha Method for manufacturing magnetically attractive toner particles and particle
US4264698A (en) * 1975-10-27 1981-04-28 Mita Industrial Company Limited Developer for electrostatic photography and process for preparation thereof
US4265993A (en) * 1978-06-28 1981-05-05 Hitachi Metals, Ltd. Magnetic toner for electrostatic images and transfer copying
US4265992A (en) * 1977-08-05 1981-05-05 Mita Industrial Company Limited Coated magnetic developer particles for electrophotography containing vinyl and olefin resins
JPS5652758A (en) * 1980-04-25 1981-05-12 Konishiroku Photo Ind Co Ltd Static charge image developer
US4273847A (en) * 1976-07-30 1981-06-16 Epp Corp. Inks for pulsed electrical printing and methods of producing same
US4273848A (en) * 1978-03-14 1981-06-16 Minolta Camera Kabushiki Kaisha Oriented magnetic toner
US4282302A (en) * 1978-10-27 1981-08-04 TDK Electronics, Ltd. Ferrite powder type magnetic toner used in electrophotography and process for producing the same
EP0035573A4 (en) * 1979-08-22 1981-08-28 Fujitsu Ltd Toner particles for electrophotography and electrophotographic process utilizing same.
US4288519A (en) * 1977-02-28 1981-09-08 Black Copy Company, Inc. Dual purpose electrophotographic magnetic toner and process of making
US4291111A (en) * 1977-11-25 1981-09-22 Xerox Corporation Nitrogen-containing additives for magnetic toners having hydrophobic and hydrophilic moiety
US4293632A (en) * 1978-04-03 1981-10-06 Xerox Corporation Attrition process for alteration of toner particles containing conductive materials
US4296176A (en) * 1976-07-30 1981-10-20 Epp Corp. Inks for pulsed electrical printing
EP0042224A1 (en) * 1980-06-16 1981-12-23 Minnesota Mining And Manufacturing Company Fluorinated carbon-containing developer composition
US4312933A (en) * 1979-02-09 1982-01-26 Xerox Corporation Method of imaging using nitrogen-containing additives for magnetic toners
US4345015A (en) * 1975-07-07 1982-08-17 Oce-Van Der Grinten N.V. Dispersion-heat process employing hydrophobic silica for producing spherical electrophotographic toner powder
US4345013A (en) * 1977-02-28 1982-08-17 Black Copy Company, Inc. Dual purpose magnetic toner
WO1983002013A1 (en) * 1981-11-26 1983-06-09 Kishi, Kenichi Magnetic toner
US4389478A (en) * 1980-01-07 1983-06-21 Bell & Howell Company Apparatus for and methods of making bimodal electrophotographic copies
US4430410A (en) 1979-08-27 1984-02-07 Mita Industrial Co., Ltd. Method and apparatus for developing latent electrostatic images
US4430409A (en) 1980-10-31 1984-02-07 Canon Kabushiki Kaisha Developer for electrophotography with wet process silicic acid
US4443527A (en) * 1981-09-18 1984-04-17 Oce-Nederland B.V. Colored magnetically attractable toner powder, its preparation, and developing images with such powder
US4442790A (en) * 1982-09-29 1984-04-17 Eastman Kodak Company Magnetic brush development apparatus
US4451837A (en) * 1980-09-18 1984-05-29 Xerox Corporation Conductive single component magnetic toner for use in electronic printing devices
US4487825A (en) * 1981-01-22 1984-12-11 Xerox Corporation Conductive single component electrophotographic magnetic toner
US4496644A (en) * 1983-02-28 1985-01-29 Eastman Kodak Company Electric field adjustment for magnetic brushes
US4496232A (en) * 1980-01-07 1985-01-29 Bell & Howell Apparatus for and methods of making bimodal electrophotographic copies
US4514484A (en) * 1978-09-12 1985-04-30 Compagnie Internationale Pour L'informatique Cii/Honeywell Bull (Societe Anonyme) Powder for developing latent images and a method of producing the powder
US4526851A (en) * 1983-09-06 1985-07-02 Trw Inc. Magnetic developer compositions
US4540646A (en) * 1974-08-28 1985-09-10 Konishiroku Photo Industry Co., Ltd. Method of developing an electrostatic latent image
EP0154053A2 (en) * 1983-12-30 1985-09-11 Koninklijke Philips Electronics N.V. Projection screen
US4554232A (en) * 1977-09-22 1985-11-19 Kazunori Tabaru Magnetic toner
US4599292A (en) * 1974-08-28 1986-07-08 Konishiroku Photo Industry Co., Ltd. Method and device of developing an electrostatic latent image
US4601967A (en) * 1983-12-10 1986-07-22 Ricoh Company, Ltd. Toner particles having a relatively high specific volume resistivity coating layer
US4643960A (en) * 1980-06-02 1987-02-17 Minnesota Mining And Manufacturing Company Developing powder composition containing a fatty acid amide component
US4681830A (en) * 1980-06-16 1987-07-21 Minnesota Mining And Manufacturing Company Fluorinated carbon-containing developer composition
EP0266579A2 (en) * 1986-11-03 1988-05-11 EASTMAN KODAK COMPANY (a New Jersey corporation) An electrostatographic method of making images
US4745418A (en) * 1986-04-30 1988-05-17 Minnesota Mining And Manufacturing Company Reusable developing powder composition
US4762765A (en) * 1985-03-23 1988-08-09 Alpine Aktiengesellschaft Augsburg Method of generating a spherical grain
US4913088A (en) * 1978-07-28 1990-04-03 Canon Kabushiki Kaisha Apparatus for developer transfer under electrical bias
US5032485A (en) * 1978-07-28 1991-07-16 Canon Kabushiki Kaisha Developing method for one-component developer
US5040027A (en) * 1988-12-16 1991-08-13 Matsushita Electric Industrial Company, Ltd. Printing apparatus
US5153616A (en) * 1990-03-08 1992-10-06 Hitachi Metals, Ltd. Method for recording images
US5194359A (en) * 1978-07-28 1993-03-16 Canon Kabushiki Kaisha Developing method for one component developer
US5202211A (en) * 1990-02-05 1993-04-13 Oce-Nederland B.V. Toner powder comprising particles having a coating of fluorine-doped tin oxide particles
US5350659A (en) * 1993-03-31 1994-09-27 Xerox Corporation Preparation of conductive toners using fluidized bed processing equipment
US5358811A (en) * 1988-12-27 1994-10-25 Canon Kabushiki Kaisha Electrophotographic method using an amorphous silicon light receiving member with a latent image support layer and a developed image support layer and insulating toner having a volume average particle size of 4.5 to 9.0 micron
US5385768A (en) * 1990-06-14 1995-01-31 Diafoil Company, Limited Electrically conductive film
US5457001A (en) * 1993-07-26 1995-10-10 Oce'-Nederland, B.V. Electrically conductive toner powder
US6594462B2 (en) * 2000-03-15 2003-07-15 Canon Kabushiki Kaisha Developing apparatus using toner with conductive particles
US10571832B2 (en) * 2017-03-17 2020-02-25 Ricoh Company, Ltd. Intermediate transferor, method of making the same, and image forming apparatus using the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2559018C2 (en) * 1975-12-29 1983-08-25 Elfotec AG, 8126 Zumikon Process for producing a magnetic one-component toner
JPS5359430A (en) * 1976-06-09 1978-05-29 Konishiroku Photo Ind Co Ltd Electrostatic latent image developer
JPS5443029A (en) * 1977-09-10 1979-04-05 Ricoh Co Ltd Pressure fixing toner
JPS54139545A (en) * 1978-04-10 1979-10-30 Hitachi Metals Ltd Magnetic toner
DE2965939D1 (en) * 1978-10-02 1983-08-25 Xerox Corp Electrostatographic processing system
JPS5585426A (en) * 1978-12-21 1980-06-27 Tdk Corp Magnetic powder for toner or ink and production thereof
GB2088076A (en) * 1980-10-13 1982-06-03 Ricoh Kk Electrophotographic Developing and Transfer Process
JP2612568B2 (en) * 1986-03-07 1997-05-21 東洋インキ製造株式会社 Electrophotographic toner
JPS6319663A (en) * 1986-07-14 1988-01-27 Kao Corp Spherical toner particles
US4839255A (en) * 1987-03-31 1989-06-13 Canon Kabushiki Kaisha Process for producing toner for developing electrostatic images

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3196032A (en) * 1962-02-20 1965-07-20 Burroughs Corp Process for producing electrostatic ink powder
US3345294A (en) * 1964-04-28 1967-10-03 American Photocopy Equip Co Developer mix for electrostatic printing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE626060A (en) * 1961-12-16
FR1456993A (en) * 1964-10-14 1966-07-08 Minnesota Mining & Mfg Electrographic reproduction process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3196032A (en) * 1962-02-20 1965-07-20 Burroughs Corp Process for producing electrostatic ink powder
US3345294A (en) * 1964-04-28 1967-10-03 American Photocopy Equip Co Developer mix for electrostatic printing

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909258A (en) * 1972-03-15 1975-09-30 Minnesota Mining & Mfg Electrographic development process
DE2313132A1 (en) * 1972-03-16 1973-09-20 Oce Van Der Grinten Nv ELECTROPHOTOGRAPHIC PROCEDURE
JPS4917739A (en) * 1972-04-10 1974-02-16
JPS5421098B2 (en) * 1972-04-10 1979-07-27
US3929658A (en) * 1972-11-02 1975-12-30 Du Pont Magnetic recording compositions and elements of low abrasiveness and process for making them
JPS5321656B2 (en) * 1973-06-22 1978-07-04
JPS5020729A (en) * 1973-06-22 1975-03-05
FR2235404A1 (en) * 1973-06-29 1975-01-24 Minnesota Mining & Mfg
US3925219A (en) * 1973-06-29 1975-12-09 Minnesota Mining & Mfg Pressure-fixable developing powder containing a thermoplastic resin and wax
US4246331A (en) * 1973-11-30 1981-01-20 Sublistatic Holding Sa Electrophotographic developers containing sublaminate dyes
US4148640A (en) * 1974-03-11 1979-04-10 Eastman Kodak Company Developer compositions having electrically conducting filaments in carrier particle matrix
US4240723A (en) * 1974-05-20 1980-12-23 Elfotec A.G. Process for electrographic image production and an apparatus for carrying out this process
DE2424350A1 (en) * 1974-05-20 1975-11-27 Turlabor Ag METHOD FOR ELECTROGRAPHIC IMAGE GENERATION AND DEVICE FOR EXECUTING THE METHOD
US4599292A (en) * 1974-08-28 1986-07-08 Konishiroku Photo Industry Co., Ltd. Method and device of developing an electrostatic latent image
US4540646A (en) * 1974-08-28 1985-09-10 Konishiroku Photo Industry Co., Ltd. Method of developing an electrostatic latent image
JPS5140137A (en) * 1974-10-01 1976-04-03 Mita Industrial Co Ltd
JPS5823622B2 (en) * 1974-10-01 1983-05-16 京セラミタ株式会社 Manufacturing method of magnetic toner for electrostatic photography
JPS5180235A (en) * 1975-01-09 1976-07-13 Ricoh Kk
JPS5196331A (en) * 1975-02-21 1976-08-24
JPS5347172B2 (en) * 1975-02-21 1978-12-19
US4189390A (en) * 1975-02-21 1980-02-19 Hitachi Metals, Ltd. One-component magnetic developer powder for developing electrostatic latent image and method of making same
US4345015A (en) * 1975-07-07 1982-08-17 Oce-Van Der Grinten N.V. Dispersion-heat process employing hydrophobic silica for producing spherical electrophotographic toner powder
US4210448A (en) * 1975-10-21 1980-07-01 Elfotec A.G. Process for electrophotographic image formation and transfer
US4264698A (en) * 1975-10-27 1981-04-28 Mita Industrial Company Limited Developer for electrostatic photography and process for preparation thereof
US4082681A (en) * 1975-11-04 1978-04-04 Mita Industrial Company Magnetic developer for electrostatic photography and process for preparation thereof
US4137188A (en) * 1975-11-07 1979-01-30 Shigeru Uetake Magnetic toner for electrophotography
US4242434A (en) * 1975-11-26 1980-12-30 Ricoh Company, Ltd. Toner composition for multiple copy electrostatic photography
US4108786A (en) * 1975-12-16 1978-08-22 Mita Industrial Company Ltd. Magnetic dry developer for electrostatic photography and process for preparation thereof
US4251616A (en) * 1976-01-07 1981-02-17 Sublistatic Holding Sa Magnetic toners and development process
US4146494A (en) * 1976-01-23 1979-03-27 Oce-Van De Grinten N.V. One-component developer powder and process for its preparation
JPS5347178B2 (en) * 1976-02-16 1978-12-19
JPS5298530A (en) * 1976-02-16 1977-08-18 Hitachi Metals Ltd Magnetic toner
JPS5857103B2 (en) * 1976-02-28 1983-12-19 株式会社リコー dry developer powder
JPS52104929A (en) * 1976-02-28 1977-09-02 Ricoh Co Ltd Dry developing agent powder
JPS52143028A (en) * 1976-05-24 1977-11-29 Hitachi Metals Ltd Electrostatic image developing apparatus
JPS5438505B2 (en) * 1976-05-24 1979-11-21
DE2729946A1 (en) * 1976-06-30 1978-01-05 Minnesota Mining & Mfg ELECTROGRAPHIC DEVELOPMENT PROCESS
US4273847A (en) * 1976-07-30 1981-06-16 Epp Corp. Inks for pulsed electrical printing and methods of producing same
US4296176A (en) * 1976-07-30 1981-10-20 Epp Corp. Inks for pulsed electrical printing
US4288519A (en) * 1977-02-28 1981-09-08 Black Copy Company, Inc. Dual purpose electrophotographic magnetic toner and process of making
US4345013A (en) * 1977-02-28 1982-08-17 Black Copy Company, Inc. Dual purpose magnetic toner
US4185916A (en) * 1977-04-08 1980-01-29 Xerox Corporation Composite developer particles and apparatus for using same
US4212837A (en) * 1977-05-04 1980-07-15 Tokyo Shibaura Electric Co., Ltd. Method and apparatus for forming spherical particles of thermoplastic material
US4176078A (en) * 1977-06-02 1979-11-27 Xerox Corporation Field dependent toner having chrome complex coated magnetic particles
JPS5411740A (en) * 1977-06-29 1979-01-29 Hitachi Metals Ltd Magnetic toner
US4174409A (en) * 1977-08-05 1979-11-13 Minnesota Mining And Manufacturing Company Depositing latent fingerprints and development thereof
US4258644A (en) * 1977-08-05 1981-03-31 Minnesota Mining And Manufacturing Company Depositing latent fingerprints and development thereof
US4265992A (en) * 1977-08-05 1981-05-05 Mita Industrial Company Limited Coated magnetic developer particles for electrophotography containing vinyl and olefin resins
JPS5441730A (en) * 1977-09-09 1979-04-03 Hitachi Metals Ltd Magnetic toner for heat fixing
US4554232A (en) * 1977-09-22 1985-11-19 Kazunori Tabaru Magnetic toner
US4291111A (en) * 1977-11-25 1981-09-22 Xerox Corporation Nitrogen-containing additives for magnetic toners having hydrophobic and hydrophilic moiety
US4259426A (en) * 1978-03-06 1981-03-31 Canon Kabushiki Kaisha Pressure fixable microcapsule toner and electrostatic image developing method
US4262076A (en) * 1978-03-06 1981-04-14 Minolta Camera Kabushiki Kaisha Method for manufacturing magnetically attractive toner particles and particle
US4273848A (en) * 1978-03-14 1981-06-16 Minolta Camera Kabushiki Kaisha Oriented magnetic toner
US4293632A (en) * 1978-04-03 1981-10-06 Xerox Corporation Attrition process for alteration of toner particles containing conductive materials
JPS54153638A (en) * 1978-05-25 1979-12-04 Hitachi Metals Ltd Magnetic toner
US4265993A (en) * 1978-06-28 1981-05-05 Hitachi Metals, Ltd. Magnetic toner for electrostatic images and transfer copying
JPS5511262A (en) * 1978-07-12 1980-01-26 Hitachi Metals Ltd Magnetic toner
JPS5511261A (en) * 1978-07-12 1980-01-26 Hitachi Metals Ltd Magnetic toner
US4913088A (en) * 1978-07-28 1990-04-03 Canon Kabushiki Kaisha Apparatus for developer transfer under electrical bias
US5044310A (en) * 1978-07-28 1991-09-03 Canon Kabushiki Kaisha Developing apparatus for non-magnetic developer
US5032485A (en) * 1978-07-28 1991-07-16 Canon Kabushiki Kaisha Developing method for one-component developer
US5096798A (en) * 1978-07-28 1992-03-17 Canon Kabushiki Kaisha Developing method for one-component developer
US5194359A (en) * 1978-07-28 1993-03-16 Canon Kabushiki Kaisha Developing method for one component developer
US4514484A (en) * 1978-09-12 1985-04-30 Compagnie Internationale Pour L'informatique Cii/Honeywell Bull (Societe Anonyme) Powder for developing latent images and a method of producing the powder
US4282302A (en) * 1978-10-27 1981-08-04 TDK Electronics, Ltd. Ferrite powder type magnetic toner used in electrophotography and process for producing the same
US4312933A (en) * 1979-02-09 1982-01-26 Xerox Corporation Method of imaging using nitrogen-containing additives for magnetic toners
EP0035573A1 (en) * 1979-08-22 1981-09-16 Fujitsu Limited Toner particles for electrophotography and electrophotographic process utilizing same
EP0035573A4 (en) * 1979-08-22 1981-08-28 Fujitsu Ltd Toner particles for electrophotography and electrophotographic process utilizing same.
US4430410A (en) 1979-08-27 1984-02-07 Mita Industrial Co., Ltd. Method and apparatus for developing latent electrostatic images
US4389478A (en) * 1980-01-07 1983-06-21 Bell & Howell Company Apparatus for and methods of making bimodal electrophotographic copies
US4496232A (en) * 1980-01-07 1985-01-29 Bell & Howell Apparatus for and methods of making bimodal electrophotographic copies
JPS5652758A (en) * 1980-04-25 1981-05-12 Konishiroku Photo Ind Co Ltd Static charge image developer
US4643960A (en) * 1980-06-02 1987-02-17 Minnesota Mining And Manufacturing Company Developing powder composition containing a fatty acid amide component
US4681830A (en) * 1980-06-16 1987-07-21 Minnesota Mining And Manufacturing Company Fluorinated carbon-containing developer composition
EP0042224A1 (en) * 1980-06-16 1981-12-23 Minnesota Mining And Manufacturing Company Fluorinated carbon-containing developer composition
US4451837A (en) * 1980-09-18 1984-05-29 Xerox Corporation Conductive single component magnetic toner for use in electronic printing devices
US4430409A (en) 1980-10-31 1984-02-07 Canon Kabushiki Kaisha Developer for electrophotography with wet process silicic acid
US4487825A (en) * 1981-01-22 1984-12-11 Xerox Corporation Conductive single component electrophotographic magnetic toner
US4443527A (en) * 1981-09-18 1984-04-17 Oce-Nederland B.V. Colored magnetically attractable toner powder, its preparation, and developing images with such powder
WO1983002013A1 (en) * 1981-11-26 1983-06-09 Kishi, Kenichi Magnetic toner
US4442790A (en) * 1982-09-29 1984-04-17 Eastman Kodak Company Magnetic brush development apparatus
US4496644A (en) * 1983-02-28 1985-01-29 Eastman Kodak Company Electric field adjustment for magnetic brushes
US4526851A (en) * 1983-09-06 1985-07-02 Trw Inc. Magnetic developer compositions
US4601967A (en) * 1983-12-10 1986-07-22 Ricoh Company, Ltd. Toner particles having a relatively high specific volume resistivity coating layer
EP0154053A3 (en) * 1983-12-30 1986-07-30 N.V. Philips' Gloeilampenfabrieken Projection screen
EP0154053A2 (en) * 1983-12-30 1985-09-11 Koninklijke Philips Electronics N.V. Projection screen
US4762765A (en) * 1985-03-23 1988-08-09 Alpine Aktiengesellschaft Augsburg Method of generating a spherical grain
US4745418A (en) * 1986-04-30 1988-05-17 Minnesota Mining And Manufacturing Company Reusable developing powder composition
EP0266579A2 (en) * 1986-11-03 1988-05-11 EASTMAN KODAK COMPANY (a New Jersey corporation) An electrostatographic method of making images
EP0266579A3 (en) * 1986-11-03 1989-06-14 Eastman Kodak Company An electrostatographic method of making images
US5040027A (en) * 1988-12-16 1991-08-13 Matsushita Electric Industrial Company, Ltd. Printing apparatus
US5358811A (en) * 1988-12-27 1994-10-25 Canon Kabushiki Kaisha Electrophotographic method using an amorphous silicon light receiving member with a latent image support layer and a developed image support layer and insulating toner having a volume average particle size of 4.5 to 9.0 micron
US5202211A (en) * 1990-02-05 1993-04-13 Oce-Nederland B.V. Toner powder comprising particles having a coating of fluorine-doped tin oxide particles
US5153616A (en) * 1990-03-08 1992-10-06 Hitachi Metals, Ltd. Method for recording images
US5385768A (en) * 1990-06-14 1995-01-31 Diafoil Company, Limited Electrically conductive film
US5350659A (en) * 1993-03-31 1994-09-27 Xerox Corporation Preparation of conductive toners using fluidized bed processing equipment
US5457001A (en) * 1993-07-26 1995-10-10 Oce'-Nederland, B.V. Electrically conductive toner powder
US6594462B2 (en) * 2000-03-15 2003-07-15 Canon Kabushiki Kaisha Developing apparatus using toner with conductive particles
US10571832B2 (en) * 2017-03-17 2020-02-25 Ricoh Company, Ltd. Intermediate transferor, method of making the same, and image forming apparatus using the same

Also Published As

Publication number Publication date
SE346632B (en) 1972-07-10
DK130938C (en) 1975-10-06
BE736353A (en) 1970-01-22
NL6910676A (en) 1970-01-26
JPS5840182B1 (en) 1983-09-03
GB1282017A (en) 1972-07-19
NL159795B (en) 1979-03-15
DE1937651C3 (en) 1981-04-30
AT307871B (en) 1973-06-12
NL159795C (en)
DE1937651B2 (en) 1971-10-14
BR6910891D0 (en) 1973-01-25
FR2013449A1 (en) 1970-04-03
DK130938B (en) 1975-05-05
CH526136A (en) 1972-07-31
ES369454A1 (en) 1971-06-01
DE1937651A1 (en) 1970-02-19

Similar Documents

Publication Publication Date Title
US3639245A (en) Developer power of thermoplastic special particles having conductive particles radially dispersed therein
US2986521A (en) Reversal type electroscopic developer powder
US2890968A (en) Electrostatic printing process and developer composition therefor
US3925219A (en) Pressure-fixable developing powder containing a thermoplastic resin and wax
JPS6332182B2 (en)
GB1565596A (en) Developer for electrostatic image and process for preparation thereof
EP0020181A1 (en) Process for preparing coated carrier particles for electrostatographic developers
US3041169A (en) Reversal type electrostatic developer powder
DE2606998A1 (en) MAGNETIC DEVELOPER POWDER FOR THE DEVELOPMENT OF ELECTROSTATIC LATENTER IMAGES AND THEIR PRODUCTION PROCESS
GB1567824A (en) Toner for developing latent electrostatic images and a process for the preparation thereof
US4251616A (en) Magnetic toners and development process
US4189390A (en) One-component magnetic developer powder for developing electrostatic latent image and method of making same
US3779926A (en) Toners and process for preparing same
DK145048B (en) Spherical Toner Parts for Electrostatic Developers
US4164476A (en) Developer for latent electrostatic image and process for preparation thereof
US3166510A (en) Electrographic printing ink, process for the manufacture thereof, and method of electrostatic printing therewith
JPS603179B2 (en) Method for manufacturing insulating magnetic toner for electrostatic charge development
JPH1115207A (en) Method for coating carrier
US3607363A (en) Process for producing photoconductive material
US4379824A (en) Developer compositions having layer of a pigment on the surface thereof
US3781207A (en) Developer mixture for electrostatic printing
US3526500A (en) Process of electrostatic printing by projecting electrically photosensitive particles through an image-defining screen
GB2034491A (en) Powder for developing latent magnetic images and a method of producing the powder
US4482623A (en) Preparation method of magnetic toner
EP0280789A1 (en) Process for the production of a spheroidized toner powder