US3634625A - Speech unscrambler - Google Patents

Speech unscrambler Download PDF

Info

Publication number
US3634625A
US3634625A US761637A US3634625DA US3634625A US 3634625 A US3634625 A US 3634625A US 761637 A US761637 A US 761637A US 3634625D A US3634625D A US 3634625DA US 3634625 A US3634625 A US 3634625A
Authority
US
United States
Prior art keywords
digital
signal
speech
analog
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US761637A
Inventor
Kenneth P Geohegan Jr
Edwin A Shearin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Application granted granted Critical
Publication of US3634625A publication Critical patent/US3634625A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Analogue/Digital Conversion (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Abstract

A digital device to make speech in a helium atmosphere more intelligible includes a recirculating storage and an analog to digital converter which periodically samples the speech and the digital samples are loaded into the storage at a rate determined by a load counter. An unload counter continuously operating at a predetermined slower rate than the load counter unloads the stored digital representations of the speech and a digital to analog converter converts it back to an analog signal. The analog signal is utilized by an output means such as a loudspeaker and is an intelligible translation of the input speech. Since the storage is loaded at a faster rate than it is unloaded, it will periodically fill up, and no more digital samples are loaded, until such time as the storage is again emptied.

Description

United States Patent [72] Inventors Kenneth P. Geohegan, Jr.; OTHER REFERENCES A'shearmtboth ofBammorevMd- 1959 Proceedings of the Western Joint Computer C0n- 1 PP 761,637 ference, Davis, Mathews, and McDonald, A High-Speed Data Filed p 1968 Translator for Computer Simulation of Speech and Television [45] Patented Jan. 11, 1972 Devices, Assignee Westinghouse Electric Corporation The Journal of The Acoustical Society of America, Time 'E Domain Bandwith Compression System; Stover, Volume 42,
No.2, 1967 March, pp. 354- 357. [54] SPEECH UNSCRAMBLER Primary Examiner-Kathleen H. Claffy 12 Claims, 6 Drawing Figs. Assistant E.taminerJon Bradford Leaheey 52 us. Cl 179/1 SA Kl'pfel and Schm" [51] Int. Cl G101 1/00 of Search... AS, A device to make peech in a helium at. 1555;340/1725 mosphere more intelligible includes a recirculating storage and an analog to digital converter which periodically samples [56] References cued the speech and the digital samples are loaded into the storage UNITED STATES PATENTS at a rate determined by a load counter. An unload counter 2,115,803 5/1938 Dudley 179/l5.55 continuously operating at a predetermined slower rate than 3,188,569 6/1965, Mahony 178/695 the load counter unloads the stored digital representations of 3,428,898 2/1969 Jacobsen 325/15 the speech and a digital to analog converter converts it back to 3,467,783 9/1969 Magnuski... 179/l5.55 an analog signal. The analog signal is utilized by an output 3,485,960 12/1969 Gray 179/15 A means such as a loudspeaker and is an intelligible translation 3,104,284 9/1963 French et al... 179115.55 of the input speech. Since the storage is loaded at a faster rate 3,431,356 3/1969 Copel 179/1 AS than it is unloaded; it will periodically fill up, and no more digital samples are loaded, until such time as the storage is again emptied.
F H LTER UNDAMENTAL FORMANTS 4:5
43 Fl LTER FILTER OUTPUT 20 j f ANALOG TO DlGlTAL J DIGITAL STORAGE T0 ANALOG I CONVERTER CONVERTER l l CONTROL CIRCUIT PATENTED IIIII I IsIzv 3.634.625
SHEET 1 UF 2 M I2 F |G.|a I4 l6 SPEECH K SIGNAL 1 1 l l f I 2 3 f SHIFTED 4 1 I2 SPEECH FIG. lb SIGNAL I6 I l I l A I A f f f f I'I\}/IO l I I I2 F|G.lc l [Y I4 UNSCRAMBLED 1' I I K [K f I 2 3 f FILTER FUNDAMENTAL FORMANTS g l 43 FILTER A 1 FILTER OUTPUT 20 27 I 3 ANALOG TO 'o sITAL DIGITAL STORAGE To ANALOG CONVERTER coNvERT R I 1 3 coNTRoL CIRCUIT WITNESSES INvENToRs.
Kenneth P. Geohegon Jr.
W and Edwin A. Sheorin PATENTED JAN] 1 1972 3,634, 25
SHEET 2 OF 2 I 37 FIGB.
ff ff 2 49 ANALOG TO DIGITAL DIGITAL TO ANALOG CONVERTER CONVERTER 7 DOWN LOAD UNLOAD COUNTER JP/DOWN COUNTER (fl) COUNTER "0) SET SET 2 SET 3 j SPEECH UNSCRAMBLER BACKGROUND OF THE INVENTION 1. Field of the Invention This invention in general relates to frequency conversion or compression and more particularly to converter apparatus for converting a shifted frequency speech which is relatively unintelligible to an intelligible output speech.
2. Description of the Prior Art Due to certain physiological problems divers breathing an air mixture are limited to depths around 200 feet or less. Even where operations are carried out at shallower depths, divers breathe a mixture of helium-oxygen or helium-nitrogen-oxygen in place of air to eliminate, or reduce the effects of nitrogen narcosis. The helium mixture however creates a serious problem in communications in that the divers speech in the helium atmosphere is high pitched and under some conditions can be completely unintelligible. This distortion of the voice is sometimes called helium speech" and is basically due to an increase in the frequency or pitch of the voice. Although the fundamental voice pitch (about 100 hertz) remains unaffected the voice harmonics, known as formants, to a good approximation are shifted upward by a common factor which may be as high as 2.8 to 3.0 and is determined by the gas mixture actually used, its pressure, and the length of time the speaker has been in the helium atmosphere.
The helium speech could be unscrambled" by first recording at one speed on a magnetic tape and then playing the tape back at a second and slower speed proportional the frequency shift. With this scheme however if it took l minutes to record a conversation and if it took 30 minutes to play back that conversation it would take a total of 45 minutes to assimilate the entire message. There is accordingly a need for a real timetranslation or unscrambling of the helium speech.
One method of providing a real time unscrambling of helium speech involves the use of magnetic tape with a rotating head whereby portions of the helium speech are eliminated. The intelligibility does not suffer greatly since the message can still be understood even though small fractions are missing. For deep-sea mobile use however it is the primary objectives that a helium speech unscram bler be lightweight, compact and rugged and have no moving parts such as magnetic tape arrangement with rotating heads.
accordingly it is an object of the present invention to provide a helium speech unscrambler which meets all of the above recited primary objectives.
Accordingly is another object of the present invention to provide a digital helium speech unscrambler utilizing state-of the-art engineering such that the unscrambler may be microm'iniaturized to be conveniently carried by a diver.
SUMMARY OF THE INVENTION Basically, there is provided frequency conversion apparatus operable to receive a speech signal shifted in frequency by some multiple S The signal is periodically sampled, converted to digital form and placed into storage at a rate f,. The samples are read out of storage in the same sequence as they were read in, at a rate f,,, with the ratio of f /f being approximately equal to S The samples unloaded from storage are converted back to analog form for use with suitable output means.
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1a to 1c are speech waveforms to aid in an understanding of the present invention;
FIG. 2 illustrates in block diagram from a preferred embodiment of the present invention;
FIG. 3 illustrates some of the components of FIG. 2 in somewhat more detail; and
FIG. 4 illustrates a time sequence applicable to the operation of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT In FIG. 10 there is illustrated a typical speech signal with the speaker talking in an air atmosphere. The speech signal includes a fundamental 10 at the frequency fland a plurality of formants 12, 14 and 16 each at a respective frequency f,, f, and 12,.
FIG. lb illustrates the same signal as FIG. 1a, except that the speaker is in a helium-oxygen atmosphere. The fundamental 10 remains unaffected however, formants 12', 14 and 16', constituting a shifted frequency speech signal have all been shifted by a multiple 8,, of 2 and are positioned at respective frequencies of f 1, and 11,.
The present apparatus processes the shifted frequency speech signal of FIG. 1b to provide an output signal as illustrated in FIG. 1c which includes the formants 12, 14 and 16 shifted back to their proper respective frequencies f,, f and f;,.
The means by which this apparent downward shift in frequency occurs is illustrated in FIG. 2 to which reference is now made.
A speech signal such as in FIG. 1b is applied to input terminal 20 and may emanate from a source such as a tape recorder or preferably, as contemplated by the present invention, from a microphone arrangement 21 carried by a diver, or located in a helium (or other light gas) atmosphere chamber.
By comparing FIGS. 10 and 1b it is seen that the fundamental 10 is not shifted in frequency as are the formants. Accordingly only the formants need be processed and thereis provided a band-pass filter 24 operable to pass frequencies in the range of for example 600 hertz to 9.5 kilohertz such that the fundamental is filtered out. It is a recognized fact even with the fundamental removed the intelligence contained in a shifted frequency speech signal may be recovered, although the inclusion of the fundamental in the output frequency signal would provide a somewhat better degree of intelligibility. The filter 25 therefore may be provided and is a low-pass filter operable to pass only the fundamental for subsequent inclusion in the processing.
An amplifier 27 couples the output of filter 24 to an analog to digital converter means 29 operable to convert the shifted frequency signal from the filter 24 from an analog signal to a digital equivalent upon command of control circuit 31. Such analog to digital converters are well known to those skilled in the art. Consecutive samples, in digital form, of the shifted frequency speech signal are loaded into storage 37 at a rate governed by the control circuit 31. The stored digital numbers are read out of storage 37 in the same sequence as they were loaded at an unloading rate governed by the control circuit 31 and are converted back to an analog signal by the digital to analog converter means 40.
With the shift in frequency of the shifted frequency speech signal being equaled to S the ratio of the rate of loading into storage to the rate of reading out of storage is made approximately equal to S The output of the digital to analog converter 40 is coupled through amplifier 43 to a smoothing filter 45 which supplies an intelligible and unscrambled speech signal (such as 12, 14, 16 in FIG. 1c) to the output means 48 which may be any utilization device such as magnetic tape, earphones, loudspeaker, etc. With the inclusion of filter 25 there is provided a summation circuit 50 which adds the fundamental (10 of FIG. 10) to the formants.
FIG. 3 illustrates by way of example one type of storage which may be utilized in practicing the invention and further illustrates an example of a control circuit 31 which may be utilized to control the loading and unloading of the storage 37 in accordance with the present teachings.
In general, if the analog to digital converter provides a digital output of n binary bits, there may be provided n individual storage devices. By way of example in FIG. 3 the analog to digital converter 29 provides a five-bit output, one
bit on each of lines 53 to 57, and therefore the storage 37 may be comprised of five recirculating delay line means in the form of shift registers 60 to 64 each for receiving a respective bit output from the analog to digital converter 29. A typical shift register such as 60 includes a plurality of flip-flops each for storing one bit of information. Register 60 includes 49 flipflops designated ffl, fj2,...ffl he following explanation with respect to shift register 60 is equally applicable to all the other shift registers 6l.to 64. Initially one bit of information on line 53 is set into flip-flop ffl. Thereafter with the provision of clock pulses on line 0, that bit of information will be transferred to a subsequent flip-flop. When the bit of information is set into the last flip-flop fl49 it may be read out on line 67 if the digital to analog converter 40 is ready to receive the information or it may be fed back to the first flip-flopffl via line 68 to be recirculated in the shift register.
During the recirculation process a subsequent bit from a subsequent sample is read into flip-flop ffl and it is recirculated as was the first bit. Subsequent samples are read in at a certain predetermined rate. At some point in the recirculation process the very first bit of information that was read out of flip-flop ff49 and thereafter subsequent bits are read out in the same order as they were read in at a predetermined rate slower than the reading in rate. Accordingly, since the bits are being read out at a rate slower than they are read in the register 60 will become filled. At such time no more samples are read into the registers until the they are completely unloaded.
The control circuitry 31 for controlling these various functions include by way of example a master synchronizing or timing clock 70 operable to provide clock pulses on line c at a rate of f,.
A load counter 72 is operable to count up a predetermined number of clock pulses and is operable to provide an output pulse on line 73 when that number is attained. If the predetermined number of clock pulses is S, then the load counter 72 will provide an output signal at a rate f Q /Sl With the provision of each output pulse on line 73 the analog to digital converter 29 will function to provide a new sample in digital form to the storage 37, and more particularly will operate to provide on each of its output lines 53 to 57 one bit of information to the first flip-flopffl of respective storage register 60 to 64.
In order to unload the information from storage there is provided an unload counter 76 which is operable to count up the clock pulses from the clock 70 to provide an output pulse when a predetermined number, S of clock pulses have been provided. Accordingly the unload counter 76 will provide an output pulse signal on line 77 at a rate fl,=Qf,/S,,.
The ratio of flto fl, and the ratio of S to S, are chosen to be approximately equal to the frequency shift S Since the read out rate is slower than the read in rate, means are provided to sense when the storage becomes filled to capacity. The sensing means includes the up/down counter 80 which is operable to receive the output signal from the load counter 72 and the output signal from the unload counter 76. When the up/down counter 80 has not attained its maximum count, that count being equal to the number of flip-flops in a shift register, an enabling signal is provided on line 81 to AND-gate 83 which is thereby enabled to past the clock pulses from clock 70 to the load counter 72. The provision of an output pulse from the load counter 72 not only effects a read in to storage 37 but also causes the up/down counter 80 to advance one count. Similarly the provision of an output pulse from the unload counter 76 not only causes a read out from storage 37 but also subtracts a count from the up/down counter 80. Since the up pulses are provided at the load rate and the down pulses at the unload rate the up/down counter 80 when the counter 49 is reached is indicative of the fact that the storage registers are filled to capacity and the enabling signal on line 81 is removed such that the load counter 72 does not receive clock pulses and accordingly no information is read into storage 37. The unload counter 76 however still continues to receive the clock pulses and read out of the stored information continues until the storage 37 is emptied. While the information is being read out the previously filled up/down counter 80 is being counted down and when it reaches zero the enabling signal will again be provided on line 81 whereby information is thereafter read into storage 37 in the manner previously described. When a new bit of information is to be entered into flip-flop 1]! it is important that the bit in flip-flop ffl via link 68. Accordingly, an AND-gate 85 is provided for receiving the output of flip-flop ff49 and an enabling signal from the load counter 72. Basically, when the load counter 72 does not provide an output signal, recirculation is to take place. An inverter circuit 87 provides an enabling signal to AND-gate 85 when the load counter 72 does not provide an output signal. For a load operation, a pulse is provided by load counter 72 and is inverted by inverted 87 such that the enabling signal is removed from AND-gate 85 and the bit in flip-flop ff49 is prevented from recirculating.
Although the shifted frequency signal is continuously being supplied, small portions of it are not being sampled and read into storage since the command to load is not being provided by the load counter 72 for a period of time beginning when the up/down counter 80 is full (and accordingly the storage 37 is full) to the time that the up/down counter 80 has been counted down to zero (and accordingly when the previously filled storage 37 has been emptied).
Although portions of the speech are not being sampled, they are extremely small portions and an intelligible signal may still reconstructed. The proportion of speech not sampled, the loading rate, and the unloading rate are determined by the amount of frequency shift of the speech and the clock rate f a By way of example, for 49 bit shift registers the following is a chart illustrating various settings to be made for various frequency shifts with a typical clock frequency f of 2 megahertz, that is, every 0.5 microseconds a clock pulse is provided.
l 2 3 l 2 3 Frequency Frequency Shift Load Unload Shift Load Unload n 1 9 n 2.3 114 261 l .4 124 173 152 348 1.5 99 148 2.4 106 253 197 295 141 337 l .6 83 132 2.5 66 164 164 262 99 246 1 32 328 l .7 71
Column 1 sets forth various frequency shifts S ranging in value from 1.0 to 3.0. Column 2 sets forth the number of clock pulses S, that the load counter 72 counts up before providing an output pulse and column 3 sets forth the number of clock pulses S that the unload counter 76 counts up before providing an output pulse. By way of example, for a frequency shift of 2.0 the load counter 72 may be set to provide an output pulse for every 99 clock pulses it receives while the unload counter 76 is set to provide an output pulse for every 197 clock pulses it receives (a second set of values S =l48 and S 295 may also be utilized). After the load counter 72 receives 99 clock pulses a first bit of information is read into each first flip-flop ffl of the storage registers 60 to 64. After the 100th clock pulse the information in first flip-flop ffl is transferred to the second flip-flopfjZ. After the 101 st clock pulse the information in flip-flop ff2 is transferred to a subsequent flipflop. Subsequent clock pulses will bring the bit of information to the last flip-flopff49 and thereafter back to flip-flopffl. On the 197th clock pulse the bit will be in flip-flop ff49 and the unload counter 76 will provide its first output pulse to effect a read out from flip-flopff49 into the digital to analog converter 40. After the very next clock pulse, the 198th, the load counter 72 will provide its second output pulse to read in a second value. After the 296th clock pulse another value will be read in and the previously written second value will not be read out until the 394th clock pulse. In general the ratio of 5 /8 is approximately equal to S and to insure that a bit read into ffl is read out of the last flip-flop, S,,S,--aN, where a is an interger and N is the number of bits of storage in each shift register.
The shifted frequency speech signal is sampled every 49.5 microseconds (99 clock pulses x 0.5 microseconds per clock pulse) for a period of time T until the storage is filled to capacity. Since unloading occurs simultaneously with the loading operation, T =(N/ f -f After the storage 37 is full the time required for unloading T =(N/ fl,). The operation is such that the shifted frequency speech signal is sampled for the period T and the sampled values are read out in the same sequence as they were read in over a time period equal to T T For the example under discussion, the following is a summary of chosen and calculated values (circulations have been carried out to the nearest l0 Frequency Shift 5,, 2 Number of bits N in shift register 49 Clock l'requencyf 2 megahertz 49.5 microseconds 98.5 microseconds 4.8 milliseconds 4.8 milliseconds 1 Load every one Unload every Time to fill storage T,
Time to unload full storage T,-
The input speech is sampled for the period of time T and the consecutive samples are spread out over the period of time T +T. This operation is graphically illustrated in FIG. 4 in curve A. Block 90 extending from time T to T represents a set of consecutive samples of the speech waveform which is read into storage. At time T the storage is filled to capacity and the input is shut off for a period T 8 microseconds after T reading out of the samples represented by block 90 in curve B continuing past the time when the memory is filled (T until the last value in the first set is read out. It is seen therefore that the set of values read into storage from time T to T is read out in the time period from T d-6. (8 being insignificant) to T at which time the previous operation repeats so that there are substantially no discontinuities in the output signal. The time delay 8 may if desired be eliminated by for example the provision of additional logic circuitry which starts loading the storage 37 prior to its being completely emptied.
From curve A it is seen that there are periods T during which the shifted frequency speech signal is unsampled. Although the resolution of the output is somewhat degraded, a comprehendable translation of the original shifted speech still results. The operating frequencies are chosen such that the discarded or unsampled portions of the shifted frequency speech signal are not long enough to contain syllables and that each set of samples is long enough to contain several cycles of the speech frequencies.
Accordingly there has been described apparatus which may be utilized as a helium speech unscrambler and incorporating state-of-the-art circuitry which may be fabricated in integrated circuit form to provide a compact device that a diver may carry on his person. A shifted frequency speech signal is sampled and consecutive samplings are read into a storage at one rate and are read out of that storage in the same sequence as they were read in, and at a second rate with the ratio of reading in to reading out being in the order of the amount of frequency shift.
Although the present invention has been described with a certain degree of particularity it should be understood that the present disclosure has been made by way of example and that various types of storage may be utilized as well as different arrangements of control circuitry and it is apparent that numerous other modifications and variations of the present invention are made possible in the light of what has been disclosed.
We claim:
1. Speech converter apparatus comprising:
a. input means for receiving a speech signal shifted in frequency by a multiple, S
b. a control circuit c. storage means for storing digital information;
d. analog to digital converter means for converting said speech signal to digital form and responsive to said control circuit for loading said storage means with consecutive samples of said speech signal at a first rate f i;
e. digital to analog converter means responsive to said control circuit for unloading at a second rate 11,, said consecutive samples in the same sequence as they were loaded and converting said samples back to an analog signal;
f. the valve of f, and 1",, being chosen such that the ratio of fl/j], is approximately equal to S and g. output means responsive to said digital to analog converter means for utilization of said analog signal.
2. Apparatus according to claim 1 wherein:
a. the input means receives a speech signal wherein S is greater than one and b. the first rate f, is greater than the second rate f 3. Apparatus according to claim 1 wherein:
a. the storage means includes recirculating delay line means; and wherein b. the control circuit loads a first digital number from the analog to digital converter means into said recirculating delay line means and unloads said first digital number after it has recirculated a predetermined amount.
4. Apparatus according to claim 3 wherein:
a. the digital number has n binary bits; and
b. the recirculating delay line means includes n individual recirculating delay lines each for receipt of a respective one of said binary bits.
. Apparatus according to claim 4 wherein:
. the individual recirculating delay lines are shift registers.
. Apparatus according to claim 1 wherein:
. the analog to digital converter means provides, for each sample, a digital output having n binary bits;
. the storage means includes n shift registers each for receipt of a respective one of said binary bits.
7. Apparatus according to claim 3 wherein:
a. the control circuit loads a subsequent digital number during the time that the first digital number is recirculating.
8. Apparatus according to claim 1 wherein:
a. the control circuit includes i. a master clock operable to provide clock pulses;
ii. a load counter responsive to said master clock for providing an output load signal every S, clock pulses,
iii. an unload counter responsive to said master clock for providing an output unload signal every S, clock pulses;
b. S, and 5 being integers and the ratio of 8 /8, being approximately equal to S 9. Apparatus according to claim 8 which additionally includes:
ii. gating means responsive to said enabling signal for gating the clock pulses to the load counter when said enabling signal is provided.
1 1. Apparatus according to claim 1 wherein: a. the input means includes filter means for filtering out the fundamental of the input speech. 12. According to claim 11 which additionally includes: a summation means for adding the filtered out fundamental to the output of the digital to analog converter means.
#1 l I l

Claims (12)

1. Speech converter apparatus comprising: a. input means for receiving a speech signal shifted in frequency by a multiple, SH; b. a control circuit c. storage means for storing digital information; d. analog to digital converter means for converting said speech signal to digital form and responsive to said control circuit for loading said storage means with consecutive samples of said speech signal at a first rate f i; e. digital to analog converter means responsive to said control circuit for unloading at a second rate fo, said consecutive samples in the same sequence as they were loaded and converting said samples back to an analog signal; f. the valve of fi and fo being chosen such that the ratio of fi/fo is approximately equal to SH; and g. output means responsive to said digital to analog converter means for utilization of said analog signal.
2. Apparatus according to claim 1 wherein: a. the input means receives a speech signal wherein SH is greater than one and b. the first rate fi is greater than the second rate fo.
3. Apparatus according to claim 1 wherein: a. the storage means includes recirculating delay line means; and wherein b. the control circuit loads a first digital number from the analog to digital converter means into said recirculating delay line means and unloads said first digital number after it has recirculated a predetermined amount.
4. Apparatus according to claim 3 wherein: a. the digital number has n binary bits; and b. the recirculating delay line means includes n individual recirculating delay lines each for receipt of a respective one of said binary bits.
5. Apparatus according to claim 4 wherein: a. the individual recirculating delay lines are shift registers.
6. Apparatus according to claim 1 wherein: a. the analog to digital converter means provides, for each sample, a digital output having n binary bits; b. the storage means includes n shift registers each for receipt of a respective one of said binary bits.
7. Apparatus according to claim 3 wherein: a. the control circuit loads a subsequent digital number during the time that the first digital number is recirculating.
8. Apparatus according to claim 1 wherein: a. the control circuit includes i. a master clock operable to provide clock pulses; ii. a load counter responsive to said master clock for providing an output load signal every Si clock pulses, iii. an unload counter responsive to said master clock for providing an output unload signal every So clock pulses; b. Si and So being integers and the ratio of So/Si being approximately equal to SH.
9. Apparatus according to claim 8 which additionally includes: a. circuit means for sensing when the storage means is full for preventing the load counter from providing an output load signal until the storage means is again empty.
10. Apparatus according to claim 9 wherein: a. the circuit means includes i. an up/down counter responsive to the load counter for advancing one count each time a load signal is provided and responsive to the unload counter for subtracting one count each time and unload signal is provided and operable to provide an output enabling signal when less than full, and ii. gating means responsive to Said enabling signal for gating the clock pulses to the load counter when said enabling signal is provided.
11. Apparatus according to claim 1 wherein: a. the input means includes filter means for filtering out the fundamental of the input speech.
12. According to claim 11 which additionally includes: a summation means for adding the filtered out fundamental to the output of the digital to analog converter means.
US761637A 1968-09-23 1968-09-23 Speech unscrambler Expired - Lifetime US3634625A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US76163768A 1968-09-23 1968-09-23

Publications (1)

Publication Number Publication Date
US3634625A true US3634625A (en) 1972-01-11

Family

ID=25062829

Family Applications (1)

Application Number Title Priority Date Filing Date
US761637A Expired - Lifetime US3634625A (en) 1968-09-23 1968-09-23 Speech unscrambler

Country Status (5)

Country Link
US (1) US3634625A (en)
JP (1) JPS5144603B1 (en)
DE (1) DE1945782A1 (en)
FR (1) FR2018666A1 (en)
GB (1) GB1286487A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3808591A (en) * 1971-08-11 1974-04-30 Lockheed Aircraft Corp Voice warning system
US3810102A (en) * 1972-03-31 1974-05-07 Telserv Inc System for transmission and analysis of biomedical data
US3809805A (en) * 1972-08-25 1974-05-07 Arvin Ind Inc Video bandwidth reduction
US3838218A (en) * 1972-03-07 1974-09-24 Cambridge Res & Dev Group Bifrequency controlled analog shift register speech processor
US3855424A (en) * 1972-02-15 1974-12-17 Philips Corp Information processor for changing tempo of playback from the recorded tempo
US3863026A (en) * 1973-08-15 1975-01-28 Us Navy Helium speech decoder
US3924069A (en) * 1973-08-15 1975-12-02 Us Navy Helium speech decoder
US3934094A (en) * 1972-08-28 1976-01-20 Hitachi, Ltd. Frequency band converter
US4177707A (en) * 1975-08-04 1979-12-11 Boucher Gary R Electronic music synthesizer
US20120076332A1 (en) * 2010-09-29 2012-03-29 Siemens Medical Instruments Pte. Ltd. Method and device for frequency compression with harmonic correction

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182930A (en) * 1978-03-10 1980-01-08 Dbx Inc. Detection and monitoring device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2115803A (en) * 1935-10-30 1938-05-03 Bell Telephone Labor Inc Signaling system
US3104284A (en) * 1961-12-29 1963-09-17 Ibm Time duration modification of audio waveforms
US3188569A (en) * 1962-12-14 1965-06-08 Bell Telephone Labor Inc Receiver input unit-synchronizing circuit
US3428898A (en) * 1964-11-27 1969-02-18 Int Standard Electric Corp Pilot signal control system that precompensates outgoing signals for doppler shift effects
US3431356A (en) * 1965-06-04 1969-03-04 Integrated Electronic Corp Apparatus and method for reconstructing speech
US3467783A (en) * 1964-08-18 1969-09-16 Motorola Inc Speech bandwidth reduction by sampling 1/n cycles storing the samples,and reading the samples out at 1/n the sampling rate
US3485960A (en) * 1966-09-29 1969-12-23 Ocean Systems Rotary magnetic head record and play-back system for rendering unintelligible speech intelligible

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2115803A (en) * 1935-10-30 1938-05-03 Bell Telephone Labor Inc Signaling system
US3104284A (en) * 1961-12-29 1963-09-17 Ibm Time duration modification of audio waveforms
US3188569A (en) * 1962-12-14 1965-06-08 Bell Telephone Labor Inc Receiver input unit-synchronizing circuit
US3467783A (en) * 1964-08-18 1969-09-16 Motorola Inc Speech bandwidth reduction by sampling 1/n cycles storing the samples,and reading the samples out at 1/n the sampling rate
US3428898A (en) * 1964-11-27 1969-02-18 Int Standard Electric Corp Pilot signal control system that precompensates outgoing signals for doppler shift effects
US3431356A (en) * 1965-06-04 1969-03-04 Integrated Electronic Corp Apparatus and method for reconstructing speech
US3485960A (en) * 1966-09-29 1969-12-23 Ocean Systems Rotary magnetic head record and play-back system for rendering unintelligible speech intelligible

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1959 Proceedings of the Western Joint Computer Conference, Davis, Mathews, and McDonald, A High Speed Data Translator for Computer Simulation of Speech and Television Devices, p. 169 172. *
The Journal of The Acoustical Society of America, Time Domain Bandwith Compression System; Stover, Volume 42, No. 2, 1967 March, pp. 354 357. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3808591A (en) * 1971-08-11 1974-04-30 Lockheed Aircraft Corp Voice warning system
US3855424A (en) * 1972-02-15 1974-12-17 Philips Corp Information processor for changing tempo of playback from the recorded tempo
US3838218A (en) * 1972-03-07 1974-09-24 Cambridge Res & Dev Group Bifrequency controlled analog shift register speech processor
US3810102A (en) * 1972-03-31 1974-05-07 Telserv Inc System for transmission and analysis of biomedical data
US3809805A (en) * 1972-08-25 1974-05-07 Arvin Ind Inc Video bandwidth reduction
US3934094A (en) * 1972-08-28 1976-01-20 Hitachi, Ltd. Frequency band converter
US3863026A (en) * 1973-08-15 1975-01-28 Us Navy Helium speech decoder
US3924069A (en) * 1973-08-15 1975-12-02 Us Navy Helium speech decoder
US4177707A (en) * 1975-08-04 1979-12-11 Boucher Gary R Electronic music synthesizer
US20120076332A1 (en) * 2010-09-29 2012-03-29 Siemens Medical Instruments Pte. Ltd. Method and device for frequency compression with harmonic correction
US9258655B2 (en) * 2010-09-29 2016-02-09 Sivantos Pte. Ltd. Method and device for frequency compression with harmonic correction

Also Published As

Publication number Publication date
DE1945782A1 (en) 1970-04-02
GB1286487A (en) 1972-08-23
JPS5144603B1 (en) 1976-11-30
FR2018666A1 (en) 1970-06-26

Similar Documents

Publication Publication Date Title
US3681756A (en) System for frequency modification of speech and other audio signals
US3816664A (en) Signal compression and expansion apparatus with means for preserving or varying pitch
US4121058A (en) Voice processor
US3634625A (en) Speech unscrambler
US4449190A (en) Silence editing speech processor
US3104284A (en) Time duration modification of audio waveforms
US4864620A (en) Method for performing time-scale modification of speech information or speech signals
US4295223A (en) Digital signal/noise ratio amplifier apparatus for a communication system
US3995116A (en) Emphasis controlled speech synthesizer
JP3104108B2 (en) Analog / digital converter
JPS6131658B2 (en)
US3793513A (en) Circuits and methods for processing delta-modulated signals
US5073938A (en) Process for varying speech speed and device for implementing said process
US3403227A (en) Adaptive digital vocoder
US3803358A (en) Voice synthesizer with digitally stored data which has a non-linear relationship to the original input data
US4420815A (en) Apparatus and method for removal of sinusoidal noise from a sampled signal
US5701391A (en) Method and system for compressing a speech signal using envelope modulation
JPS5981954A (en) Device for punching core of digital signal
US3381093A (en) Speech coding using axis-crossing and amplitude signals
JPS57125579A (en) Processing method for intermediate tone picture
David Digital simulation in research on human communication
Borth et al. A flexible adaptive FIR filter VLSI IC
US3863026A (en) Helium speech decoder
US5574451A (en) Digital circuit for the introduction of dither into an analog signal
US3924069A (en) Helium speech decoder