US3634125A - Method of coating iron or titanium containing substrate with poly(arylene sulfide) - Google Patents

Method of coating iron or titanium containing substrate with poly(arylene sulfide) Download PDF

Info

Publication number
US3634125A
US3634125A US752767A US3634125DA US3634125A US 3634125 A US3634125 A US 3634125A US 752767 A US752767 A US 752767A US 3634125D A US3634125D A US 3634125DA US 3634125 A US3634125 A US 3634125A
Authority
US
United States
Prior art keywords
poly
process according
arylene sulfide
substrate
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US752767A
Inventor
Dale O Tieszen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phillips Petroleum Co
Original Assignee
Phillips Petroleum Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phillips Petroleum Co filed Critical Phillips Petroleum Co
Application granted granted Critical
Publication of US3634125A publication Critical patent/US3634125A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D181/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
    • C09D181/02Polythioethers; Polythioether-ethers

Definitions

  • a substrate of iron or titanium or an alloy containing iron and/or titanium is pretreated at a temperature of about 650 F. or higher, and thereafter coated with a composition comprising a poly(ary1ene sulfide).
  • This invention relates to improved methods of applying poly(arylene sulfide) coatings. In a more specific aspect, it re lates to heattreating iron ortitanium containing substrates prior to coating with poly(arylene sulfide) compositions such as poly(phenylene sulfide).
  • Po1y(arylene sulfides) such as poly(phenylene sulfide) are well known in the art for their high-temperature stability. While it is generally regarded in the art that these polymers can be adhered to metallic substrates, poly(arylene sulfide) coated articles have not yet achieved significant commercial success. It has been found that, while poly(arylene sulfides) do adhere to metal substrates as broadly alleged in the prior art, the metals which would be of greatest commercial significance if coated with a poly(arylene sulfide), such as steel, titanium. and. alloys containing iron and/or titanium, form a very weak bond to the poly(arylene sulfide).
  • a poly(arylene sulfide) such as steel, titanium. and. alloys containing iron and/or titanium
  • iron or titanium containing substrates are pretreated at a temperature of about 650 F. or higher prior to application of a coating of a poly(arylene sulfide).
  • Any poly(arylene sulfide) can be used in the practice of this invention. Suitable polymers are disclosed, for instance, in Edmonds et al., U.S. Pat. No. 3,354,l29, Nov. 21, I967. The presently preferred polymer is poly(phenylene sulfide).
  • poly(arylene sulfide) is meant to include not only homopolymers but also arylene sulfide copolymers, terpolymers, and the like.
  • Suitable poly(arylene sulfides) of this invention are those having inherent viscosities in chloronaphthalene at 206 C. of at least 0.1, preferably between 0.1 and 0.3, more preferably between 0.13 and 0.23.
  • iron as used herein is meant to include steel and any alloy containing iron as a major constituent.
  • the instant invention is applicable to steel substrates, titanium substrates, and substrates of alloys containing a major proportion of iron and/or titanium.
  • the high-temperature pretreating step for the substrate can be carried out by any means known to the art, such as in an oven or in a flame, preferably a gas oxygen flame.
  • the treatment can be carried out at any temperature between about 650 F. and the temperature at which the particular metal in question begins to deform or soften.
  • temperatures of 675-800 are used for the oven treatment.
  • the flame treatment is done with a gas oxygen flame having a temperature of about l,8l5 C. (natural gas plus oxygen gives a flame of about 2,930 C. and can also be used), and is continued until the metal begins to turn bluish.
  • this pretreating step is carried out in the presence of an oxygencontaining gas such as air.
  • This pretreating step can take from 1 second to 5 hours. Generally, if oven treating is being utilized, the time will vary from about l5 to 90 minutes depending on the temperature.
  • This time will vary greatly depending on the intensity of the flame, but generally will be within the range of l to 5 minutes.
  • the poly(arylene sulfide) coating composition contains titanium dioxide. Any titanium dioxide can be used. The presently preferred form is the rutile form.
  • the titanium dioxide can be present in an amount within the range of 0.5 to 50 weight percent based on the weight of the solids, that is, the weight of the poly(arylene sulfide) and the titanium dioxide. More preferably, the concentration of titanium dioxide will be within the range of 10 to 35 weight percent.
  • the coating is preferably applied in the form ofa slurry of the poly(arylene sulfide) and titanium dioxide in an inert diluent.
  • any low-boiling liquid can be used as the diluent.
  • Preferred materials include ethylene glycol, methyl alcohol, water, and toluene, width ethylene glycol being the most preferred diluent.
  • Certain high-boiling materials such as chlorinated biphenyl and dimethyl phthalate have been found to be less satisfactory.
  • the coating slurries can be applied by any conventional means such as spraying, smoothing with a doctor blade, and the like.
  • the compositions can be blended with conventional additives such as stabilizers, sofcontinued until a color change is noted in the metal, for inteners, extenders, other polymers, other pigments, specific curing agents, and the like.
  • the solvent is first evaporated off, and then at about 500 F.. the polymer melts and fuses together into a continuous coating.
  • cross-linking agents can be added, it is preferred to allow the cross-linking to take place without specific additives for that purpose.
  • the exact nature of the cross-linking reaction is not known, but is is known that it occurs much faster in the presence of air or oxygen than in an inert atmosphere.
  • the curing is done in air at a temperature of S50800 F., preferably 650-750 F., the preferred time within the range of 1 minute to 5 hours, preferably 15 minutes to 2 hours.
  • EXAMPLE I A slurry of 60 grams of poly(phenylene sulfide) and 20 grams of rutile titanium dioxide in I grams of ethylene glycol was stirred in a Waring blender for IS minutes.
  • the poly(phenylene sulfide) was an uncross-linked product having an inherent viscosity in chloronaphthalene of 0.2 at 206 C. (In runs 1 and 3, the titanium dioxide was omitted from the formulation).
  • Steel panels measuring 3X6 inches were coated with this formulation; three separate coats were applied, the composition being cured at about 700 F. for about one-half hour after each coating. The following sequential steps were carried out on said steel panels. All of the steel panels were first cleaned by wiping with acetone.
  • control panel was then coated directly, while in runs l and 2 the panel was pretreated at 700 F. in an oven under air atmosphere and run 3 was flame treated for 2 minutes prior to coating. All of the pretreated panels were cooled prior to applying the coating. The results were as follows:
  • Gardner Laboratories Reverse Impact Tester This equipment comprises a rounded tip which rests above the sample on the reverse side from the coating. A ram is raised a calibrated distance and dropped against the tip which then impinges on the back side ofthe coated slab. The side opposite that which comes in contact with the tip, that is, the side having the coating, is examined for cracks and loosencss ofthe coating.
  • EXAMPLE ll The following conventional cleaning techniques were employed on steel panels in lieu ofthe high-temperature pretreatment, and the panels were thereafter coated and otherwise treated in a manner similar to that in example I. All of the following treatments resulted in either no improvement in adhesion or else detracted from the quality of the bond.
  • Zinc phosphate (Panels dipped in a solution of 300 grams, 85 percent l-l PO and 250 grams Zn ,(PO,) in 1,200 grams deionized water.
  • EXAMPLE III A formulation similar to that of example I was applied to titanium coupons. One group of the coupons has been pretreated in a gas oxygen flame until the metal turned blue. The other was simply degreased with a solvent. The coating was then cut with a knife blade in the area to be tested. The coating on the laminate with the substrate which has been pretreated in a flame passed the 160 in.-lb. reverse impact test which was the limit of the machine and the coatings on the coupons which had not received the flame treatment failed this test at I60 in.-lb.
  • EXAMPLE IV Aluminum coupons were coated with a formulation similar to that of example I. One group of the aluminum coupons was given a high-temperature pretreatment and the other was not. In both instances, the metal failed in the reverse impact test with the bonds still intact.
  • Example IV shows that no improvement is effected by heat treatment of aluminum, as evidenced by the reverse impact test.
  • a coating process comprising the following sequential steps: pretreating a substrate selected from the group consisting ofiron, titanium, and alloys containing a major proportion of at least one of iron and titanium, which substrate exhibits a weak bond to poly(arylene sulfide), by heating said substrate to a temperature of at least 650 F.; cooling said substrate; and thereafter applying to said pretreated substrate a coating composition comprising said poly(arylene sulfide).
  • a process according to claim 1 wherein said pretreatment comprises flame treatment.
  • a process according to claim I wherein said pretreatment comprises flame treating with a gas oxygen flame until said substrate turns bluish.
  • said coating composition contains 0.5 to 50 weight percent TiO based on the total weight ofthe poly(arylene sulfide) and TiO 6.
  • said poly(arylene sulfide) is poly(phenylene sulfide).
  • poly(arylene sulfide) is poly(phenylene sulfide)
  • said process comprising in addition heating said composition, after said composition has been applied to said substrate, at a temperature within the range of550 to 800 F. to evaporate said diluent and fuse said poly(arylene sulfide) into a continuous coating.
  • poly(phenylene sulfide) contains between 0.5 and 50 weight percent Tit] based on the total weight of the poly( arylene sulfide) and TiO 10.
  • substrate is steel.

Abstract

A substrate of iron or titanium or an alloy containing iron and/or titanium is pretreated at a temperature of about 650* F. or higher, and thereafter coated with a composition comprising a poly(arylene sulfide).

Description

United States Patent Inventor App1. No. Filed Patented Assignee METHOD OF COATING IRON OR TITANIUM CONTAINING SUBSTRATE WITH POLY(ARYLENE SULFIDE) 11 Claims, No Drawings US. Cl 1 17/49, 1 17/132 C Int. Cl 844d l/34 Field of Search 1 17/49, 132 B, 132 C; 260/79 References Cited UNITED STATES PATENTS 1/1967 Giordano 117/132BX 3,354,129 11/1967 Edmonds et a1. 117/132CUX 3,408,342 10/1968 Horvath et a1. 260/79 X 3,451,848 6/1969 Stephens 1 17/49 Primary Examiner-Alfred L. Leavitt Assistant Examiner-Janyce A. Bell Attorney-Young and Quigg ABSTRACT: A substrate of iron or titanium or an alloy containing iron and/or titanium is pretreated at a temperature of about 650 F. or higher, and thereafter coated with a composition comprising a poly(ary1ene sulfide).
METHOD OF COATING IRON OR TITANIUM CONTAINING SUBSTRATE WITH POLY(ARYLENE SULFIDE) BACKGROUND OF THE INVENTION This invention relates to improved methods of applying poly(arylene sulfide) coatings. In a more specific aspect, it re lates to heattreating iron ortitanium containing substrates prior to coating with poly(arylene sulfide) compositions such as poly(phenylene sulfide).
Po1y(arylene sulfides) such as poly(phenylene sulfide) are well known in the art for their high-temperature stability. While it is generally regarded in the art that these polymers can be adhered to metallic substrates, poly(arylene sulfide) coated articles have not yet achieved significant commercial success. It has been found that, while poly(arylene sulfides) do adhere to metal substrates as broadly alleged in the prior art, the metals which would be of greatest commercial significance if coated with a poly(arylene sulfide), such as steel, titanium. and. alloys containing iron and/or titanium, form a very weak bond to the poly(arylene sulfide). Efforts to improve the bond to these particular metals by conventional cleaning treatments, such as degreasing with a solvent 'or cleaning with acid have proven. unsuccessful, indicating that the problem is of a more fundamentalnature than simple interference with the bond by impurities on the surface ofthe metal.
SUMMARY OF THE INVENTION It is an object of this invention to provide an improved hightemperature laminate; it is a further object of this invention to provide a coating which is uniformly adhered to a substrate; and it is a still further object of this invention to provide a treating process for iron or titanium containing substrates which will allow improved adhesion to poly(arylene sulfides).
In accordance with this invention, iron or titanium containing substrates are pretreated at a temperature of about 650 F. or higher prior to application of a coating of a poly(arylene sulfide).
DESCRIPTION OF THE PREFERRED EMBODIMENTS Any poly(arylene sulfide) can be used in the practice of this invention. Suitable polymers are disclosed, for instance, in Edmonds et al., U.S. Pat. No. 3,354,l29, Nov. 21, I967. The presently preferred polymer is poly(phenylene sulfide).
The term poly(arylene sulfide) is meant to include not only homopolymers but also arylene sulfide copolymers, terpolymers, and the like. Suitable poly(arylene sulfides) of this invention are those having inherent viscosities in chloronaphthalene at 206 C. of at least 0.1, preferably between 0.1 and 0.3, more preferably between 0.13 and 0.23.
The term iron as used herein is meant to include steel and any alloy containing iron as a major constituent. The instant invention is applicable to steel substrates, titanium substrates, and substrates of alloys containing a major proportion of iron and/or titanium.
The high-temperature pretreating step for the substrate can be carried out by any means known to the art, such as in an oven or in a flame, preferably a gas oxygen flame. The treatment can be carried out at any temperature between about 650 F. and the temperature at which the particular metal in question begins to deform or soften. Preferably, temperatures of 675-800 are used for the oven treatment. Preferably, the flame treatment is done with a gas oxygen flame having a temperature of about l,8l5 C. (natural gas plus oxygen gives a flame of about 2,930 C. and can also be used), and is continued until the metal begins to turn bluish. Preferably, this pretreating step is carried out in the presence of an oxygencontaining gas such as air.
This pretreating step can take from 1 second to 5 hours. Generally, if oven treating is being utilized, the time will vary from about l5 to 90 minutes depending on the temperature.
stance when the metal begins to turn bluish. This time will vary greatly depending on the intensity of the flame, but generally will be within the range of l to 5 minutes.
In a preferred embodiment, the poly(arylene sulfide) coating composition contains titanium dioxide. Any titanium dioxide can be used. The presently preferred form is the rutile form. The titanium dioxide can be present in an amount within the range of 0.5 to 50 weight percent based on the weight of the solids, that is, the weight of the poly(arylene sulfide) and the titanium dioxide. More preferably, the concentration of titanium dioxide will be within the range of 10 to 35 weight percent.
After the substrate has been given the high-temperature pretreatment and has cooled, the coating is preferably applied in the form ofa slurry of the poly(arylene sulfide) and titanium dioxide in an inert diluent.
Any low-boiling liquid can be used as the diluent. Preferred materials include ethylene glycol, methyl alcohol, water, and toluene, width ethylene glycol being the most preferred diluent. Certain high-boiling materials such as chlorinated biphenyl and dimethyl phthalate have been found to be less satisfactory. The coating slurries can be applied by any conventional means such as spraying, smoothing with a doctor blade, and the like. In addition, the compositions can be blended with conventional additives such as stabilizers, sofcontinued until a color change is noted in the metal, for inteners, extenders, other polymers, other pigments, specific curing agents, and the like.
During the fusing step after the coating has been applied. the solvent is first evaporated off, and then at about 500 F.. the polymer melts and fuses together into a continuous coating. While cross-linking agents can be added, it is preferred to allow the cross-linking to take place without specific additives for that purpose. The exact nature of the cross-linking reaction is not known, but is is known that it occurs much faster in the presence of air or oxygen than in an inert atmosphere. Preferably, the curing is done in air at a temperature of S50800 F., preferably 650-750 F., the preferred time within the range of 1 minute to 5 hours, preferably 15 minutes to 2 hours. Of course, there is a relationship between time, temperature, and oxygen, and at higher temperatures and/or higher oxygen contents, the time can be reduced.
EXAMPLE I A slurry of 60 grams of poly(phenylene sulfide) and 20 grams of rutile titanium dioxide in I grams of ethylene glycol was stirred in a Waring blender for IS minutes. The poly(phenylene sulfide) was an uncross-linked product having an inherent viscosity in chloronaphthalene of 0.2 at 206 C. (In runs 1 and 3, the titanium dioxide was omitted from the formulation). Steel panels measuring 3X6 inches were coated with this formulation; three separate coats were applied, the composition being cured at about 700 F. for about one-half hour after each coating. The following sequential steps were carried out on said steel panels. All of the steel panels were first cleaned by wiping with acetone. The control panel was then coated directly, while in runs l and 2 the panel was pretreated at 700 F. in an oven under air atmosphere and run 3 was flame treated for 2 minutes prior to coating. All of the pretreated panels were cooled prior to applying the coating. The results were as follows:
Gardner Laboratories Reverse Impact Tester. This equipment comprises a rounded tip which rests above the sample on the reverse side from the coating. A ram is raised a calibrated distance and dropped against the tip which then impinges on the back side ofthe coated slab. The side opposite that which comes in contact with the tip, that is, the side having the coating, is examined for cracks and loosencss ofthe coating.
A comparison of runs 1 and 2 with the control reveals that at 700 F. pretreatment, neither the pretreatment nor the presence of titanium dioxide gave a coating that was resistant to reverse impact test at 160 in.-lb. However, a combination of pretreating the panels at 700 and the presence of the titanium dioxide in the poly(arylene sulfide) sulfide) composition does give such a bond. Thus, surprisingly, while heat treatment at 700 F. alone will not effect the exceptionally tough bond as exemplified by a 160 value for reverse impact, nor will the presence ofthe titanium dioxide alone, the combination of the two coact to give the unexpected result, namely a coating so tough that it does not fail at the limiting ofthe test machine.
It is further noted that the heat treatment at 700 F. does effect some improvement in the quality of the coating and further that heat treatment at higher temperatures, either in the oven or by means of a gas flame as noted by run 3, will effect the production of an unexpectedly high bond without the presence of titanium dioxide.
EXAMPLE ll The following conventional cleaning techniques were employed on steel panels in lieu ofthe high-temperature pretreatment, and the panels were thereafter coated and otherwise treated in a manner similar to that in example I. All of the following treatments resulted in either no improvement in adhesion or else detracted from the quality of the bond.
A. 10 percent sulfuric acid, followed by water rinse.
B. [5 percent phosphoric acid.
C. Zinc phosphate (Panels dipped in a solution of 300 grams, 85 percent l-l PO and 250 grams Zn ,(PO,) in 1,200 grams deionized water.
D. Commercial iron phosphate treatment.
E. Degreased with methylene chloride, scrubbed with steel wool, rinsed, dipped in percent sodium hydroxide at room temperature for 10 minutes, then dried in oven.
F. Steel panel wiped with methylene chloride, steel wool treated, rinsed and dried. Then treated with 10 percent sulfuric acid-l0 percent nitric acid-80 percent water for 5 minutes. Thereafter rinsed for a few seconds and treated with 60 ml. concentrated HCl, 40 ml. water, and 30 percent hydrogen peroxide. Again rinsed, dried, and again polished with steel wool, rinsed and dried.
EXAMPLE III A formulation similar to that of example I was applied to titanium coupons. One group of the coupons has been pretreated in a gas oxygen flame until the metal turned blue. The other was simply degreased with a solvent. The coating was then cut with a knife blade in the area to be tested. The coating on the laminate with the substrate which has been pretreated in a flame passed the 160 in.-lb. reverse impact test which was the limit of the machine and the coatings on the coupons which had not received the flame treatment failed this test at I60 in.-lb.
EXAMPLE IV Aluminum coupons were coated with a formulation similar to that of example I. One group of the aluminum coupons was given a high-temperature pretreatment and the other was not. In both instances, the metal failed in the reverse impact test with the bonds still intact.
The data in example ll reveals that conventional cleaning techniques do not improve the bond whereas, surprisingly. the heat treatment of the instant invention does. Example IV shows that no improvement is effected by heat treatment of aluminum, as evidenced by the reverse impact test.
It is noted that even the samples which were not treated in accordance with this invention do adhere to the poly(arylene sulfide) coating compositions as IS clearly shown by the prior art. However, the treatments of the instant invention bring about such an improvement in the bond that the bond does not fail at the upper limits of the conventional testing machinery.
While this invention has been described in detail for the purpose of illustration, it is not to be construed as limited thereby, but is intended to cover all changes and modifications within the spirit and scope thereof.
1 claim:
1. A coating process comprising the following sequential steps: pretreating a substrate selected from the group consisting ofiron, titanium, and alloys containing a major proportion of at least one of iron and titanium, which substrate exhibits a weak bond to poly(arylene sulfide), by heating said substrate to a temperature of at least 650 F.; cooling said substrate; and thereafter applying to said pretreated substrate a coating composition comprising said poly(arylene sulfide).
2. A process according to claim 1 wherein said substrate is heated in an oven at a temperature between 675-800 F. for between 15 and minutes.
3. A process according to claim 1 wherein said pretreatment comprises flame treatment.
4. A process according to claim I wherein said pretreatment comprises flame treating with a gas oxygen flame until said substrate turns bluish.
5. A process according to claim 1 wherein said coating composition contains 0.5 to 50 weight percent TiO based on the total weight ofthe poly(arylene sulfide) and TiO 6. A process according to claim 1 wherein said poly(arylene sulfide) is poly(phenylene sulfide).
7. A process according to claim I wherein said coating composition is applied in the form a slurry in a diluent.
8. A process according to claim 7 wherein said poly(arylene sulfide) is poly(phenylene sulfide), said process comprising in addition heating said composition, after said composition has been applied to said substrate, at a temperature within the range of550 to 800 F. to evaporate said diluent and fuse said poly(arylene sulfide) into a continuous coating.
9. A process according to claim 8 wherein said poly(phenylene sulfide) contains between 0.5 and 50 weight percent Tit] based on the total weight of the poly( arylene sulfide) and TiO 10. A process according to claim 9 wherein said substrate is steel.
11. A process according to claim 9 wherein said substrate is titanium.

Claims (10)

  1. 2. A process according to claim 1 wherein said substrate is heated in an oven at a temperature between 675*- 800* F. for between 15 and 90 minutes.
  2. 3. A process according to claim 1 wherein said pretreatment comprises flame treatment.
  3. 4. A process according to claim 1 wherein said pretreatment comprises flame treating with a gas oxygen flame until said substrate turns bluish.
  4. 5. A process according to claim 1 wherein said coating composition contains 0.5 to 50 weight percent TiO2 based on the total weight of the poly(arylene sulfide) and TiO2.
  5. 6. A process according to claim 1 wherein said poly(arylene sulfide) is poly(phenylene sulfide).
  6. 7. A process according to claim 1 wherein said coating composition is applied in the form a slurry in a diluent.
  7. 8. A process according to claim 7 wherein said poly(arylene sulfide) is poly(phenylene sulfide), said process comprising in addition heating said composition, after said composition has been applied to said substrate, at a temperature within the range of 550* to 800* F. to evaporate said diluent and fuse said poly(arylene sulfide) into a continuous coating.
  8. 9. A process according to clAim 8 wherein said poly(phenylene sulfide) contains between 0.5 and 50 weight percent Ti02 based on the total weight of the poly(arylene sulfide) and TiO2.
  9. 10. A process according to claim 9 wherein said substrate is steel.
  10. 11. A process according to claim 9 wherein said substrate is titanium.
US752767A 1968-08-15 1968-08-15 Method of coating iron or titanium containing substrate with poly(arylene sulfide) Expired - Lifetime US3634125A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US75276768A 1968-08-15 1968-08-15

Publications (1)

Publication Number Publication Date
US3634125A true US3634125A (en) 1972-01-11

Family

ID=25027747

Family Applications (1)

Application Number Title Priority Date Filing Date
US752767A Expired - Lifetime US3634125A (en) 1968-08-15 1968-08-15 Method of coating iron or titanium containing substrate with poly(arylene sulfide)

Country Status (4)

Country Link
US (1) US3634125A (en)
JP (1) JPS5142133B1 (en)
DE (1) DE1941140C3 (en)
GB (1) GB1269920A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928661A (en) * 1973-06-01 1975-12-23 Phillips Petroleum Co Selective coating of a substrate with poly(arylene sulfide)
US3930078A (en) * 1973-11-29 1975-12-30 Phillips Petroleum Co Coating with arylene sulfide polymer containing compounds to enhance cure
US3931419A (en) * 1973-11-29 1976-01-06 Phillips Petroleum Company Coating with arylene sulfide polymer cured with the aid of certain compounds
US3964582A (en) * 1974-07-26 1976-06-22 Wallace-Murray Corporation Fan drive hydraulic coupling
US3979543A (en) * 1973-06-13 1976-09-07 Phillips Petroleum Company Article having a poly(arylene sulfide) coating and method of producing
US4011121A (en) * 1975-04-30 1977-03-08 Phillips Petroleum Company Adhesive bonding of poly(arylene sulfide) surfaces
US4075388A (en) * 1975-04-30 1978-02-21 Phillips Petroleum Company Adhesive bonding of poly(arylene sulfide) surfaces
US4212922A (en) * 1978-10-02 1980-07-15 Phillips Petroleum Company Poly(arylene sulfide) resin coating
US4237039A (en) * 1978-12-18 1980-12-02 Phillips Petroleum Company Salts of arylalkanoic acids as corrosion inhibitors for poly(arylene sulfide)s
US4247598A (en) * 1979-05-29 1981-01-27 Phillips Petroleum Company Applying powder arylene sulfide polymer coatings to substrates
US4355059A (en) * 1981-04-24 1982-10-19 Phillips Petroleum Company Poly(arylene sulfide) composition containing a polyolefin
US4835051A (en) * 1987-02-24 1989-05-30 Phillips Petroleum Company Coatings of arylene sulfide polymers
US4904502A (en) * 1987-02-24 1990-02-27 Phillips Petroleum Company Coatings of arylene sulfide polymers
US5015686A (en) * 1987-02-24 1991-05-14 Phillips Petroleum Company Coatings of arylene sulfide polymers
US5272185A (en) * 1990-10-26 1993-12-21 The Furukawa Electric Co., Ltd. Polyphenylenesulfide composition for powder coating
US20030175421A1 (en) * 2002-03-13 2003-09-18 Delphi Technologies, Inc. Process for reducing contaminants on surfaces of die cast components

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493188U (en) * 1977-12-14 1979-07-02
JPS6287589U (en) * 1985-11-22 1987-06-04

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297630A (en) * 1963-09-25 1967-01-10 Thiokol Chemical Corp Stabilized polysulfide polymer based compositions containing organo-metallic tin compounds
US3354129A (en) * 1963-11-27 1967-11-21 Phillips Petroleum Co Production of polymers from aromatic compounds
US3408342A (en) * 1965-08-31 1968-10-29 Phillips Petroleum Co Stabilized poly(arylene sulfides
US3451848A (en) * 1966-03-31 1969-06-24 Standard Oil Co Method of coating magnet wire with a polytrimellitamide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297630A (en) * 1963-09-25 1967-01-10 Thiokol Chemical Corp Stabilized polysulfide polymer based compositions containing organo-metallic tin compounds
US3354129A (en) * 1963-11-27 1967-11-21 Phillips Petroleum Co Production of polymers from aromatic compounds
US3408342A (en) * 1965-08-31 1968-10-29 Phillips Petroleum Co Stabilized poly(arylene sulfides
US3451848A (en) * 1966-03-31 1969-06-24 Standard Oil Co Method of coating magnet wire with a polytrimellitamide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Gregory et al., Heat Treatment of Steel, N.Y., Pitman, 1958, p. 28, 32, 353, 216 and 217. TS320G72, 1958 *
McClintick et al., Physical Metallurgy and Heat Treatment of Titanium Alloys, Niles, Ohio, Mallory-Sharon, 1955, p. 26. TN799TSM21 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928661A (en) * 1973-06-01 1975-12-23 Phillips Petroleum Co Selective coating of a substrate with poly(arylene sulfide)
US3979543A (en) * 1973-06-13 1976-09-07 Phillips Petroleum Company Article having a poly(arylene sulfide) coating and method of producing
US3930078A (en) * 1973-11-29 1975-12-30 Phillips Petroleum Co Coating with arylene sulfide polymer containing compounds to enhance cure
US3931419A (en) * 1973-11-29 1976-01-06 Phillips Petroleum Company Coating with arylene sulfide polymer cured with the aid of certain compounds
US3964582A (en) * 1974-07-26 1976-06-22 Wallace-Murray Corporation Fan drive hydraulic coupling
US4011121A (en) * 1975-04-30 1977-03-08 Phillips Petroleum Company Adhesive bonding of poly(arylene sulfide) surfaces
US4075388A (en) * 1975-04-30 1978-02-21 Phillips Petroleum Company Adhesive bonding of poly(arylene sulfide) surfaces
US4212922A (en) * 1978-10-02 1980-07-15 Phillips Petroleum Company Poly(arylene sulfide) resin coating
US4237039A (en) * 1978-12-18 1980-12-02 Phillips Petroleum Company Salts of arylalkanoic acids as corrosion inhibitors for poly(arylene sulfide)s
US4247598A (en) * 1979-05-29 1981-01-27 Phillips Petroleum Company Applying powder arylene sulfide polymer coatings to substrates
US4355059A (en) * 1981-04-24 1982-10-19 Phillips Petroleum Company Poly(arylene sulfide) composition containing a polyolefin
US4835051A (en) * 1987-02-24 1989-05-30 Phillips Petroleum Company Coatings of arylene sulfide polymers
US4904502A (en) * 1987-02-24 1990-02-27 Phillips Petroleum Company Coatings of arylene sulfide polymers
US5015686A (en) * 1987-02-24 1991-05-14 Phillips Petroleum Company Coatings of arylene sulfide polymers
US5272185A (en) * 1990-10-26 1993-12-21 The Furukawa Electric Co., Ltd. Polyphenylenesulfide composition for powder coating
US20030175421A1 (en) * 2002-03-13 2003-09-18 Delphi Technologies, Inc. Process for reducing contaminants on surfaces of die cast components

Also Published As

Publication number Publication date
DE1941140B2 (en) 1974-02-28
DE1941140C3 (en) 1974-10-10
GB1269920A (en) 1972-04-06
DE1941140A1 (en) 1970-02-26
JPS5142133B1 (en) 1976-11-13

Similar Documents

Publication Publication Date Title
US3634125A (en) Method of coating iron or titanium containing substrate with poly(arylene sulfide)
US3622376A (en) TiO{11 {0 IN POLY(ARYLENE SULFIDE) FOR COATING COMPOSITION
US3616186A (en) Copper-poly (arylene sulfide) laminates and process for preparing same
US3585084A (en) Process for coating metals
US3801379A (en) Hot water surface treatment of aluminum substrate
JPH0320495A (en) Improved method for anodizing aluminum alloy working member
US3454410A (en) Alkali-metal silicate protective coating
US4234653A (en) Protective coating
US2949411A (en) Titanium anodizing process
US3776880A (en) Arylene sulfide polymer coating compositions
US3454483A (en) Electrodeposition process with pretreatment in zinc phosphate solution containing fluoride
US3708350A (en) Coated metal and method
US2723952A (en) Method of electrolytically coating magnesium and electrolyte therefor
US4971635A (en) Low-cure coating composition
Brewis Factors affecting bonding of metals
US3644261A (en) Coating compositions containing fluorocarbon polymer and aluminum borophosphate
US4212922A (en) Poly(arylene sulfide) resin coating
US3856560A (en) Arylene sulfide polymer coating compositions
US6521052B2 (en) Surface treatment
US3285788A (en) Anhydrous chromic acid solution and process of treating metal therewith
CA1068997A (en) Resin coated metal substrates
US2769774A (en) Electrodeposition method
US3642530A (en) Method for forming an electrically insulating coating
US4780153A (en) Chromium-containing low-cure coating composition
JPH061952A (en) Heat-resistant coating