US3632068A - Woven wire fabric - Google Patents

Woven wire fabric Download PDF

Info

Publication number
US3632068A
US3632068A US878629A US3632068DA US3632068A US 3632068 A US3632068 A US 3632068A US 878629 A US878629 A US 878629A US 3632068D A US3632068D A US 3632068DA US 3632068 A US3632068 A US 3632068A
Authority
US
United States
Prior art keywords
warp
strands
wire
weft
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US878629A
Inventor
Donald M Weir
Charles H Johnson
John G Buchanan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jwi Ltd
Original Assignee
Jwi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jwi Ltd filed Critical Jwi Ltd
Application granted granted Critical
Publication of US3632068A publication Critical patent/US3632068A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F27/00Making wire network, i.e. wire nets
    • B21F27/005Wire network per se
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F1/00Wet end of machines for making continuous webs of paper
    • D21F1/10Wire-cloths

Definitions

  • Herbst Attorney-Alan Swabey ABSTRACT A woven, phosphor bronze, wire fabric having weft strands of cylindrical cross section and warp strands of rectangular and slightly oval cross section, the warp and weft strands being made of 7 to 10 percent phosphor bronze material, with both the warp and weft strands having a hard temper in order to provide a wire fabric having improved flexural fatigue properties.
  • the invention is more particularly directed toward an improved woven, phosphor bronze, wire fabric having improved flexural fatigue life and also increased tensile strength in the weft and warp directions in order to reduce the tendency of the wire fabric to split by cracking when used as a forming wire in certain types of paper machines where the wire fabric is subjected to greater than normal flexure.
  • the increased flexural fatigue life and tensile strength in the improved wire fabric are obtained without reducing the drainage characteristics of the woven wire fabric for any given mesh count as compared with normal wire fabrics.
  • Phosphor bronze wire fabrics generally in use are woven with warp or machine direction strands and weft or crossmachine direction strands which have a circular cross section.
  • Phosphor bronze comprises a percentage of tin, approximately 0.4 percent phosphorus, with the remainder, copper.
  • Phosphor bronze is a preferred material for both the warp and weft strands in fabrics used as forming wires since it has reasonably high tensile strength with good ductility. It is also corrosion resistant, has good abrasion-resistant qualities and adequate flexural fatigue resistance for bending conditions encountered during normal use of the fabric when it is used as a fourdrinier wire, for example.
  • the warp strands in a forming wire are made of 8 percent phosphor bronze (8 percent denoting the percentage of tin in the phosphor bronze), and the weft strands are made of 6 percent phosphor bronze.
  • the weft strands are also sometimes made from 3 percent phosphor bronze.
  • the warp strands in the woven fabric are generally mechanically worked to have a hard temper.
  • the temper of the strands is measured by the grain size of the phosphor bronze material, and the smaller the grain size, the harder the temper.
  • a strand with hard temper will generally have a grain size of less than 5 microns.
  • the warp strands In normal forming wires, the warp strands have a grain size of 4 microns.
  • the weft strands do not have a hard temper and generally have a grain size of 14 microns. It is thus seen that the weft strands in an ordinary forming wire have a relatively soft temper in comparison to the warp strands as is apparent from their difference in grain size.
  • the forming wire With the weft having a relatively soft temper, the forming wire has a tendency to split before it has been used for its normal life when the forming wire is subjected to abnormal flex ing. Even the warp strands, having a hard temper, can crack under abnormal flexing and cause the wire to split.
  • the constant flexing or dimpling of the fourdrinier wire does not reduce the useful life of the wire where the machines run at their original design speed.
  • these machines are now run at speeds above their design speed requiring increased pressure from the presser roll.
  • the increased pressure greatly increases the fatigue efiect on the fourdrinier wire during its flexing or dimpling in passing between the presser roll and the couch roll. This causes the wire to tend to split by cracking of the weft strands before the wire has been used for a normal period of time.
  • the splitting of the wire thus increases the cost of production of paper due to the downtime required to replace the wire.
  • the present invention provides an improved phosphor bronze wire fabric having increased useful life when used under operating conditions where increased flexing is encountered by either the warp or weft strands while still maintaining, or even slightly increasing, the drainage and tensile characteristics for the improved wire fabric when it has substantially the same size of strands and a mesh count as in ordinary wire fabrics.
  • the weft strands are made of stronger phosphor bronze material, and both the warp and weft strands have a harder temper.
  • a wire fabric made from hard temper warp strands having a circular cross section is extremely difficult to weave compared to the weaving of soft temper warp strands having a circular cross section of the same diameter, to obtain a fabric having substantially the same drainage properties as a fabric using circular warp strands.
  • warp strands having a rectangular cross section with the direction of the smaller dimension of the rectangular cross section extending perpendicular to the plane of the wire, to make wire fabrics having a flat-surfaced" weaver.
  • a flat-surfaced weave it is meant a weave where the height or depth of the knuckles formed at the crossover points of the warp and weft strands is reduced when a rectangular warp, lying flat in the direction of the plane of the wire fabric, is used in place of a warp having a circular cross section. See U.S. Pat. No. 600,352, issued Mar. 8, 1898, J. C. Bell, inventor, for example.
  • the rectangular warp strands used have a ratio of the width, in the plane of the wire, to the thickness, transverse to the plane of the wire, exceeding 1.321. This ratio has been found to be the acceptable lower limit for providing a flatter" wire or a finer wire where strength and/or drainage properties of the wire is not a critical factor.
  • FIG. 1 is a plan view of the woven, phosphor bronze, wire fabric
  • FIG. 2 is an enlarged partial cross section view of the fabric taken along line 11-11 in FIG. 1 showing the weft and flattened warp strands in detail.
  • the woven fabric 1, shown in FIG. 1, comprises weft or cross-machine direction strands 3 and warp or machine direction strands 5.
  • the weft and warp strands 3, 5 are preferably woven in a standard semitwill weave pattern with each warp strand 5A passing under two weft strands 3A, 3B and over one weft strand 3C.
  • Both the warp and weft strands are made of phosphor bronze.
  • the tin content of the phosphor bronze material for both the warp and weft can range between 7 percent and percent.
  • the tin content of the warp and weft is 8 percent to 9 percent.
  • the wire fabric can be woven into any standard mesh count ranging from 50 by 50 to 100 by 100 using weft strands having a diameter ranging between 0.015 and 0.004 in. and warp strands having a width, along the major axis, ranging from 0.013 to 0.004 in.
  • the following table illustrates, for comparison purposes, the relative physical differences between an ordinary woven wire fabric made of phosphor bronze material with warp strands of circular cross section having a hard temper with a grain size of 4 microns and weft strands of circular cross section having a soft temper with a grain size of 14 microns, as compared with a wire fabric of the present invention made with warp and weft strands having a hard temper and with the warp rectangular or slightly oval in cross section.
  • the ordinary wire fabric is made of 6 percent phosphor bronze strands and the improved wire fabric is made of 8 percent phosphor bronze warp and weft strands.
  • the flexural fatigue life in both the weft and warp directions of the improved wire fabric has been increased approximately 30 percent or more. Further, the tensile strength in both the warp and weft directions has been increased with nearly a 20 percent increase in the weft direction even though a slightly smaller weft is used. It is equally important that the drainage characteristics of the improved wire fabric be at least the same as the ordinary wire fabric. As seen from the table, the drainage of the improved wire fabric is slightly increased over the ordinary fabric. If a wire fabric were to be woven using a-rectangular warp with approximately a minimum ratio of width to thickness of 1.32:1, it would, because of the increased weft strands required to produce an acceptable tight fabric, have a much lower drainage.
  • a wire fabric woven from 0.0086"X) 0.0065" rectangular warps and 0.009-inch diameter wefts, with a mesh count of 68x63, has a drainage of 620 c.f.m./sq. ft. as measured by a Frazier Permeometer.

Abstract

A woven, phosphor bronze, wire fabric having weft strands of cylindrical cross section and warp strands of rectangular and slightly oval cross section, the warp and weft strands being made of 7 to 10 percent phosphor bronze material, with both the warp and weft strands having a hard temper in order to provide a wire fabric having improved flexural fatigue properties.

Description

United States Patent 6 E 35' HII l-liken [56] References Cited UNITED STATES PATENTS 3,545,705 12/1970 Hodgson 245/8 3,240,635 3/1966 Hose et al. 245/8 3,100,729 8/1963 Goller et a1. 245/8 3,311,511 3/1967 Goller 245 8/ 3,143,150 8/1964 Buchanan 245/8 Primary ExaminerRichard J. Herbst Attorney-Alan Swabey ABSTRACT: A woven, phosphor bronze, wire fabric having weft strands of cylindrical cross section and warp strands of rectangular and slightly oval cross section, the warp and weft strands being made of 7 to 10 percent phosphor bronze material, with both the warp and weft strands having a hard temper in order to provide a wire fabric having improved flexural fatigue properties.
IIllI Q mmnznm 4m $632,068
INVENTORS old M. WEIR rles H. JOHNSON John G. BUCHANAN WOVEN WIRE FABRIC BACKGROUND OF INVENTION 1. Field of invention This invention is directed toward an improved woven, phosphor bronze wire fabric used in papermaking machines, the fabric having improved flexural fatigue life in both the warp and weft strands forming the woven wire fabric.
The invention is more particularly directed toward an improved woven, phosphor bronze, wire fabric having improved flexural fatigue life and also increased tensile strength in the weft and warp directions in order to reduce the tendency of the wire fabric to split by cracking when used as a forming wire in certain types of paper machines where the wire fabric is subjected to greater than normal flexure. The increased flexural fatigue life and tensile strength in the improved wire fabric are obtained without reducing the drainage characteristics of the woven wire fabric for any given mesh count as compared with normal wire fabrics.
2. Description of Prior Art Phosphor bronze wire fabrics generally in use are woven with warp or machine direction strands and weft or crossmachine direction strands which have a circular cross section. Phosphor bronze comprises a percentage of tin, approximately 0.4 percent phosphorus, with the remainder, copper. Phosphor bronze is a preferred material for both the warp and weft strands in fabrics used as forming wires since it has reasonably high tensile strength with good ductility. It is also corrosion resistant, has good abrasion-resistant qualities and adequate flexural fatigue resistance for bending conditions encountered during normal use of the fabric when it is used as a fourdrinier wire, for example. Generally, the warp strands in a forming wire are made of 8 percent phosphor bronze (8 percent denoting the percentage of tin in the phosphor bronze), and the weft strands are made of 6 percent phosphor bronze. The weft strands are also sometimes made from 3 percent phosphor bronze.
The warp strands in the woven fabric are generally mechanically worked to have a hard temper. The temper of the strands is measured by the grain size of the phosphor bronze material, and the smaller the grain size, the harder the temper. A strand with hard temper will generally have a grain size of less than 5 microns. In normal forming wires, the warp strands have a grain size of 4 microns. The weft strands do not have a hard temper and generally have a grain size of 14 microns. It is thus seen that the weft strands in an ordinary forming wire have a relatively soft temper in comparison to the warp strands as is apparent from their difference in grain size. With the weft having a relatively soft temper, the forming wire has a tendency to split before it has been used for its normal life when the forming wire is subjected to abnormal flex ing. Even the warp strands, having a hard temper, can crack under abnormal flexing and cause the wire to split.
One example of abnormal flexing encountered with forming wires is in fourdrinier wires used in papermaking machines having a presser roll located adjacent the couch roll. Although many modern papermaking machines no longer use a presser roll adjacent the couch roll, there are still many older machines in use which were constructed on the open-draw principle and which require use of the presser roll in conjunction with the couch roll to aid in properly withdrawing the web of paper. The fourdrinier wire carrying the newly formed web passes between a nip formed by the presser roll and the couch roll. The wire, in passing through this nip, is forced into apertures in the couch roll by the presser roll thus repeatedly flexing the wire. The constant flexing or dimpling of the fourdrinier wire does not reduce the useful life of the wire where the machines run at their original design speed. However, to meet present-day production requirements, these machines are now run at speeds above their design speed requiring increased pressure from the presser roll. The increased pressure greatly increases the fatigue efiect on the fourdrinier wire during its flexing or dimpling in passing between the presser roll and the couch roll. This causes the wire to tend to split by cracking of the weft strands before the wire has been used for a normal period of time. The splitting of the wire thus increases the cost of production of paper due to the downtime required to replace the wire.
Another example of abnormal flexing is encountered by forming wires used in the relatively new vertical-type papermaking machines. In vertical paper-forming machines, pulp stock is fed between vertical, substantially parallel runs, of two forming wires. The stock is fed between the wires at the top end of their vertical run, and the stock is drained laterally through the wires as the wires move downwardly. Drainage is assisted by passing the wires over deflectors, which deflectors flexurally stress the warp strands in the wire. The repeated flexure on the wires by the deflectors can cause cracking of the warp strands thus shortening the life of the wire.
The present invention provides an improved phosphor bronze wire fabric having increased useful life when used under operating conditions where increased flexing is encountered by either the warp or weft strands while still maintaining, or even slightly increasing, the drainage and tensile characteristics for the improved wire fabric when it has substantially the same size of strands and a mesh count as in ordinary wire fabrics.
In order to improve the flexural fatigue life of the phosphor bronze woven wire fabric, the weft strands are made of stronger phosphor bronze material, and both the warp and weft strands have a harder temper. However, a wire fabric made from hard temper warp strands having a circular cross section is extremely difficult to weave compared to the weaving of soft temper warp strands having a circular cross section of the same diameter, to obtain a fabric having substantially the same drainage properties as a fabric using circular warp strands.
It is known to use warp strands having a rectangular cross section, with the direction of the smaller dimension of the rectangular cross section extending perpendicular to the plane of the wire, to make wire fabrics having a flat-surfaced" weaver. By a flat-surfaced weave, it is meant a weave where the height or depth of the knuckles formed at the crossover points of the warp and weft strands is reduced when a rectangular warp, lying flat in the direction of the plane of the wire fabric, is used in place of a warp having a circular cross section. See U.S. Pat. No. 600,352, issued Mar. 8, 1898, J. C. Bell, inventor, for example.
It has also been known to obtain a finer fabric mesh using rectangular warps, since rectangular warps allow the weft to be beat up easier during weaving. The rectangular warps are flexible and thus more weft strands can be used per inch of fabric than when using warps of circular cross section. See U.S. Pat. No. 2,003,123, issued May 28, 1935, H. G. Specht, inventor.
The rectangular warp strands used have a ratio of the width, in the plane of the wire, to the thickness, transverse to the plane of the wire, exceeding 1.321. This ratio has been found to be the acceptable lower limit for providing a flatter" wire or a finer wire where strength and/or drainage properties of the wire is not a critical factor.
To use rectangular warp wires having this minimum width to thickness ratio in phosphor bronze wires with a hard temper, while attempting to maintain the same strength and drainage characteristics obtained in a fabric using a circular warp of the same width as the rectangular warp, results in an unacceptable fabric. When the rectangular strands are woven into a wire fabric to have substantially the same drainage characteristics as a wire having circular warps, the resulting fabric is loose or sleazy whereby the warp and weft strands of the wire slip relatively to each other. At the same time, the tensile strength of the fabric is reduced. If the fabric is instead woven tight enough to overcome the problem of a loose weave, more weft strands are required than the number used in a fabric employing circular warps, whereby the drainage properties of fabric are reduced.
SUMMARY OF INVENTION Applicant has unexpectedly discovered that an improved woven, phosphor bronze, wire fabric, having improved flexural fatigue life without reduction of drainage properties, can be made of warp and weft strands having a hard temper if rectangular or slightly oval warp strands are used having a ratio of width to thickness ranging between 1.05:1 and 1.15: 1. Using such warp strands, the wire fabric, made of hard temper strands, can be woven on a standard weaving machine, and the wire fabric has improved flexural fatigue life and tensile strength properties, and further, has no reduction in drainage properties for a given mesh count and wire size as compared with a wire fabric with the same mesh count and wire size but using warps having a circular section.
The invention is particularly directed toward a woven, phosphor bronze, wire fabric for use in paper-forming operations in papermaking machines, the fabric comprising weft and warp strands of phosphor bronze material. The warp strands are rectangular or slightly oval in cross section having a ratio of width to thickness ranging between 1.05:1 and 1.15:1. Both weft and warp strands are tempered to have a grain size of less than 4 microns.
BRIEF DESCRIPTION OF DRAWINGS The invention will now be described in detail having reference to the accompanying drawings, wherein:
FIG. 1 is a plan view of the woven, phosphor bronze, wire fabric; and
FIG. 2 is an enlarged partial cross section view of the fabric taken along line 11-11 in FIG. 1 showing the weft and flattened warp strands in detail.
DESCRIPTION OF PREFERRED EMBODIMENTS The woven fabric 1, shown in FIG. 1, comprises weft or cross-machine direction strands 3 and warp or machine direction strands 5. The weft and warp strands 3, 5 are preferably woven in a standard semitwill weave pattern with each warp strand 5A passing under two weft strands 3A, 3B and over one weft strand 3C.
The warp strands 5 are tempered to have a grain size of 2 microns or less. The weft strands are tempered to have a grain size less than 5 microns. The grain size of the warp preferably is 1.5 microns and of the weft, 4 microns.
Both the warp and weft strands are made of phosphor bronze. The tin content of the phosphor bronze material for both the warp and weft can range between 7 percent and percent. Preferably, the tin content of the warp and weft is 8 percent to 9 percent.
The warp strands S are rectangular or slightly oval in cross section, as shown in FIG. 2, to facilitate weaving of the wire. The major axis Y of the cross section of the warp strand is parallel to the plane of the woven wire fabric 1. The ratio of the width W of each warp strand along the major axis Y to its thickness T along the minor axis X ranges between 1.15:1 and 1.05:1, and preferably is 11:1.
The wire fabric can be woven into any standard mesh count ranging from 50 by 50 to 100 by 100 using weft strands having a diameter ranging between 0.015 and 0.004 in. and warp strands having a width, along the major axis, ranging from 0.013 to 0.004 in.
The following table illustrates, for comparison purposes, the relative physical differences between an ordinary woven wire fabric made of phosphor bronze material with warp strands of circular cross section having a hard temper with a grain size of 4 microns and weft strands of circular cross section having a soft temper with a grain size of 14 microns, as compared with a wire fabric of the present invention made with warp and weft strands having a hard temper and with the warp rectangular or slightly oval in cross section. The ordinary wire fabric is made of 6 percent phosphor bronze strands and the improved wire fabric is made of 8 percent phosphor bronze warp and weft strands.
Ordinary Wire Improved Wire Mesh Warp Size in." in.
Weft Size Type in. 0.0090 0% 0.0087 8% Warp Grain Size Weft Grain Size Warp Direction Tensile Strength Weft Direction Tensile Strength Weft Direction Flexural Fatigue Life Warp Direction Flexural Fatigue Life Drainage (as measured by a Frazier Permeometer) micmns 4 1.5
microns 14 4.0
lbJin. 210 212 lbJin. 202 240 cycles 3,000 4,007
--cycIes 13,000 17,554
It will be noted from the above table that the flexural fatigue life in both the weft and warp directions of the improved wire fabric has been increased approximately 30 percent or more. Further, the tensile strength in both the warp and weft directions has been increased with nearly a 20 percent increase in the weft direction even though a slightly smaller weft is used. It is equally important that the drainage characteristics of the improved wire fabric be at least the same as the ordinary wire fabric. As seen from the table, the drainage of the improved wire fabric is slightly increased over the ordinary fabric. If a wire fabric were to be woven using a-rectangular warp with approximately a minimum ratio of width to thickness of 1.32:1, it would, because of the increased weft strands required to produce an acceptable tight fabric, have a much lower drainage. For example, a wire fabric woven from 0.0086"X) 0.0065" rectangular warps and 0.009-inch diameter wefts, with a mesh count of 68x63, has a drainage of 620 c.f.m./sq. ft. as measured by a Frazier Permeometer.
We claim:
1. A woven, phosphor bronze, wire fabric having improved flexural fatigue life for use as a forming wire in papermaking machines, said fabric woven from weft and warp strands of phosphor bronze material, said warp strands having an oval cross section so as to have a ratio of width to thickness ranging between 1.15:1 and 1.05:], both said weft and warp strands tempered to have a grain size less than 5 microns.
2. A woven wire fabric as claimed in claim I, wherein both the warp and weft strands are made of phosphor bronze material having a tin content ranging from 7 to 10 percent.
3. A woven wire fabric as claimed in claim 2, wherein the warp strands have a grain size not exceeding 2 microns.
4. A woven wire fabric as claimed in claim 2, wherein the weft strands have a grain size of 4 microns.
5. A woven wire fabric as claimed in claim 2, wherein the ratio of width to thickness of the oval warp strands is 1 .121.
6. A woven wire fabric as claimed in claim 1, wherein the ratio of width to thickness of the oval warp strands is 1. 1:1, the weft strands having a grain size of 4 microns, the warp strands having a grain size of 1.5 microns, and the weft and warp strands being made of phosphor bronze material having a tin content ranging from 8 to 10 percent.

Claims (5)

  1. 2. A woven wire fabric as claimed in claim 1, wherein both the warp and weft strands are made of phosphor bronze material having a tin content ranging from 7 to 10 percent.
  2. 3. A woven wire fabric as claimed in claim 2, wherein the warp strands have a grain size not exceeding 2 microns.
  3. 4. A woven wire fabric as claimed in claim 2, wherein the weft strands have a grain size of 4 microns.
  4. 5. A woven wire fabric as claimed in claim 2, wherein the ratio of width to thickness of the oval warp strands is 1.1:1.
  5. 6. A woven wire fabric as claimed in claim 1, wherein the ratio of width to thickness of the oval warp strands is 1.1:1, the weft strands having a grain size of 4 microns, the warp strands having a grain size of 1.5 microns, and the weft and warp strands being made of phosphor bronze material having a tin content ranging from 8 to 10 percent.
US878629A 1968-12-09 1969-11-21 Woven wire fabric Expired - Lifetime US3632068A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA58308 1968-12-09

Publications (1)

Publication Number Publication Date
US3632068A true US3632068A (en) 1972-01-04

Family

ID=4085509

Family Applications (1)

Application Number Title Priority Date Filing Date
US878629A Expired - Lifetime US3632068A (en) 1968-12-09 1969-11-21 Woven wire fabric

Country Status (1)

Country Link
US (1) US3632068A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142557A (en) * 1977-03-28 1979-03-06 Albany International Corp. Synthetic papermaking fabric with rectangular threads
US4518644A (en) * 1977-12-15 1985-05-21 Siebtuchfabrik Ag Paper machine screen
US5613527A (en) * 1992-08-25 1997-03-25 Siebtuchfabrik Ag Forming screen having flattened cross threads
US5857497A (en) * 1985-08-05 1999-01-12 Wangner Systems Corporation Woven multilayer papermaking fabric having increased stability and permeability
US20030222032A1 (en) * 2002-05-29 2003-12-04 Rudiger Tueshaus Filtering screen construction and methods
US20050218797A1 (en) * 2002-07-17 2005-10-06 Helmut Bechtel Electroluminescent devices comprising two-dimensional array
US20050260364A1 (en) * 2004-05-19 2005-11-24 Levine Mark J Multi-stage sacrificial anode metal designs for high corrosion environments
US20080236699A1 (en) * 2007-03-28 2008-10-02 Kroll Lynn F Through air drying fabric
CN109023702A (en) * 2018-08-07 2018-12-18 珠海博杰电子股份有限公司 The automatic weaving method of elasticated net

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3100729A (en) * 1961-04-27 1963-08-13 Armco Steel Corp Stainless steel product and method
US3143150A (en) * 1961-10-18 1964-08-04 William E Buchanan Fabric for fourdrinier machines
US3240635A (en) * 1962-05-17 1966-03-15 Lindsay Wire Weaving Co Wire cloth and wire belts for use in paper making machines and method of making such wire cloth and wire belts
US3311511A (en) * 1963-08-12 1967-03-28 Armco Steel Corp Alloy steel and method
US3545705A (en) * 1967-04-14 1970-12-08 Jwi Ltd Stainless steel fourdrinier cloth

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3100729A (en) * 1961-04-27 1963-08-13 Armco Steel Corp Stainless steel product and method
US3143150A (en) * 1961-10-18 1964-08-04 William E Buchanan Fabric for fourdrinier machines
US3240635A (en) * 1962-05-17 1966-03-15 Lindsay Wire Weaving Co Wire cloth and wire belts for use in paper making machines and method of making such wire cloth and wire belts
US3311511A (en) * 1963-08-12 1967-03-28 Armco Steel Corp Alloy steel and method
US3545705A (en) * 1967-04-14 1970-12-08 Jwi Ltd Stainless steel fourdrinier cloth

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142557A (en) * 1977-03-28 1979-03-06 Albany International Corp. Synthetic papermaking fabric with rectangular threads
US4518644A (en) * 1977-12-15 1985-05-21 Siebtuchfabrik Ag Paper machine screen
US5857497A (en) * 1985-08-05 1999-01-12 Wangner Systems Corporation Woven multilayer papermaking fabric having increased stability and permeability
US5613527A (en) * 1992-08-25 1997-03-25 Siebtuchfabrik Ag Forming screen having flattened cross threads
US20060000786A1 (en) * 2002-05-29 2006-01-05 Ruediger Tueshaus Filtering screen construction and methods
US20030222032A1 (en) * 2002-05-29 2003-12-04 Rudiger Tueshaus Filtering screen construction and methods
US20050218797A1 (en) * 2002-07-17 2005-10-06 Helmut Bechtel Electroluminescent devices comprising two-dimensional array
US20050260364A1 (en) * 2004-05-19 2005-11-24 Levine Mark J Multi-stage sacrificial anode metal designs for high corrosion environments
WO2005116330A1 (en) * 2004-05-19 2005-12-08 Albany International Corp. Multi-stage sacrificial anode metal designs for high corrosion environments
US7318796B2 (en) 2004-05-19 2008-01-15 Albany International Corp. Two-layer drum cover made of a metal alloy in the warp directions and a plurality of metal alloys in the shute directions on both front and back surfaces
CN1954118B (en) * 2004-05-19 2011-03-30 阿尔巴尼国际公司 Double-layer Roller Covering and its manufacture method
KR101174842B1 (en) 2004-05-19 2012-08-17 알바니 인터내셔널 코포레이션 Multi-stage sacrificial anode metal designs for high corrosion environments
US20080236699A1 (en) * 2007-03-28 2008-10-02 Kroll Lynn F Through air drying fabric
US7644738B2 (en) * 2007-03-28 2010-01-12 Albany International Corp. Through air drying fabric
CN109023702A (en) * 2018-08-07 2018-12-18 珠海博杰电子股份有限公司 The automatic weaving method of elasticated net
CN109023702B (en) * 2018-08-07 2020-11-13 珠海博杰电子股份有限公司 Automatic knitting method for elastic net

Similar Documents

Publication Publication Date Title
US4314589A (en) Duplex forming fabric
US3143150A (en) Fabric for fourdrinier machines
US5022441A (en) Papermaker's double layer fabric with high warp and weft volume per repeat
US5101866A (en) Double layer papermakers fabric having extra support yarns
US4821780A (en) Multi-layer fabric for paper-making
US4592395A (en) Papermachine clothing in a fabric weave having no axis of symmetry in the length direction
US4998569A (en) Single-layer papermaking broken-twill fabric avoiding wire marks
US4729412A (en) Forming fabric of double-layer type
JPH01183591A (en) Wire having double-layer structure for papermaking machine
JP3444373B2 (en) Warp double weft double papermaking fabric with auxiliary wefts arranged on the papermaking side fabric
US3846233A (en) Papermaking machine having a single wire run and a double wire run over a downwardly curving dewatering box
KR100229960B1 (en) Fabric for papermaking machines and the like
US20040020621A1 (en) Paper making wire cloth
US2269869A (en) Woven wire belt for papermaking machines
US3632068A (en) Woven wire fabric
US4344464A (en) Endless forming fabrics with bi-crimp characteristics
US3139119A (en) Fourdrinier fabric
US4789009A (en) Sixteen harness dual layer weave
US2003123A (en) Woven wire belt for paper making machines
EP0010311B1 (en) Paper forming fabric
GB2157328A (en) Improved multilayer forming fabric
US2088447A (en) Woven wire belt for paper making machines
US3177113A (en) Chromium coated papermaking wire
US4408637A (en) Double layer forming fabrics for use in paper making machines
US3211606A (en) Paper making wire