US3630203A - Cryogenic biological apparatus - Google Patents

Cryogenic biological apparatus Download PDF

Info

Publication number
US3630203A
US3630203A US884071A US3630203DA US3630203A US 3630203 A US3630203 A US 3630203A US 884071 A US884071 A US 884071A US 3630203D A US3630203D A US 3630203DA US 3630203 A US3630203 A US 3630203A
Authority
US
United States
Prior art keywords
stream
cryogenic
cooling
gas
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US884071A
Inventor
Martin S Sellinger
Robert B Currie
Henry F Villaume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SHI Cryogenics of America Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Application granted granted Critical
Publication of US3630203A publication Critical patent/US3630203A/en
Assigned to APD CRYOGENICS INC. reassignment APD CRYOGENICS INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AIR PRODUCTS AND CHEMICALS, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B18/0218Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques with open-end cryogenic probe, e.g. for spraying fluid directly on tissue or via a tissue-contacting porous tip

Definitions

  • the present invention relates to the field of cryogenic biology (cryobiology) and, more particularly, to a cryogenic system for generating cryogenic liquid specifically for application in the freezing of tissue such as, for example, skin tissue in cryodermatology operations.
  • Prior methods of freezing tissue have included the direct application of cryogenic liquids such as liquid argon and liquid nitrogen to tissue.
  • cryogenic liquids such as liquid argon and liquid nitrogen
  • storage and transfer of cryogenic liquids at temperatures in the order of minus 300 F. have presented many disadvantages.
  • the ultracold liquid must be stored in relatively expensive cryogenic dewars, and a significant portion of the liquid may vaporize during prolongedstorage.
  • the transfer line from the dewar to the probe may become frosted and stiff at low temperatures such that heat must be applied to the transfer line during the operation in order to keep it flexible and frost-free
  • some prior devices have been designed wherein a gas is liquefied and circulated entirely within a closed tip or cold-finger.
  • the present invention solves all of the above-indicated problems by utilization of a unique, dual stream liquefier wherein gas from the source is divided into first and second streams.
  • the first stream is passed through a heat exchanger and a Joule Thompson expansion orifice whereby it is reduced in temperature to its liquefaction point and liquefied.
  • This first stream is passed in heat exchange relationship with the second stream so as to liquefy the second stream which is then ejected against the tissue in a fine, controlled jet.
  • the first stream is vaporized in liquefying the second stream and is returned in countercurrent heat exchange with the incoming first and second streams before being vented to atmosphereat a relatively warm temperature.
  • FIG. 1 is a schematic fiow diagram of the complete cryobiological system including the gas storage cylinder, the control unit, and the probe;
  • FIG. 2 is a cross-sectional view of the probe illustrating the details of the dual-stream liquefier.
  • FIG. 1 numeral indicates a standard, high-pressure cylinder in which a gas such as argon or nitrogen may be stored in a compressed state such as a pressure of 3,000 p.s.i.a.
  • the cylinder includes a standard cylinder valve 12 which is manually opened and which is connected to a flexible line or hose 14 for conducting the high-pressure gas into a control cabinet I6.
  • a control cabinet I6 the size of cabinet I6 has been greatly enlarged relative to the size of cylinder 10 so as to facilitate the illustration of the control components contained within the cabinet.
  • the cabinet is sufficiently small so as to be placed on a desk or table in close proximity to the probe 18, whereas, the cabinet may be located at any distance from the cylinder 10.
  • line 14 may be provided with a connector so as to be connected to a high-pressure gas piping system.
  • line 14 is connected to a pressure gauge 18 which indicates the operating pressure of the cylinder 10, or other source of compressed gas. This gauge indicates that a suflicient source pressure is available for operating the system.
  • Line 14 is also connected to a pressure reduction valve 20 which may be manually variable, or may be set to operate at a predetermined pressure reduction.
  • the cylinder 10 may be at a pressure in the order of 3,000 p.s.i.a., whereas, the pressure downstream of valve 20 may be in the order of 1,500 p.s.i.a.
  • valve 20 The output side of valve 20 is connected to an adsorber 22 which is provided to remove any impurities in the gas which may solidify and thereby plug the very fine heat exchanger tubing which will be subsequently described.
  • Adsorber 22 may be filled with any conventional adsorbent material such as charcoal, silica gel or other material.
  • the output side of adsorber 22 is connected through a solenoid valve 24 to a flexible line 26 leading to the probe 18.
  • Solenoid valve 24 is connected via electrical lines 27 to a plug 28 which may be plugged into any standard electrical outlet. Lines 27 include an ON/OFF switch 29 closure of which actuates the solenoid and opens the valve 24.
  • An indicator light 30 is also connected in parallel with the valve so as to indicate the open position of valve 24, and hence, the operating condition of the system.
  • FIG. 2 illustrates the internal details of probe 18.
  • the probe includes a cylindrical casing 30 closed at the rearward end by a cap 32 and including casing portions 34 and 36 which are disposed at an angle relative to the longitudinal axis of cylinder 30.
  • Axially disposed within the casing 30 is an elongated, metallic sleeve 38 which is closed at the rearward end by cap 32 and closed at the forward end by a plug 40.
  • a second metallic sleeve or mandrel 42 is concentrically positioned within sleeve 38 and is closed at opposite ends by plugs 44 and 46.
  • Finned tubing 48 is helically wound on mandrel 42 so as to form a heat exchanger coil 49 in direct engagement with both mandrel 42 and the interior surreduced diameter tip portion 50 forming a Joule Thompson expansion orifice disposed within a chamber 52.
  • the opposite end of tubing 48 is secured in a fitting 54 which extends through cap 32.
  • Fitting 54 also includes a lateral port which receives the end of a length of tubing 56 which is helically wound about the external surface of cylinder 38 and forms a second heat exchanger coil 57.
  • Coil 57 terminates in an elongated nozzle portion 58 extending slightly outwardly of easing portion 36 and is supported by a rod 60 having oneend rigidly secured in plug 40.
  • Fitting 54 further includes a counterbored portion 62 which receives a plugof filter material 64 and which receives the end of a stem 66 to which flexible line 26 is connected by a suitable coupling 68.
  • a short length of tubing 70 is provided through cap 32 so as to provide a vent from the interior of sleeve 38 to atmosphere.
  • a suitable thermal insulation 72 such as, for example, expanded polyurethane foam.
  • the first stream is quickly cooled to its liquefaction temperature and cryogenic liquid is formed in chamber 52. Since the liquid in chamber 52, and the cold gas flowing countercurrently around coil 49, are in heat exchange relationship with the second gas stream passing through coil 57 around sleeve 38, the second gas stream is also cooled and liquefied. Thus, as soon as the brief cool-down period is completed, the second stream is ejected from nozzle 58 as a fine, controlled jet of cryogenic liquid having a temperature in the order of minus 320 F., while the first stream of gas is vented at a temperature of in the order of 60 F.
  • valve 20 may be set such as to produce a substantially pure liquid jet or, if desired, the second stream may be ejected from the nozzle 58 as a gas at a cryogenic temperature in the order of minus 300 F. which is slightly above the normal liquefaction temperature of nitrogen, argon, air, etc.
  • the particular tissue area may be selectively frozen without the disadvantages of maintaining a continuous liquid reservoir, and without the problems incident to the use of closed tip systems previously disclosed. That is, the gas in the cylinder may be stored for extended periods of time with no loss of refrigerant gas and the lines 14 and 26 present no problems of frost accumulation or loss of flexibility since they operate at ambient temperatures.
  • tubing 56 forming coil 57 may be wound around mandrel 42 along with tubing 48 instead of being separately wound on the outside of cylinder 38.
  • an additional flow control valve may be utilized in line 26 in order to control the volume of flow if desired.
  • cryogenic as used hereinabove and in the following claims is intended to denote temperatures lower than minus 200 F.
  • fluid is intended to denote gas, liquid and mixed gas-liquid streams at cryogenic temperatures.
  • a cryogenic system for use in cryobiological applications including, a source of high-pressure gas, a probe including a nozzle for ejecting a stream of cryogenic fluid against tissue to be frozen, and cooling means including a cryogenic heat exchanger having a Joule Thompson expansion orifice intermediate said gas source and said nozzle for cooling said gas to a cryogenic temperature before ejection from said nozzle as said stream of cryogenic fluid.
  • a cryogenic system for use in cryobiological applications including, a source of high-pressure gas, a probe including a nozzle for ejecting a stream of cryogenic fluid against tissue -to be frozen, cooling means intermediate said gas source and said nozzle for cooling at least a portion of said gas to a cryogenic temperature before ejection thereof from said nozzle as said stream ofcryogenic fluid, said cooling means including means for dividing said high-pressure gas mto first and second streams, means for cooling said first stream, means for cooling said second stream in heat exchange with said first stream, means for venting said first stream after warming said first stream in heat exchange with said second stream, and means connecting said second stream to said nozzle for ejection therefrom as said stream of cryogenic fluid.
  • first and second heat exchangers comprise wound tubular coils in heat exchange relationship with each other, and at least one of said coils is composed of finned tubing.
  • a cryobiological probe for use in generating and directing a cryogenic fluid against tissue comprising:
  • a hollow, elongated casing forming a handle having forward and rearward portions
  • a nozzle located in the forward portion of said casing and connected to said second heat exchanger for ejecting said second stream as ajet of cryogenic fluid
  • the cryobiological probe as claimed in claim 5 including means forming a liquid chamber for collecting cryogenic liquid produced by said Joule Thompson orifice, andmeans for passing said second stream in heat exchange relationship with said cryogenic liquid so as to at least partially liquefy the gas in said second stream.
  • said first heat exchanger comprises finned tubing helically wound about a first mandrel, and a sleeve surrounding said finned tubing forming said liquid chamber.
  • a method of freezing tissue comprising:
  • step (d) includes cooling said first stream to its liquefaction temperature so as to form a cryogenic liquid
  • step (e) includes cooling said second stream to its liquefaction temperature so as to liquefy substantially all of said second stream to form a jet of cryogenic liquid as it is ejected from said nozzle.

Abstract

A spray-type cryogenic probe including a dual stream, cryogenic liquifier for converting stored gas into an ultracold liquid which is ejected from the probe in a fine, controlled stream to freeze tissue.

Description

United States Patent [72] lnventors App]. No. Filed Patented Assignee CRYOGENIC BIOLOGICAL APPARATUS 9 Claims, 2 Drawing Figs.
U.S. CL... l28/303.l Int. Cl A61b 17/36 Field of Search 128/303. 1
[56] References Cited UNITED STATES PATENTS 3,504,674 4/1970 Swenson et al. 128/3031 3,477,434 ll/l969 Hood et al.I 128/3031 3,353,371 11/1967 Hammons et al. 62/514 Primary Examiner-L. W. Trapp Attorneys-Ronald B. Sherer, James C. Simmons and B. Max Klevit ABSTRACT: A spray-type cryogenic probe including a dual stream, cryogenic liquifier for converting stored gas into an ultracold liquid which is ejected from the probe in a fine, controlled stream to freeze tissue.
l4 '6 28 I2 i 6 I PATENTEI] 115028191: 3; 630,203
58 1 FIG. 2.
INVENTORS MARTIN S. SELLINGER BY ROBERT B. CURRIE HENRY F. VILLAU ME A TTORNE Y CRYOGENIC BIOLOGICAL APPARATUS BACKGROUND OF TI-IE INVENTION The present invention relates to the field of cryogenic biology (cryobiology) and, more particularly, to a cryogenic system for generating cryogenic liquid specifically for application in the freezing of tissue such as, for example, skin tissue in cryodermatology operations.
' Prior methods of freezing tissue have included the direct application of cryogenic liquids such as liquid argon and liquid nitrogen to tissue. However, storage and transfer of cryogenic liquids at temperatures in the order of minus 300 F. have presented many disadvantages. For example, the ultracold liquid must be stored in relatively expensive cryogenic dewars, and a significant portion of the liquid may vaporize during prolongedstorage. Even more importantly, the transfer line from the dewar to the probe may become frosted and stiff at low temperatures such that heat must be applied to the transfer line during the operation in order to keep it flexible and frost-free Alternatively, some prior devices have been designed wherein a gas is liquefied and circulated entirely within a closed tip or cold-finger. Such systems require that the liquid be vaporized within the tip, and the vapor is returned in countercurrent heat exchange with the incoming gas to cool and condense it. While such closed cycle, cold-tip probes solve the liquid problem, they are medically disadvantageous in that the cold tip quickly accumulates frost which substantially reduces the heat transfer rate between the tip and the tissue. On the other hand, if the tip is kept frostfree, the tissue tends to freeze to the tip such that free movement of the tip is hindered, in addition to causing considerable discomfort to the patient.
SUMMARY OF THE INVENTION The present invention solves all of the above-indicated problems by utilization of a unique, dual stream liquefier wherein gas from the source is divided into first and second streams. The first stream is passed through a heat exchanger and a Joule Thompson expansion orifice whereby it is reduced in temperature to its liquefaction point and liquefied. This first stream is passed in heat exchange relationship with the second stream so as to liquefy the second stream which is then ejected against the tissue in a fine, controlled jet. The first stream is vaporized in liquefying the second stream and is returned in countercurrent heat exchange with the incoming first and second streams before being vented to atmosphereat a relatively warm temperature.
Accordingly, it is a primary object of the present invention to provide a cryogenic system for use in biological applications wherein the refrigerant can be stored as an ambient temperature gas, liquefied, and ejected as a controlled jet of ultracold liquid.
It is a further object of the present invention to provide a cryobiological probe including a dual stream liquefier whereby a first portion of the stored gas refrigerant is liquefied and heat exchanged against a second portion, such that, the first portion is vented as a gas at relatively warm temperature, while the second portion is ejected as a controlled jet of ultracold liquid or gas.
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic fiow diagram of the complete cryobiological system including the gas storage cylinder, the control unit, and the probe; and
FIG. 2 is a cross-sectional view of the probe illustrating the details of the dual-stream liquefier.
DETAILED DESCRIPTION Referring first to FIG. 1, numeral indicates a standard, high-pressure cylinder in which a gas such as argon or nitrogen may be stored in a compressed state such as a pressure of 3,000 p.s.i.a. The cylinder includes a standard cylinder valve 12 which is manually opened and which is connected to a flexible line or hose 14 for conducting the high-pressure gas into a control cabinet I6. Of course, it will be understood that the size of cabinet I6 has been greatly enlarged relative to the size of cylinder 10 so as to facilitate the illustration of the control components contained within the cabinet. In practice, the cabinet is sufficiently small so as to be placed on a desk or table in close proximity to the probe 18, whereas, the cabinet may be located at any distance from the cylinder 10. Alternatively, line 14 may be provided with a connector so as to be connected to a high-pressure gas piping system.
Within cabinet 16, line 14 is connected to a pressure gauge 18 which indicates the operating pressure of the cylinder 10, or other source of compressed gas. This gauge indicates that a suflicient source pressure is available for operating the system. Line 14 is also connected to a pressure reduction valve 20 which may be manually variable, or may be set to operate at a predetermined pressure reduction. By way of example, the cylinder 10 may be at a pressure in the order of 3,000 p.s.i.a., whereas, the pressure downstream of valve 20 may be in the order of 1,500 p.s.i.a.
The output side of valve 20 is connected to an adsorber 22 which is provided to remove any impurities in the gas which may solidify and thereby plug the very fine heat exchanger tubing which will be subsequently described. Adsorber 22 may be filled with any conventional adsorbent material such as charcoal, silica gel or other material.
The output side of adsorber 22 is connected through a solenoid valve 24 to a flexible line 26 leading to the probe 18. Solenoid valve 24 is connected via electrical lines 27 to a plug 28 which may be plugged into any standard electrical outlet. Lines 27 include an ON/OFF switch 29 closure of which actuates the solenoid and opens the valve 24. An indicator light 30 is also connected in parallel with the valve so as to indicate the open position of valve 24, and hence, the operating condition of the system.
Reference is now made to FIG. 2 which illustrates the internal details of probe 18. The probe includes a cylindrical casing 30 closed at the rearward end by a cap 32 and including casing portions 34 and 36 which are disposed at an angle relative to the longitudinal axis of cylinder 30. Axially disposed within the casing 30 is an elongated, metallic sleeve 38 which is closed at the rearward end by cap 32 and closed at the forward end by a plug 40. A second metallic sleeve or mandrel 42 is concentrically positioned within sleeve 38 and is closed at opposite ends by plugs 44 and 46. Finned tubing 48 is helically wound on mandrel 42 so as to form a heat exchanger coil 49 in direct engagement with both mandrel 42 and the interior surreduced diameter tip portion 50 forming a Joule Thompson expansion orifice disposed within a chamber 52. The opposite end of tubing 48 is secured in a fitting 54 which extends through cap 32.
Fitting 54 also includes a lateral port which receives the end of a length of tubing 56 which is helically wound about the external surface of cylinder 38 and forms a second heat exchanger coil 57. Coil 57 terminates in an elongated nozzle portion 58 extending slightly outwardly of easing portion 36 and is supported by a rod 60 having oneend rigidly secured in plug 40. Fitting 54 further includes a counterbored portion 62 which receives a plugof filter material 64 and which receives the end of a stem 66 to which flexible line 26 is connected by a suitable coupling 68.
A short length of tubing 70 is provided through cap 32 so as to provide a vent from the interior of sleeve 38 to atmosphere. Lastly, the space between sleeve 38 and casing 30 is filled with a suitable thermal insulation 72 such as, for example, expanded polyurethane foam.
OPERATION The operation of the cryogenic biological system is as follows. Assuming that cylinder valve 12 is open, the operator closes switch 29 which opens solenoid valve 24 and permits the passage of ambient temperature gas through valve 20, adsorber 22, valve 24 and flexible line 26 to probe 18. The gas passes through stem 66 and filter plug 64 in fitting 54 wherein it is divided into a first stream which flows through tubing 48, coil 49 and tip portion 50 forming a Joule Thompson expansion orifice whereby the gas is rapidly expanded and cooled. As this first stream continues to flow through coil 49 and the expansion orifice formed by the end of tip 50, the gas is precooled by.the colder gas flowing countercurrently from chamber 52 around coil 49 and through vent 70 to atmosphere. Thus, the first stream is quickly cooled to its liquefaction temperature and cryogenic liquid is formed in chamber 52. Since the liquid in chamber 52, and the cold gas flowing countercurrently around coil 49, are in heat exchange relationship with the second gas stream passing through coil 57 around sleeve 38, the second gas stream is also cooled and liquefied. Thus, as soon as the brief cool-down period is completed, the second stream is ejected from nozzle 58 as a fine, controlled jet of cryogenic liquid having a temperature in the order of minus 320 F., while the first stream of gas is vented at a temperature of in the order of 60 F.
From the foregoing description it will be apparent that by gripping the handle provided by cylinder 30, the operator may direct the fine stream or jet of ultracold liquid against the precise portion of tissue which is to be frozen. In addition to having precise control over the area which is to be treated by the fine jet, the volume or rate of heat transfer may also be varied by presetting or manually varying the pressure reduction occurring in valve 20. For example, valve may be set such as to produce a substantially pure liquid jet or, if desired, the second stream may be ejected from the nozzle 58 as a gas at a cryogenic temperature in the order of minus 300 F. which is slightly above the normal liquefaction temperature of nitrogen, argon, air, etc. It will therefore be apparent that the particular tissue area may be selectively frozen without the disadvantages of maintaining a continuous liquid reservoir, and without the problems incident to the use of closed tip systems previously disclosed. That is, the gas in the cylinder may be stored for extended periods of time with no loss of refrigerant gas and the lines 14 and 26 present no problems of frost accumulation or loss of flexibility since they operate at ambient temperatures.
From the foregoing description of one preferred embodiment of the invention, it will be readily apparent that numerous changes may be made without departing from the scope of the invention. For example, the tubing 56 forming coil 57 may be wound around mandrel 42 along with tubing 48 instead of being separately wound on the outside of cylinder 38. In addition, it will be apparent that an additional flow control valve may be utilized in line 26 in order to control the volume of flow if desired. Lastly, the term cryogenic as used hereinabove and in the following claims is intended to denote temperatures lower than minus 200 F., and the term fluid" is intended to denote gas, liquid and mixed gas-liquid streams at cryogenic temperatures.
Having described the invention in one preferred embodiment, what is claimed is:
l. A cryogenic system for use in cryobiological applications including, a source of high-pressure gas, a probe including a nozzle for ejecting a stream of cryogenic fluid against tissue to be frozen, and cooling means including a cryogenic heat exchanger having a Joule Thompson expansion orifice intermediate said gas source and said nozzle for cooling said gas to a cryogenic temperature before ejection from said nozzle as said stream of cryogenic fluid.
2. A cryogenic system for use in cryobiological applications including, a source of high-pressure gas, a probe including a nozzle for ejecting a stream of cryogenic fluid against tissue -to be frozen, cooling means intermediate said gas source and said nozzle for cooling at least a portion of said gas to a cryogenic temperature before ejection thereof from said nozzle as said stream ofcryogenic fluid, said cooling means including means for dividing said high-pressure gas mto first and second streams, means for cooling said first stream, means for cooling said second stream in heat exchange with said first stream, means for venting said first stream after warming said first stream in heat exchange with said second stream, and means connecting said second stream to said nozzle for ejection therefrom as said stream of cryogenic fluid.
3. The system as claimed in claim 2 wherein said'means for cooling said first stream comprises a first heat exchanger and a Joule Thompson expansion orifice, and said means for cooling said second stream comprises a second heat exchanger connected to said nozzle.
4. The system as claimed in claim 3 wherein said first and second heat exchangers comprise wound tubular coils in heat exchange relationship with each other, and at least one of said coils is composed of finned tubing.
5. A cryobiological probe for use in generating and directing a cryogenic fluid against tissue comprising:
a. a hollow, elongated casing forming a handle having forward and rearward portions,
b. a gas supply tube extending into said rearward portion,
c. means within said casing and connected to said supply tube for dividing said gas into first and second streams,
d. means within said casing forming a first heat exchanger and a Joule Thompson orifice for cooling said first stream,
e. means within said casing forming a second heat exchanger for cooling said second stream in heat exchange with said first cooled stream whereby said first stream is warmed and said second stream is cooled to form a cryogenic fluid,
f. a nozzle located in the forward portion of said casing and connected to said second heat exchanger for ejecting said second stream as ajet of cryogenic fluid, and
g. means for exhausting said warmed first stream from said probe after heat exchange with said second stream.
6. The cryobiological probe as claimed in claim 5 including means forming a liquid chamber for collecting cryogenic liquid produced by said Joule Thompson orifice, andmeans for passing said second stream in heat exchange relationship with said cryogenic liquid so as to at least partially liquefy the gas in said second stream.
7. The cryobiological probe as claimed in claim 6 wherein said first heat exchanger comprises finned tubing helically wound about a first mandrel, and a sleeve surrounding said finned tubing forming said liquid chamber.
8. A method of freezing tissue comprising:
a. storing a gas at ambient temperature and at high pressure,
b. withdrawing a portion of said stored gas,
c. dividing said withdrawn gas into first and second streams,
d. cooling said first stream by Joule Thompson expansion and heat exchange with itself to produce a first cryogenic fluid,
e. cooling said second stream to a cryogenic temperature in exchange with said first stream so as to warm said first stream,
f. exhausting said warmed first stream, and
g. ejecting a jet of said second stream at a cryogenic temperature against said tissue to freeze said tissue.
9. The method as claimed in claim 8 wherein step (d) includes cooling said first stream to its liquefaction temperature so as to form a cryogenic liquid, and step (e) includes cooling said second stream to its liquefaction temperature so as to liquefy substantially all of said second stream to form a jet of cryogenic liquid as it is ejected from said nozzle.

Claims (9)

1. A cryogenic system for use in cryobiological applications including, a source of high-pressure gas, a probe including a nozzle for ejecting a stream of cryogenic fluid against tissue to be frozen, and cooling means including a cryogenic heat exchanger having a Joule Thompson expansion orifice intermediate said gas source and said nozzle for cooling said gas to a cryogenic temperature before ejection from said nozzle as said stream of cryogenic fluid.
2. A cryogenic system for use in cryobiological applications including, a source of high-pressure gas, a probe including a nozzle for ejecting a stream of cryogenic fluid against tissue to be frozen, cooling means intermediate said gas source and said nozzle for cooling at least a portion of said gas to a cryogenic temperature before ejection thereof from said nozzle as said stream of cryogenic fluid, said cooling means including means for dividing said high-pressure gas into first and second streams, means for cooling said first stream, means for cooling said second stream in heat exchange with said first stream, means for venting said first stream after warming said first stream in heat exchange with said second stream, and means connecting said second stream to said nozzle for ejection therefrom as said stream of cryogenic fluid.
3. The system as claimed in claim 2 wherein said means for cooling said first stream comprises a first heat exchanger and a Joule Thompson expansion orifice, and said means for cooling said second stream comprises a second heat exchanger connected to said nozzle.
4. The system as claimed in claim 3 wherein said first and second heat exchangers comprise wound tubular coils in heat exchange relationship with each other, and at least one of said coils is composed of finned tubing.
5. A cryobiological probe for use in generating and directing a cryogenic fluid against tissue comprising: a. a hollow, elongated casing forming a handle having forward and rearward portions, b. a gas supply tube extending into said rearward portion, c. means within said casing and connected to said supply tube for dividing said gas into first and second streams, d. means within said casing forming a first heat exchanger and a Joule Thompson orifice for cooling said first stream, e. means within said casing forming a second heat exchanger for cooling said second stream in heat exchange with said first cooled stream whereby said first stream is warmed and said second stream is cooled to form a cryogenic fluid, f. a nozzle located in the forward portion of said casing and connected to said second heat exchanger for ejecting said second stream as a jet of cryogenic fluid, and g. means for exhausting said warmed first stream from said probe after heat exchange with said second stream.
6. The cryobiological probe as claimed in claim 5 including means forming a liquid chamber for collecting cryogenic liquid produced by said Joule Thompson orifice, and means for passing said second stream in heat exchange relationship with said cryogenic liquid so as to at least partially liquefy the gas in said second stream.
7. The cryobiological probe as claimed in claim 6 wherein said first heat exchanger comprises finned tubing helically wound about a first mandrel, and a sleeve surrounding said finned tubing forming said liquid chamber.
8. A method of freezing tissue comprising: a. storing a gas at ambient temperature and at high pressure, b. withdrawing a portion of said stored gas, c. dividing said withdrawn gas into first and second streams, d. cooling said first stream by Joule Thompson expansion and heat exchange with itself to produce a first cryogenic fluid, e. cooling said second stream to a cryogenic temperature in exchange with said first streaM so as to warm said first stream, f. exhausting said warmed first stream, and g. ejecting a jet of said second stream at a cryogenic temperature against said tissue to freeze said tissue.
9. The method as claimed in claim 8 wherein step (d) includes cooling said first stream to its liquefaction temperature so as to form a cryogenic liquid, and step (e) includes cooling said second stream to its liquefaction temperature so as to liquefy substantially all of said second stream to form a jet of cryogenic liquid as it is ejected from said nozzle.
US884071A 1969-12-11 1969-12-11 Cryogenic biological apparatus Expired - Lifetime US3630203A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88407169A 1969-12-11 1969-12-11

Publications (1)

Publication Number Publication Date
US3630203A true US3630203A (en) 1971-12-28

Family

ID=25383890

Family Applications (1)

Application Number Title Priority Date Filing Date
US884071A Expired - Lifetime US3630203A (en) 1969-12-11 1969-12-11 Cryogenic biological apparatus

Country Status (2)

Country Link
US (1) US3630203A (en)
GB (1) GB1332181A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3823718A (en) * 1972-09-15 1974-07-16 T Tromovitch Portable cryosurgical apparatus
US3823575A (en) * 1971-06-07 1974-07-16 Univ Melbourne Cryogenic apparatus
US3901241A (en) * 1973-05-31 1975-08-26 Al Corp Du Disposable cryosurgical instrument
US5275595A (en) * 1992-07-06 1994-01-04 Dobak Iii John D Cryosurgical instrument
WO1995013025A2 (en) * 1993-11-09 1995-05-18 Spembly Medical Limited Cryosurgical probe
US5814040A (en) * 1994-04-05 1998-09-29 The Regents Of The University Of California Apparatus and method for dynamic cooling of biological tissues for thermal mediated surgery
US5820626A (en) * 1996-07-30 1998-10-13 Laser Aesthetics, Inc. Cooling laser handpiece with refillable coolant reservoir
WO1999016369A1 (en) * 1997-09-26 1999-04-08 Laser Aesthetics, Inc. Handpiece with coolant reservoir
US5968034A (en) * 1997-06-24 1999-10-19 Laser Aesthetics, Inc. Pulsed filament lamp for dermatological treatment
EP1003430A1 (en) * 1997-04-14 2000-05-31 The Johns Hopkins University Endoscopic cryospray device
WO2000054684A1 (en) * 1999-03-15 2000-09-21 Cryovascular Systems, Inc. Cryosurgical fluid supply
US6182666B1 (en) 1996-12-26 2001-02-06 Cryogen, Inc. Cryosurgical probe and method for uterine ablation
US6270494B1 (en) 1996-12-26 2001-08-07 Cryogen, Inc. Stretchable cryoprobe sheath
US6451007B1 (en) 1999-07-29 2002-09-17 Dale E. Koop Thermal quenching of tissue
US6514245B1 (en) * 1999-03-15 2003-02-04 Cryovascular Systems, Inc. Safety cryotherapy catheter
US6530234B1 (en) 1995-10-12 2003-03-11 Cryogen, Inc. Precooling system for Joule-Thomson probe
US6648879B2 (en) 1999-02-24 2003-11-18 Cryovascular Systems, Inc. Safety cryotherapy catheter
WO2004045434A2 (en) * 2002-11-18 2004-06-03 N.V. H & O Equipments Instrument for cryogenic treatments in the medical, paramedical and cosmetic field
US20070276360A1 (en) * 1997-05-23 2007-11-29 Csa Medical, Inc. Heated catheter used in cryotherapy
US20100023008A1 (en) * 2008-07-24 2010-01-28 Heard David N Suction Coagulator
EP2819600A4 (en) * 2012-03-02 2016-11-30 Csa Medical Inc Cryosurgery system
US9820797B2 (en) 2012-03-02 2017-11-21 Csa Medical, Inc. Cryosurgery system
US9867648B2 (en) 2014-06-04 2018-01-16 Csa Medical, Inc. Method and system for consistent, repeatable, and safe cryospray treatment of airway tissue
US10335225B2 (en) * 2016-11-21 2019-07-02 Arthrex, Inc. Electrosurgical medical device handpiece with insulated aspiration system
US11202559B2 (en) 2016-04-27 2021-12-21 Csa Medical, Inc. Vision preservation system for medical devices
EP4039209A1 (en) * 2021-02-04 2022-08-10 AFreeze GmbH Cryoablation catheter assembly, cryoablation system
US11628007B2 (en) * 2018-09-14 2023-04-18 Atricure, Inc. Cryoprobe
US11871977B2 (en) 2016-05-19 2024-01-16 Csa Medical, Inc. Catheter extension control

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2269107B (en) * 1992-07-31 1996-05-08 Spembly Medical Ltd Cryosurgical ablation
US6027499A (en) * 1997-05-23 2000-02-22 Fiber-Tech Medical, Inc. (Assignee Of Jennifer B. Cartledge) Method and apparatus for cryogenic spray ablation of gastrointestinal mucosa

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3353371A (en) * 1966-06-23 1967-11-21 Gen Dynamics Corp Dual tube regenerative cryostat
US3477434A (en) * 1965-06-02 1969-11-11 Cvi Corp Cryosurgical apparatus
US3504674A (en) * 1966-12-22 1970-04-07 Emil S Swenson Method and apparatus for performing hypothermia

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3477434A (en) * 1965-06-02 1969-11-11 Cvi Corp Cryosurgical apparatus
US3353371A (en) * 1966-06-23 1967-11-21 Gen Dynamics Corp Dual tube regenerative cryostat
US3504674A (en) * 1966-12-22 1970-04-07 Emil S Swenson Method and apparatus for performing hypothermia

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3823575A (en) * 1971-06-07 1974-07-16 Univ Melbourne Cryogenic apparatus
US3823718A (en) * 1972-09-15 1974-07-16 T Tromovitch Portable cryosurgical apparatus
US3901241A (en) * 1973-05-31 1975-08-26 Al Corp Du Disposable cryosurgical instrument
US5275595A (en) * 1992-07-06 1994-01-04 Dobak Iii John D Cryosurgical instrument
WO1995013025A2 (en) * 1993-11-09 1995-05-18 Spembly Medical Limited Cryosurgical probe
WO1995013025A3 (en) * 1993-11-09 1995-07-13 Spembly Medical Ltd Cryosurgical probe
US5759182A (en) * 1993-11-09 1998-06-02 Spembly Medical Limited Cryosurgical probe with pre-cooling feature
EP0857464A1 (en) * 1993-11-09 1998-08-12 Spembly Medical Limited Cryosurgical probe
US5814040A (en) * 1994-04-05 1998-09-29 The Regents Of The University Of California Apparatus and method for dynamic cooling of biological tissues for thermal mediated surgery
US6530234B1 (en) 1995-10-12 2003-03-11 Cryogen, Inc. Precooling system for Joule-Thomson probe
US5976123A (en) * 1996-07-30 1999-11-02 Laser Aesthetics, Inc. Heart stabilization
US5820626A (en) * 1996-07-30 1998-10-13 Laser Aesthetics, Inc. Cooling laser handpiece with refillable coolant reservoir
US6182666B1 (en) 1996-12-26 2001-02-06 Cryogen, Inc. Cryosurgical probe and method for uterine ablation
US6193644B1 (en) 1996-12-26 2001-02-27 Cryogen, Inc. Cryosurgical probe with sheath
US6270494B1 (en) 1996-12-26 2001-08-07 Cryogen, Inc. Stretchable cryoprobe sheath
US6451012B2 (en) 1996-12-26 2002-09-17 Cryogen, Inc. Cryosurgical method for endometrial ablation
US6475212B2 (en) 1996-12-26 2002-11-05 Cryogen, Inc. Cryosurgical probe with sheath
EP1003430A1 (en) * 1997-04-14 2000-05-31 The Johns Hopkins University Endoscopic cryospray device
EP1003430A4 (en) * 1997-04-14 2001-02-28 Univ Johns Hopkins Endoscopic cryospray device
US20070276360A1 (en) * 1997-05-23 2007-11-29 Csa Medical, Inc. Heated catheter used in cryotherapy
US5968034A (en) * 1997-06-24 1999-10-19 Laser Aesthetics, Inc. Pulsed filament lamp for dermatological treatment
WO1999016369A1 (en) * 1997-09-26 1999-04-08 Laser Aesthetics, Inc. Handpiece with coolant reservoir
US6648879B2 (en) 1999-02-24 2003-11-18 Cryovascular Systems, Inc. Safety cryotherapy catheter
US6786901B2 (en) 1999-03-15 2004-09-07 Cryovascular Systems, Inc. Cryosurgical fluid supply
WO2000054684A1 (en) * 1999-03-15 2000-09-21 Cryovascular Systems, Inc. Cryosurgical fluid supply
AU765717B2 (en) * 1999-03-15 2003-09-25 Cryovascular Systems, Inc. Cryosurgical fluid supply
US9050074B2 (en) 1999-03-15 2015-06-09 Boston Scientific Scimed, Inc. Cryosurgical fluid supply
US8333758B2 (en) 1999-03-15 2012-12-18 Boston Scientific Scimed Cryosurgical fluid supply
US20040167505A1 (en) * 1999-03-15 2004-08-26 Cryovascular Systems, Inc. Cryosurgical fluid supply
US6432102B2 (en) * 1999-03-15 2002-08-13 Cryovascular Systems, Inc. Cryosurgical fluid supply
US6811550B2 (en) 1999-03-15 2004-11-02 Cryovascular Systems, Inc. Safety cryotherapy catheter
US20100106148A1 (en) * 1999-03-15 2010-04-29 James Joye Cryosurgical Fluid Supply
US6514245B1 (en) * 1999-03-15 2003-02-04 Cryovascular Systems, Inc. Safety cryotherapy catheter
US6972015B2 (en) 1999-03-15 2005-12-06 Cryovascular Systems, Inc. Cryosurgical fluid supply
US20050154383A1 (en) * 1999-07-29 2005-07-14 Koop Dale E. Thermal quenching of tissue
US7122029B2 (en) 1999-07-29 2006-10-17 Cooltouch Incorporated Thermal quenching of tissue
US20060282067A1 (en) * 1999-07-29 2006-12-14 Koop Dale E Thermal quenching of tissue
US6451007B1 (en) 1999-07-29 2002-09-17 Dale E. Koop Thermal quenching of tissue
US7637906B2 (en) 1999-07-29 2009-12-29 Cooltouch, Incorporated Thermal quenching of tissue
WO2004045434A3 (en) * 2002-11-18 2005-01-27 H & O Equipments Nv Instrument for cryogenic treatments in the medical, paramedical and cosmetic field
WO2004045434A2 (en) * 2002-11-18 2004-06-03 N.V. H & O Equipments Instrument for cryogenic treatments in the medical, paramedical and cosmetic field
US20060200117A1 (en) * 2002-11-18 2006-09-07 Erik Hermans Instrument for cryogenic treatments in the medical, paramedical and cosmetic field
US20100023008A1 (en) * 2008-07-24 2010-01-28 Heard David N Suction Coagulator
US8328804B2 (en) * 2008-07-24 2012-12-11 Covidien Lp Suction coagulator
US8808287B2 (en) 2008-07-24 2014-08-19 Covidien Lp Suction coagulator
US9028490B2 (en) 2008-07-24 2015-05-12 Covidien Lp Suction coagulator
EP2819600A4 (en) * 2012-03-02 2016-11-30 Csa Medical Inc Cryosurgery system
US9820797B2 (en) 2012-03-02 2017-11-21 Csa Medical, Inc. Cryosurgery system
US9867648B2 (en) 2014-06-04 2018-01-16 Csa Medical, Inc. Method and system for consistent, repeatable, and safe cryospray treatment of airway tissue
US10492843B2 (en) 2014-06-04 2019-12-03 Csa Medical, Inc. Method and system for consistent, repeatable, and safe cryospray treatment of airway tissue
US11202559B2 (en) 2016-04-27 2021-12-21 Csa Medical, Inc. Vision preservation system for medical devices
US11871977B2 (en) 2016-05-19 2024-01-16 Csa Medical, Inc. Catheter extension control
US10335225B2 (en) * 2016-11-21 2019-07-02 Arthrex, Inc. Electrosurgical medical device handpiece with insulated aspiration system
US11628007B2 (en) * 2018-09-14 2023-04-18 Atricure, Inc. Cryoprobe
EP4039209A1 (en) * 2021-02-04 2022-08-10 AFreeze GmbH Cryoablation catheter assembly, cryoablation system
WO2022167535A1 (en) * 2021-02-04 2022-08-11 Afreeze Gmbh Cryoablation catheter assembly, cryoablation system

Also Published As

Publication number Publication date
GB1332181A (en) 1973-10-03

Similar Documents

Publication Publication Date Title
US3630203A (en) Cryogenic biological apparatus
US5452582A (en) Cryo-probe
EP3075337B1 (en) Systems for cryogenic cooling
US5275595A (en) Cryosurgical instrument
AU2009239539B2 (en) Method and system for cryoablation treatment
US5254116A (en) Cryosurgical instrument with vent holes and method using same
AU2015302253B2 (en) All-liquid cryoablation catheter
CN101396299A (en) Dewar integrated low-temperature operation device coupled with celioscope
CN210582629U (en) Cryoablation system
AU2024200336A1 (en) Dual stage cryocooler
JPS60137359A (en) Freezing operation device
GB2100987A (en) Cryosurgical probe
JPS60137358A (en) Freezing operation device
PL180843B1 (en) Method of obtaining a mixture of liquid and gaseous phases from a compressed refrigerant and apparatus therefor

Legal Events

Date Code Title Description
AS Assignment

Owner name: APD CRYOGENICS INC., A CORP OF PA.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AIR PRODUCTS AND CHEMICALS, INC., A CORP OF DE.;REEL/FRAME:004686/0713

Effective date: 19870310

Owner name: APD CRYOGENICS INC.,PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AIR PRODUCTS AND CHEMICALS, INC.;REEL/FRAME:004686/0713

Effective date: 19870310