US3628538A - Apparatus for stimulating muscles controlled by the same muscles - Google Patents

Apparatus for stimulating muscles controlled by the same muscles Download PDF

Info

Publication number
US3628538A
US3628538A US855281A US85528169A US3628538A US 3628538 A US3628538 A US 3628538A US 855281 A US855281 A US 855281A US 85528169 A US85528169 A US 85528169A US 3628538 A US3628538 A US 3628538A
Authority
US
United States
Prior art keywords
muscle
signal
monostable circuit
sensing means
muscles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US855281A
Inventor
Samuel Anderson Vincent
Fabian Charles Monds
David Roger Armstrong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Development Corp UK
National Research Development Corp of India
Original Assignee
National Research Development Corp UK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Development Corp UK filed Critical National Research Development Corp UK
Application granted granted Critical
Publication of US3628538A publication Critical patent/US3628538A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36017External stimulators, e.g. with patch electrodes with leads or electrodes penetrating the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36007Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of urogenital or gastrointestinal organs, e.g. for incontinence control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36031Control systems using physiological parameters for adjustment

Definitions

  • E.M.G. signal sensed in the muscle is described.
  • the signal sensed is amplified, filtered and rectified before being applied to a monostable circuit which, if the E.M.G. signal is greater than a threshold value, enters its quasi-stable state.
  • a stimulator circuit applies a voltage to electrodes adjacent to the muscle while the monostable circuit is in its quasi-stable state but the apparatus reverts to its sensing mode when the monostable circuit is in its stable state, allowing the E.M.G. signal to initiate further stimulation, if required.
  • the apparatus is particularly useful in overcoming incontinence.
  • the present invention relates to apparatus for stimulating muscles, particularly, but not exclusively, those muscles which control the bladder.
  • a nerve impulse originating in the central nervous system, depolarizes a membrane enveloping a small group of muscle fibers known as a motor unit.
  • the motor unit contracts sharply, and then relaxes again while other similar units are fired."
  • a smooth contraction of muscle is a continuous cyclic process of many motor units firing and relaxing.
  • E.M.G. electromyographic signal
  • E.M.G. electromyographic signal
  • the E.M.G. signal is associated only with muscle. Monitoring the E.M.G. emanating from a muscle indicates the activity of that muscle.
  • apparatus for controlling muscles in living animals comprising sensing means for sensing an electromyographic signal in'a muscle, and stimulation means for automatically stimulating the same muscle in accordance with the characteristic of he signal sensed.
  • the means for sensing the signal includes means for monitoring the amplitude ofthe E.M.G. signal.
  • the means for sensing the E.M.G. signal senses the E.M.G. of the levator ani muscles, particularly the anal sphincter, and/or other muscles of the pelvic floor, and the stimulation means stimulates the same muscles causing them to contract elevating the bladderneck and holding the bladder closed.
  • the sensing means preferably includes two electrodes coupled to an amplifier whose frequency response peaks between 100-200 Hz., and falls off sharply below about 100 Hz. and above about 1,000 Hz., this frequency range corresponding with the frequency spectrum of the E.M.G. signal.
  • the required frequency response may be obtained by using a filter which is coupled to the amplifier.
  • the amplifier may be coupled to control means which, when the amplitude of the amplifier output signal is greater than a predetermined value, causes an oscillator connected thereto to pass signals beck to the electrodes to stimulate the muscle.
  • the control means may be a monostable circuit which prevents the amplifier from working when it is in its quasi-stable state but allows the oscillator to pass the stimulation signal to the electrodes. When the monostable circuit reverts to its stable state after a period of, typically, seconds, stimulation ceases and the amplifier is allowed to work normally.
  • F IG. 1 is a block diagram of a first embodiment of apparatus according to the invention.
  • FIG. 2 is a circuit diagram of a second embodiment of the invention.
  • FIG. 3 is a circuit diagram of a third embodiment of the invention.
  • E.M.G. investigations of the muscles of the pelvic floor, in incontinent patients, it has been observed that there is a large increase in E.M.G. amplitude when the patient feels urgency, and is unable to prevent urination, as well as during coughing or under similar conditions of strain. It is at these times that external muscle stimulation is effective, and this increase in E.M.G. signal activity may be used as the control signal to initiate stimulation.
  • FIG. 1 two electrodes 10 and 11 are placed on the levator ani muscles.
  • the electrodes are flat plates fitted to a form of anal plug, or vaginal pessary, or to the perineal skin. lf the electrodes are placed in the anal canal the E.M.G. signal picked up is from the anal sphincter and this muscle is then stimulated. This also applies to the muscle surrounding the vagina, and to the perineal muscle.
  • the choice of electrode site depends upon the type of patient. Suitable anal plugs, vaginal pessaries including electrodes, and surface electrodes are commercially available.
  • the electrodes are coupled to a variable gain amplifier 12, whose output is coupled to a filter 13, having a frequency response which peaks between and 200 Hz., and falls off below 100 Hz. and above 1,000 Hz.
  • this frequency response cor-v responds with the frequency spectrum of the E.M.G. signal.
  • the filter is coupled to a rectifying and smoothing circuit 13, whose output is passed to a monostable circuit 15.
  • the monostable circuit When the DC level from the smoothing circuit 14 exceeds a reference voltage developed in the monostable circuit, the monostable circuit is triggered to its quasi-stable state for about l0 seconds. Smoothing is necessary so that the monostable circuit is insensitive to random spikes which sometimes appear in the E.M.G., but is triggered only by a persistent increase in the amplitude of the E.M.G.
  • the monostable circuit 15 switches on a stimulating oscillator 16, and at the same time cuts off the amplifier 12.
  • the oscillator 16 is a multivibrator providing 1 to 8 volt square wave pulses at a repetition frequency of 20 Hz. or :more, and thus pulses at this frequency are passed back to the electrodes 10 and ll by means of connections 18 and 19. AT the end of the seconds in which the monostable circuit is in its quasi-stable state, the circuit reverts from its stimulation mode back to its sensing mode, until it is triggered again.
  • a wearer can hold the stimulator oscillator 15 in operation for as long as he wishes by maintaining his E.M.G. signal above the threshold level, that is the level at which the amplifier output signal is sufficient to switch the monostable circuit to its quasi-stable state. Under these conditions when the monostable circuit reverts to its stable state, the apparatus is in the sensing mode for a period of less than 50 milliseconds before returning to its stimulating mode, so that only one pulse in the 20 Hz. pulse train is missed. This will not be noticed by the wearer. As soon as his E.M.G. signal drops below the threshold level the apparatus reverts to sensing at the end of the quasi-stable state of the monostable circuit until triggered again.
  • the threshold level that is the level at which the amplifier output signal is sufficient to switch the monostable circuit to its quasi-stable state.
  • F lG. 2 the same designations have been used as in FIG. 1 for corresponding parts of the circuit, the blocks of H6. 1 being indicated by dotted lines.
  • the amplifier 12 includes a Fairchild A702C integrated amplifier 21 biased in known way, coupled to an NPN- transistor Tl connected in the common emitter mode.
  • the amplifier characteristic is modified in the required way by a capacitor 26 (0.l5p.F.) connected to pin 6 of the integrated amplifier, and a capacitor 27 both of these capacitors providing high frequency suppression.
  • the collector of the transistor T1 is connected by way of a coupling capacitor 22, which suppresses some low frequencies, to a rectifying circuit 13 comprising diodes 23 and 24. Smoothing is obtained by a capacitor 25 which is coupled to the monostable circuit 15 which comprises transistors T2 and T3.
  • the transistor T3 conducts in the stable state of the circuit 15, the transistor T2 being cut off.
  • the earth voltage applied at the emitter of the transistor T2 can be regarded as a reference voltage which when exceeded sufficiently by the output from the smoothing circuit 14 will switch on the transistor T2, and thence cut off the transistor T3, causing the circuit 15 to enter its quasi-stable state.
  • the transistors T4 and T5 are connected in a multivibrator circuit which, when its transistors are allowed to conduct, passes pulses by way of a further amplifying transistor T6 to the electrode 10.
  • the pulses which are positive at the input of the amplifier 12 appear inverted at its output but are partially suppressed by the capacitor 26. They are then integrated by the capacitor 27, holding the base of the transistor T1 negative and cutting it off.
  • the monostable circuit 15 reverts to its stable state at the end of the quasi-stable period.
  • FIG. 3 as in FIG. 2, the same designations have been used as in FIG. 1 for corresponding parts of the circuit, the blocks of FIG. 1 being indicated by dotted lines as far as this is possible since parts of some blocks are detached.
  • a differential input configuration matched for good common mode rejection, is advantageous at the input of the amplifier 12.
  • the electrodes and 1 1 are therefore connected by way of two differential amplifying stages, including transistors T7 to T10 to the integrated circuit amplifier 21 which again consists of a Fairchild y.A702C operational amplifier connected to have a differential input configuration.
  • the numbers 1, 2, 3, 4, 6, 7 and 8 on FIG. 3 relate to the designations given by the maker to the pin connections of the amplifier.
  • the differential stages are protected against high-input voltages by a back-to-back diode pair 30, and similar protection is provided across the inputs to the amplifier 21 by another back-to-back diode pair 31.
  • Common mode rejection can be adjusted, that is the inputs balanced to reject signals of the same polarity, by varying a potentiometer.
  • a capacitor 44 connected across the input is employed to suppress radiofrequency interference.
  • the overall amplifier gain may be varied by adjusting a variable logarithmic resistor 41. This stage is coupled to the amplifier 21 by way of coupling capacitors 42 and 43.
  • the amplifier 21 is connected to have a single-ended output, which is coupled to an NPN-transistor, T1, connected in the common emitter mode.
  • the amplifier 12 is able to detect voltages down to 50pm. and can attain a voltage gain of approximately 50,000.
  • a capacitor 26, at the base of the output transistor of the integrated circuit helps in achieving the required high frequency fall off. Low frequencies are attenuated by coupling capacitors 42, 43 and 33.
  • Half-wave rectification is achieved both by biasing the transistor T1, and with the diodes 23 and 24. It has been found that smoothing is not required in this embodiment.
  • Transistors T2 and T3 are connected in a monostable circuit which has a stable state in which the transistor T3 is conducting and the transistor T2 is cut off.
  • the earth voltage applied at the emitter of the transistor T2 can be regarded as a reference voltage which, when exceeded sufficiently by the output from the rectifier circuit will switch on the transistor T2, and thence cut off the transistor T3, causing the monostable circuit to enter its quasi-stable state.
  • This state has a duration of approximately 5 seconds, dependent upon the value of a capacitor 34 and a variable resistor 45, before the circuit reverts to its stable state. The duration can be adjusted by varying the resistor 45.
  • a transistor T11 When the monostable circuit is in its quasi-stable state a transistor T11 conducts and current is passed to allow two transistors T13 and T14 connected as a multivibrator oscillator to provide stimulus pulses.
  • the repetition frequency and duration of the pulses can be varied by adjusting resistors 46 and 47, these controls being interdependent.
  • the stimulus pulses are amplified by an output stage comprising a pair of transistors T15 and T16 connected in the Darlington configuration.
  • the transistors feed the primary winding of an isolating transformer 36 which is in series with a variable resistor 48 whichacts as a stimulus strength control.
  • the output pulses from the stimulator circuit are inductively coupled back to the electrodes at the amplifier inputs by the transformer 36 which improves isolation between the wearer and the stimulator circuit.
  • the pair 30 of protective diodes at the input to the first differential stage reduces the pulses to an amplitude corresponding to the forward voltage drop across the diodes.
  • the frequency compensating capacitor 26 bypasses most of the remaining pulse signal to earth, but nevertheless, a pulse of approximately l.4 volts still reaches the triggering point at the base of transistor T2, which is sufficient to induce the monostable circuit to remain in its quasi-stable state.
  • the diode 50 is reverse biased except during the transition of the monostable circuit from its quasi-stable state to its stable state. It then acts as a steering diode providing a path to ground for the pulses at the base of transistor T2, allowing it to switch fully out of saturation.
  • a stimulator manufactured by Devices Implants Limited (Bladder Stimulator Transmitter 82780-2) may be used in conjunction with their Bladder Implant diode detector circuit as the stimulator circuit both in the circuits of FIGS. 2 and 3 if these circuits are suitably modified, and in other embodiments of the invention.
  • the wearer of this device will be able, by a muscular efiort, to activate a stimulator which will contract his levator ani muscles for as long as he required.
  • the monostable circuit will remain it its quasi-stable stimulating state, except for 0.5 second in every, say, 10 seconds, during which the circuit will revert to its stable sensing mode. This short interruption of the stimulus will be beneficial in maintaining contraction of the muscles.
  • the circuit will complete its current quasi-stable state and then revert to sensing until triggered again.
  • the apparatus specifically described may be improved by providing a stimulator oscillator which has bipolar pulses instead of unipolar pulses to overcome problems of electrolysis associated with implanted electrodes.
  • the apparatus described specifically provides stimulation pulses of square wave shape but other wave shapes may be used.
  • the invention can be applied to the stimulation of many muscles or groups of muscles.
  • the invention may be applied to cases of incomplete nerve injury, by allowing the circuit to oscillate between its sensing and stimulating modes at a fast, physiologically acceptable rate, so that a stimulus proportional to the sensed E.M.G. would be applied after each period of sensing. This would, in effect, amplify the natural E.M.G. in a muscle, an otherwise impossible closed loop phenomenon.
  • Apparatus for controlling muscles in living animals comprising sensing means for sensing an electromyographic signal in a muscle,
  • stimulation means for automatically stimulating the same muscle
  • control means for causing the stimulation means to stimulate the muscle only when the sensing means senses an electromyographic signal having at least a predetermined magnitude.
  • control means causes the stimulation means to terminate the stimulus signal after a predetermined interval to allow the sensing means to sense a further electromyographic signal.
  • Apparatus according to claim 2 including a pair of electrodes adapted to be mounted on an animals body adjacent to a muscle to be stimulated, the electrodes being coupled to the sensing means as a part thereof to pick up electromyographic signals, and to the stimulation means as a part thereof to receive a voltage and apply the voltage to stimulate the muscle.
  • the sensing means includes a differential amplifier with two input terminals one connected to each electrode.
  • the sensing means is most sensitive to a signal of frequency between 100 to 200 Hz., and is least sensitive to signals having frequencies below 100 Hz. and above 1,000 Hz.
  • control means include a monostable circuit and the stimulation means include a pulse oscillator, the monostable circuit being cou pled to the sensing means to take up its quasi'stable state when the electromyographic signal reaches the predetermined level,
  • the monostable circuit being coupled to the oscillator to allow oscillation only when the monostable circuit is in its quasi-stable state.
  • the sensing means includes a rectification for providing a DC signal from the sensed signal for application to the monostable circuit, the magnitude of the DC signal determining whether or not the monostable circuit enters its quasi-stable state.
  • Apparatus according to claim 6 including a transformer having primary and secondary windings and including a pair of electrodes adapted to be mounted on an animal's body adjacent to a muscle to be stimulated, the electrodes being coupled to the sensing means as a part thereof to pick up electromyographic signals, and to the stimulation means as a part thereof to receive a voltage and apply the voltage to stimulate the muscle, where the oscillator output is connected to the primary winding of said transformer whose secondary winding is connected to the electrodes.
  • the sensing means is constructed to sense levator ani muscles, including the anal sphincter, and other muscles of the pelvic floor.

Abstract

Apparatus for stimulating a muscle, using an E.M.G. signal sensed in the muscle, is described. The signal sensed is amplified, filtered and rectified before being applied to a monostable circuit which, if the E.M.G. signal is greater than a threshold value, enters its quasi-stable state. A stimulator circuit applies a voltage to electrodes adjacent to the muscle while the monostable circuit is in its quasi-stable state but the apparatus reverts to its sensing mode when the monostable circuit is in its stable state, allowing the E.M.G. signal to initiate further stimulation, if required. The apparatus is particularly useful in overcoming incontinence.

Description

ilnited States Patent Inventors Appl. No. Filed Patented Assignee Priority APPARATUS FOR STIMULATING MUSCLES CONTROLLED BY THE SAME MUSCLES 9 Claims, 3 Drawing Figs.
Int. Cl A61n 1/36 Field of Search 128/206 R,
Primary Examiner-William E. Kamm AttorneyCushman, Darby & Cushman ABSTRACT: Apparatus for stimulating a muscle, using an E.M.G. signal sensed in the muscle, is described. The signal sensed is amplified, filtered and rectified before being applied to a monostable circuit which, if the E.M.G. signal is greater than a threshold value, enters its quasi-stable state. A stimulator circuit applies a voltage to electrodes adjacent to the muscle while the monostable circuit is in its quasi-stable state but the apparatus reverts to its sensing mode when the monostable circuit is in its stable state, allowing the E.M.G. signal to initiate further stimulation, if required. The apparatus is particularly useful in overcoming incontinence.
7 0 I RECTIFICATION THRESHOLD STIMULATOR L AMP. FILTER AND SENSITIVE OSCILLATOR V] 12 smoomms MONOSTABLE 11 MENU-100mm mu SHEET 1 BF 3 M95368 QQFQQDE Kw APPARATUS FOR STIMULATING MUSCLES CONTROLLED BY THE SAME MUSCLES The present invention relates to apparatus for stimulating muscles, particularly, but not exclusively, those muscles which control the bladder.
When a muscle contracts, this is the result of control information reaching the muscle from the brain via the nervous system. A nerve impulse, originating in the central nervous system, depolarizes a membrane enveloping a small group of muscle fibers known as a motor unit. The motor unit contracts sharply, and then relaxes again while other similar units are fired." A smooth contraction of muscle is a continuous cyclic process of many motor units firing and relaxing.
This electrical activity gives rise to the electromyographic signal (E.M.G.) which can be sensed by electrodes placed on or close to the muscle. Thus the E.M.G. signal is associated only with muscle. Monitoring the E.M.G. emanating from a muscle indicates the activity of that muscle.
Normal bladder control is maintained by the action of the pelvic floor muscles, which are constantly in a state of active contraction, except during the voluntary act of evacuation. The effect of this muscular contraction is to support the pelvic and abdominal contents, and this maintains a constant closure of the pelvic openings. Elevation of the normal bladder neck is sufficient to ensure that it remains closed.
In many incontinent persons, their condition is due to an inability to raise the bladder neck far enough to ensure closure, and, in many cases, this has been successfully treated by fitting an appliance which mechanically raises the perineal region. Such an appliance is described in United Kingdom Specification No. 910,837.
According to the present invention there is provided apparatus for controlling muscles in living animals, including man, comprising sensing means for sensing an electromyographic signal in'a muscle, and stimulation means for automatically stimulating the same muscle in accordance with the characteristic of he signal sensed.
Preferably the means for sensing the signal includes means for monitoring the amplitude ofthe E.M.G. signal.
Where the apparatus is for use by incontinent persons, the means for sensing the E.M.G. signal senses the E.M.G. of the levator ani muscles, particularly the anal sphincter, and/or other muscles of the pelvic floor, and the stimulation means stimulates the same muscles causing them to contract elevating the bladderneck and holding the bladder closed.
This is a more sophisticated device than the mechanical appliance mentioned above, and it functions automatically.
Several electronic stimulation devices have been developed and are proving successful, but these must all be operated manually when required or left running continuously. The advantage of the present invention is that stimulation is applied automatically as the need for it arises.
The sensing means preferably includes two electrodes coupled to an amplifier whose frequency response peaks between 100-200 Hz., and falls off sharply below about 100 Hz. and above about 1,000 Hz., this frequency range corresponding with the frequency spectrum of the E.M.G. signal. The required frequency response may be obtained by using a filter which is coupled to the amplifier.
The amplifier may be coupled to control means which, when the amplitude of the amplifier output signal is greater than a predetermined value, causes an oscillator connected thereto to pass signals beck to the electrodes to stimulate the muscle. The control means may be a monostable circuit which prevents the amplifier from working when it is in its quasi-stable state but allows the oscillator to pass the stimulation signal to the electrodes. When the monostable circuit reverts to its stable state after a period of, typically, seconds, stimulation ceases and the amplifier is allowed to work normally.
An embodiment of the present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
F IG. 1 is a block diagram of a first embodiment of apparatus according to the invention,
FIG. 2 is a circuit diagram of a second embodiment of the invention, and
FIG. 3 is a circuit diagram of a third embodiment of the invention.
During E.M.G. investigations of the muscles of the pelvic floor, in incontinent patients, it has been observed that there is a large increase in E.M.G. amplitude when the patient feels urgency, and is unable to prevent urination, as well as during coughing or under similar conditions of strain. It is at these times that external muscle stimulation is effective, and this increase in E.M.G. signal activity may be used as the control signal to initiate stimulation.
In FIG. 1 two electrodes 10 and 11 are placed on the levator ani muscles. The electrodes are flat plates fitted to a form of anal plug, or vaginal pessary, or to the perineal skin. lf the electrodes are placed in the anal canal the E.M.G. signal picked up is from the anal sphincter and this muscle is then stimulated. This also applies to the muscle surrounding the vagina, and to the perineal muscle. The choice of electrode site depends upon the type of patient. Suitable anal plugs, vaginal pessaries including electrodes, and surface electrodes are commercially available. The electrodes are coupled to a variable gain amplifier 12, whose output is coupled to a filter 13, having a frequency response which peaks between and 200 Hz., and falls off below 100 Hz. and above 1,000 Hz.
As has already been pointed out, this frequency response cor-v responds with the frequency spectrum of the E.M.G. signal. The filter is coupled to a rectifying and smoothing circuit 13, whose output is passed to a monostable circuit 15. When the DC level from the smoothing circuit 14 exceeds a reference voltage developed in the monostable circuit, the monostable circuit is triggered to its quasi-stable state for about l0 seconds. Smoothing is necessary so that the monostable circuit is insensitive to random spikes which sometimes appear in the E.M.G., but is triggered only by a persistent increase in the amplitude of the E.M.G. When in the quasi-stable state, the monostable circuit 15 switches on a stimulating oscillator 16, and at the same time cuts off the amplifier 12. The oscillator 16 is a multivibrator providing 1 to 8 volt square wave pulses at a repetition frequency of 20 Hz. or :more, and thus pulses at this frequency are passed back to the electrodes 10 and ll by means of connections 18 and 19. AT the end of the seconds in which the monostable circuit is in its quasi-stable state, the circuit reverts from its stimulation mode back to its sensing mode, until it is triggered again.
A wearer can hold the stimulator oscillator 15 in operation for as long as he wishes by maintaining his E.M.G. signal above the threshold level, that is the level at which the amplifier output signal is sufficient to switch the monostable circuit to its quasi-stable state. Under these conditions when the monostable circuit reverts to its stable state, the apparatus is in the sensing mode for a period of less than 50 milliseconds before returning to its stimulating mode, so that only one pulse in the 20 Hz. pulse train is missed. This will not be noticed by the wearer. As soon as his E.M.G. signal drops below the threshold level the apparatus reverts to sensing at the end of the quasi-stable state of the monostable circuit until triggered again.
In F lG. 2 the same designations have been used as in FIG. 1 for corresponding parts of the circuit, the blocks of H6. 1 being indicated by dotted lines.
The amplifier 12 includes a Fairchild A702C integrated amplifier 21 biased in known way, coupled to an NPN- transistor Tl connected in the common emitter mode. The amplifier characteristic is modified in the required way by a capacitor 26 (0.l5p.F.) connected to pin 6 of the integrated amplifier, and a capacitor 27 both of these capacitors providing high frequency suppression. The collector of the transistor T1 is connected by way of a coupling capacitor 22, which suppresses some low frequencies, to a rectifying circuit 13 comprising diodes 23 and 24. Smoothing is obtained by a capacitor 25 which is coupled to the monostable circuit 15 which comprises transistors T2 and T3. The transistor T3 conducts in the stable state of the circuit 15, the transistor T2 being cut off.
The earth voltage applied at the emitter of the transistor T2 can be regarded as a reference voltage which when exceeded sufficiently by the output from the smoothing circuit 14 will switch on the transistor T2, and thence cut off the transistor T3, causing the circuit 15 to enter its quasi-stable state.
When the transistor T2 is switched on, two transistors T4 and T5 in the stimulator oscillator 16 are able to conduct. The transistors T4 and T5 are connected in a multivibrator circuit which, when its transistors are allowed to conduct, passes pulses by way of a further amplifying transistor T6 to the electrode 10. The pulses which are positive at the input of the amplifier 12 appear inverted at its output but are partially suppressed by the capacitor 26. They are then integrated by the capacitor 27, holding the base of the transistor T1 negative and cutting it off. Thus the monostable circuit 15 reverts to its stable state at the end of the quasi-stable period.
In FIG. 3, as in FIG. 2, the same designations have been used as in FIG. 1 for corresponding parts of the circuit, the blocks of FIG. 1 being indicated by dotted lines as far as this is possible since parts of some blocks are detached. To aid in obtaining a high signal-to-noise ratio a differential input configuration, matched for good common mode rejection, is advantageous at the input of the amplifier 12.
The electrodes and 1 1 are therefore connected by way of two differential amplifying stages, including transistors T7 to T10 to the integrated circuit amplifier 21 which again consists of a Fairchild y.A702C operational amplifier connected to have a differential input configuration. The numbers 1, 2, 3, 4, 6, 7 and 8 on FIG. 3 relate to the designations given by the maker to the pin connections of the amplifier.
The differential stages are protected against high-input voltages by a back-to-back diode pair 30, and similar protection is provided across the inputs to the amplifier 21 by another back-to-back diode pair 31. Common mode rejection can be adjusted, that is the inputs balanced to reject signals of the same polarity, by varying a potentiometer. A capacitor 44 connected across the input is employed to suppress radiofrequency interference. The overall amplifier gain may be varied by adjusting a variable logarithmic resistor 41. This stage is coupled to the amplifier 21 by way of coupling capacitors 42 and 43.
The amplifier 21 is connected to have a single-ended output, which is coupled to an NPN-transistor, T1, connected in the common emitter mode. The amplifier 12 is able to detect voltages down to 50pm. and can attain a voltage gain of approximately 50,000.
A capacitor 26, at the base of the output transistor of the integrated circuit helps in achieving the required high frequency fall off. Low frequencies are attenuated by coupling capacitors 42, 43 and 33.
Half-wave rectification is achieved both by biasing the transistor T1, and with the diodes 23 and 24. It has been found that smoothing is not required in this embodiment.
Transistors T2 and T3 are connected in a monostable circuit which has a stable state in which the transistor T3 is conducting and the transistor T2 is cut off. The earth voltage applied at the emitter of the transistor T2 can be regarded as a reference voltage which, when exceeded sufficiently by the output from the rectifier circuit will switch on the transistor T2, and thence cut off the transistor T3, causing the monostable circuit to enter its quasi-stable state. This state has a duration of approximately 5 seconds, dependent upon the value of a capacitor 34 and a variable resistor 45, before the circuit reverts to its stable state. The duration can be adjusted by varying the resistor 45.
When the monostable circuit is in its quasi-stable state a transistor T11 conducts and current is passed to allow two transistors T13 and T14 connected as a multivibrator oscillator to provide stimulus pulses. The repetition frequency and duration of the pulses can be varied by adjusting resistors 46 and 47, these controls being interdependent.
The stimulus pulses are amplified by an output stage comprising a pair of transistors T15 and T16 connected in the Darlington configuration. The transistors feed the primary winding of an isolating transformer 36 which is in series with a variable resistor 48 whichacts as a stimulus strength control.
The output pulses from the stimulator circuit are inductively coupled back to the electrodes at the amplifier inputs by the transformer 36 which improves isolation between the wearer and the stimulator circuit.
There are three inhibitor features which prevent the stimulator pulses from activating the sensing circuit, even thoughthey appear at the amplifier inputs.
The pair 30 of protective diodes at the input to the first differential stage reduces the pulses to an amplitude corresponding to the forward voltage drop across the diodes. The frequency compensating capacitor 26 bypasses most of the remaining pulse signal to earth, but nevertheless, a pulse of approximately l.4 volts still reaches the triggering point at the base of transistor T2, which is sufficient to induce the monostable circuit to remain in its quasi-stable state. The diode 50 is reverse biased except during the transition of the monostable circuit from its quasi-stable state to its stable state. It then acts as a steering diode providing a path to ground for the pulses at the base of transistor T2, allowing it to switch fully out of saturation. These inhibitor features are sufficient to ensure that the stimulus pulses do not themselves hold the circuit in its stimulating mode.
A stimulator manufactured by Devices Implants Limited (Bladder Stimulator Transmitter 82780-2) may be used in conjunction with their Bladder Implant diode detector circuit as the stimulator circuit both in the circuits of FIGS. 2 and 3 if these circuits are suitably modified, and in other embodiments of the invention.
The wearer of this device will be able, by a muscular efiort, to activate a stimulator which will contract his levator ani muscles for as long as he required. By maintaining his E.M.G. above the threshold level, the monostable circuit will remain it its quasi-stable stimulating state, except for 0.5 second in every, say, 10 seconds, during which the circuit will revert to its stable sensing mode. This short interruption of the stimulus will be beneficial in maintaining contraction of the muscles. Once he allows his E.M.G. to fall below the threshold level, the circuit will complete its current quasi-stable state and then revert to sensing until triggered again.
The apparatus specifically described may be improved by providing a stimulator oscillator which has bipolar pulses instead of unipolar pulses to overcome problems of electrolysis associated with implanted electrodes.
Flat plate electrodes in an anal plug have been mentioned, but other electrodes, such as needle electrodes, implanted close to the anal canal, may be used.
The apparatus described specifically provides stimulation pulses of square wave shape but other wave shapes may be used.
Although this specification specifically describes an embodiment of the invention for the aid of the incontinent, the invention can be applied to the stimulation of many muscles or groups of muscles.
The invention may be applied to cases of incomplete nerve injury, by allowing the circuit to oscillate between its sensing and stimulating modes at a fast, physiologically acceptable rate, so that a stimulus proportional to the sensed E.M.G. would be applied after each period of sensing. This would, in effect, amplify the natural E.M.G. in a muscle, an otherwise impossible closed loop phenomenon.
We claim:
1. Apparatus for controlling muscles in living animals, including man, comprising sensing means for sensing an electromyographic signal in a muscle,
stimulation means for automatically stimulating the same muscle, and
control means for causing the stimulation means to stimulate the muscle only when the sensing means senses an electromyographic signal having at least a predetermined magnitude.
2. Apparatus according to claim 1 wherein the control means causes the stimulation means to terminate the stimulus signal after a predetermined interval to allow the sensing means to sense a further electromyographic signal.
3. Apparatus according to claim 2 including a pair of electrodes adapted to be mounted on an animals body adjacent to a muscle to be stimulated, the electrodes being coupled to the sensing means as a part thereof to pick up electromyographic signals, and to the stimulation means as a part thereof to receive a voltage and apply the voltage to stimulate the muscle.
d. Apparatus according to claim 3 wherein the sensing means includes a differential amplifier with two input terminals one connected to each electrode.
5. Apparatus according to claim 2, wherein the sensing means is most sensitive to a signal of frequency between 100 to 200 Hz., and is least sensitive to signals having frequencies below 100 Hz. and above 1,000 Hz.
6. Apparatus according to claim 2, wherein the control means include a monostable circuit and the stimulation means include a pulse oscillator, the monostable circuit being cou pled to the sensing means to take up its quasi'stable state when the electromyographic signal reaches the predetermined level,
and the monostable circuit being coupled to the oscillator to allow oscillation only when the monostable circuit is in its quasi-stable state.
7. Apparatus according to claim 6 wherein the sensing means includes a rectification for providing a DC signal from the sensed signal for application to the monostable circuit, the magnitude of the DC signal determining whether or not the monostable circuit enters its quasi-stable state.
8. Apparatus according to claim 6 including a transformer having primary and secondary windings and including a pair of electrodes adapted to be mounted on an animal's body adjacent to a muscle to be stimulated, the electrodes being coupled to the sensing means as a part thereof to pick up electromyographic signals, and to the stimulation means as a part thereof to receive a voltage and apply the voltage to stimulate the muscle, where the oscillator output is connected to the primary winding of said transformer whose secondary winding is connected to the electrodes.
9. Apparatus according to claim 3 wherein the sensing means is constructed to sense levator ani muscles, including the anal sphincter, and other muscles of the pelvic floor.

Claims (9)

1. Apparatus for controlling muscles in living animals, including man, comprising sensing means for sensing an electromyographic signal in a muscle, stimulation means for automatically stimulating the same muscle, and control means for causing the stimulation means to stimulate the muscle only when the sensing means senses an electromyographic signal having at least a predetermined magnitude.
2. Apparatus according to claim 1 wherein the control means causes the stimulation means to terminate the stimulus signal after a predetermined interval to allow the sensing means to sense a further electromyographic signal.
3. Apparatus according to claim 2 including a pair of electrodes adapted to be mounted on an animal''s body adjacent to a muscle to be stimulated, the electrodes being coupled to the sensing means as a part thereof to pick up electromyographic signals, and to the stimulation means as a part thereof to receive a voltage and apply the voltage to stimulate the muscle.
4. Apparatus according to claim 3 wherein the sensing means includes a differential amplifier with two input terminals one connected to each electrode.
5. Apparatus according to claim 2, wherein the sensing means is most sensitive to a signal of frequency between 100 to 200 Hz., and is least sensitive to signals having frequencies below 100 Hz. and above 1,000 Hz.
6. Apparatus according to claim 2, wherein the control means include a monostable circuit and the stimulation means include a pulse oscillator, the monostable circuit being coupled to the sensing means to take up its quasi-stable state when the electromyographic signal reaches the predetermined level, and the monostable circuit being coupled to the oscillator to allow oscillation only when the monostable circuit is in its quasi-stable state.
7. Apparatus according to claim 6 wherein the sensing means includes a rectificatiOn for providing a DC signal from the sensed signal for application to the monostable circuit, the magnitude of the DC signal determining whether or not the monostable circuit enters its quasi-stable state.
8. Apparatus according to claim 6 including a transformer having primary and secondary windings and including a pair of electrodes adapted to be mounted on an animal''s body adjacent to a muscle to be stimulated, the electrodes being coupled to the sensing means as a part thereof to pick up electromyographic signals, and to the stimulation means as a part thereof to receive a voltage and apply the voltage to stimulate the muscle, where the oscillator output is connected to the primary winding of said transformer whose secondary winding is connected to the electrodes.
9. Apparatus according to claim 3 wherein the sensing means is constructed to sense levator ani muscles, including the anal sphincter, and other muscles of the pelvic floor.
US855281A 1968-09-18 1969-09-04 Apparatus for stimulating muscles controlled by the same muscles Expired - Lifetime US3628538A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB4445568 1968-09-18

Publications (1)

Publication Number Publication Date
US3628538A true US3628538A (en) 1971-12-21

Family

ID=10433361

Family Applications (1)

Application Number Title Priority Date Filing Date
US855281A Expired - Lifetime US3628538A (en) 1968-09-18 1969-09-04 Apparatus for stimulating muscles controlled by the same muscles

Country Status (4)

Country Link
US (1) US3628538A (en)
DE (1) DE1946663B2 (en)
FR (1) FR2018334A1 (en)
GB (1) GB1227186A (en)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3815611A (en) * 1971-11-26 1974-06-11 Medtronic Inc Muscle stimulation and/or contraction detection device
US3908669A (en) * 1973-12-17 1975-09-30 American Acupuncture Medical I Apparatus for use by physicians in acupuncture research
US3911910A (en) * 1974-05-31 1975-10-14 Robert J Oesau Electro-splint for relieving involuntary muscular spasticity
US3937226A (en) * 1974-07-10 1976-02-10 Medtronic, Inc. Arrhythmia prevention apparatus
US3983865A (en) * 1975-02-05 1976-10-05 Shepard Richard S Method and apparatus for myofunctional biofeedback
US4063548A (en) * 1975-04-07 1977-12-20 American Medical Systems, Inc. Method and apparatus for micturition analysis
US4136684A (en) * 1977-02-07 1979-01-30 Scattergood Mark G Linear electromyographic biofeedback system
US4165750A (en) * 1978-03-18 1979-08-28 Aleev Leonid S Bioelectrically controlled electric stimulator of human muscles
US4170225A (en) * 1976-09-20 1979-10-09 Somatronics, Inc. Biofeedback device
US4191196A (en) * 1976-06-15 1980-03-04 American Medical Systems, Inc. Profilometry method and apparatus
US4198542A (en) * 1977-05-13 1980-04-15 Georges Ducommun Device for aiding persons having a speech handicap
US4235242A (en) * 1979-04-02 1980-11-25 Med General, Inc. Electronic circuit permitting simultaneous use of stimulating and monitoring equipment
US4406288A (en) * 1981-04-06 1983-09-27 Hugh P. Cash Bladder control device and method
US4453547A (en) * 1981-04-06 1984-06-12 Physio Technology, Inc. T-Wave inhibiting system
US4480830A (en) * 1982-09-14 1984-11-06 Wright State University Method and apparatus for exercising
US4492233A (en) * 1982-09-14 1985-01-08 Wright State University Method and apparatus for providing feedback-controlled muscle stimulation
US4556214A (en) * 1982-09-14 1985-12-03 Wright State University Method and apparatus for exercising
US4582049A (en) * 1983-09-12 1986-04-15 Ylvisaker Carl J Patient initiated response method
US4611596A (en) * 1980-10-14 1986-09-16 Purdue Research Foundation Sensory prostheses
US4669477A (en) * 1985-05-20 1987-06-02 Empi, Inc. Apparatus and method for preventing bruxism
US4928704A (en) * 1989-01-31 1990-05-29 Mindcenter Corporation EEG biofeedback method and system for training voluntary control of human EEG activity
US5291902A (en) * 1993-01-11 1994-03-08 Brent Carman Incontinence treatment
US5423329A (en) * 1994-04-15 1995-06-13 Rehab Centers Of America, Inc. Method of treatment for urinary incontinence
US5452719A (en) * 1991-07-23 1995-09-26 Eisman; Eugene Multiple electrode myographic probe and method
US5562717A (en) * 1992-05-23 1996-10-08 Axelgaard Manufacturing Company, Ltd. Electrical stimulation for treatment of incontinence and other neuromuscular disorders
WO2000019940A1 (en) 1998-10-06 2000-04-13 Bio Control Medical, Ltd. Incontinence treatment device
WO2000019939A1 (en) 1998-10-06 2000-04-13 Bio Control Medical, Ltd. Control of urge incontinence
US20020055761A1 (en) * 1998-07-06 2002-05-09 Mann Carla M. Implantable stimulator systems and methods for treatment of incontinence and pain
US6498953B2 (en) * 1999-06-29 2002-12-24 The Procter & Gamble Company Biofeedback device for an incontinent person
US20030082884A1 (en) * 2001-10-26 2003-05-01 International Business Machine Corporation And Kabushiki Kaisha Toshiba Method of forming low-leakage dielectric layer
US6712772B2 (en) 2001-11-29 2004-03-30 Biocontrol Medical Ltd. Low power consumption implantable pressure sensor
EP1461117A1 (en) * 2001-11-29 2004-09-29 Biocontrol Medical Ltd. Pelvic disorder treatment device
US6862480B2 (en) 2001-11-29 2005-03-01 Biocontrol Medical Ltd. Pelvic disorder treatment device
US20050085864A1 (en) * 2002-04-11 2005-04-21 Schulman Joseph H. Implantable device for processing neurological signals
US20050283204A1 (en) * 2004-01-30 2005-12-22 Felix Buhlmann Automated adaptive muscle stimulation method and apparatus
US7054689B1 (en) * 2000-08-18 2006-05-30 Advanced Bionics Corporation Fully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction
US20060155345A1 (en) * 2005-01-07 2006-07-13 Williams Jeffrey M Implantable neuromodulation system and method
US20060265027A1 (en) * 2002-12-12 2006-11-23 Shai Vaingast Efficient dynamic stimulation in an implanted device
US20070265675A1 (en) * 2006-05-09 2007-11-15 Ams Research Corporation Testing Efficacy of Therapeutic Mechanical or Electrical Nerve or Muscle Stimulation
US20080009914A1 (en) * 2006-07-10 2008-01-10 Ams Research Corporation Systems and Methods for Implanting Tissue Stimulation Electrodes in the Pelvic Region
US20080161876A1 (en) * 2006-12-21 2008-07-03 Ams Research Corporation Electrode implantation in male external urinary sphincter
US20090012592A1 (en) * 2006-07-10 2009-01-08 Ams Research Corporation Tissue anchor
US20090157091A1 (en) * 2006-04-04 2009-06-18 Ams Research Corporation Apparatus for Implanting Neural Stimulation Leads
US20100049289A1 (en) * 2007-07-10 2010-02-25 Ams Research Corporation Tissue anchor
US20100076254A1 (en) * 2006-06-05 2010-03-25 Ams Research Corporation Electrical muscle stimulation to treat fecal incontinence and/or pelvic prolapse
US7801600B1 (en) * 2005-05-26 2010-09-21 Boston Scientific Neuromodulation Corporation Controlling charge flow in the electrical stimulation of tissue
US20110160793A1 (en) * 2009-12-31 2011-06-30 Ams Research Corporation Multi-Zone Stimulation Implant System and Method
US8024049B1 (en) * 2003-10-20 2011-09-20 University Of Central Florida Research Foundation, Inc. Spatial-temporal deep brain stimulation methods and systems
US8140165B2 (en) 2005-01-28 2012-03-20 Encore Medical Asset Corporation Independent protection system for an electrical muscle stimulation apparatus and method of using same
US8195296B2 (en) 2006-03-03 2012-06-05 Ams Research Corporation Apparatus for treating stress and urge incontinence
EP2589410A1 (en) * 2011-11-03 2013-05-08 Inomed Medizintechnik GmbH Control assembly for intraoperative monitoring of the nerve function in the pelvis
US8620438B1 (en) 2007-02-13 2013-12-31 Encore Medical Asset Corporation Method and apparatus for applying neuromuscular electrical stimulation
US8849408B1 (en) 2013-01-04 2014-09-30 University Of Central Florida Research Foundation, Inc. Methods for electronic directionality of deep-brain stimulation
US8958883B2 (en) 2005-04-19 2015-02-17 Pierre-Yves Mueller Electrical stimulation device and method for therapeutic treatment and pain management
WO2015066597A3 (en) * 2013-11-01 2015-07-16 CMAP Technology, LLC Systems and methods for compound motor action potential monitoring with neuromodulation of pelvis and other body regions
US9220887B2 (en) 2011-06-09 2015-12-29 Astora Women's Health LLC Electrode lead including a deployable tissue anchor
US9278208B1 (en) 2003-10-20 2016-03-08 University Of Central Florida Research Foundation, Inc. Spatial-temporal deep brain stimulation methods and systems
US9427573B2 (en) 2007-07-10 2016-08-30 Astora Women's Health, Llc Deployable electrode lead anchor
US9539433B1 (en) 2009-03-18 2017-01-10 Astora Women's Health, Llc Electrode implantation in a pelvic floor muscular structure
US9731112B2 (en) 2011-09-08 2017-08-15 Paul J. Gindele Implantable electrode assembly
US9782583B2 (en) 2012-02-21 2017-10-10 Virender K. Sharma System and method for electrical stimulation of anorectal structures to treat urinary dysfunction
WO2018039552A1 (en) * 2016-08-25 2018-03-01 Sharma Virender K System and method for electrical stimulation of anorectal structures to treat urinary dysfunction
US9950160B2 (en) 2012-02-21 2018-04-24 Virender K. Sharma System and method for electrical stimulation of anorectal structures to treat anal dysfunction
US10376694B2 (en) 2008-10-09 2019-08-13 Virender K. Sharma Method and apparatus for stimulating the vascular system
US10576278B2 (en) 2012-02-21 2020-03-03 Virender K. Sharma System and method for electrical stimulation of anorectal structures to treat urinary dysfunction
US10603489B2 (en) 2008-10-09 2020-03-31 Virender K. Sharma Methods and apparatuses for stimulating blood vessels in order to control, treat, and/or prevent a hemorrhage
US11571575B2 (en) 2016-10-28 2023-02-07 Medtronic, Inc. Autotitration of therapy using detected electrical activity

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0930084A1 (en) * 1998-01-19 1999-07-21 Manfred Dr. Leubner Electromedical device for functional stimulation
EP1022034A1 (en) 1999-01-19 2000-07-26 Manfred Dr. Leubner Method and device for stimulating muscles or nervous tissue
GB2435834A (en) * 2006-03-06 2007-09-12 Michael Craggs Neuromodulation device for pelvic dysfunction
CN106175759A (en) * 2016-07-20 2016-12-07 西安中科比奇创新科技有限责任公司 Electromyographic signal collection circuit and Wearable device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1007469B (en) * 1955-11-17 1957-05-02 Dr Med Georg Schwidetzky Device on non-sensory parts of the body or on prostheses to make pressure and heat palpable
US3212496A (en) * 1962-08-21 1965-10-19 United Aircraft Corp Molecular physiological monitoring system
US3253596A (en) * 1963-05-27 1966-05-31 Cordis Corp Cardiac pacer
US3454012A (en) * 1966-11-17 1969-07-08 Esb Inc Rechargeable heart stimulator
US3491378A (en) * 1967-02-28 1970-01-27 David Moiseevich Ioffe Artificial arm having bioelectrically controlled finger movement and hand rotation responsive to shoulder muscle impulses
US3501776A (en) * 1966-08-30 1970-03-24 Tno Electropneumatic converter for operating an artificial limb

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1007469B (en) * 1955-11-17 1957-05-02 Dr Med Georg Schwidetzky Device on non-sensory parts of the body or on prostheses to make pressure and heat palpable
US3212496A (en) * 1962-08-21 1965-10-19 United Aircraft Corp Molecular physiological monitoring system
US3253596A (en) * 1963-05-27 1966-05-31 Cordis Corp Cardiac pacer
US3501776A (en) * 1966-08-30 1970-03-24 Tno Electropneumatic converter for operating an artificial limb
US3454012A (en) * 1966-11-17 1969-07-08 Esb Inc Rechargeable heart stimulator
US3491378A (en) * 1967-02-28 1970-01-27 David Moiseevich Ioffe Artificial arm having bioelectrically controlled finger movement and hand rotation responsive to shoulder muscle impulses

Cited By (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3815611A (en) * 1971-11-26 1974-06-11 Medtronic Inc Muscle stimulation and/or contraction detection device
US3908669A (en) * 1973-12-17 1975-09-30 American Acupuncture Medical I Apparatus for use by physicians in acupuncture research
US3911910A (en) * 1974-05-31 1975-10-14 Robert J Oesau Electro-splint for relieving involuntary muscular spasticity
US3937226A (en) * 1974-07-10 1976-02-10 Medtronic, Inc. Arrhythmia prevention apparatus
US3983865A (en) * 1975-02-05 1976-10-05 Shepard Richard S Method and apparatus for myofunctional biofeedback
US4063548A (en) * 1975-04-07 1977-12-20 American Medical Systems, Inc. Method and apparatus for micturition analysis
US4191196A (en) * 1976-06-15 1980-03-04 American Medical Systems, Inc. Profilometry method and apparatus
US4170225A (en) * 1976-09-20 1979-10-09 Somatronics, Inc. Biofeedback device
US4136684A (en) * 1977-02-07 1979-01-30 Scattergood Mark G Linear electromyographic biofeedback system
US4198542A (en) * 1977-05-13 1980-04-15 Georges Ducommun Device for aiding persons having a speech handicap
US4165750A (en) * 1978-03-18 1979-08-28 Aleev Leonid S Bioelectrically controlled electric stimulator of human muscles
US4235242A (en) * 1979-04-02 1980-11-25 Med General, Inc. Electronic circuit permitting simultaneous use of stimulating and monitoring equipment
US4611596A (en) * 1980-10-14 1986-09-16 Purdue Research Foundation Sensory prostheses
US4406288A (en) * 1981-04-06 1983-09-27 Hugh P. Cash Bladder control device and method
US4453547A (en) * 1981-04-06 1984-06-12 Physio Technology, Inc. T-Wave inhibiting system
US4492233A (en) * 1982-09-14 1985-01-08 Wright State University Method and apparatus for providing feedback-controlled muscle stimulation
US4556214A (en) * 1982-09-14 1985-12-03 Wright State University Method and apparatus for exercising
US4480830A (en) * 1982-09-14 1984-11-06 Wright State University Method and apparatus for exercising
US4582049A (en) * 1983-09-12 1986-04-15 Ylvisaker Carl J Patient initiated response method
US4669477A (en) * 1985-05-20 1987-06-02 Empi, Inc. Apparatus and method for preventing bruxism
US4928704A (en) * 1989-01-31 1990-05-29 Mindcenter Corporation EEG biofeedback method and system for training voluntary control of human EEG activity
US5452719A (en) * 1991-07-23 1995-09-26 Eisman; Eugene Multiple electrode myographic probe and method
US5562717A (en) * 1992-05-23 1996-10-08 Axelgaard Manufacturing Company, Ltd. Electrical stimulation for treatment of incontinence and other neuromuscular disorders
US5291902A (en) * 1993-01-11 1994-03-08 Brent Carman Incontinence treatment
US5423329A (en) * 1994-04-15 1995-06-13 Rehab Centers Of America, Inc. Method of treatment for urinary incontinence
US6941171B2 (en) * 1998-07-06 2005-09-06 Advanced Bionics Corporation Implantable stimulator methods for treatment of incontinence and pain
US20020055761A1 (en) * 1998-07-06 2002-05-09 Mann Carla M. Implantable stimulator systems and methods for treatment of incontinence and pain
US6354991B1 (en) 1998-10-06 2002-03-12 Bio Control Medical Ltd Incontinence treatment device
US8083663B2 (en) 1998-10-06 2011-12-27 Ams Research Corporation Pelvic disorder treatment
WO2000019939A1 (en) 1998-10-06 2000-04-13 Bio Control Medical, Ltd. Control of urge incontinence
US7582053B2 (en) 1998-10-06 2009-09-01 Ams Research Corporation Control of urge incontinence
EP2011453A3 (en) * 1998-10-06 2009-08-05 AMS Research Corporation Control of urge incontinence
US6652449B1 (en) 1998-10-06 2003-11-25 Bio Control Medical, Ltd. Control of urge incontinence
EP1702587A1 (en) 1998-10-06 2006-09-20 Bio Control Medical, Ltd. Control of urge incontinence
EP2011453A2 (en) 1998-10-06 2009-01-07 Bio Control Medical, Ltd. Control of urge incontinence
US20080242918A1 (en) * 1998-10-06 2008-10-02 Ams Research Corporation Incontinence Treatment Device
EP1124502A1 (en) * 1998-10-06 2001-08-22 Bio Control Medical, Ltd. Incontinence treatment device
US7387603B2 (en) * 1998-10-06 2008-06-17 Ams Research Corporation Incontinence treatment device
US6896651B2 (en) 1998-10-06 2005-05-24 Biocontrol Medical Ltd. Mechanical and electrical sensing for incontinence treatment
US20050113881A1 (en) * 1998-10-06 2005-05-26 Yossi Gross Incontinence treatment device
EP1124502A4 (en) * 1998-10-06 2005-07-20 Bio Control Medical Ltd Incontinence treatment device
WO2000019940A1 (en) 1998-10-06 2000-04-13 Bio Control Medical, Ltd. Incontinence treatment device
US8340786B2 (en) 1998-10-06 2012-12-25 Ams Research Corporation Incontinence treatment device
US20050261746A1 (en) * 1998-10-06 2005-11-24 Yossi Gross Control of urge incontinence
US6498953B2 (en) * 1999-06-29 2002-12-24 The Procter & Gamble Company Biofeedback device for an incontinent person
US7054689B1 (en) * 2000-08-18 2006-05-30 Advanced Bionics Corporation Fully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction
US8588917B2 (en) 2000-08-18 2013-11-19 Boston Scientific Neuromodulation Corporation Fully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction
US20030082884A1 (en) * 2001-10-26 2003-05-01 International Business Machine Corporation And Kabushiki Kaisha Toshiba Method of forming low-leakage dielectric layer
US6712772B2 (en) 2001-11-29 2004-03-30 Biocontrol Medical Ltd. Low power consumption implantable pressure sensor
US20050216069A1 (en) * 2001-11-29 2005-09-29 Biocontrol Medical Ltd. Pelvic disorder treatment device
US20050049648A1 (en) * 2001-11-29 2005-03-03 Biocontrol Medical Ltd. Pelvic disorder treatment device
US6862480B2 (en) 2001-11-29 2005-03-01 Biocontrol Medical Ltd. Pelvic disorder treatment device
EP1461117A1 (en) * 2001-11-29 2004-09-29 Biocontrol Medical Ltd. Pelvic disorder treatment device
EP1461117A4 (en) * 2001-11-29 2011-03-16 Ams Res Corp Pelvic disorder treatment device
US7613516B2 (en) 2001-11-29 2009-11-03 Ams Research Corporation Pelvic disorder treatment device
US7235050B2 (en) * 2002-04-11 2007-06-26 Alfred E. Mann Foundation For Scientific Research Implantable device for processing neurological signals
US20050085864A1 (en) * 2002-04-11 2005-04-21 Schulman Joseph H. Implantable device for processing neurological signals
US8423132B2 (en) 2002-12-12 2013-04-16 Bio Control Medical (B.C.M.) Ltd. Efficient dynamic stimulation in an implanted device
US20060265027A1 (en) * 2002-12-12 2006-11-23 Shai Vaingast Efficient dynamic stimulation in an implanted device
US8024049B1 (en) * 2003-10-20 2011-09-20 University Of Central Florida Research Foundation, Inc. Spatial-temporal deep brain stimulation methods and systems
US9278208B1 (en) 2003-10-20 2016-03-08 University Of Central Florida Research Foundation, Inc. Spatial-temporal deep brain stimulation methods and systems
US7499746B2 (en) 2004-01-30 2009-03-03 Encore Medical Asset Corporation Automated adaptive muscle stimulation method and apparatus
US10080523B2 (en) 2004-01-30 2018-09-25 Djo Global Switzerland Sàrl Automated adaptive muscle stimulation method and apparatus
US20090228068A1 (en) * 2004-01-30 2009-09-10 Felix Buhlmann Automated adaptive muscle stimulation method and apparatus
US11389110B2 (en) 2004-01-30 2022-07-19 Djo Global Switzerland Sàrl Automated adaptive muscle stimulation method and apparatus
US20050283204A1 (en) * 2004-01-30 2005-12-22 Felix Buhlmann Automated adaptive muscle stimulation method and apparatus
US8565888B2 (en) 2004-01-30 2013-10-22 Compex Medical S.A. Automated adaptive muscle stimulation method and apparatus
US10463296B2 (en) 2004-01-30 2019-11-05 DJO Global Switzerland Sarl Automated adaptive muscle stimulation method and apparatus
US7729772B2 (en) 2005-01-07 2010-06-01 Uroplasty, Inc. Implantable neuromodulation system and method
US20060155345A1 (en) * 2005-01-07 2006-07-13 Williams Jeffrey M Implantable neuromodulation system and method
US9808619B2 (en) 2005-01-28 2017-11-07 Encore Medical Asset Corporation Independent protection system for an electrical muscle stimulation apparatus and method of using same
US8140165B2 (en) 2005-01-28 2012-03-20 Encore Medical Asset Corporation Independent protection system for an electrical muscle stimulation apparatus and method of using same
US9669212B2 (en) 2005-04-19 2017-06-06 Djo, Llc Electrical stimulation device and method for therapeutic treatment and pain management
US8958883B2 (en) 2005-04-19 2015-02-17 Pierre-Yves Mueller Electrical stimulation device and method for therapeutic treatment and pain management
US10328260B2 (en) 2005-04-19 2019-06-25 Djo, Llc Electrical stimulation device and method for therapeutic treatment and pain management
US11179568B2 (en) 2005-05-26 2021-11-23 Boston Scientific Neuromodufation Corporation Controlling charge flow in the electrical stimulation of tissue
US9393421B2 (en) 2005-05-26 2016-07-19 Boston Scientific Neuromodulation Corporation Controlling charge flow in the electrical stimulation of tissue
US10065039B2 (en) 2005-05-26 2018-09-04 Boston Scientific Neuromodulation Corporation Controlling charge flow in the electrical stimulation of tissue
US20100280575A1 (en) * 2005-05-26 2010-11-04 Boston Scientific Neuromodulation Corporation Controlling charge flow in the electrical stimulation of tissue
US7801600B1 (en) * 2005-05-26 2010-09-21 Boston Scientific Neuromodulation Corporation Controlling charge flow in the electrical stimulation of tissue
US8195296B2 (en) 2006-03-03 2012-06-05 Ams Research Corporation Apparatus for treating stress and urge incontinence
US9889298B2 (en) 2006-03-03 2018-02-13 Astora Women's Health, Llc Electrode sling for treating stress and urge incontinence
US20090157091A1 (en) * 2006-04-04 2009-06-18 Ams Research Corporation Apparatus for Implanting Neural Stimulation Leads
US20070265675A1 (en) * 2006-05-09 2007-11-15 Ams Research Corporation Testing Efficacy of Therapeutic Mechanical or Electrical Nerve or Muscle Stimulation
US20100076254A1 (en) * 2006-06-05 2010-03-25 Ams Research Corporation Electrical muscle stimulation to treat fecal incontinence and/or pelvic prolapse
US20080009914A1 (en) * 2006-07-10 2008-01-10 Ams Research Corporation Systems and Methods for Implanting Tissue Stimulation Electrodes in the Pelvic Region
US8160710B2 (en) 2006-07-10 2012-04-17 Ams Research Corporation Systems and methods for implanting tissue stimulation electrodes in the pelvic region
US20090012592A1 (en) * 2006-07-10 2009-01-08 Ams Research Corporation Tissue anchor
US20080161876A1 (en) * 2006-12-21 2008-07-03 Ams Research Corporation Electrode implantation in male external urinary sphincter
US7647113B2 (en) 2006-12-21 2010-01-12 Ams Research Corporation Electrode implantation in male external urinary sphincter
US9352151B2 (en) 2007-02-13 2016-05-31 Encore Medical Asset Corporation Method and apparatus for applying neuromuscular electrical stimulation
US9669211B2 (en) 2007-02-13 2017-06-06 Encore Medical Asset Corporation Method and apparatus for applying neuromuscular electrical stimulation
US8620438B1 (en) 2007-02-13 2013-12-31 Encore Medical Asset Corporation Method and apparatus for applying neuromuscular electrical stimulation
US8774942B2 (en) 2007-07-10 2014-07-08 Ams Research Corporation Tissue anchor
US9427573B2 (en) 2007-07-10 2016-08-30 Astora Women's Health, Llc Deployable electrode lead anchor
US20100049289A1 (en) * 2007-07-10 2010-02-25 Ams Research Corporation Tissue anchor
US10603489B2 (en) 2008-10-09 2020-03-31 Virender K. Sharma Methods and apparatuses for stimulating blood vessels in order to control, treat, and/or prevent a hemorrhage
US11517749B2 (en) 2008-10-09 2022-12-06 Virender K. Sharma Methods and apparatuses for stimulating blood vessels in order to control, treat, and/or prevent a hemorrhage
US10376694B2 (en) 2008-10-09 2019-08-13 Virender K. Sharma Method and apparatus for stimulating the vascular system
US9539433B1 (en) 2009-03-18 2017-01-10 Astora Women's Health, Llc Electrode implantation in a pelvic floor muscular structure
US8380312B2 (en) 2009-12-31 2013-02-19 Ams Research Corporation Multi-zone stimulation implant system and method
US20110160793A1 (en) * 2009-12-31 2011-06-30 Ams Research Corporation Multi-Zone Stimulation Implant System and Method
US9220887B2 (en) 2011-06-09 2015-12-29 Astora Women's Health LLC Electrode lead including a deployable tissue anchor
US9731112B2 (en) 2011-09-08 2017-08-15 Paul J. Gindele Implantable electrode assembly
EP2589410A1 (en) * 2011-11-03 2013-05-08 Inomed Medizintechnik GmbH Control assembly for intraoperative monitoring of the nerve function in the pelvis
US9950160B2 (en) 2012-02-21 2018-04-24 Virender K. Sharma System and method for electrical stimulation of anorectal structures to treat anal dysfunction
US9782583B2 (en) 2012-02-21 2017-10-10 Virender K. Sharma System and method for electrical stimulation of anorectal structures to treat urinary dysfunction
US10576278B2 (en) 2012-02-21 2020-03-03 Virender K. Sharma System and method for electrical stimulation of anorectal structures to treat urinary dysfunction
US8849408B1 (en) 2013-01-04 2014-09-30 University Of Central Florida Research Foundation, Inc. Methods for electronic directionality of deep-brain stimulation
US20170156625A1 (en) * 2013-11-01 2017-06-08 CMAP Technology, LLC Systems And Methods For Compound Motor Action Potential Monitoring With Neuromodulation Of The Pelvis And Other Body Regions
WO2015066597A3 (en) * 2013-11-01 2015-07-16 CMAP Technology, LLC Systems and methods for compound motor action potential monitoring with neuromodulation of pelvis and other body regions
US9603526B2 (en) 2013-11-01 2017-03-28 CMAP Technology, LLC Systems and methods for compound motor action potential monitoring with neuromodulation of the pelvis and other body regions
WO2018039552A1 (en) * 2016-08-25 2018-03-01 Sharma Virender K System and method for electrical stimulation of anorectal structures to treat urinary dysfunction
US11571575B2 (en) 2016-10-28 2023-02-07 Medtronic, Inc. Autotitration of therapy using detected electrical activity

Also Published As

Publication number Publication date
GB1227186A (en) 1971-04-07
DE1946663B2 (en) 1972-05-18
FR2018334A1 (en) 1970-05-29
DE1946663A1 (en) 1970-03-26

Similar Documents

Publication Publication Date Title
US3628538A (en) Apparatus for stimulating muscles controlled by the same muscles
US4582049A (en) Patient initiated response method
US4324253A (en) Transcutaneous pain control and/or muscle stimulating apparatus
US3650275A (en) Method and apparatus for controlling anal incontinence
US3968802A (en) Cautery protection circuit for a heart pacemaker
US3749100A (en) Suppository electrode structure
US5713940A (en) Transcutaneous electric muscle/nerve controller/feedback unit
US4121594A (en) Transcutaneous electrical nerve stimulator
US4177819A (en) Muscle stimulating apparatus
US3870051A (en) Urinary control
US4690142A (en) Method and system for utilizing electro-neuro stimulation in a bio-feedback system
GB2368017A (en) Electric leg stimulator for treating drop foot
RU2742502C2 (en) Neuromodulation treatment device and method
JPH06501854A (en) Microprocessor-controlled, enhanced, and multiplexed functional electrical stimulator for surface stimulation of paralyzed patients
WO2003007885A2 (en) Method and apparatus for the treatment of urinary tract dysfunction
CN107106834B (en) Systems and methods for neurostimulation therapy
DE4330680A1 (en) Device for electrical stimulation of cells within a living human or animal
EP1022034A1 (en) Method and device for stimulating muscles or nervous tissue
US3661158A (en) Atrio-ventricular demand pacer with atrial stimuli discrimination
US6512955B1 (en) Electrical apparatus for therapeutic treatment
CN104353184A (en) Electromyographic feedback stimulator
JPS61265151A (en) Method for allowing patient to begin re-training of weakenedmuscle group
GB2099705A (en) Pulse generator for pain blocking bandage
AT312793B (en) Apparatus for the artificial stimulation of urinary evacuation
GB2127696A (en) Electrical transcutaneous stimulator