US3625894A - Anticorrosive for lubricants - Google Patents

Anticorrosive for lubricants Download PDF

Info

Publication number
US3625894A
US3625894A US721619A US3625894DA US3625894A US 3625894 A US3625894 A US 3625894A US 721619 A US721619 A US 721619A US 3625894D A US3625894D A US 3625894DA US 3625894 A US3625894 A US 3625894A
Authority
US
United States
Prior art keywords
weight
percent
alkaline earth
earth metal
anticorrosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US721619A
Inventor
Gunter Koenig
Helmut Landau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Application granted granted Critical
Publication of US3625894A publication Critical patent/US3625894A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M1/00Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants
    • C10M1/08Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants with additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/135Steam engines or turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

Lubricants can be combined with an anticorrosive consisting of from 67 to 99 percent by weight of an alkaline earth metal petroleum sulfonate and/or an oil-soluble alkaline earth metal salt of a fatty acid having from 10 to 36 carbon atoms, and/or an oil-soluble alkaline earth metal salt of an alkyl-sulfamidocarboxylic acid, and from 33 to 1 percent by weight of benzotriazol.

Description

United States Patent Inventors Gunter Koenig;
Helmut Landau, both of Gersthofen, Germany App1.No. 721,619
Filed Apr. 16, 1968 Patented Dec. 7, 1971 Assignee Farbwerke l-loechst Aktiengesellschaft vormals Melster Lucius 8r Bruning Frankfurt am Main, Germany Priority May 13, 1967 Germany F 52402 ANTICORROSIVE FOR LUBRICANTS [56] References Cited UNITED STATES PATENTS 2,610,946 9/1952 Eckert 252/33.3 2,814,594 11/1957 Smite 252/33.3 2,890,170 6/1959 Ragborg 252/50 2,908,648 10/1959 Spivack et a1. 252/47.5 3,352,780 11/1967 Groslambert 252/33.3 FOREIGN PATENTS 793,115 4/1958 Great Britain 252/50 Primary Examiner-Daniel E. Wyman Assistant Examiner-l. Vaughn Attorney-Connolly and Hutz ABSTRACT: Lubricants can be combined with an anticorrosive consisting of from 67 to 99 percent by weight of an alkaline earth metal petroleum sulfonate and/or an oil-soluble alkaline earth metal salt of a fatty acid having from 10 to 36 carbon atoms, and/or an oil-soluble alkaline earth metal salt of an alkyl-sulfamido-carboxylic acid, and from 33 to 1 percent by weight of benzotriazol.
ANTICORROSIVE FOR LUBRICANTS The present invention provides an anticorrosive for use in lubricants, especially those lubricants which contain as extreme pressure agents compounds of chlorine, sulfur or phosphorus.
It is indispensible to add anticorrosives to modern extreme pressure lubricants and highly stressed mineral oils, and numerous substances have already been proposed for this purpose. The problem to be solved consists in choosing an anticorrosive that meets the following requirements: on the one hand, it has to prevent all undesired corrosions from the machine parts coming into contact with the lubricant and, on the other hand, it must not adversely affect the lubricating effect. Especially when additives containing chlorine are used as an extreme pressure agent, it can be observed again and again that even those machine parts which are not under load, show signs of corrosion.
Almost the same applies to extreme pressure additives containing active sulfur, as well as to some phosphorus compounds. These undesired side effects limit the use of these otherwise highly effective additives to those cases in which the lubricant is not exposed in the oil sump to temperatures exceeding 80 C., Le. generally to cutting oils to be used for metal processing and mildly doped industrial gear oils.
The aforesaid signs of corrosion can be avoided, when the lubricants mentioned are used, as it is known for a long time and disclosed, for example, in German Pat. No. 1,1 15,395 laid open to public inspection, by adding alkaline earth metal petroleum sulfonates, especially calcium and barium petroleum sulfonates, which must, however, be added in relatively high amounts. For example, when one to two parts by weight of a barium petroleum sulfonate having a barium content of about 7 percent, are added to I parts by weight of a lubricant consisting of 10 percent by weight of a chlorinated paraffin (60 percent of chlorine) and 90 percent by weight of mineral oil (usual lubricating oil according to German lndustrial Standards (DIN) 51 501 a sufficient protection against the corrosion of an antifriction bearing steel (105 Cr and deep-drawing metal sheet is obtained up to a temperature of 100 C. This protection is, however, only assured as far as the lubricant is not penetrated by water. Another drawback inherent in the use of such a lubricant resides in the fact that the extreme pressure properties of the additive (in the present case: chloroparaffin) are reduced considerably by the high concentration of the petroleum sulfonate. For example, the aforesaid lubricant without an anticorrosive assured an undamaged running, when tested in the gear rig by the FZG- method A 8.3/90 according to DlN 51 354, up to the llth load step whereas the same lubricant to which 1 percent by weight of barium petroleum sulfonate had been added, already caused damage at the ninth load step. Also in the fourball apparatus according to Shell-Boerlage, a reduction of the seizure load by two to three load steps can be established, as compared with the lubricant without an addition of petroleum sulfonate. The petroleum sulfonates of the other alkaline earth metals behave in a similar way, but their anticorrosive effect is weaker than that of the barium compounds.
We have now found that mixtures comprising from 67 to 99 percent by weight of an alkaline earth metal petroleum sulfonate and/or an oil-soluble alkaline earth metal salt of a fatty acid containing from to 36 carbon atoms, and/or an oilsoluble alkaline earth metal salt of an alkyl-sulfamido-carboxylic acid and from 33 to 1 percent by weight of benzotriazol, can advantageously be used as anticorrosives in lubricants.
After benzotriazol has been used for a long time as an anticorrosive especially for nonferrous metals while it has, however, been known that this compound has not a noticeable anticorrosive effect on steel, it was surprising and not at all expected that a practically complete protection against corrosion can be obtained by adding the combinations of the invention to lubricants of the aforesaid composition as well as to mineral oils that have to stand extreme temperatures, for example turbine oils. It is furthermore surprising that already a very low concentration of the components to be added is suffcient to achieve a complete protection, a fact that points to a pronounced synergism. For example, when 0. l part by weight of a mixture of 10 parts by weight of a barium petroleum sulfonate containing 7 percent of barium, and 1 part by weight of benzotriazol are added to I00 parts by weight of a mineral oil having an additive of 25 percent of chloroparafiin 60 percent of chlorine), all usual corrosion tests reveal that unalloyed and alloyed steels as well as nonferrous metals are completely protected against corrosion up to a temperature of about 170 C. and, even when from 1 to 2 percent of water are present in the lubricant, no corrosion can be observed.
By alkaline earth metal petroleum sulfonates there are understood hereinafter commercial oil-soluble salts of alkaline earth metal oxides or hydroxides and petroleum sulfonic acids as, for example, obtained by the refining of crude mineral oils with sulfuric acid, oleum, chlorosulfonic acid or S0 and which, from the viewpoint of chemistry, represent an indefinable mixture of aliphatic and cyclic sulfonates with alkyl-arylsulfonates. Barium petroleum sulfonates having a barium content in the range of from 4 to 10 percent by weight, have proved to be particularly suitable. Oil-soluble alkaline earth metal salts of fatty acids containing from 10 to 36 carbon atoms, or the mixtures of such acids, for example salts of lauric acid, ricinoleic acid, palm oil fatty acid, behenic acid and montanic acid, can also be used, although they do not yield the same good results. The barium salts are preferred. it is, moreover, possible to use the oil-soluble alkaline earth metal salts, preferably the barium salts, of alkyl-sulfamido-carboxylic acids of the formula R'SO=NH(CH,),,'COOH, in which R represents a hydrocarbon radical having from about 10 to l8, preferably 13 or 14, carbon atoms and n represents an integer of from 1 to 5; salts in which n is 1 being especially mentioned. The aforesaid substances may be combined either as such or in mixture with benzotriazol.
The anticorrosive combinations of the invention containing, per 100 parts by weight, from 67 to 99 parts by weight of the oil-soluble alkaline earth metal salts and correspondingly from 33 to one parts by weight of benzotriazol, are prepared by dissolving the benzotriazol in the molten alkaline earth metal salts. Generally, they are incorporated into the lubricants to be protected in amounts ranging from 0.1 to 2, preferably from 0.25 to 1, percent by weight, calculated on the total amount of lubricant.
The following example serves to illustrate the present invention, but is not intended to limit it thereto, the parts being by weight unless stated otherwise.
EXAMPLE An anticorrosive was prepared by dissolving 1.0 part of benzotriazol in l0.0 parts of a barium petroleum sulfonate (7 percent of Ba) that had been heated to C. Subsequently, 0.25 part of this mixture was incorporated into a lubricant consisting of 74.75 parts of mineral oil (of a naphthenic base, viscosity class SAE, and 25.00 parts of chloroparafiin containing 60 percent by weight of chlorine. For testing the anticorrosive effect, an emulsion was mechanically prepared from parts of this mixture and one part of water.
A deep-drawing metal sheet strip (l.5 20 0.l centimeters), an antifriction bearing ball (one-half inch in diameter, steel Cr 5), a copper sheet strip (5XlXO.l centimeters) and a brass sheet strip (5XlX0.l centimeters) were then immersed in grams of the lubricant thus treated. The deepdrawing metal sheet was brought into direct contact with the ball and the whole arrangement was put in a heating cabinet at l00 C. for 100 hours. After the testing time, no signs of corrosion could be detected on any of the metals used.
In comparative tests using the lubricant without the anticorrosive, the ferrous metals were strongly attached over the whole portion immersed, partially with pitting. The nonferrous metals were distinctly attached. An addition of 2.5 parts of the barium petroleum sulfonate instead of corrosion as the barium petroleum sulfonate caused a reduction of the load-carrying capacity tested by the FZG-method by two steps and a reduction of the seizure load in the four-ball apparatus by two load steps. As a comparative sample there was used the noninhibited lubricant.
What is claimed is:
l. A lubricating composition consisting of mineral oil and an extreme pressure amount of chlorinated parafi'm and containing synergistic anticorrosion proportions of barium petroleum sulfonate and benzotriazol.
II III III
US721619A 1967-05-13 1968-04-16 Anticorrosive for lubricants Expired - Lifetime US3625894A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEF0052402 1967-05-13

Publications (1)

Publication Number Publication Date
US3625894A true US3625894A (en) 1971-12-07

Family

ID=7105419

Family Applications (1)

Application Number Title Priority Date Filing Date
US721619A Expired - Lifetime US3625894A (en) 1967-05-13 1968-04-16 Anticorrosive for lubricants

Country Status (4)

Country Link
US (1) US3625894A (en)
DE (1) DE1644891B1 (en)
FR (1) FR1561899A (en)
GB (1) GB1179374A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895674A (en) * 1987-03-16 1990-01-23 King Industries, Inc. Thermally stable sulfonate compositions
US5023016A (en) * 1987-03-16 1991-06-11 King Industries, Inc. Thermally stable sulfonate compositions
US5133900A (en) * 1987-03-16 1992-07-28 King Industries, Inc. Thermooxidatively stable compositions
US5169564A (en) * 1987-03-16 1992-12-08 King Industries, Inc. Thermooxidatively stable compositions
US5681506A (en) * 1992-10-30 1997-10-28 Castrol Limited Corrosion inhibiting lubricant composition
US5958849A (en) * 1997-01-03 1999-09-28 Exxon Research And Engineering Co. High performance metal working oil
US6248701B1 (en) * 1994-05-13 2001-06-19 Henkel Corporation Aqueous metal coating composition and process with reduced staining and corrosion
US6596393B1 (en) 2000-04-20 2003-07-22 Commscope Properties, Llc Corrosion-protected coaxial cable, method of making same and corrosion-inhibiting composition
US20060090393A1 (en) * 2004-10-29 2006-05-04 Rowland Robert G Epoxidized ester additives for reducing lead corrosion in lubricants and fuels
US20070051523A1 (en) * 2005-09-08 2007-03-08 Wing Eng Coaxial cable for exterior use

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1567906A (en) 1976-01-19 1980-05-21 Ici Ltd Solvent compositions
CN112374791A (en) * 2020-11-20 2021-02-19 内蒙古电力(集团)有限责任公司巴彦淖尔电业局 Anticorrosion additive for all telegraph pole in high saline-alkali area and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2610946A (en) * 1951-02-08 1952-09-16 Texas Co Lithium soap grease containing basic alkaline earth metal sulfonate
US2814594A (en) * 1955-04-20 1957-11-26 Exxon Research Engineering Co Method for producing an improved cutting oil
GB793115A (en) * 1955-08-23 1958-04-09 Exxon Research Engineering Co Rust inhibitors for synthetic lubricating oils
US2890170A (en) * 1956-09-06 1959-06-09 Dow Corning Organosiloxane greases
US2908648A (en) * 1954-10-21 1959-10-13 Geigy Chem Corp Corrosion-inhibited compositions containing n-(alkylarylsulfonyl) amino acids and salts thereof
US3352780A (en) * 1965-06-23 1967-11-14 Labofina Sa Fire resistant-extreme pressure and hydrolysis resistant lubricant comprising polychlorinated diphenyl and triaryl phosphates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2610946A (en) * 1951-02-08 1952-09-16 Texas Co Lithium soap grease containing basic alkaline earth metal sulfonate
US2908648A (en) * 1954-10-21 1959-10-13 Geigy Chem Corp Corrosion-inhibited compositions containing n-(alkylarylsulfonyl) amino acids and salts thereof
US2814594A (en) * 1955-04-20 1957-11-26 Exxon Research Engineering Co Method for producing an improved cutting oil
GB793115A (en) * 1955-08-23 1958-04-09 Exxon Research Engineering Co Rust inhibitors for synthetic lubricating oils
US2890170A (en) * 1956-09-06 1959-06-09 Dow Corning Organosiloxane greases
US3352780A (en) * 1965-06-23 1967-11-14 Labofina Sa Fire resistant-extreme pressure and hydrolysis resistant lubricant comprising polychlorinated diphenyl and triaryl phosphates

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895674A (en) * 1987-03-16 1990-01-23 King Industries, Inc. Thermally stable sulfonate compositions
US5023016A (en) * 1987-03-16 1991-06-11 King Industries, Inc. Thermally stable sulfonate compositions
US5133900A (en) * 1987-03-16 1992-07-28 King Industries, Inc. Thermooxidatively stable compositions
US5169564A (en) * 1987-03-16 1992-12-08 King Industries, Inc. Thermooxidatively stable compositions
US5681506A (en) * 1992-10-30 1997-10-28 Castrol Limited Corrosion inhibiting lubricant composition
US6248701B1 (en) * 1994-05-13 2001-06-19 Henkel Corporation Aqueous metal coating composition and process with reduced staining and corrosion
US5958849A (en) * 1997-01-03 1999-09-28 Exxon Research And Engineering Co. High performance metal working oil
US6596393B1 (en) 2000-04-20 2003-07-22 Commscope Properties, Llc Corrosion-protected coaxial cable, method of making same and corrosion-inhibiting composition
US20040007308A1 (en) * 2000-04-20 2004-01-15 Commscope Properties, Llc Method of making corrosion-protected coaxial cable
US6997999B2 (en) 2000-04-20 2006-02-14 Commscope Properties Llc Method of making corrosion-protected coaxial cable
US20060090393A1 (en) * 2004-10-29 2006-05-04 Rowland Robert G Epoxidized ester additives for reducing lead corrosion in lubricants and fuels
US20070051523A1 (en) * 2005-09-08 2007-03-08 Wing Eng Coaxial cable for exterior use
US7425676B2 (en) * 2005-09-08 2008-09-16 At&T Intellectual Property L.L.P. Coaxial cable for exterior use
US20080296038A1 (en) * 2005-09-08 2008-12-04 At & T Intellectual Property L, L.P. Coaxial cable for exterior use

Also Published As

Publication number Publication date
FR1561899A (en) 1969-03-28
GB1179374A (en) 1970-01-28
DE1644891B1 (en) 1971-07-08

Similar Documents

Publication Publication Date Title
US3933658A (en) Metalworking additive and composition
US3625894A (en) Anticorrosive for lubricants
US2268608A (en) Lubricants
US2691000A (en) Lubricating oils
JPS5978295A (en) Protecting lubricating agent composition
US2709156A (en) Oxidation-inhibited mineral oil compositions
US2213804A (en) Lubricating oil
US2533300A (en) Morpholine mahogany sulfonate as a rust inhibitor for petroleum oils
US2344395A (en) Lubricating oil
US2372411A (en) Compounded lubricating oil
US2346153A (en) Compounded oil
US2491772A (en) Extreme pressure lubricants
US2371319A (en) Lubricant
US2350959A (en) Lubricating oil and additive therefor
US3359202A (en) Lubricating compositions
US2340438A (en) Oxidation-stable grease composition
US2824839A (en) Lubricants
US2420068A (en) Lubricant
US2371656A (en) Lubricant compositions
US2384002A (en) Lubricant
US2371854A (en) Mineral oil composition
US2278224A (en) Inhibitor
US2262019A (en) Lubricant
US2294526A (en) Stabilized mineral oil composition
US2368605A (en) Anticorrosive