US3625787A - Method of attaching withdrawal string to a sponge tampon - Google Patents

Method of attaching withdrawal string to a sponge tampon Download PDF

Info

Publication number
US3625787A
US3625787A US849119A US3625787DA US3625787A US 3625787 A US3625787 A US 3625787A US 849119 A US849119 A US 849119A US 3625787D A US3625787D A US 3625787DA US 3625787 A US3625787 A US 3625787A
Authority
US
United States
Prior art keywords
string
tampon
sponge
adhesive
withdrawal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US849119A
Inventor
Michael Deane Radl
Edward E Werner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimberly Clark Corp
Original Assignee
Kimberly Clark Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly Clark Corp filed Critical Kimberly Clark Corp
Application granted granted Critical
Publication of US3625787A publication Critical patent/US3625787A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/729Textile or other fibrous material made from plastics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/20Tampons, e.g. catamenial tampons; Accessories therefor
    • A61F13/2082Apparatus or processes of manufacturing
    • A61F13/2085Catamenial tampons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/20Tampons, e.g. catamenial tampons; Accessories therefor
    • A61F13/26Means for inserting tampons, i.e. applicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/52Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
    • B29C65/524Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive by applying the adhesive from an outlet device in contact with, or almost in contact with, the surface of the part to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/52Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
    • B29C65/54Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive between pre-assembled parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/69General aspects of joining filaments 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/4815Hot melt adhesives, e.g. thermoplastic adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9513Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration frequency values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2031/00Use of polyvinylesters or derivatives thereof as moulding material
    • B29K2031/04Polymers of vinyl acetate, e.g. PVAc, i.e. polyvinyl acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0085Copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0097Glues or adhesives, e.g. hot melts or thermofusible adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor

Abstract

A method for economically and efficiently securing a withdrawal string to a regenerated cellulose sponge tampon in the manufacture of menstrual tampons. A string which includes a heatreactive adhesive element is inserted into a sponge tampon, and sonic energy is then applied to the tampon to provide a rapid and highly localized heating of the adhesive element, causing it to flow into intimate contact with the surrounding sponge material and form a secure bond between the string and sponge when cooled. The disclosure alternatively shows a means for simultaneously applying an adhesive substance to a string as it is being drawn into a sponge tampon so that an adhesive coating is applied only to the portion of the string contained within the tampon.

Description

United States Patent Michael Deane Radl Appleton;
Edward E. Werner, Oshkosh, both of Wis. 21 Appl. No. 849,119
[22] Filed Aug. 11, 1969 [72] Inventors [45] Patented Dec. 7, 1971 [73] Assignee Kimberly-Clark Corporation Neenah, Wis.
[54] METHOD OF ATTACHING WITHDRAWAL STRING TO A SPONGE TAMPON 5 Claims, 5 Drawing Figs.
[52] US. Cl 156/73, 156/73,128/270, 156/380 [5 l Int. Cl 82% 27/08, A6lf 13/20 [50] Field ol'Search 156/73; 128/270, 285
[56] References Cited UNITED STATES PATENTS 2,134,930 11/1938 Reynolds 128/270 3,480,492 1 H1969 Hauser 3,520,302 7/1970 Jones OTHER REFERENCES R. S. Soloff, New Concepts in Ultrasonic Sealing" Modern Plastics, March, 1964 Primary ExaminerBenjamin A. Borchelt Assistant Examiner-James V. Doramus Attorney-Wolfe, Hubbard, Leydig, Voit & Osann, Ltd.
ABSTRACT: A method for economically and efficiently securing a withdrawal string to a regenerated cellulose sponge tampon in the manufacture of menstrual tampons. A string which includes a heat-reactive adhesive element is inserted into a sponge tampon, and sonic energy is then applied to'the tampon to provide a rapid and highly localized heating of the adhesive element, causing it to flow into intimate contact with the surrounding sponge material and form a secure bond between the string and sponge when cooled. The disclosure alternatively shows a means for simultaneously applying an adhesive substance to a string as it is being drawn into a sponge tampon so that an adhesive coating is applied only to the portion of the string contained within the tampon,
METHOD OF ATTACI'IING WITHDRAWAL STRING TO A SPONGE TAMPON DESCRIPTION OF THE INVENTION The present invention relates generally to absorbent menstrual tampons and the like, and more particularly to an improved method of making such tampons.
Some prior menstrual tampons have been made of fibrous material, and the withdrawal string has been sewn to the tampon. With tampons made of sponge, however, sewing the withdrawal string to the tampon decreases the efficiency of the sponge. Heretofore, various methods have been proposed for attaching the withdrawal string to sponge tampons without sewing, such as by using glues or heat scalable thermoplastics. These prior methods, however, often have been ineffective in reliably securing the withdrawal string have required heating of the entire sponge to the fusion temperature of the heat scalable thermoplastic often charring or damaging the sponge, or have required equipment that is relatively expensive or inefiicient.
Accordingly, it is an object of thepresent invention to provide an improved method for economically and efficiently securing a withdrawal string to a sponge tampon in the manufacture of menstrual tampons.
Another object is to provide a method for reliably bonding a withdrawal string to a sponge tampon by means of a heat-reactive substance wherein there is less tendency of charring or decomposing the sponge during the heating process. More particularly, an object is to provide such a method which utilizes an energy source adapted to create a highly localized heating of the adhesive without. heating the entire sponge tampon to the fusion temperature of the adhesive.
A further object is to provide a method of the foregoing type which more efficiently utilizes energy in the heating process and requires equipment that is relatively inexpensive.
Still another object is to provide a method for adhesively bonding a withdrawal string to a sponge tampon without contaminating or coating the outwardly extending handle portion of the string with the adhesive. In this connection, it is an object to provide a method and means for simultaneously applying an adhesive substance to the string as the string is being inserted into the sponge tampon.
Other objects and advantages of the invention will become apparent from the following description taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a perspective and partial sectional view of an uncompressed sponge tampon with a string having an adhesive coating being inserted longitudinally through the tampon by an appropriate needle;
FIG. 2 is an enlarged fragmentary cross section of the string and tampon shown in FIG. 1.
FIG. 3 is a perspective of the tampon shown in FIG. 1 with the string fully positioned in the tampon;
FIG. 4 is a schematic side elevation of an apparatus for applying heat to the string and tampon assembly shown in FIG. 3 in bonding the string to the tampon; and
FIG. 5 is a section view of an alternative means for inserting a string into a sponge tampon, which simultaneously applies an adhesive substance to the string as it is drawn into the tampon.
While the invention is susceptible of various modifications and alternative forms, certain specific embodiments thereof have been shown by way of example in the drawings which will be described in detail herein. It should be understood, however, that it is not intended to limit the invention to the particular forms disclosed but, on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
Turning to the drawings, FIG. I shows an elongated sponge tampon preferably formed of dry, fine-pore, expanded, regenerated cellulose material and shaped to a typical tampon length. While the illustrated tampon 10 has a cylindrical form with a polygon cross section, it will be understood that various other well-known shapes may be employed. As will be explained below, the tampon 10, which is shown in its uncompressed fully expanded state, subsequently may be radially and longitudinally compressed in forming the desired finished shape and be of a size adapted for easy insertion into the vaginal tract.
A withdrawal string 11 is shown in FIG. I being inserted into the tampon 10 by passing a needle- 12 longitudinally through the tampon. The needle I2 has a barbed end 14 to which one end of the string 11 is attached. By passing the needle completely through the tampon and unhooking the string, the string remains coaxially positioned along the entire length of the cylindrical tampon. The string may then be cut, or may be precut to the required length, so that a portion 15 remains extending outwardly from the tampon to serve as a withdrawal string handle. The string at this point, however, is not bonded to the tampon.
To facilitate subsequent bonding of the string 11 to the tampon 10 in the illustrated method, the string, or at least the portion of the string which is to be inserted into the tampon 10, includes a heat-reactive bonding element 18. The bonding element 18 may be a thermoplastic adhesive which is previously applied to the string by dipping the string into the adhesive, or by other well-known applicator means. When the adhesive is cooled to room temperature, it solidifies and forms the uniform coating 18 surrounding, or impregnating and surrounding, the string as shown in FIG. 2. The thermoplastic adhesive should have a sufficiently high melting point that it is not melted or sticky at body temperature or slightly above, and is not soluble in menstrual fluid. Thus, the entire string may be coated with the adhesive if desired.
A typical mercerized cotton string impregnated and coated with a thermoplastic adhesive such as a composition of percent Elvax 40 50 percent Elvax 150 (Elvax is a copolymer of ethylene and vinyl acetate) has been found to form-a highly satisfactory string for use in the process of the present invention, although other suitable thermoplastic adhesives may be used. Other nonfusible yarns or strings made of linen, hemp, regenerated cellulose, rayon or the like, can be combined with thermoplastic adhesives. Synthetic yarns of material with a melting point lower than the adhesive may also be used. While the thermoplastic adhesive coatings should not fuse or lose bonding strength at human body or commercial storage temperatures, it will be appreciated that they should be readily fusible at higher temperatures to which the regenerated cellulose sponge tampon can be heated without decomposing the sponge. It should be noted that the string is the force carrier, i.e., the string should be strong enough after processing to be able to withdraw the tampon without breaking, and the thermoplastic coating is the adhesive agent that does the bonding. The string properties must be of such composition that it fulfills its force carrier relationship with the ultrasonic process, i.e., there exists a differential temperature between the string and the adhesive such that the string will not melt, char, decompose or lose strength during the string coating or ultrasonic attachment process. In addition, the thermoplastic coating provides a protective coating that prevents exudate from soaking through it during use.
In accordance with the invention, a sonic energy source is provided for rapidly, efficiently, and economically heating the heat-reactive bonding element surrounding the portion of the string inserted within the sponge tampon. Sonic energy is directed into the sponge tampon to create a nearly instantane ous and highly localized heating of the adhesive coating causing it to become fluid and fiow into intimate contact with the adjacent fine pores of the regenerated cellulose sponge tampon. Subsequent cooling and solidifying of the adhesive creates a secure bond between the string and the sponge. In the illustrated embodiment, the tampon 10 with the inserted adhesively coated string I1 is positioned on an upper surface 20 of an anvil 21 immediately below a sonic energy source, generally indicated at 22. The energy source may be designed with a frequency which may vary from a few thousand cycles per second up to perhaps one million cycles per second or more. However, to minimize the problem of audible noise and to provide an efficient source of energy, it is preferred to employ an ultrasonic energy source that is capable of providing at least 20,000 cycles per second. Typically, the energy source 22 may be of a conventional type, including a power supply 24 capable of providing necessary electrical energy and a converter 25 for converting the electrical energy into mechanical energy in the form of vibrations. The converter 25 may be a piezoelectric element made of material such as barium titanate or lead zirconium titanate.
A horn 26 is employed to transmit the mechanical vibrations from the converter 25 to the sponge tampon 10. The horn 26 may have various masses and shapes depending upon the output oscillations desired and the configuration of the tampons being heated. To facilitate uniform heating of the string, the horn may have a narrow elongated end surface, such as the surface 28, which can be placed on the tampon directly over a substantial portion of the string contained within the tampon. The horn 26 is adapted to be brought into position so that its end 28 bears firmly against the tampon with a prelocated pressure preferably of between to 40 lbs. The energy source 22 thus provides, within the region of the horn, an intense highly localized zone of sonic energy.
During a controlled period of time that the horn is in contact with the tampon, high frequency mechanical vibrations are transmitted from the horn into the sponge tampon. The vibrations travel through the sponge until they reach the juncture of the string and sponge surfaces. The intense vibration of one surface moving against the other at high frequencies creates a sufficient buildup of heat through friction to cause the adhesive surrounding the string to melt and readily flow into the adjacent sponge pores. The temperature created by the sonic energy at the juncture of the string and sponge, which may be regulated by the time interval the horn is in contact with the tampon and by its frequency output, should be sufficient to melt and set the adhesive substance but not char or burn the cellulose sponge. Since the Generally, a temperature of less than 450 has been found to be satisfactory. Since the sonic energy creates highly localized heating at the string and sponge juncture, the entire sponge generally does not reach the fusion temperature of the adhesive so that there is less tendency of damaging the sponge during the heating process. After the adhesive is cooled, a secure bond is created between the string and sponge which will withstand the stresses of commercial storage conditions, immersion in menstrual fluid, and the force required to remove the wet, used tampon from a vagina.
It will be appreciated that the use of sonic energy in the method of the present invention has several advantages over prior methods. First, such energy is adapted to create rapid and highly localized heating which quickly activates the adhesive in setting the bond between the string and the sponge material. In addition, sonic energy may be utilized much more efficiently than other energy sources since a high percentage of the output energy from a sonic energy source is converted to heat generated vibrations in this application and the heat is concentrated at the location of the string without heating the entire sponge to the adhesive fusion temperature.
While in the illustrated embodiment the bonding element of the string was a thermoplastic adhesive coating, alternatively thermoplastic fibers could be combined with nonthermoplastic yarn in forming the string. Thermoplastic fibers, such as vinyon fibers, may be twisted in a strand and then wound around the nonthermoplastic yarn, such as rayon or cotton, in a barberpole fashion. Also the thermoplastic material can be interwoven with a nonthermoplastic material. The application of sonic energy to such a string inserted in a sponge tampon will thermally fuse or melt the thermoplastic fibers sufficiently that they will bond to both the regenerated cellulose sponge and the rayon or cotton yarn. The yarn will continue to provide tensile strength to the string.
Referring now to FIG. 5, there is shown still another alternative way of applying a bondable adhesive to the withdrawal string. In the embodiment, an adhesive substance is applied to the string at the same time the string is being inserted into the sponge. To this end, there is shown a hollow needle 30 having a barbed end 31 drawing a nonfusable string 32, preferably made of rayon or cotton yarn, through an expanded, regenerated cellulose sponge tampon 34. As the string 32 is drawn into the sponge tampon 34, a heat-reactive adhesive substance is directed by known means through the hollow needle 30 and is extruded out openings 36 in the sideof the needle 30 to coat the surrounding area inside the sponge and the string 32 as it is advanced through the sponge. The adhesive substance may be thermoplastic adhesive material of the type described above which cools and solidifies after being inserted into the sponge to create at least a temporary bond between the string and the porous cellulose sponge. The subsequent application of sonic energy to the sponge tampon 34 in the above-described manner will again melt the adhesive 35 and cause a further flow-of the substance into the surrounding sponge pores to insure bond between the string and the sponge when the adhesive finally solidifies.
As an alternative to extruding a thermoplastic adhesive in the embodiment of FIG. 5, various solvent system adhesives may be used. in such case, the adhesive solution similarly is directed out of openings 36 in the needle and coats the string being drawn through he sponge and the surrounding area. When sonic energy subsequently is directed into the tampon sponge, the generated heat drives off the solvent and leaves an adhesive residue which sets and securely bonds the string to the adjacent sponge material.
It will be understood that after the withdrawal string has been bonded to the expanded, regenerated, cellulose sponge tampon, the sponge tampon may be radially compressed by known means up to 50 percent of its diameter to shape the tampon to a final desired configuration. The finished tampon may then be placed into an appropriate applicator tube or dispenser Thus, the expanded sponge tampon may initially have any desired elongated shape which facilitates its handling during the string insertion and heating manufacturing steps. I! will also be appreciated'if the final compressing of the expanded cellulose sponge tampon follows immediately after the heating step, the compressive force will aid in the formation of a strong permanent bond between the withdrawal string and the sponge when the adhesive is cooled to room temperature.
it will further be apparent to those skilled in the art that other variations from the examples given may be employed without departing from the spirit of the present invention. For example, instead of inserting a string into a cellulose sponge tampon by means of the needle, a tampon made of laminated layers of cellulose sponge could be used with the adhesively coated withdrawal string being interposed between the sponge layers. Moreover, while in the illustrated method a single string was inserted into a single tampon, alternatively, a plurality of parallel strings could be inserted into a single sponge layer and sonic energy could be applied to the entire layer to simultaneously bond all the strings to the sponge. The sponge layer could then be cut into individual tampons, each containing a single withdrawal string. While the process is particularly useful for use in the manufacture of cataminial devices it is readily adapted to string attachment to absorbent devices for other uses.
The following is claimed as invention:
1. A method of securing a withdrawal string to a tampon of dry, expanded, fine-pore, regenerated cellulose sponge in the manufacture of menstrual tampons, comprising the steps of inserting a string into said sponge tampon by drawing the string through the tampon with a hollow needle so that a portion of the string is contained within said tampon and a portion extends outwardly of the tampon, simultaneously supplying a heat-reactive adhesive substance to said string as it is being inserted into said tampon by passing said adhesive substance through the interior of said needle in a fluid state and extrud- 3. The method of claim 1 wherein said adhesive substance is a hot melt adhesive material.
4. The method of claim 1 wherein said adhesive substance is a fluid dispersion including a carrier solvent causing the remaining adhesive element to securely bond said string to the tampon.
5. The method of claim 1 wherein said sonic energy has at least 20,000 cycles per second.

Claims (4)

  1. 2. The method of claim wherein said adhesive is applied only to the portion of said string which is inserted into said tampon.
  2. 3. The method of claim 1 wherein said adhesive substance is a hot melt adhesive material.
  3. 4. The method of claim 1 wherein said adhesive substance is a fluid dispersion including a carrier solvent causing the remaining adhesive element to securely bond said string to the tampon.
  4. 5. The method of claim 1 wherein said sonic energy has at least 20,000 cycles per second.
US849119A 1969-08-11 1969-08-11 Method of attaching withdrawal string to a sponge tampon Expired - Lifetime US3625787A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84911969A 1969-08-11 1969-08-11

Publications (1)

Publication Number Publication Date
US3625787A true US3625787A (en) 1971-12-07

Family

ID=25305107

Family Applications (1)

Application Number Title Priority Date Filing Date
US849119A Expired - Lifetime US3625787A (en) 1969-08-11 1969-08-11 Method of attaching withdrawal string to a sponge tampon

Country Status (1)

Country Link
US (1) US3625787A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794024A (en) * 1972-05-17 1974-02-26 Procter & Gamble Catamenial wetness indicator
FR2424020A1 (en) * 1978-04-28 1979-11-23 Cabot Corp HEARING PROTECTION KIT
US4293355A (en) * 1978-04-28 1981-10-06 Cabot Corporation Method for ultrasonically welding plasticized thermoplastic polymeric foam wares
WO1992016358A1 (en) * 1991-03-22 1992-10-01 Desmarais & Frere Ltd. Thermoplastic film and method of welding same
US5433912A (en) * 1994-03-03 1995-07-18 Kimberly-Clark Corporation Process for injection molding arcuately-shaped hollow articles
US5690884A (en) * 1995-05-04 1997-11-25 Kimberly-Clark Worldwide, Inc. Method of injection molding a thin walled article
WO1999033428A1 (en) * 1997-12-30 1999-07-08 Playtex Products, Inc. Textured tampon string
US6180051B1 (en) 1996-03-22 2001-01-30 Johnson & Johnson Gmbh Method for forming shaped fibrous articles
US20060104856A1 (en) * 2004-11-18 2006-05-18 Kimberly-Clark Worldwide, Inc. Sterilization wrap with fastening means
US20080058751A1 (en) * 2006-08-29 2008-03-06 Playtex Products, Inc. Tampon removal device
WO2010130746A1 (en) * 2009-05-12 2010-11-18 Intervet International B.V. Method and equipment for fastening a thread to a tampon
WO2015092657A1 (en) * 2013-12-20 2015-06-25 Kimberly-Clark Worldwide, Inc. Vaginal insert method of manufacture
CN105813598A (en) * 2013-12-20 2016-07-27 金伯利-克拉克环球有限公司 Vaginal insert method of manufacture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2134930A (en) * 1935-09-03 1938-11-01 Holly Pax Inc Tampon and method of making it
US3480492A (en) * 1967-02-20 1969-11-25 Branson Instr Method of bonding using exothermic adhesive activated by ultrasonic energy
US3520302A (en) * 1967-02-13 1970-07-14 Kimberly Clark Co Tampon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2134930A (en) * 1935-09-03 1938-11-01 Holly Pax Inc Tampon and method of making it
US3520302A (en) * 1967-02-13 1970-07-14 Kimberly Clark Co Tampon
US3480492A (en) * 1967-02-20 1969-11-25 Branson Instr Method of bonding using exothermic adhesive activated by ultrasonic energy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R. S. Soloff, New Concepts in Ultrasonic Sealing Modern Plastics, March, 1964 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794024A (en) * 1972-05-17 1974-02-26 Procter & Gamble Catamenial wetness indicator
FR2424020A1 (en) * 1978-04-28 1979-11-23 Cabot Corp HEARING PROTECTION KIT
US4293355A (en) * 1978-04-28 1981-10-06 Cabot Corporation Method for ultrasonically welding plasticized thermoplastic polymeric foam wares
WO1992016358A1 (en) * 1991-03-22 1992-10-01 Desmarais & Frere Ltd. Thermoplastic film and method of welding same
US5449428A (en) * 1991-03-22 1995-09-12 Desmarais & Frere Ltd. Method of welding thermoplastic film
USRE35991E (en) * 1991-03-22 1998-12-15 Df Albums Ltd. Method of welding thermoplastic film
US5433912A (en) * 1994-03-03 1995-07-18 Kimberly-Clark Corporation Process for injection molding arcuately-shaped hollow articles
US5690884A (en) * 1995-05-04 1997-11-25 Kimberly-Clark Worldwide, Inc. Method of injection molding a thin walled article
US6180051B1 (en) 1996-03-22 2001-01-30 Johnson & Johnson Gmbh Method for forming shaped fibrous articles
WO1999033428A1 (en) * 1997-12-30 1999-07-08 Playtex Products, Inc. Textured tampon string
US6142984A (en) * 1997-12-30 2000-11-07 Playtex Products, Inc. Removal string for tampon pledget
US20060104856A1 (en) * 2004-11-18 2006-05-18 Kimberly-Clark Worldwide, Inc. Sterilization wrap with fastening means
US20080058751A1 (en) * 2006-08-29 2008-03-06 Playtex Products, Inc. Tampon removal device
US8323256B2 (en) 2006-08-29 2012-12-04 Playtex Products Inc. Tampon removal device
WO2010130746A1 (en) * 2009-05-12 2010-11-18 Intervet International B.V. Method and equipment for fastening a thread to a tampon
US8961485B2 (en) 2009-05-12 2015-02-24 Intervet International B.V. Method and equipment for fastening a thread to a tampon
WO2015092657A1 (en) * 2013-12-20 2015-06-25 Kimberly-Clark Worldwide, Inc. Vaginal insert method of manufacture
CN105813598A (en) * 2013-12-20 2016-07-27 金伯利-克拉克环球有限公司 Vaginal insert method of manufacture
US9475671B2 (en) 2013-12-20 2016-10-25 Kimberly-Clark Worldwide, Inc. Vaginal insert method of manufacture

Similar Documents

Publication Publication Date Title
US3625787A (en) Method of attaching withdrawal string to a sponge tampon
US3524779A (en) Method of making wound tubular products
US3444025A (en) Method of bonding non-woven scrim
US3736935A (en) Surgical sponge
US3520302A (en) Tampon
EP0223239B1 (en) A method of manufacturing fiber bundles for use in brushes
US3764427A (en) Vein stripping instrument
US20170050370A1 (en) Joined body, method of manufacturing joined body, and structure for vehicle
US3837950A (en) Surgical sponge
JP4180132B2 (en) Method and apparatus for forming stuffed product
US5688257A (en) Menstruation tampon and a method of manufacturing the same
US2437265A (en) Tampon, sanitary napkin, surgical dressing, insulating material, filter cartridge, upholstery, and the like
KR101952277B1 (en) Cosmetic puff and manufacturing method thereof
US6555731B2 (en) Pad integrity improvement by replacing the constructive adhesive with ultrasonic compressions
JP2018150657A (en) Nonwoven fabric for forming and sheath material for automobile
JP2964014B2 (en) Manufacturing method of powder encapsulated sheet
GB2024099A (en) Manufacture of laminated fabrics
WO2011033563A1 (en) Method of manufacturing hollow continuous body
JPS621158B2 (en)
JPH05507769A (en) Bonded fibrous products
GB1279304A (en) Filamentary sheet materials
US2610384A (en) Process of producing a textile product
WO2019038356A1 (en) Alternative joining method
KR950002962A (en) Manufacturing method of fire hose
US2608901A (en) Cylindrical absorptive fibrous body and the manufacture thereof