US3607222A - Method for evaporating alloy - Google Patents

Method for evaporating alloy Download PDF

Info

Publication number
US3607222A
US3607222A US780613A US3607222DA US3607222A US 3607222 A US3607222 A US 3607222A US 780613 A US780613 A US 780613A US 3607222D A US3607222D A US 3607222DA US 3607222 A US3607222 A US 3607222A
Authority
US
United States
Prior art keywords
crucible
alloy
bar
molten
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US780613A
Inventor
Kurt D Kennedy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airco Inc
Original Assignee
Air Reduction Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Reduction Co Inc filed Critical Air Reduction Co Inc
Application granted granted Critical
Publication of US3607222A publication Critical patent/US3607222A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/246Replenishment of source material

Definitions

  • the alloy is heated to form a covering pool and to produce evaporation.
  • the feed rate of the solid bar is regulated to maintain a substantially constant level of molten alloy relative to the crucible.
  • This invention relates to vacuum evaporation of metals and, more particularly, to a method for evaporating a molten alloy from a single crucible in a vacuum enclosure.
  • Vapor deposition that is, the evaporation of material and subsequent condensation thereof on a substrate to be coated, has been successfully used in a variety of manufacturing operations.
  • One particular vapor deposition technique which is of advantage where high purity is desirable involves the utilization of a cooled crucible and means for heating the surface of molten material contained in the crucible. Surface heating may, for example be accomplished by means of a suitably directed electron beam, plasma beam, or laser beam.
  • a skull of solidified molten material forms between the molten material and the crucible wall, isolating the molten material from the crucible and preventing any reaction between the molten material and the crucible material.
  • feed stock is introduced into the crucible.
  • One form of feeding is by utilizing a wire fed into the path of the heating beam or directly into the molten alloy in the crucible through the open top of the crucible.
  • Many important alloys are not available in wire form, however, for lack of commercial'value of the alloy in wire form, or because of difficulty in fabricating the alloy because of brittleness. Alloys that are commercially available in wire form are frequently full of dissolved gas and generate a considerable amount of undesirable spitting when melted into the molten pool.
  • Cast alloy bars are sometimes preferable to wire for feeding purposes because cast bars are generally obtainable commercially in more pure form than wire and in a wider variety of available alloys. Such cast bars are generally greater than onehalf inch in diameter requiring, in most instances, a relatively slow movement of the bar into the molten pool to replenish the molten alloy at the rate at which it is being evaporated. This may be difficult due to variations in the heat pattern of the system which make the bar melt back at varying rates and therefore cause significant changes in the actual feed rate of new alloy into the molten pool. Under such circumstances, a
  • an object of the invention to provide an improved method for evaporating a molten alloy from a single crucible in a vacuum enclosure.
  • Another object of the invention is to provide a method for evaporating alloys having constituent materials of widely different volatilities wherein improved uniformity of vapor composition is obtainable.
  • the method of the invention comprises heating the surface 11 of a molten alloy 12 in a crucible 13 to produce evaporation.
  • a solid bar 14 of alloy of substantially the same cross section as the crucible interior, is fed upwardly into the crucible from the bottom thereof to replenish alloy evaporated therefrom.
  • the feed rate of the solid bar is regulated to maintain a substantially constant level of molten alloy relative to the crucible.
  • the vapor deposition system illustrated therein includes a vacuum enclosure 16, the interior of which is evacuated by a suitable vacuum pumping system 17.
  • a substrate 18 to be coated with a layer 19 of condensed vapor is positioned within the enclosure 16 in the path of the vapor by suitable supporting means, not illustrated.
  • the surface 11 of the molten alloy 12 contained within the crucible 13 is heated by means of an electron beam 21.
  • the electron beam 21 is produced by an electron gun including an emissive filament or emitter 22 disposed within a recess in a backing electrode 23.
  • An anode or accelerating electrode 24 is disposed adjacent the open side of the recess in the backing electrode to accelerate electrons out of the recess, as indicated by the dotted lines in the drawing.
  • the electron beam thus developed is deflected through a generally curving path onto the surface 11 of the molten alloy 12 by means of a magnetic field having curving lines of flux which are concave with respect to the surface 11.
  • the magnetic field is established between a pair of pole pieces 26, one of which is shown.
  • An electromagnetic coil 27 is disposed around a low-reluctance core 28 which extends between the pole pieces 26 to establish the pole pieces at opposite polarities. Suitable means, not illustrated, are provided for supplying the required electrical potentials and currents to the various times described.
  • An electron beam gun generally of the type described is shown and described in greater detail in U. S. Pat. No. 3,177,535.
  • the efficiency of a vacuum deposition system may be defined by the expression (l-L/l-LJAYPIOO where H, is the theoretical heat required to produce the evaporation rate desired and H, is the actual heat input.
  • H is the theoretical heat required to produce the evaporation rate desired
  • H is the actual heat input.
  • cadmium which has a relatively low evaporation temperature
  • tantalum which has a relatively high evaporating temperature, is usually evaporable at efficiencies which are typically less than per cent.
  • the evaporation rate also depends upon the sharpness of the area of impingement of the beam on the surface 11 of the alloy 12 in the crucible 13. For given material and beam power, the larger the spot or impingement area, the lower the evaporation rate. The relationship, however, is not linear and the effects of variation in the impact area are much less for lower evaporation temperature materials. Of course, the evaporation rate becomes less if the beam is swept over the entire surface of the molten material, rather than impinging upon a particular area thereof. Such beam sweeping may be desirable to produce a more uniform evaporation from the entire surface of the molten material. Basically, however, the evaporation rate is most easily controlled by controlling the total power input or heat input of the electron beam or other heating beam, and by controlling the power density of such beam.
  • the solid bar 14 of replenishment alloy is fed upwardly into the crucible from the bottom thereof.
  • the bar is of the same cross section as the crucible interior and therefore constitutes the bottom or support for the molten alloy 12.
  • the region of the bar adjacent the crucible 13 remains solid, due to cooling of the crucible, until just below the surface of the molten pool.
  • the beam power and density are controlled so that the pool diameter at the surface is equal to the inner diameter of the crucible so the pool completely covers the solid part of the bar 14. If a fluctuation in heating occurs, causing melting of the bar 14 earlier, the pool surface area does not change, helping to keep the evaporation rate constant.
  • the feed bar 14 is moved upwardly at a rate which may be appropriately adjusted by the operator through visual observation of the liquid level in the molten pool to maintain such level as nearly constant as possible. Examples of typical feed rates are set out below, and the average rate of feed depends on the evaporation rate. If an error of feed should occur, or conversely if a fluctuation in the heat balance of the system occurs, causing the liquid level of the pool to drop, the liquidsolid interface between the molten pool and the solid bar also drops, tending to keep the liquid inventory constant. This helps to maintain the evaporation rate and the pool composition relatively constant. This is of great advantage when evaporating alloys having constituents of widely different volatilities, since steady state conditions aid in maintaining constant composition in the condensate. In addition, the constant moving of the feed stock bar upwardly produces an abrading action which prevents condensate from accumulating between the bar and the walls of the cooled crucible.
  • the rate of heat transfer out of the crucible is generally constant, reducing the likelihood of changes in the skull thickness and attendant melting and freezing of metal which produces segregation and changes in the pool composition. Since the heat loss, when evaporating in accordance with the invention, may be maintained substantially constant, the pool depth may also be maintained substantially constant, creating an equilibrium condition wherein the feed rate equals the evaporation rate.
  • Typical feed rates in the following examples, may be about 1 or 2 inches per hour, and typical evaporation rates may be about 1 or 2 pounds per hour.
  • Typical feed rates in the following examples, may be about 1 or 2 inches per hour, and typical evaporation rates may be about 1 or 2 pounds per hour.
  • the following examples illustrate that the invention is of particular advantage where elements of widely differing volatilities are present, such as with ratios of volatility of two or more to one. The actual volatility ratio may not necessarily be consistent with the volatilities of the elements by themselves, since compounds may form (due to intermetallic reactions) which have different volatilities from the elements alone.
  • Evaporating an Fe 25 Cr alloy in accordance with the invention is capable or producing a condensate on a substrate which ranges from 23 to 27 percent chromium utilizing a 2-inchdiameter feed bar and crucible interior and utilizing 25 kilowatts of electron beam power.
  • the ratio of volatilities is about three to one, chromium to iron.
  • Evaporation wherein replenishment stock is fed into a similar size crucible from the top, using similar beam power and an identical composition alloy, is typically only capable of holding a :15 percent variation in chromium composition.
  • EXAMPLE II Using a 2-inch-diameter crucible and a Z-inch-diameter feed stock bar of an percent nickel 20 percent iron alloy, a l0-kilowatt electron beam may be utilized to produce evaporation of the alloy with a range of chromium composition in the condensate from 79.8 to 80.2 percent. In such an alloy, the ratio of volatilities is about two to one, iron to nickel. Operations utilizing more conventional methods may be expected to produce a range of nickel composition in the condensate from 79.5 to 80.5 percent.
  • Chromium 23% to 27% Aluminum: 5% to 7% Yttrium: 0.2% to 0.5%
  • composition percentages have about twice the composition spread.
  • the yttrium is about one twenty-fifth as volatile as the aluminum, the chromium about three times the aluminum, and the iron about the same as the yttrium.
  • the ratios of volatilities are not necessarily consistent with the volatilities of elements above because of the formation of compounds due to intermetallic reactions.
  • EXAMPLE IV An alloy containing 18 percent chromium, 8 percent nickel and the balance iron may be evaporated in accordance with the method of the invention, using a 2-inch-inner-diameter crucible and a 2-inch-diameter feed stock bar.
  • the resultant condensate contains from 16.5 to 19.5 percent chromium and from 7to 9 percent nickel.
  • the iron in such a situation is about twice the volatility of the nickel, and the chromium about six times that of the nickel.
  • evaporation of the same alloy may result in a condensate rang ing from 14 to 23 percent chromium and from 5 to 12 percent nickel.
  • EXAMPLE V An alloy containing 6 percent aluminum, 4 percent vanadi- EXAMPLE VI An alloy containing 70percent copper and 30 percent nickel may be evaporated from a 2-inch inner diameter crucible and a feed stock bar of about the same diameter.
  • the resultant condensate contains from 65 percent to 75 percent copper, the balance nickel, with the volatility of copper being about 50 times the volatility of nickel.
  • Previously known methods may b expected to hold a composition range of 50 to 90 percent copper, the balance nickel.
  • the invention provides an improved method for evaporating a molten alloy from a single crucible in a vacuum enclosure. Improved uniformity of condensate composition is obtainable and the replenishment rate of evaporant is closely controllable.
  • a method for evaporating an alloy from a single crucible in a vacuum enclosure, said alloy, in the molten condition, including at least two metals one of which is at least twice as volatile as the other comprising: feeding a solid bar of alloy of substantially the same cross section as the crucible interior upwardly into the crucible from the bottom thereof, heating the bar of alloy in the crucible to form a molten pool completely covering the solid end of the bar, heating the surface of the molten pool to produce evaporation, and regulating the feed rate of the solid bar to maintain a substantially constant level of molten alloy relative to the crucible and thereby replenish the alloy at substantially the same rate as its evaporation.
  • a method according to claim 1 including controlling the heat losses out of the bottom of the solid bar to maintain them substantially constant.
  • a method for evaporating an alloy, from a single cooled crucible in a vacuum enclosure, said alloy, in the molten condition, including at least two metals one of which is at least twice as volatile as the other comprising: cooling the crucible, feeding a solid bar of alloy of substantially the same cross section as the crucible interior upwardly into the crucible from the bottom thereof, heating the surface of the bar of alloy in the crucible to form a molten pool completely covering the solid end of the bar and to produce evaporation, controlling the cooling rate and the heat losses out of the bottom of the solid bar to maintain a substantially balanced condition of heat removal to heat input, and regulating the feed rate of the solid bar to maintain a substantially constant level of molten alloy relative to the crucible and thereby replenish the alloy at 5 substantially the same rate as its evaporation.

Abstract

A method is described for evaporating an alloy from a single crucible in a vacuum enclosure. A solid bar of alloy is fed upwardly into the crucible from the bottom thereof. The alloy is heated to form a covering pool and to produce evaporation. The feed rate of the solid bar is regulated to maintain a substantially constant level of molten alloy relative to the crucible.

Description

MTRM- United States Patent 9' [56] References Cited UNITED STATES PATENTS [72] Inventor Kurt D. Kennedy Berkeley, Calif. Appl. No. 780,613
XX X .UBE3 7E 3 OIHQ H W HHl 1 2 1 2 m MS m W m M "E m m T m M m m mh mmb G Hnnh aamE MHHSR O 2586 6666 9999 1111 326 5990 141 9 ,2 4000 2793 3333 d e m m o c n I y n a u. m 8 nX 6 0 9 0 1 MZMv R v.... w 0 ."9. NaAN e w e n dmh elS Ha FPA nv ouw 247 ,228,807 11/1966 Germany...................... 219/121EB Primary ExaminerAllen B. Curtis Attorney-Anderson, Luedeka, Fitch, Even and Tabin ABSTRACT: A method is described for evaporating an alloy 75/10 V, from a single crucible in a vacuum enclosure. A solid bar of alloy is fed upwardly into the crucible from the bottom [54] METHOD FOR EVAPORATING ALLOY 5 Claims, 1 Drawing Fig.
thereof. The alloy is heated to form a covering pool and to produce evaporation. The feed rate of the solid bar is regulated to maintain a substantially constant level of molten alloy relative to the crucible.
METHOD FOR EVAPORATING ALLOY This invention relates to vacuum evaporation of metals and, more particularly, to a method for evaporating a molten alloy from a single crucible in a vacuum enclosure.
Vapor deposition, that is, the evaporation of material and subsequent condensation thereof on a substrate to be coated, has been successfully used in a variety of manufacturing operations. One particular vapor deposition technique which is of advantage where high purity is desirable involves the utilization of a cooled crucible and means for heating the surface of molten material contained in the crucible. Surface heating may, for example be accomplished by means of a suitably directed electron beam, plasma beam, or laser beam. By cooling the crucible, a skull of solidified molten material forms between the molten material and the crucible wall, isolating the molten material from the crucible and preventing any reaction between the molten material and the crucible material.
Although satisfactory for many types of materials, heretofore known methods of vapor deposition have frequently encountered difiiculty in evaporating alloys. This is particularly true for alloys having constituent materials of widely different volatilities, such as alloys of iron plus rare earth metals. For a given heating energy input and beam density the the evaporation rate depends upon the efficiency of the vapor deposition system. The efficiency of the system,however, is affected by a wide variety of different factors which cause changes in the heat balance of the system. Such changes can result in variation in the amount of solid alloy that lies between the cooled crucible walls and the molten alloy. The melting and freezing of alloy at the skull creates segregation of the alloys components and thus may cause changes in the composition of the molten alloy in the crucible. This may result in an undesired variation in the composition of the deposit on the substrate. Evaporation of alloy constituents from separate crucibles simultaneously is one way of avoiding segregation problems, but greatly increases the cost and complexity of the system. Thus, evaporation of an alloy from a single crucible may be preferable.
In order to replenish the molten material in the crucible for alloy evaporated therefrom during typical vapor deposition operations, feed stock is introduced into the crucible. One form of feeding is by utilizing a wire fed into the path of the heating beam or directly into the molten alloy in the crucible through the open top of the crucible. Many important alloys are not available in wire form, however, for lack of commercial'value of the alloy in wire form, or because of difficulty in fabricating the alloy because of brittleness. Alloys that are commercially available in wire form are frequently full of dissolved gas and generate a considerable amount of undesirable spitting when melted into the molten pool.
Cast alloy bars are sometimes preferable to wire for feeding purposes because cast bars are generally obtainable commercially in more pure form than wire and in a wider variety of available alloys. Such cast bars are generally greater than onehalf inch in diameter requiring, in most instances, a relatively slow movement of the bar into the molten pool to replenish the molten alloy at the rate at which it is being evaporated. This may be difficult due to variations in the heat pattern of the system which make the bar melt back at varying rates and therefore cause significant changes in the actual feed rate of new alloy into the molten pool. Under such circumstances, a
heat imbalance occurs in the system with the consequent undesirable changes in alloy composition previously pointed out.
A further difiiculty encountered in vapor deposition systems, particularly when the crucible in which the molten alloy is contained is cooled to form a skull, is that condensate has a tendency to form between the skull and the water cooled crucible along the top edges thereof. During operation, such condensate builds up and may wedge between the skull and the crucible, leading to increased mechanical pressure and an attendant increase in the rate at which heat is transferred from the molten material to the cooled crucible. If the molten material is permitted to cool off, such as between coating operations, the solidified alloy will frequently shrink away from the supporting crucible. Upon reheating, the same mechanical pressures mentioned above will generally not develop, and the rate of heat transfer is therefore not the same as that which existed during the previously described situation. Such changes between successive operations in the ratio of the volume of liquid to the volume of solid alloy results in changes in the alloy composition of the molten pool for reasons previously described, and such changes cannot easily be predicted.
It is, therefore, an object of the invention to provide an improved method for evaporating a molten alloy from a single crucible in a vacuum enclosure.
Another object of the invention is to provide a method for evaporating alloys having constituent materials of widely different volatilities wherein improved uniformity of vapor composition is obtainable.
It is another object of the invention to provide a method for evaporating an alloy wherein the replenishment rate of evaporant is closely controllable.
Other objects of the invention will become apparent to those skilled in the art from the following description, taken in connection with the accompanying drawing in which a vapor deposition system for performing the method of the invention is illustrated schematically.
Very generally, the method of the invention comprises heating the surface 11 of a molten alloy 12 in a crucible 13 to produce evaporation. A solid bar 14 of alloy, of substantially the same cross section as the crucible interior, is fed upwardly into the crucible from the bottom thereof to replenish alloy evaporated therefrom. The feed rate of the solid bar is regulated to maintain a substantially constant level of molten alloy relative to the crucible.
Referring now more particularly to the drawing, the vapor deposition system illustrated therein includes a vacuum enclosure 16, the interior of which is evacuated by a suitable vacuum pumping system 17. A substrate 18 to be coated with a layer 19 of condensed vapor is positioned within the enclosure 16 in the path of the vapor by suitable supporting means, not illustrated.
The surface 11 of the molten alloy 12 contained within the crucible 13 is heated by means of an electron beam 21. The electron beam 21 is produced by an electron gun including an emissive filament or emitter 22 disposed within a recess in a backing electrode 23. An anode or accelerating electrode 24 is disposed adjacent the open side of the recess in the backing electrode to accelerate electrons out of the recess, as indicated by the dotted lines in the drawing. The electron beam thus developed is deflected through a generally curving path onto the surface 11 of the molten alloy 12 by means of a magnetic field having curving lines of flux which are concave with respect to the surface 11. The magnetic field is established between a pair of pole pieces 26, one of which is shown. An electromagnetic coil 27 is disposed around a low-reluctance core 28 which extends between the pole pieces 26 to establish the pole pieces at opposite polarities. Suitable means, not illustrated, are provided for supplying the required electrical potentials and currents to the various times described. An electron beam gun generally of the type described is shown and described in greater detail in U. S. Pat. No. 3,177,535.
The crucible 13 is provided with an internal passage 29 through which a suitable coolant, such as water, may be circulated. The crucible is supported within the vacuum enclosure 16 by suitable supports, not illustrated.
A large number of factors contribute to the evaporation rate. Two factors which are of substantial importance are the overall efficiency of the system and the size of the area of the surface to which heat is being added by impingement of the electron beam or other heating beam. The efficiency of a vacuum deposition system may be defined by the expression (l-L/l-LJAYPIOO where H, is the theoretical heat required to produce the evaporation rate desired and H, is the actual heat input. Thus, the fewer the heat losses in the system, the higher the efficiency will be. Where higher temperatures are required to produce evaporation, greater heat losses result, lowering the efficiency. For example, cadmium, which has a relatively low evaporation temperature, may be evaporated in many instances at efficiencies of greater than 80 percent. On the other hand, tantalum, which has a relatively high evaporating temperature, is usually evaporable at efficiencies which are typically less than per cent.
As previously mentioned, the evaporation rate also depends upon the sharpness of the area of impingement of the beam on the surface 11 of the alloy 12 in the crucible 13. For given material and beam power, the larger the spot or impingement area, the lower the evaporation rate. The relationship, however, is not linear and the effects of variation in the impact area are much less for lower evaporation temperature materials. Of course, the evaporation rate becomes less if the beam is swept over the entire surface of the molten material, rather than impinging upon a particular area thereof. Such beam sweeping may be desirable to produce a more uniform evaporation from the entire surface of the molten material. Basically, however, the evaporation rate is most easily controlled by controlling the total power input or heat input of the electron beam or other heating beam, and by controlling the power density of such beam.
In order to replenish alloy evaporated from the crucible, the solid bar 14 of replenishment alloy is fed upwardly into the crucible from the bottom thereof. The bar is of the same cross section as the crucible interior and therefore constitutes the bottom or support for the molten alloy 12. The region of the bar adjacent the crucible 13 remains solid, due to cooling of the crucible, until just below the surface of the molten pool. The beam power and density are controlled so that the pool diameter at the surface is equal to the inner diameter of the crucible so the pool completely covers the solid part of the bar 14. If a fluctuation in heating occurs, causing melting of the bar 14 earlier, the pool surface area does not change, helping to keep the evaporation rate constant. Moreover, the avoidance of exposure of the solid end of the bar, and the avoidance of the formation of an exposed skull aids in maintaining a constant pool composition. The feed rate is controlled by the feed rollers 31 and 32 which engage the sides of the bar and feed it upwardly into the crucible. The rate of feed may be controlled by controlling the rate of rotation of the feed rollers 31 and 32 by suitable means, not illustrated. For operations which are to be continuous over an extended period of time, relatively long length of the bar 14 may be accommodated by feeding the bar through a suitable vacuum valve 33 in the wall of the enclosure 16. A thermal insulation 34 may be provided at the lower end of the bar 14 to minimize heat losses through the bar from the crucible.
The feed bar 14 is moved upwardly at a rate which may be appropriately adjusted by the operator through visual observation of the liquid level in the molten pool to maintain such level as nearly constant as possible. Examples of typical feed rates are set out below, and the average rate of feed depends on the evaporation rate. If an error of feed should occur, or conversely if a fluctuation in the heat balance of the system occurs, causing the liquid level of the pool to drop, the liquidsolid interface between the molten pool and the solid bar also drops, tending to keep the liquid inventory constant. This helps to maintain the evaporation rate and the pool composition relatively constant. This is of great advantage when evaporating alloys having constituents of widely different volatilities, since steady state conditions aid in maintaining constant composition in the condensate. In addition, the constant moving of the feed stock bar upwardly produces an abrading action which prevents condensate from accumulating between the bar and the walls of the cooled crucible.
By feeding the replenishment stock into the crucible in the manner described above, it is easy to maintain a constant level of the molten pool by appropriate adjustments in the feed rate. Moreover, the rate of heat transfer out of the crucible is generally constant, reducing the likelihood of changes in the skull thickness and attendant melting and freezing of metal which produces segregation and changes in the pool composition. Since the heat loss, when evaporating in accordance with the invention, may be maintained substantially constant, the pool depth may also be maintained substantially constant, creating an equilibrium condition wherein the feed rate equals the evaporation rate.
In order to more fully illustrate the advantages of the invention, the following examples are setforth. The invention, however, is not intended to be limited to such examples. Typical feed rates, in the following examples, may be about 1 or 2 inches per hour, and typical evaporation rates may be about 1 or 2 pounds per hour. The following examples illustrate that the invention is of particular advantage where elements of widely differing volatilities are present, such as with ratios of volatility of two or more to one. The actual volatility ratio may not necessarily be consistent with the volatilities of the elements by themselves, since compounds may form (due to intermetallic reactions) which have different volatilities from the elements alone.
EXAMPLE I Evaporating an Fe 25 Cr alloy in accordance with the invention is capable or producing a condensate on a substrate which ranges from 23 to 27 percent chromium utilizing a 2-inchdiameter feed bar and crucible interior and utilizing 25 kilowatts of electron beam power. In such an alloy, the ratio of volatilities is about three to one, chromium to iron. Evaporation wherein replenishment stock is fed into a similar size crucible from the top, using similar beam power and an identical composition alloy, is typically only capable of holding a :15 percent variation in chromium composition.
EXAMPLE II Using a 2-inch-diameter crucible and a Z-inch-diameter feed stock bar of an percent nickel 20 percent iron alloy, a l0-kilowatt electron beam may be utilized to produce evaporation of the alloy with a range of chromium composition in the condensate from 79.8 to 80.2 percent. In such an alloy, the ratio of volatilities is about two to one, iron to nickel. Operations utilizing more conventional methods may be expected to produce a range of nickel composition in the condensate from 79.5 to 80.5 percent.
EXAMPLE III Using a 2-inch inner diameter crucible and a Z-inch-diameter alloy bar comprised of 25 percent chromium, 6 percent aluminum and 0.4 percent yttrium, the balance iron, a 15 kilowatt electron beam may be used to produce evaporation and a condensate with a composition as follows:
Chromium: 23% to 27% Aluminum: 5% to 7% Yttrium: 0.2% to 0.5%
Using previously known methods, typical composition percentages have about twice the composition spread. The yttrium is about one twenty-fifth as volatile as the aluminum, the chromium about three times the aluminum, and the iron about the same as the yttrium. The ratios of volatilities are not necessarily consistent with the volatilities of elements above because of the formation of compounds due to intermetallic reactions.
EXAMPLE IV An alloy containing 18 percent chromium, 8 percent nickel and the balance iron may be evaporated in accordance with the method of the invention, using a 2-inch-inner-diameter crucible and a 2-inch-diameter feed stock bar. The resultant condensate contains from 16.5 to 19.5 percent chromium and from 7to 9 percent nickel. The iron in such a situation is about twice the volatility of the nickel, and the chromium about six times that of the nickel. Using previously known methods,
evaporation of the same alloy may result in a condensate rang ing from 14 to 23 percent chromium and from 5 to 12 percent nickel.
EXAMPLE V An alloy containing 6 percent aluminum, 4 percent vanadi- EXAMPLE VI An alloy containing 70percent copper and 30 percent nickel may be evaporated from a 2-inch inner diameter crucible and a feed stock bar of about the same diameter. The resultant condensate contains from 65 percent to 75 percent copper, the balance nickel, with the volatility of copper being about 50 times the volatility of nickel. Previously known methods may b expected to hold a composition range of 50 to 90 percent copper, the balance nickel.
It may therefore be seen that the invention provides an improved method for evaporating a molten alloy from a single crucible in a vacuum enclosure. Improved uniformity of condensate composition is obtainable and the replenishment rate of evaporant is closely controllable.
Various modifications of the invention in addition to those shown and described herein will become apparent from the foregoing description and accompanying drawing. Such 3 modifications are intended to fall within the scope of the appended claims.
What is claimed is:
1. A method for evaporating an alloy from a single crucible in a vacuum enclosure, said alloy, in the molten condition, including at least two metals one of which is at least twice as volatile as the other, comprising: feeding a solid bar of alloy of substantially the same cross section as the crucible interior upwardly into the crucible from the bottom thereof, heating the bar of alloy in the crucible to form a molten pool completely covering the solid end of the bar, heating the surface of the molten pool to produce evaporation, and regulating the feed rate of the solid bar to maintain a substantially constant level of molten alloy relative to the crucible and thereby replenish the alloy at substantially the same rate as its evaporation.
2. A method according to claim 1 wherein the crucible is cooled.
3. A method according to claim 1 including controlling the heat losses out of the bottom of the solid bar to maintain them substantially constant.
4. A method according to claim 1 wherein the heating is accomplished by means of an electron beam.
5. A method for evaporating an alloy, from a single cooled crucible in a vacuum enclosure, said alloy, in the molten condition, including at least two metals one of which is at least twice as volatile as the other, comprising: cooling the crucible, feeding a solid bar of alloy of substantially the same cross section as the crucible interior upwardly into the crucible from the bottom thereof, heating the surface of the bar of alloy in the crucible to form a molten pool completely covering the solid end of the bar and to produce evaporation, controlling the cooling rate and the heat losses out of the bottom of the solid bar to maintain a substantially balanced condition of heat removal to heat input, and regulating the feed rate of the solid bar to maintain a substantially constant level of molten alloy relative to the crucible and thereby replenish the alloy at 5 substantially the same rate as its evaporation.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3 r 222 Dated September 21 r 1971 Inventor) Kurt D. Kennedy It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column Column Column line 25, delete first "the". line 60, "times" should read items.
Column Column line 26, "or" should read -of-. line 26, "b" should read -be.
Signed and sealed this 28th day of March 1972.
(SEAL) Attest:
EDWARD M.FLETCHER,JR. ROBERT GOTTSCHALK Attesting Officer Commissioner of Patents RM P0-1050 (10-69) USCOMM-DC 603T6-P69 U S GOVERNMENY PRINTING OFFICE I9. D36334 line 74, "(H /H )AYPl0O" should read -H /H x l00--

Claims (4)

  1. 2. A method according to claim 1 wherein the crucible is cooled.
  2. 3. A method according to claim 1 including controlling the heat losses out of the bottom of the solid bar to maintain them substantially constant.
  3. 4. A method according to claim 1 wherein the heating is accomplished by means of an electron beam.
  4. 5. A method for evaporating an alloy, from a single cooled crucible in a vacuum enclosure, said alloy, in the molten condition, including at least two metals one of which is at least twice as volatile as the other, comprising: cooling the crucible, feeding a solid bar of alloy of substantially the same cross section as the crucible interior upwardly into the crucible from the bottom thereof, heating the surface of the bar of alloy in the crucible to form a molten pool completely covering the solid end of the bar and to produce evaporation, controlling the cooling rate and the heat losses out of the bottom of the solid bar to maintain a substantially balanced condition of heat removal to heat input, and regulating the feed rate of the solid bar to maintain a substantially constant level of molten alloy relative to the crucible and thereby replenish the alloy at substantially the same rate as its evaporation.
US780613A 1968-11-26 1968-11-26 Method for evaporating alloy Expired - Lifetime US3607222A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US78061368A 1968-11-26 1968-11-26

Publications (1)

Publication Number Publication Date
US3607222A true US3607222A (en) 1971-09-21

Family

ID=25120102

Family Applications (1)

Application Number Title Priority Date Filing Date
US780613A Expired - Lifetime US3607222A (en) 1968-11-26 1968-11-26 Method for evaporating alloy

Country Status (3)

Country Link
US (1) US3607222A (en)
DE (1) DE1959411A1 (en)
FR (1) FR2024258A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860444A (en) * 1972-02-08 1975-01-14 Cockerill Coating of workpieces by vapor deposition
US4208042A (en) * 1978-05-13 1980-06-17 Leybold-Heraeus Gmbh Evaporating crucible
US4488902A (en) * 1983-06-10 1984-12-18 Duval Corporation Horizontal, multistage electron beam refinement of metals with recycle
WO1984004933A1 (en) * 1983-06-10 1984-12-20 Duval Corp Electron beam refinement of metals, particularly copper
US4762975A (en) * 1984-02-06 1988-08-09 Phrasor Scientific, Incorporated Method and apparatus for making submicrom powders
US5003151A (en) * 1988-11-10 1991-03-26 Balzers Aktiengesellschaft Method and control arrangement for the evaporation rate of an electron beam
US5021084A (en) * 1987-02-24 1991-06-04 Bianchi Leonard M Process for improving high-temperature alloys
US5348703A (en) * 1990-10-16 1994-09-20 The Secretary Of The State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Vapor deposition apparatus and method
US5503655A (en) * 1994-02-23 1996-04-02 Orbit Technologies, Inc. Low cost titanium production
US5861599A (en) * 1996-01-19 1999-01-19 The Boc Group, Inc. Rod-fed electron beam evaporation system
US6145470A (en) * 1998-12-11 2000-11-14 General Electric Company Apparatus for electron beam physical vapor deposition
US20040103751A1 (en) * 2002-12-03 2004-06-03 Joseph Adrian A. Low cost high speed titanium and its alloy production
US20100196684A1 (en) * 2003-03-03 2010-08-05 United Technologies Corporation Turbine Element Repair
US20110165320A1 (en) * 2010-01-06 2011-07-07 Samsung Mobile Display Co., Ltd. Deposition source, thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2771756B1 (en) * 1997-12-03 1999-12-31 Lorraine Laminage METHOD OF VACUUM DEPOSITION OF A CHROME-IRON-BASED ALLOY AND USE FOR TREATING THE SURFACE OF ZINC-PLATED STEEL SHEET

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3024965A (en) * 1957-10-08 1962-03-13 Milleron Norman Apparatus for vacuum deposition of metals
US3170019A (en) * 1962-01-15 1965-02-16 Stauffer Chemical Co Electron beam furnace
US3230110A (en) * 1962-01-22 1966-01-18 Temescal Metallurgical Corp Method of forming carbon vapor barrier
DE1228807B (en) * 1964-02-12 1966-11-17 Alcatel Sa Melting process by electron bombardment and device for this
US3390249A (en) * 1965-09-20 1968-06-25 Air Reduction Vaporization monitoring apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3024965A (en) * 1957-10-08 1962-03-13 Milleron Norman Apparatus for vacuum deposition of metals
US3170019A (en) * 1962-01-15 1965-02-16 Stauffer Chemical Co Electron beam furnace
US3230110A (en) * 1962-01-22 1966-01-18 Temescal Metallurgical Corp Method of forming carbon vapor barrier
DE1228807B (en) * 1964-02-12 1966-11-17 Alcatel Sa Melting process by electron bombardment and device for this
US3390249A (en) * 1965-09-20 1968-06-25 Air Reduction Vaporization monitoring apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860444A (en) * 1972-02-08 1975-01-14 Cockerill Coating of workpieces by vapor deposition
US4208042A (en) * 1978-05-13 1980-06-17 Leybold-Heraeus Gmbh Evaporating crucible
US4488902A (en) * 1983-06-10 1984-12-18 Duval Corporation Horizontal, multistage electron beam refinement of metals with recycle
WO1984004933A1 (en) * 1983-06-10 1984-12-20 Duval Corp Electron beam refinement of metals, particularly copper
US4518418A (en) * 1983-06-10 1985-05-21 Duval Corporation Electron beam refinement of metals, particularly copper
US4762975A (en) * 1984-02-06 1988-08-09 Phrasor Scientific, Incorporated Method and apparatus for making submicrom powders
US5021084A (en) * 1987-02-24 1991-06-04 Bianchi Leonard M Process for improving high-temperature alloys
US5003151A (en) * 1988-11-10 1991-03-26 Balzers Aktiengesellschaft Method and control arrangement for the evaporation rate of an electron beam
US5348703A (en) * 1990-10-16 1994-09-20 The Secretary Of The State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Vapor deposition apparatus and method
US5503655A (en) * 1994-02-23 1996-04-02 Orbit Technologies, Inc. Low cost titanium production
US5861599A (en) * 1996-01-19 1999-01-19 The Boc Group, Inc. Rod-fed electron beam evaporation system
US6145470A (en) * 1998-12-11 2000-11-14 General Electric Company Apparatus for electron beam physical vapor deposition
US20040103751A1 (en) * 2002-12-03 2004-06-03 Joseph Adrian A. Low cost high speed titanium and its alloy production
US6824585B2 (en) 2002-12-03 2004-11-30 Adrian Joseph Low cost high speed titanium and its alloy production
US20100196684A1 (en) * 2003-03-03 2010-08-05 United Technologies Corporation Turbine Element Repair
US20110165320A1 (en) * 2010-01-06 2011-07-07 Samsung Mobile Display Co., Ltd. Deposition source, thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus

Also Published As

Publication number Publication date
DE1959411A1 (en) 1970-06-18
FR2024258A1 (en) 1970-08-28

Similar Documents

Publication Publication Date Title
US3607222A (en) Method for evaporating alloy
US4655893A (en) Cubic boron nitride preparation utilizing a boron and nitrogen bearing gas
US4412899A (en) Cubic boron nitride preparation utilizing nitrogen gas
US3562141A (en) Vacuum vapor deposition utilizing low voltage electron beam
JP4538146B2 (en) Manufacturing method of low permeability cobalt sputtering target
US3560252A (en) Vapor deposition method including specified solid angle of radiant heater
EP0553228B1 (en) Vapour deposition apparatus and method
US3230110A (en) Method of forming carbon vapor barrier
US4415420A (en) Cubic boron nitride preparation
US3912826A (en) Method of physical vapor deposition
US7323229B2 (en) Method and device for coating a substrate
US3799862A (en) Apparatus for sputtering
GB1425095A (en) Process for feeding an evaporation bath
US3854984A (en) Vacuum deposition of multi-element coatings and films with a single source
Dugdale Soft vacuum processing of materials with electron beams
US3330647A (en) Prevention of splattering during vaporization processing
US3622679A (en) Heating system for electron beam furnace
US20060115243A1 (en) Resistance-heated boat and manufacturing method thereof
US3437328A (en) Powder crucibles
US3356487A (en) Prevention of splattering during vaporization processing
JPH0625835A (en) Vacuum deposition method and vacuum deposition device
Deshpandey et al. Evaporation processes
JP2874436B2 (en) Vacuum evaporation method
White A survey of techniques for the vacuum deposition of thin metallic films
JPH01263265A (en) Vacuum arc deposition method